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The Scientific Method
http://idea.ucr.edu/documents/flash/scientific_method/story.htm

(Garland, 2015)
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Classical Approach: 

H
0
: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H
1
: the alternative -- usually that one’s “hypothesis” is true

Goal: Use probability to determine if we can “reject the null”(H
0
) in favor of H

1
.

“There is less than a 5% chance the null is true” (i.e. 95% alternative is true). 

Example: Hypothesize a coin is biased. 
H

0
: the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

H
0
: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H
1
: the alternative -- usually that one’s “hypothesis” is true

More formally: Let X be a random variable and let R be the range of X. R
reject 
⊂ R is the 

rejection region. If X ∊ R
reject

 then we reject the null. 

in the example, if n = 1000, then then R
reject 

 = [0, 469] ∪ [531, 1000] 
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Hypothesis Testing

Degrees of Freedom: the number of values that are free to vary

The number of observations available to measure a parameter in a distribution. 

In other words, what is the minimum i, such that given i observations one could 

determine the parameter?

Statistical test is asking about generalizability to the population 
(or if we had infinite data).

Examples: mean, variance

(assuming independent, 
same variance)

t statistic for 2 samples



Hypothesis Testing

t-test: comparing means of distributions

(assuming independent, 
same variance)

Remember, t identifies an x 
in a distribution 
(Student’s t distribution)
P(T < t ; df)
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Hypothesis Testing

t-test: comparing means of distributions

(assuming independent, 
same variance)

(assuming independent, 
different variance)

(compared to 
theoretical mean)
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Hypothesis Testing

Important logical question: 

Does failure to reject the null mean the null is true?

no. 

Traditionally, one of the most common reasons to fail to reject the null: 
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be true? 

Big Data problem: “everything” is significant. Thus, consider “effect size” 
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Type I, Type II Errors

Which is worse? 

(Orloff & Bloom, 2014)



Quantitative Research Review: 3-1

● The Scientific Method

● Null Hypotheses, Alternative Hypotheses

● Defining a rejection region based on hypothesis

● T-tests

● Degrees of Freedom

● Error types
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Power

significance level (“p-value”) = P(type I error) = P(Reject H
0 

| H
0
)  

(probability we are incorrect)

power = 1 - P(type II error) = P(Reject H
0 

| H
1
)

(probability we are correct)

Formally, a power function of a test with rejection region, R, is:

where � is the parameters of the distribution over which R is defined.

(e.g. p, n for a binomial distribution)
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Multi-test Correction

What if all tests are independent?

=> “Bonferroni Correction”

But this may over-correct.

Benjamini-Hochberg Correction Procedure
1. Let P

(1)
 < … < P

(m) 
denote ordered p-values

2. Define:

where C
m

 = 1 if p-values are independent, otherwise

3. Let T = P
(R)

, the “rejection threshold”

4. Reject all H
(0)

 for which P
i 
 ≤ T

(Weiss, 2005)



The Scientific Method
http://idea.ucr.edu/documents/flash/scientific_method/story.htm



The Scientific Method
Which steps
are most
subjective?



The Scientific Method
Potential Effect from Big Data



Hypothesis Testing

Terminology: “tails” -- is the rejection region made up of one or two sides of the 
rejection region?

Example: Comparing two means: 

● two-tailed p-value: P(T > |t| or T < -|t|) = 2*P(T > |t|)?  
(when there is no assumption of direction of difference)

● one-tailed p-value: P(T > t)?  (when H
a
 posits the second mean is greater)

  P(T < t)?  (when H
a
 posits the second mean is less)



Resampling Techniques

“nonparametric” tests

The permutation test: 

● t
obs

 = Compute observed score
● passes = 0
● for 1 to B:

○ randomly permute the data, keeping the same sizes per class
○ t

B
 = compute score on permuted data  

○ if t
B 

> (or <) t
obs

: passes+=1

● p_value = passes/B

Application: comparing two distributions, especially when they are unknown. 
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Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Linear Regression (univariate version):

goal: find �
0
, �

1
 such that 



Linear Regression

Simple Linear Regression
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via Gradient Descent
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Learning rate

Based on derivative of RSS



Linear Regression

Estimated intercept and slope:

Residual: 

Least Squares Estimate.  Find        and        which minimizes the 
residual sum of squares:

via Gradient Descent

Start with      =       = 0

Repeat until convergence:
Calculate all 

via Direct Estimates
(normal equations)
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Pearson Product-Moment Correlation

via Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the standard 

deviation) before running linear regression, then:         = 0   and         = r



Suppose we have multiple independent variables that we’d like to fit to our 
dependent variable:

If we include and X
oi

 = 1 for all i (i.e. adding the intercept to X). Then we can say:

Multiple Linear Regression
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Suppose we have multiple independent variables that we’d like to fit to our 
dependent variable:

If we include and X
oi

 = 1 for all i. Then we can say:

Or in vector notation
     across all i: 

Where       and      are vectors and

X is a matrix.

Estimating       :

Multiple Linear Regression

To test for significance of individual
Coefficient, j:
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Logistic Regression

What if Y
i
 ∊ {0, 1}? (i.e. we want “classification”)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  

(i.e. if p > 0.5 we can confidently predict Y
i
 = 1)
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Logistic Regression

What if Y
i
 ∊ {0, 1}? (i.e. we want “classification”)

P(Y
i
 = 0 | X  = x)



Logistic Regression

What if Y
i
 ∊ {0, 1}? (i.e. we want “classification”)

To estimate      , 
one can use 
reweighted least squares:

(Wasserman, 2005; Li, 2010)



Review: 3-3, 3-10

● Power

● Multi-test Correction: Bonferroni and Benjamini-Hochberg

● The Permutation Test

● “Tails”

● Regression goal and terminology

● Simple Linear Regression (Residual Sum of Squares)

● Multiple Linear Regression

● P-values for linear regression coefficients

● Logistic Regression: reweighted least squares



A lot can be answered with multiple linear regression
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Mediation

Path Analyses (a type of “structured equation modeling”)

How much does M mediate the effect of
X on Y? 

Effect size: often reported as c - c’.

Used for *basic* causal inference.
(Kenney, 2015)
 http://davidakenny.net/cm/mediate.htm



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

  Confound



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

Examples: 

Pot heads are more likely to say “hella”
but really californians are more like to say “hella” and be potheads. 

X = use of “hella”

Y = pot-head or not

Confound = from california?

  Confound



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

Examples: 

Pot heads are more likely to say “hella”
but really californians are more like to say “hella” and be potheads. 

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

  Confound



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

Examples: 

Pot heads are more likely to say “hella”
but really californians are more like to say “hella” and be potheads. 

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

Solution: include aggregate confounding variable as a covariate in multiple linear 
regression. (also useful for prediction)

  Confound



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

Examples: 

Pot heads are more likely to say “hella”
but really californians are more like to say “hella” and be potheads. 

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

Solution: include aggregate confounding variable as a covariate in multiple linear 
regression. (also useful for prediction)

  Confound



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a 
variable at another level.

Examples: 

Pot heads are more likely to say “hella”
A : aggregate indicator variable (is in region or not? Pinterest usage). 

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

Solution: include aggregate confounding variable as a covariate in multiple linear 
regression. (also useful for prediction)

  Confound



Ecological Fallacy

The assumption that an effect at one unit of analysis will hold for a smaller or 
larger unit of analysis. 

Example:



Moderation (interaction)

When r
1 
≠ r

m
, X

2
 moderates the relationship between X

1
 and Y.

Examples: 
Y: Attend church?  X

1
: Agreeableness, X

2
: From US?

Movie Reviews: 
Y: Rated Depressing,  X

1
: “death” in review, X

2
: Silly Horror Movie?

X
1

Y
r
1

X
1

Y
r
m

X
2



Moderation (interaction)

When r
1 
≠ r

m
, X

2
 moderates the relationship between X

1
 and Y.

More precisely moderation analyses fit the model: 

X
1
X

2
: The interaction term.

�
M

 can then be tested for significance using the same t-test we use for any individual 

coefficient in multiple linear regression

X
1

Y
r
1

X
1

Y
r
m

X
2

(Element-wise multiplication)



Mediation, Moderation Code Examples



Review: 3-22

● Mediation, path models

● HLM

● Moderation

● Ecological Fallacy



Discrete Variable Comparison Metrics

Examples: 
Single class:

● X
1
: Smoker or not(0/1) X

2
: has cancer? (0/1)

● Y: Picture of goat? (0/1)     : prediction from a logistic model (0/1)
    or any model (e.g. a gradient boosting deep bayes neural forest)

Multi-class

● Y: word is subject, direct object, or indirect object (1, 2, or 3 but order means nothing)

   : prediction from a multi-class model 
(a “multinomial” distribution)



Discrete Variable Comparison Metrics

● Chi-Square test for independence
● (true|false) (positive|negative) based metrics:
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Chi-Squared Test for Independence

H
0
: Y and Z are independent H

1
: Y and Z are dependent

no cancer cancer

not smoker 60 10 70

smoker 22 8 30

82 18 100

Expected 
count

Observed 
count

k = df (degrees of freedom)
= (classes

x1
 - 1)(classes

x2
 - 1)

Expected distribution

70*82/100=57.4 12.6

24.6 5.4
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(Thank you,
 Wikipedia!)
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● (true|false) (positive|negative) based metrics:


