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The Scientific Method

Develop Make Think of
General Observations , Interesting
Theories What do | see in nature? Questions
This can be from one's
General theories must be own experiences, thoughts Why does that
consistent with most or all or reading. pattern occur?
available data and with other
current theories. i
Refine, Alter,
Expand or Reject Formulate
Gather Data to / Hypotheses Hypotheses
HESETT What th I
Test Predictions it e
Relevant data can come from the phenomenon | am
literature, new observations or wondering about?
formal experiments. Thorough
testing requires replication to
verify resufie. Develop Testable
Predictions

If my hypothesis is correct,
(Garland, 2015) then | expect a, b, c, ...



Hypothesis Testing

Hypothesis -- something one asserts to be true.

Classical Approach:

H,: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H 11

H_: the alternative -- usually that one’s “hypothesis” is true
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Hypothesis Testing

Hypothesis -- something one asserts to be true.
Classical Approach:
H,: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H_: the alternative -- usually that one’s “hypothesis” is true

Goal: Use probability to determine if we can “reject the null’(H ) in favor of H_.
“There is less than a 5% chance that the null is true” (i.e. 95% alternative is true).

Example: Hypothesize a coin is biased.
H : the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

A
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Hypothesis Testing

H,: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H 11

H_: the alternative -- usually that one’s "hypothesis” is true

More formally: Let X be a random variable and let R be the range of X. Rreject C Ris the
rejection region. If X € Rreject then we reject the null.

in the example, if n = 1000, then then Rreject =10,469] U [531,1000]

Example: Hypothesize a coin is biased.
H : the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

A



Hypothesis Testing

Example: Communities with higher population have different amounts of violent
crimes (per capita) than those with lower population.

Assignment 1, Programming Problem “C) 9.”




Hypothesis Testing

Example: Communities with higher population have different amounts of violent
crimes (per capita) than those with lower population.

Assignment 1, Programming Problem “C) 9.”

X1 - X,

b
1 1

(assuming independent,
same variance)
t statistic for 2 samples



Hypothesis Testing

Degrees of Freedom: the number of values that are free to vary

The number of observations available to measure a parameter in a distribution.
In other words, what is the minimum i, such that given i observations one could

determine the parameter?

XX
1 1

(assuming independent,
same variance)
t statistic for 2 samples



Hypothesis Testing

Degrees of Freedom: the number of values that are free to vary

The number of observations available to measure a parameter in a distribution.
In other words, what is the minimum i, such that given i observations one could
determine the parameter?

Statistical test is asking about generalizability to the population
(or if we had infinite data).

XX
1 1

Examples: mean, variance

(assuming independent,
same variance)
t statistic for 2 samples



Hypothesis Testing

t-test: comparing means of distributions
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000

Remember, t identifies an x
in a distribution

(Student’s t distribution)
P(T < t; df)

(assuming independent,
same variance)




Hypothesis Testing

t-test: comparing means of distributions
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same variance)




Hypothesis Testing

t-test: comparing means of distributions

2 2
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X1 — Xy
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different variance)
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(compared to
theoretical mean)

t

(assuming independent,

(assuming independent,
same variance)




Hypothesis Testing

Important logical question:

Does failure to reject the null mean the null is true?
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Important logical question:
Does failure to reject the null mean the null is true?
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Traditionally, one of the most common reasons to fail to reject the null:
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be true?



Hypothesis Testing

Important logical question:
Does failure to reject the null mean the null is true?

Nno.

Traditionally, one of the most common reasons to fail to reject the null:
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be true?

Big Data problem: “everything” is significant. Thus, consider “effect size”
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True state of nature
Hy H 4

Our Reject Hy Type I error correct decision
decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)



Type |, Type Il Errors

True state of nature
Hy H 4

Our Reject Hy Type I error correct decision
decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)

Which is worse?




Quantitative Research Review: 3-1

e The Scientific Method

e Null Hypotheses, Alternative Hypotheses

e Defining a rejection region based on hypothesis
e T-tests

e Degrees of Freedom

e Errortypes
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Type |, Type Il Errors

True state of nature
Hy H 4

Our Reject Hy Type I error correct decision
decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)

| Hy | Hy
Reject Hy  P(Reject H, | H,) P(Reject H | H,)
‘Accept’ Hp P(Fail to RejectH | H,) P(Fail to Reject H, |

H,)



Type |, Type Il Errors
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Power
significance level (“p-value”) = P(type | error) = P(Reject H | H,)
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H, | H,)
(probability we are correct)

| Hy | Hy
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Power
significance level (“p-value”) = P(type | error) = P(Reject H | H,)
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H, | H,)
(probability we are correct)

Formally, a power function of a test with rejection region, R, is:
8(8) = Py(X € R)

where 6 is the parameters of the distribution over which R is defined.
(e.g. p, n for a binomial distribution)



Multi-test Correction

If alpha = .05, and | run 40
variables through significance
tests, then, by chance, how many
are likely to be significant?



Multi-test Correction

If alpha = .05, and | run 40
variables through significance
tests, then, by chance, how many
are likely to be significant?

2 (5% any test rejects the null, by chance)



Multi-test Correction

2 (5% any test rejects the null, by chance)



Multi-test Correction

What if all tests are independent?

=> “Bonferroni Correction” (a/m)




Multi-test Correction

What if all tests are independent?

=> “Bonferroni Correction” (a/m)

But this may over-correct.



Multi-test Correction

Benjamini-Hochberg Correction Procedure

1. Let P(1) <..< P(m) denote ordered p-values

2. Define:
l; =

1a

cand R = max {i: Pi) < {}
C-Irn_ m ) 1T l
where Cm = 1 if p-values are independent, Cm = Z ?
3. LetT= P(R], the “rejection threshold” 1=l
4. Rejectall H(()) for which P, <T

(Weiss, 2005)

otherwise
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The Scientific Method
Potential Effect from Big Data

Refine, Alter,
Expand or Reject

Gather Data to / Hypotheses

Test Predictions

Relevant data can come from the
literature, new observations or

formal experiments. Thorough
testing requires replication to

verify results. DEVE' Dp TES tabl e

Predictions

If my hypothesis is correct,
then l expecta, b, ¢, ...



Hypothesis Testing

Terminology: “tails” -- is the rejection region made up of one or two sides of the
rejection region?

Example: Comparing two means:

e two-tailed p-value: P(T > |t| or T < -|t|) = 2*P(T > |t|)?
(when there is no assumption of direction of difference)
e one-tailed p-value: P(T >1)? (when H_ posits the second mean is greater)
P(T <t)? (when H_ posits the second mean is less)



Resampling Techniques

“‘nonparametric” tests

The permutation test:

t .. = Compute observed score

e passes=0
e for1toB:

o randomly permute the data, keeping the same sizes per class
o t; = compute score on permuted data
o ift,>(or<)t . passes+=1

e p value = passes/B

Application: comparing two distributions, especially when they are unknown.



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”
Y = “response variable” = “outcome” = “dependent variable”
Regression: r(z) =E(Y|X =2z

goal: estimate the function r



Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”
Y = “response variable” = “outcome” = “dependent variable”
Regression: r(z) =E(Y|X =2z
goal: estimate the function r
Linear Regression (univariate version): r(x) = 5, + fx

goal: find B, 3, such that T($) ~ E(Y‘X — S’J)



Linear Regression

Simple Linear Regression Y, = ﬁ[} R ,31Xi. + €
where E(¢;|X;) = 0 and V(e;|X;) = o’

r(z) = By + f1x



Linear Regression

— error

Simple Linear Regression Y, = ﬁ[} R ,BlXi. + €—
expected variance
where E(e;| X, )ﬂf{ﬂﬂal)ﬂ) = g°

/

intercept slope



Linear Regression

Simple Linear Regression Y, = ﬁ[} —= ﬁl X; + €

— eIror

where E(e;| X

intercept

Estimated intercept and slope: ??’(SL‘) = BU + Blas

Residual: €;

expected variance




Linear Regression

— error

Simple Linear Regression Y, = ﬁ[} R ,BlXi. + €—

/m{ ) - expected variance
V €; X,: = 7

where E(e;| X,

intercept slope
Estimated intercept and slope: f(fﬁ) = Gy + Bz
Y =7(X;)
Residual: ¢ =Y, Y,

Least Squares Estimate. Find BD and Ql-which minimizes the
residual sum of squares: n n

RSS = ; Z -Y)P =) (Y- 6 - 61.X,)°

i=1



Linear Regression

/ via Gradient Descent \

Start with 3[} = 31 =0

Repeat until convergence:
Calculate all Y;

o= —al) Y- Y)
=1
\\ 5?1 = é] — C}_-(Z Xré(ffj — E)) /
i=1

Least Squares Estimate. Find BD and 1’31 which minimizes the
residual sum of squares: n n

RSS:Z; : Z Y =D (Y- By - 61X

i=1




Linear Regression

/ via Gradient Descent \

Start with BU =3, =0 P Learning rate

Repeat until convergence:

Calculate all Y? Based on derivative of RSS

/

L
/

Least Squares Estimate. Find BD and 31 which minimizes the
residual sum of squares: n n

RSS =Y & Z -Y)P =) (Y- 6 - 61.X,)°

i=1 i=1




Linear Regression

/ via Gradient Descent \ / via Direct Estimates \

Star't W|th SU = Bl = O (nOI'ma| equationS)

Repeat until convergence: . n X X\NYi— ¥
Calculate all Y] B = Za:l(n L )( & : )
L - 2 i—1(Xi — X)

Gy =0—a Y. - Y . - T
20 0 (; I,BD v f}lX

Least Squares Estimate. Find BD and 1’31 which minimizes the
residual sum of squares: n n

RSS:; : Z =Y =) (Y- 6y - 5iXG)

i=1




Pearson Product-Moment Correlation

Covariance
Cm:{X. }”) = E{X}”) —_E{X]E{_}”)
B ((X - X)(Y - 1))

a

-y

A

B =

via Direct Estimates \
(normal equations)

> (X — X)(Y_E ~-Y)
> i (Xi — X)?

b=V - 4%

//




Pearson Product-Moment Correlation

Covariance

C?m:{X. }”) — E{X}”) — E{X]E{}”)
—E((X-X)(Y -Y))

Correlation

B Guv{X.Fj

Sy Sy

1 Z X;i— X\ [(Yi-Y
Cn—1 5y Sy

i=1

N =Txyy

)

a

-y

A

B =

b=V - 4%

via Direct Estimates \
(normal equations)

> (X — X)(Y_E ~-Y)
> i (Xi — X)?

//




Pearson Product-Moment Correlation

Covariance

C?{:rv{X. }”) — E{X}”) — E{X]E{}”)
—E((X-X)(Y -Y))

Correlation

B Gm-'{X.}”j

Sx Sy

N =Txyy

1 Z X;i— X\ [(Yi-Y
 n—14 Sy Sy

i=1

a

-~

A

B =

via Direct Estimates
(normal equations)

YL Xi—-X)(V-Y)

N

> i1 Xi — X)?

— “ —

Go=Y — 51 X

/

If one standardizes X and Y (i.e. subtract the mean and divide by the standard

deviation) before running linear regression, then: I[_’A-'j[} =0 and |81= r



Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependentvariable: Y. = 3y + 51X;1 + 5o X0 + ... + B, X1 + €

If we include and X . = 1 for all i (i.e. adding the intercept to X). Then we can say:

Yi=> B,Xi+e
j=0



Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependentvariable: Y. = 3y + 51X;1 + 5o X0 + ... + B, X1 + €

If we include and X . = 1 for all i. Then we can say:

m
Y, — Z B: X + ¢ (Or in vector notation N
oL acrossalli: 'Y =Xf3+e€
=0
Where 3 and € are vectors and
X is a matrix.
\- Y,




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependentvariable: Y. = 3y + 51X;1 + 5o X0 + ... + B, X1 + €
If we include and X . = 1 for all i. Then we can say:

m /
_ v _ Or in vector notation
E_Z;ﬁjX”_{_Ez acrossalli: Y =X/ +¢
j:

Where 3 and € are vectors and
X is a matrix.

Estimating (3 :

\_ 8= (XTX)"'XTy Y




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependentvariable: Y. = 3y + 51X;1 + 5o X0 + ... + B, X1 + €

If we include and X . = 1 for all i. Then we can say:

1
Or in vector notation
Y. = Z X+ € /
Y BiXij + & acrossalli: 'Y = X0 +¢
7=0
- — Wheréﬁ and € are vectors and
To te§t.for S|.gn|f|cance of individual Yis a matrix.
Coefficient, j:
/ B B}- Estimating (3 :

SE) s’ B=(XTX)'xTy
\/Z?l(Xf; - X;)? - /



Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)

'ip Zjuj dirg;
pi=p(8)=PYi=1X=1)=

1 -+ Ej” Z j=1 .f]JIJ.J'



Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)

ot 251 5T

p;Epr.‘j EP};‘;:]-I}{:I:
( :] \ ( ) 1—|—Ejﬂ Z= jl]"l.'ll

|

Note: this is a probability here.
In simple linear regression we wanted an expectation:

r(x) =EY|X ==z




Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)

. .i“_zj_“_j fJ-.J',-_,-

p;EP}ﬁ EP}i:]-l}{:I: a3
( :] \ ( ) 1—|—Ejﬂ Z= j11'-1.',1'

|

Note: this is a probability here.
In simple linear regression we wanted an expectation:

r(x) =EY|X ==z

(i.e.if p> 0.5 we can confidently predict Y. = 1)



Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)
.jib ZTL‘J iJJJJ

i Epf(-‘j) = P(}"” = ll}i - I) - 1—|—Ejﬂ Z= G5

logit(p;) = log (L> = [y + Z



Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)
Eﬁ” Zm i

1 -+ € Jo+ Z j=1 j'J-_q-“-

m
= Gy + Zﬁjxu
=1

P(Y =0 X =x)

pi=pi(8) =Py, =1 X =2z =

logit(p;) = log




Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)
e Bot32010 BiTi;

T 1 oo

logit(p;) = log (%) = B + Z.Bjmij
i j=1

pi=p(8) =Py, =1X ==z

To estimate 3 set By = ... = By =0 (remember to include an intercept)
one can use 1. Calculate p; and let W be a diagonal matrix
reweighted least squares: where element(i. 1'}): pi(1 —pi). v
' - -3 i — Di
2. Set z; = logit(p))+ —— =X+ ——
(Pi) pi(l — pi) pi(1 — pi)

3. Set f# = (XWX) ' X" W2z //weighted lin. reg. of Z on Y.

(Wasserman, 2005; Li, 2010) . Repeat from 1 until 3 converges.

s




Review: 3-3, 3-10

e Power

e Multi-test Correction: Bonferroni and Benjamini-Hochberg
e The Permutation Test

o “Tails”

e Regression goal and terminology

e Simple Linear Regression (Residual Sum of Squares)

e Multiple Linear Regression

e P-values for linear regression coefficients

e Logistic Regression: reweighted least squares



A lot can be answered with multiple linear regression

Yi= 0o+ p1Xia + BXo+ ..+ BnXm £ €



Mediation

Path Analyses (a type of “structured equation modeling”)

How much does M mediate the effect of
XonY?

Y = Bysp + X +bM + €y

Yi= 00+ 51X + 5o Xio+ . + B X1 + €



Mediation

Path Analyses (a type of “structured equation modeling”)

How much does M mediate the effect of

Y = ﬁﬁk:_k cX + e
X = By, +aM + ¢,
Y = Booy + X +0M + €4y,

(Kenney, 2015)
http://davidakenny.net/cm/mediate.htm



Mediation

Path Analyses (a type of “structured equation modeling”)

How much does M mediate the effect of =
X on Y? X > Y

Y =08y +cX + ¢
X = By, + aM + ¢, ., M .
Y = Booy + X +0M + €4y, / \
X = >Y

. - _ (Kenney, 2015)
Used for *basic* causal inference. http://davidakenny.net/cm/mediate.htm

Effect size: often reported as c - ¢’.



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a

variable at another level.
Confound

/c'\b

X >Y




Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a
variable at another level.
Confound

Examples: / \b
cl

Pot heads are more likely to say “hella” X > Y
but really californians are more like to say “hella” and be potheads.

X = use of “hella”
Y = pot-head or not

Confound = from california?



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a

variable at another level.
Confound

Examples: / \b
cl

Pot heads are more likely to say “hella” X > Y
but really californians are more like to say “hella” and be potheads.

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a

variable at another level.
Confound

Examples: / \b
cl

Pot heads are more likely to say “hella” X > Y
but really californians are more like to say “hella” and be potheads.

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

Solution: include aggregate confounding variable as a covariate in multiple linear
regression. (also useful for prediction)

Yi= 00+ 51X + 5o Xio+ . + B X1 + €



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a

variable at another level.
Confound

Examples: / \b
cl

Pot heads are more likely to say “hella” X > Y
but really californians are more like to say “hella” and be potheads.

Females are more likely to post pictures of food
but really both food posts and females are more common on Pinterest.

Solution: include aggregate confounding variable as a covariate in multiple linear
regression. (also useful for prediction)

Yi= 00+ 51X + 5o Xio+ . + B X1 + €



Hierarchical Linear Models (HLM)

Problem: Sometimes variables at one unit of analysis are confounded by a

variable at another level.
Confound

a b
Y =06y + 51 X1+ BaA+ e / ' \
X £ >Y

A : aggregate indicator variable (is in region or not? Pinterest usage).

Solution: include aggregate confounding variable as a covariate in multiple linear
regression. (also useful for prediction)



Ecological Fallacy

The assumption that an effect at one unit of analysis will hold for a smaller or
larger unit of analysis.

R o £
R :’R




Moderation (interaction)

:

When r, = r, X2 moderates the relationship between X1 and .

rm

Examples:
Y: Attend church? X,: Agreeableness, X, From USs?

Movie Reviews:
Y: Rated Depressing, X,: “death” in review, X,: Silly Horror Movie?



Moderation (interaction)

:

When r, = r, X2 moderates the relationship between X1 and .

rm

More precisely moderation analyses fit the model:
Y =06y + 51X+ BuXiXo+ B Xy + €
X 1X Pt The interaction term. (Element-wise multiplication)

B,, can then be tested for significance using the same t-test we use for any individual
coefficient in multiple linear regression



Mediation, Moderation Code Examples

A




Review: 3-22

e Mediation, path models
e HLM
e Moderation

e Ecological Fallacy



Discrete Variable Comparison Metrics

Examples:
Single class:
e X,: Smoker or not(0/1) X,: has cancer? (0/1)
e Y Picture of goat? (0/1) Y prediction from a logistic model (0/1)
or any model (e.g. a gradient boosting deep bayes neural forest)
Multi-class

e Y:wordis subject, direct object, or indirect object (1, 2, or 3 but order means nothing)

Y prediction from a multi-class model
(a “multinomial” distribution)



Discrete Variable Comparison Metrics

e Chi-Square test for independence
e (truelfalse) (positive|negative) based metrics:



Discrete Variable Comparison Metrics

Single class:

e X,: Smoker or not(0/1) X,: has cancer? (0/1)

N = 100 people sampled from cancer screening center population

Nno cancer cancer

not smoker 60 10

smoker 22 8




Discrete Variable Comparison Metrics

Single class:

e X,: Smoker or not(0/1) X,: has cancer? (0/1)

N = 100 people sampled from cancer screening center population

Nno cancer cancer

not smoker 60 10

smoker 22 8




Chi-Squared Test for Independence

H,: Y and Z are independent H,: Y and Z are dependent
classes | CE(ISSES]2 )2
R
where b;; = —XHX*}
n
no cancer cancer
not smoker 60 10 70
smoker 22 8 30
82 18 100




Chi-Squared Test for Independence

H,: Y and Z are independent H,: Y and Z are dependent
classes 1 classes o 5 JObserved
Z Z 13[) lcount
j_
Xin Xy
_ J Expected
where b;; = ———— count
n
no cancer cancer Expected distribution
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Chi-Squared Test for Independence

k = df (degrees of freedom)
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Discrete Variable Comparison Metrics

e Chi-Square test for independence
e (truelfalse) (positive|negative) based metrics:



Discrete Variable Comparison Metrics

e Chi-Square test for independence
e (true|false) (positive|negative) based metrics:

True condition

Prevalence
Total population Condition positive Condition negative _ X Condition positive
~ X Total population

(Thank you,
Wikipedia!)

Positive predictive value

Pred|cted. t.:ondltlon K ekt False positive (PPV), Precision
positive (Type | error) _ ¥ True positive
Predicted _ X Test outcome positive |

condition
False omission rate (FOR) =

True negative ¥ False negative
¥ Test outcome negative

Predicted condition False negative
negative (Type Il error)

|

False discovery rate (FDR)

2 False positive
X Test outcome positive

Negative predictive value
(NPV)

= 2 True negative
Y. Test outcome negative

True positive rate (TPR), | False positive rate (FPR), R }
Positive likelihood ratio (LR+)

Sensitivity, Recall Fall-out TPR
= - _ 2 Truepositive  _ _ ¥ False positive = PR
Acediracy (ACC) = 2 Condition positive 2 Condition negative

¥ True positive + X True negative
2 Total population

False negative rate True negative rate (TNR), o .
) o Negative likelihood ratio
(FNR), Miss rate Specificity (SPC) ENR

_ _ > Falsenegative  _ _ ¥ True negative (LR-)= TNR
X Condition positive 2 Condition negative

Diagnostic odds ratio (DOR)
- LR+
[ 2 4=



Discrete Variable Comparison Metrics

e Chi-Square test for independence
e (true|false) (positive|negative) based metrics:

True condition

Prevalence
Total population Condition positive Condition negative _ Y Condition positive

Positive predictive value False di e (FDR) =
Predicted condition » False positive PPV), Precision ool g -
True positive il Y False positive

positive (Type | error) = ¥ True positive e
Predicted | _ ~ Y Test outcome positive B
condition o _ Negative predictive value
Predicted condition False negative ) False omission rate (FOR) = (NPV)
. True negative ¥ False negative
negative (Type Il error) 2 % True negative

2 Testouicome nepalive. iy Y Test outcome negative

True positive rate (TPR), || False positive rate (FPR), o )
Lo Positive likelihood ratio (LR+)
Sensitivity, Recall Fall-out TPR

_ — 2 True positive — __ 2 False positive = FPR : ! :
Accuracy (ACC) = ¥ Condition positive ¥ Condition negative . Diagnostic odds ratio (DOR)

¥ True positive + ¥ True negative : : . - LR+
: False negative rate True negative rate (TNR =
2 Total population g _ g . (TN, Negative likelihood ratio LR—
(FNR), Miss rate Specificity (SPC) ENR
_ _ > Falsenegative ||_ _ X True negative (LR-) = TNR
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