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Abstract

In this paper the issue of drawing inferences about biological cognitive systems on the
basis of connectionist simulations is addressed. In particular, the justification of
inferences based on connectionist models trained using the backpropagation learning
algorithm is examined. First it is noted that a justification commonly found in the
philosophical literature is inapplicable. Then some general issues are raised about the
relationships between models and biological systems. A way of conceiving the role of
hidden units in connectionist networks is then introduced. This, in combination with an
assumption about the way evolution goes about solving problems, is then used to suggest
a means of justifying inferences about biological systems based on connectionist research.
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Connectionism Reconsidered: Minds, Machines and Models

The Appeal of Connectionism
Modeling with connectionist systems is now an integral part of Cognitive Science. One of
the putatively appealing features of connectionist models is that they are supposed to be,
in some sense, more biologically plausible, or brain-like than models which have their
roots in what Haugeland (1985) terms the ‘GOFAI’ (short for ‘Good Old Fashioned
Artificial Intelligence’) tradition. This justification of connectionism has found a strong
hold in the literature, especially the philosophical literature (see Clark 1989: p. 4, Bechtel
and Abrahamsen 1991: p. 17, Churchland 1989: p. 160, Dennett 1991: p. 239, Sterelny
1990: p. 175 and Cummins 1989: p. 155, for examples). However, over the years, it has
become increasingly clear that this justification is deeply suspect, when applied to certain
important sub-classes of connectionist system.

Consider for example, the case of the backpropagation learning procedure. Although this
learning procedure has been widely deployed, it has been well known for some time, that
the procedure is highly biologically implausible, for a variety of reasons (Grossberg 1987
and Quinlan 1991). This being the case, the justification for employing a connectionist
model that employs the backpropagation learning procedure on a particular problem,
cannot be based just upon putative biological plausibility.

Although some network systems can be justified on biological grounds, for example
those which fall into the field often referred to as ‘neural computing’ (Churchland and
Sejnowski 1992: p. 14), systems which employ backpropagation fall outside the scope of
this justification. The justification for backpropagation models thus must come from
other grounds. What then, are the reasons for believing that backpropagation trained
models can tell us anything about biological cognition? Sketching an outline of an answer
to this question will be the main purpose of this paper. To being with, it is worth briefly
considering the relationship between models and minds in general.

Back to Basics
As a minimal condition, any proposed model of some aspect of biological cognition must
have the appropriate input and output behaviors to model the relevant aspect of cognition.
That is to say, the model had better be able to do more or less the same things as the
biological system that it putatively models. However, this alone is not sufficient to justify
a particular model as a basis to draw inferences about biological cognitive function. This
is because there are many different ways to compute any particular function.

Consider the example of multiplication. Whilst most of us are taught in school to do
multiplication using, what is known as the ‘classical multiplication algorithm’, pocket
calculators go about multiplying two numbers in an entirely different way. Calculators
use an algorithm known as ‘multiplication a la Russe’ (see Brassard and Bratley 1988: p.
2). Of course, there is no straightforward way for the user of a calculator to know that the
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machine is calculating in a different manner, as both means of calculating give the same
results. The reason that a calculator uses this algorithm is because it is much easier and
simpler to implement in digital circuits. However, it would be a great error for a
researcher to think that they could learn something about the human ability to multiply
numbers by studying a calculator. This is the reason why the mere fact that a model can
apparently duplicate input and output behaviors of some aspect of cognitive functioning
is not sufficient to justify inferences about biological cognitive agents. However, such
duplication of input and output behavior does constitute a necessary condition for such
inferences to be drawn.

Pylyshyn (1984) draws a distinction that is helpful in this context. It is the distinction
between computational systems which are strongly equivalent to biological systems,
verses those which are weakly equivalent to such systems. Systems or models which are
merely weakly equivalent to some aspect of biological cognitive functioning may have
the same input and output behaviors as some biological system in the relevant respects,
however they will go about producing this behavior in a different way. One consequence
of this is that although the set of behaviors being studied may be the same, emergent
behaviors (i.e. those behaviors that the model is not explicitly designed for, which come
‘for free’ so to speak) will most likely be different. So, to continue the example above, a
calculator doing multiplication a la Russe may be weakly equivalent to a human being
doing classical multiplication, but as noted, this does not provide much of a basis for
inference about human cognitive functioning. When a model or system is strongly
equivalent to some biological system, by contrast, the system or model not only has the
same input and output behaviors, but also computes the function in the same way. That is
to say, if one system is strongly equivalent to another system, then the two systems are
computing exactly the same algorithm, in the same way. Moreover, a consequence of this
will be that strongly equivalent systems will have the same emergent behaviors. It is only
in the case of systems or models that are strongly equivalent to biological systems that
adequately justified inferences about the biological systems can be drawn directly on the
basis of the non-biological ones.

There are grounds for believing that the study of systems which are merely weakly
equivalent may nonetheless be illuminating, in an indirect sense, about biological
cognition. Dennett (1978: p. 113), for example has argued that it is possible to learn much
of significance to psychology and epistemology on the basis of particular, though
unrealistic (compared to natural cognitive systems) models. Dennett’s contention is that
such models can provide information about the general principles governing
psychological and epistemological (i.e. cognitive) systems. As it is highly doubtful that
many of the connectionist systems which have been trained using the backpropagation
learning procedure manage to reach the standards required of strongly equivalent systems,
it is this potential utility of connectionist systems, as weakly equivalent systems, which
initially will be developed further here. In order to do this, it is worth pausing briefly to
consider what a system trained using the backpropagation procedure has to accomplish in
order to reach convergence.
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Problems and Properties
When a connectionist network is trained using backpropagation, a number of input
patterns are presented to the network, usually after the weights of the network have been
randomized. For each pattern, the network will produce some response that is then
compared to a desired response. This enables changes to be made to the weights between
the layers of processing units in the network. The changes are made such that the network
will respond more closely to the desired response the next time it receives the same input,
or set of inputs. Assuming that a network successfully learns a problem, the network will
at least produce the desired response when presented with every input pattern in the
training set.

In order to learn a particular problem, a network has to find regularities in the input data
that will enable it to produce the correct output for the problem being trained. The exact
nature and kind of regularities will depend upon the precise problem being trained.
However, for many interesting problems (those which are non-linearly separable), finding
the necessary regularities requires some kind of recoding of the input information. In
order for a network to be able to do this, it requires hidden processing units (Clark and
Thornton, 1997). The role of the hidden units is to recode the inputs, so as to make the
solution to the problem possible by the network. This enables the hidden units to be
conceived of as devices that serve to detect input properties which are important to the
solution.

It also turns out that for some tasks, we can know in advance, a priori, what some of the
input properties a network will have to become sensitive to, for a particular problem set.
Consider the case of a network that has to learn to distinguish valid from invalid instances
of a set of simple arguments. If the training set contains a range of connectives, then the
network would have to take into account the main connective of a problem, so as to be
able to distinguish, for example, an invalid instance of a Modus Ponens inference, from
an valid instance of a Disjunctive Syllogism inference. A network successfully trained on
a problem of just this kind has been described by Bechtel and Abrahamsen (1991).
Subsequent analysis of a network which was successfully trained upon Bechtel and
Abrahamsen’s problem set revealed that the network had indeed learned to become
sensitive to exactly this input property (Berkeley et al. 1995).

If we know that hidden units function as input property detectors and, in some instances,
we can even predict what the kinds of property they will have to detect in order to solve
certain problems, then connectionist networks can be conceived of (in principle at least)
as offering the means to discover sets of properties which, in combination, can solve
particular problems. However, given the discussion above of the potential strong/weak
equivalence relations which can hold between computational systems and biological ones,
there may be legitimate grounds for wondering exactly why this conclusion should be
taken as being of particular interest to researchers interested in cognition. After all, why
would there be grounds for thinking that a network will find a solution to a particular
problem that is strongly equivalent, rather than weakly equivalent?
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On the one hand it has been argued that if we want to learn and make justified inferences
about biological cognition from computational models, we really need to ensure that the
models we draw inferences from are strongly equivalent to the biological cognitive
systems of interest. On the other hand, it has been argued that we may be able to draw
inferences about the general class of systems with certain apparently cognitive capacities,
by studying only weakly equivalent systems. It has also been argued that connectionist
networks, which are trained using the backpropagation training procedure, offer a means
of determining the sets of input properties that are important to solving particular
problems. Yet, as the number of algorithms for solving particular problems is in principle
intractably large, it would seem likely that the properties discovered by the hidden units
of individual backpropagation networks, could reveal very little about the space of
plausible algorithms in general. This does not seem to be a happy conclusion, for those
cognitive scientists who build and study backpropagation trained networks. However, I
now want to make a case that things may not be as grim as they may at first appear.

Biology and Bias
In order for the argument to proceed further, it is necessary to bring in another premise.
Gould (1980: p. 26) cites Francis Jacob as the source of the aphorism that “Nature is an
excellent tinkerer, not a divine artificer”. The crucial point here is that the evolutionary
process is not one that produces perfect solutions, in some sense, to particular problems.
Rather, evolution tends to develop solutions to problems that work, even if the solutions
themselves are sub-optimal from a design perspective. Gould (1980) argues this point by
citing the pseudo-thumb of the Giant Panda, along with several other examples.

As there is a potential for some confusion at this point, it is worth pausing briefly to
consider two ways in which solutions to problems can be evaluated. The first way to
think of a solution to a particular problem or set of problems, is from what I term (for
want of a better term) an ‘design’ perspective. Suppose some divine artificer was to wish
to provide a Giant Panda with a means of holding bamboo shoots. Such an artificer would
presumably be in a position to design a solution which would be as perfect as possible, in
terms of simplicity, efficiency, robustness and so on, given the constraints of the problem
at hand. Note though that the artificer (being divine) would not be constrained with
respect to the materials from which the solution could be fashioned. Perhaps in the
instance of the Panda’s Thumb, an extra digit would be the best way of solving the
problem. Compare this to the actual solution developed to the problem through the
evolutionary process. In the case of the Giant Panda, the pseudo-thumb is actually created
by the extension of a bone in the wrist. Such a solution respects the fact that there are
only certain resources available from which the additional functionality can be derived.
However, it may well be the case that such a solution may not be as advantageous as the
option of simply adding an extra digit, and consequently may be judged to be ‘sub-
optimal’ when compared to a ‘designed’ solution.

The relevance of this premise to the current issue is that it suggests something about the
kinds of models that are likely to be strongly equivalent. Presumably, what is true of the
evolution of parts of the body, is also likely to be true of the mind and brain (C.f.
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Cosmides and Tooby, 19**). If biological bodies are quirky and sub-optimal in some
respects when considered from a design perspective, then it is not unreasonable to assume
that the structures that govern biological cognition are similarly idiosyncratic. However, if
this is the case, then it would seem that there is a very real problem that has to be faced by
researchers who are attempting to model cognition. The problem is to find a way of
generating models with the appropriate kinds of idiosyncrasies (whatever they may be).

In practical terms, dealing with this problem is not too easy. The reason for this is that the
standard process of training which researchers go through at the undergraduate and the
graduate level is antithetical to idiosyncrasy. When a person takes their first class in
programming, one of the first lessons learned is to always try and find ‘elegant’ solutions
to problems. Similarly, in a logic class students are often penalized for deriving proofs
that are overly long or clumsy, even if the proofs themselves do not contain any erroneous
application of the rules of inference. Analogous examples can be found easily enough in
almost any discipline. The point is, through the formal process of education, most
researchers are inured to do the exact opposite of what seems to be suggested by the
evolutionary record. We are trained to favor well-designed solutions over sub-optimal,
kludgy ones. Thus, it is difficult (or at least highly counter-intuitive) to figure out ways of
constructing models of cognitive function which are idiosyncratic.

It should be made plain though that the claim here is not that researchers cannot produce
cognitive models of the appropriate kind. It is just that doing so is not a straightforward or
obvious process. There is one exception to this though. If a researcher leaves the selection
of key features of a model to some mechanical process, then the tendency to avoid certain
types of solutions to problems (i.e. ‘messy’ solutions) can be overcome. Provided that a
model meets the minimum requirement, that it performs in a manner which is at least
weakly equivalent to the biological system which it is supposed to emulate, then the
optimality of the solution deployed is not initially an issue. The proposal I wish to make
here is that this situation may, in fact, end up favoring the kinds of solutions to cognitive
problems discovered by connectionist networks trained using the backpropagation
learning procedure. This is because when the hidden units of a trained become sensitive
to certain input properties whilst learning to solve a problems set, there are no prior
constraints upon the selected set of input properties, other than the fact that they must
serve to solve the problem at hand.

There is an immediate an obvious objection to this proposal: “Doesn’t this end up putting
cognitive scientists who train connectionist networks using backpropagation into a
position of effectively looking for a proverbial needle in a haystack, when it comes to
finding models which can be informative about biological cognition?” The fact noted
earlier, that there are potentially a very large number of algorithms for computing a
particular function, seems to suggest that this will be the case. Although this objection
seems plausible at first, there are prima facie reasons to believe that, in practice, it may
not actually present as much of a barrier to progress as it initially appears.
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The first response to this objection is to note that it is by no means clear that there
actually will be a large number of algorithms for computing a particular cognitive
function. It may turn out to be the case that there are comparatively few, or even just one.
This is ultimately a type of question that needs to be treated empirically. For example,
Berkeley et al. (1995) trained a network to determine the validity and type of a set of
logic problems, originally studied by Bechtel and Abrahamsen (1991). The detailed
analysis of this network revealed that the network had developed ‘rules’ which were in
many instances close analogies to the classical rules of natural deduction (Cf. Bergmann,
Moor and Nelson 1990). Perhaps the traditional rules of inference are the only way of
successfully determining validity. There is evidence that similar cases exist in other
problem domains too. For instance, Lehky and Sejnowski (1988, 1990) trained a network
to determine three-dimensional shapes from shaded forms. They determined that the
hidden units had become tuned to features that were remarkably similar to those found in
real neurons in the visual cortex (see Spitzer, 1999: pp 60-62, and Churchland and
Sejnowski, 1992: pp. 183-188 for a detailed discussion of these results).

The second response to the objection depends upon understanding the role of hidden units
in trained networks as functioning as detectors of input properties which are needed to
solve the particular set of problem at hand. If it is determined empirically that all
networks which learn to solve a particular set of problems are sensitive to some particular
set of input properties, then there may be grounds for hypothesizing that biological
cognitive agents are sensitive to the same properties. This is just the kind of hypothesis
which could be (at least in principle) verified by conducting studies on biological
subjects. The network methodology would act as a means of generating hypotheses about
the particular function in question.

The third response to the objection is that there are a number of performance criteria,
such as the ability of networks to generalize to new data, which could easily be deployed
in order to determine the effectiveness of the solution to a problem found by a network.
This too would offer a ready and easy means of determining which algorithms were
worthy of further study and which were not. In addition, all researchers, be they interested
in connectionist modeling, or modeling in other ways, have a duty to compare the
behaviors of their systems with the behaviors of biological systems, before making claims
about biological cognition on the basis of their models. Moreover, the behaviors of the
system should include more than just the system’s behavior on the task explicitly at hand.
That is to say, emergent behaviors of the systems should also be considered and assessed.
This, after all, is one of the crucial (though regrettably, all too often overlooked) steps in
determining whether or not a model is strongly equivalent to biological systems. This
equivalence is required in order to justify direct inferences based upon any kind of
computational model. These kinds of considerations would assist in determining which
models provided good evidence and which did not, thereby limiting the size of the
algorithmic space that needed to be investigated.

Of course, there is no guarantee that any of these responses would be helpful in the case
of all particular cognitive functions. Whether or not this was the case, is a matter that
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would have to be determined empirically. The point that needs to be appreciated here is
that the objection is not fatal to the proposed research strategy, until such time as some
studies have been done and some evidence collected. Moreover, adopting this
methodological strategy provides a viable and adequately justified role for connectionist
research using backpropagation .

Conclusion
In the above, I have attempted to sketch a means of justifying connectionist research
using the backpropagation learning procedure. The case has briefly been made that we
may be able to use models of this kind, when weakly equivalent, to discover salient facts
about cognitive systems in general. It has also been suggested that it is possible that
connectionist systems may be able to do more than this. However, throughout the
argument, there has been one assumption made that needs to be made explicit. This is the
assumption that there is some viable means of determining exactly which input properties
the hidden layer of processing units becomes sensitive to, when a network has learned to
solve a problem. At the current time, this is a controversial and problematic issue (see
McCloskey 1991), which cannot be discussed further here. However, assuming that
connectionists can use backpropogation networks to recover sets of properties that can
solve particular cognitive problems of interest, then it seems that they have some
justification for their methodology.
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