Mixture Density Networks

Christopher M. Bishop

Neural Computing Research Group
Dept. of Computer Science and Applied Mathematics
Aston University
Birmingham. B4 7TET, U.K.
C.M.Bishop@aston.ac.uk

February, 1994

Neural Computing Research Group Report: NCRG/94/004!

Available from: http://www.ncrg.aston.ac.uk/

Abstract

Minimization of a sum-of-squares or cross-entropy error function leads to network out-
puts which approximate the conditional averages of the target data, conditioned on the
input vector. For classifications problems, with a suitably chosen target coding scheme,
these averages represent the posterior probabilities of class membership, and so can be
regarded as optimal. For problems involving the prediction of continuous variables, how-
ever, the conditional averages provide only a very limited description of the properties
of the target variables. This is particularly true for problems in which the mapping to
be learned is multi-valued, as often arises in the solution of inverse problems, since the
average of several correct target values is not necessarily itself a correct value. In order to
obtain a complete description of the data, for the purposes of predicting the outputs cor-
responding to new input vectors, we must model the conditional probability distribution
of the target data, again conditioned on the input vector. In this paper we introduce a
new class of network models obtained by combining a conventional neural network with
a mixture density model. The complete system is called a Mixture Density Network, and
can in principle represent arbitrary conditional probability distributions in the same way
that a conventional neural network can represent arbitrary functions. We demonstrate
the effectiveness of Mixture Density Networks using both a toy problem and a problem
involving robot inverse kinematics.

1 Previously issued as NCRG /94/4288

1 Introduction

Neural network models are widely used in applications involving associative mappings in

which the aim is to learn a transformation from a set of input variables x = {z1,..., 24}
to a set of output variables t = {t1,...,¢.}. In practice, such networks are trained
using a finite set of examples, which we denote by {x7,t?}, where ¢ = 1,...,n, and ¢

labels the particular training pattern. The central goal in network training is not to
memorize the training data, but rather to model the underlying generator of the data,
so that the best possible predictions for the output vector t can be made when the
trained network is subsequently presented with a new value for x. The most general
and complete description of the generator of the data is a statistical one (White, 1989),
and can be expressed in terms of the probability density p(x,t) in the joint input-target
space. This density function specifies that the probability of a data point (x,t) falling in a
small region (Ax, At) is given by p(x,t)AxAt, and is normalized to give unit probability
for the data point to lie somewhere in the input-target space: [p(x,t)dxdt = 1. Note
that, if the generator of the data itself evolves with time, then we must consider time as
an additional variable in the joint probability density. In this paper we shall limit our
attention to static distributions, although the models which we shall introduce can be
extended to non-stationary problems, provided the models are treated as continuously
adaptive.

For associative mapping problems of the kind we are considering, it is convenient to
decompose the joint probability density into the product of the conditional density of the
target data, conditioned on the input data, and the unconditional density of input data

p(x,t) = p(t [x)p(x) (1)
where p(t | x) denotes the probability density of t given that x takes a particular value.
The density p(x) = [p(x,t)dt of input data plays an important role in validating the
predictions of trained networks (Bishop, 1994). However, for the purposes of making
predictions of t for new values of x, it is the conditional density p(t | x) which we need
to model.

As we shall see in the next section, the conventional neural network technique of minimiz-
ing a sum-of-squares error leads to network functions which approximate the conditional
average of the target data. A similar result holds for the cross-entropy error function.
For classification problems in which the target variables have a 1-of-N coding scheme,
these conditional averages represent the posterior probabilities of class membership, and
so can be regarded as providing an optimal solution. For problems involving the predic-
tion of continuous variables, however, the conditional average represents a very limited
description of the statistical properties of the target data, and for many applications will
be wholly inadequate. Such applications include the important class of inverse prob-
lems, for which the target data is frequently multi-valued. In such cases the conventional
least-squares approach can give completely erroneous results, as we shall show.

In this paper we introduce a new class of neural network models, called Mixture Density
Networks (MDNs), which overcome these limitations and which provide a completely
general framework for modelling conditional density functions. These networks, obtained
by combining a conventional neural network with a mixture density model, contain the
conventional least-squares approach as a special case. Indeed, their implementation in

software represents a straightforward modification of standard neural network models.
We demonstrate the effectiveness of MDNs using both a toy problem in two variables,
and a problem involving robot inverse kinematics.

2 Conventional Least Squares

The usual approach to network training involves the minimization of a sum-of-squares
error, defined over a set of training data, of the form

ES(w) = 3" [l w) — 11 (2)

g=1k=1

where 1), represent the components of the target vector, and fi(x;w) denote the corre-
sponding outputs of the network mapping function, which is parametrized by an array w
adaptive parameters (the weights and biases).

We begin by considering the nature of the solutions found by least-squares techniques.
In a practical application we must deal with a finite data set. This in turn means that
we must limit the complexity of the network model (for instance by limiting the number
of hidden units or by introducing regularization terms) in order to control the balance
between bias and variance (Geman et al., 1992; Bishop, 1995). The use of successively
larger data sets allows the models to be more flexible (i.e. have less bias) without over-
fitting the data (i.e. without leading to increased variance). In the limit of an infinite
data set both bias and variance can be reduced to zero, and the optimal least squares
solution is obtained. In this limit we can replace the finite sum over data points in the
sum-of-squares error function (2) by an integral over the joint probability density

1 ¢
E° = lim o~ > [fu(x",w) —tj]? (3)
n—oo In ol

=%§/ﬂmxm—m%wwﬁw (1)

where an extra overall factor of 1/n has been introduced into (3) for convenience. Since
the corresponding network model f;(x, w) is permitted to be very flexible, we can formally
minimize the error function by functional differentiation with respect to fr(x,w)

SES
6 fr(x, w)

Substituting (4) into (5), and using (1), we obtain the following expression for the mini-
mizing function

=0 (5)

fe(x, W) = (U | %) (6)
where w* represents the corresponding set of weight values. We have defined the condi-
tional average of a quantity Q(t) by

@Q1%) = [Q)p(t |) dt (7)

Thus, the network function is given by the conditional average of the target data, con-
ditioned on the input vector. This key result is illustrated in Figure 1, and has many
important implications for practical applications of neural networks (Bishop, 1995).

A

Figure 1: A schematic illustration of a set of data points (black dots) consisting of values of
the input variable & and corresponding target variable . Also shown is the optimal least-
squares function (solid curve), which is given by the conditional average of the target data.
Thus, for a given value of , such as the value zg, the least-squares function (¢ | z) is given
by the average of ¢ with respect to the probability density p(¢ | «) at the given value of x.

We can also derive this result by rewriting the sum-of-squares error in a different form.
By adding and subtracting (¢ | x) inside the square brackets in (4), and again using (1),
we obtain

B = %2 JUexw) = (|)P plx) dx (®)

41 Z/[tﬁlx (14 | %)) p(x) dx (9)

We note that the error function only depends on the network weights through the first
term (8), whose minimum occurs when (6) is satisfied. Thus, we again see the result that
the global minimum of the error function is given by the conditional average of the target
data. The second term (9) gives the residual value of the error function at its global
minimum, and is seen to correspond to the average variance of the target data around its
conditional average value.

Thus, the result of training a standard neural network by least squares is that we have ap-
proximated two statistics of the target data, namely the conditional average as a function
of the input vector x, given by fi(x; w*), and the average variance of the data around this
conditional average, given by the residual value of the error function at its minimum. If we
know these two statistics, then we can represent the conditional distribution of the target
data by a Gaussian function having a centre (which depends on x) given by fi(x; w*) and

a global variance parameter determined by the residual error. The use of a least squares
approach does not assume or require the distribution of the target data to be Gaussian,
but neither can it distinguish between a Gaussian distribution and any other distribution
having the same (conditional) mean and (global) variance.

Conversely, if we assume that the conditional distribution of the target data is indeed
Gaussian, then we can obtain the least-squares formalism using maximum likelihood,
as follows. We assume that the target data is governed by the following conditional
probability density function

plt [x) = %GXP {—M} (10)

271')1/20 202

where o is a global variance parameter, and where the output variables are treated as
independently distributed. Here Fj(x) is the mean of the target variable ¢; and is taken
to be a general function of x. The conditional density of the complete target vector is
then given by

e 1% = T 10 = o] g DRG0 -0} ()

The underlying generator function Fj(x) is unknown, and is the basic quantity we seek to
determine, since knowledge of Fj(x), together with the value of the unknown parameter
o, gives us a complete description of the data generation process (within the framework
of the Gaussian assumption). We therefore model Fi(x) by a parametrized functional
form fi(x;w). Feed-forward neural networks offer a particularly powerful choice for the
parametrized function since they can efficiently represent non-linear multivariate functions
with in principle no serious limitations on the functional forms which they can approximate

(Hornik et al., 1989).

The values for the parameters w in fi(x; w) must be determined from the finite set of
training examples {x?,t7}. This can be achieved by maximizing the likelihood that the
model gave rise to the particular set of data points. If we assume that the training data
are drawn independently from the distribution given by (11), then the likelihood of the
data set is given by the product of the likelihoods for each of the data points

n n

L=]I pt",x") =]I p(t" | x")p(x") (12)

g=1 g=1

where we have used (1). The quantity £ is a function of the parameters w, and we can
determine appropriate values for w by maximization of £. In practice, it is convenient
instead to minimize the negative logarithm of £, which is usually called an error function

E=—-InL (13)

Minimizing F is equivalent to maximizing £ since the negative logarithm is a monotonic
function. Using (11), (12) and (13), and modelling Fi(x) by fr(x;w), we can write F in
the form

E =nclno + %hl(?ﬂ') + L SO [fr(xw) — 1] + Z_:lﬂp(xq) (14)

2
20— 9=1 k=1

Note that only the third term in (14) depends on the parameters w and so their values
can be determined by minimizing only this term. In addition, the factor 1/0? can be
omitted since it has no effect on the minimization with respect to w. This gives rise to
the standard sum-of-squares error function commonly used in neural network training

ZZ[ka w) — t1]? (15)

qlkl

where the pre-factor of 1/2 has been retained for convenience when computing derivatives
of E. In general, fy(x;w) will be a non-linear function of the parameters w, as would
be the case for a multi-layer perceptron network for instance. Thus, the minimization
of E° represents a problem in non-linear optimization, for which there exists a range of
standard techniques (Press et al., 1992; Bishop, 1995).

Having found values for the parameters w*, the optimum value for ¢ can then by found
by minimization of £ in (14) with respect to o. This minimization is easily performed
analytically with the explicit, and intuitive, result

ZZ[fk (x%w) — t]]* (16)

qlkl

which says that the optimum value of ¢? is given by the residual value of the sum-of-
squares error function at its minimum, as shown earlier.

For classification problems the target values are generally chosen to have a 1-of-NV coding
scheme whereby ¢} = 6 for an input pattern x? belonging to class C;. The probability
distribution of target values is then given by

tk | X 25 tk - 5kl C[| X) (17)

where P(C; | x) is the probability that x belongs to class C;. Substituting (17) into (6)
then gives

filx,w) = P(Ce | %) (13)
and so the network outputs represent the Bayesian posterior probabilities of membership
of the corresponding classes. In this sense the network outputs can be regarded as optimal
since the posterior probabilities allow minimum risk classifications to be made, once the
appropriate loss matrix has been specified. For instance, if the goal is to minimize the
number of misclassifications, corresponding to loss matrix given by the unit matrix, then
each new input should be assigned to the class having the largest posterior probability.

It should be noted that the cross-entropy error function also leads to network outputs
which approximate the conditional average of the target data. For a finite data set, the
cross-entropy error function can be written as

Zz{tqlnﬁqu W)+ (1 =) In(1 — fr(x*; w))} (19)

9=1 k=1

In the infinite-data limit this can be written as

_;// (eI fi(osw) + (1 t) In(1 — fi(x; w))} p(t, x) dbdx (20)

By functional differentiation as before, and making use of (1) and (7), we obtain
fe(x, W) = (t | %) (21)
so that the network outputs again represent the conditional averages of the target data.

Most conventional applications of neural networks only make use of the prediction for the
mean, given by fr(x; w*), which approximates the conditional average of the target data,
conditioned on the input vector. We have seen that, for classification problems, this repre-
sents the optimal solution. However, for problems involving the prediction of continuous
variables, the conditional average represents only a very limited statistic. For many appli-
cations, there is considerable benefit in obtaining a much more complete description of the
probability distribution of the target data. We therefore introduce the Mixture Density
Network which can in principle represent arbitrary conditional distributions, in the same
way that a conventional neural network can represent arbitrary non-linear functions.

3 Mixture Density Networks

As we have already seen, the conventional least-squares technique can be derived from
maximum likelihood on the assumption of Gaussian distributed data. This motivates
the idea of replacing the Gaussian distribution in (11) with a mizture model (McLachlan
and Basford, 1988), which has the flexibility to model completely general distribution
functions. The probability density of the target data is then represented as a linear
combination of kernel functions in the form

%) = (X)) 22)

where m is the number of components in the mixture. The parameters «;(x) are called
mizing coefficients, and can be regarded as prior probabilities (conditioned on x) of the
target vector t having been generated from the :*® component of the mixture. Note that
the mixing coefficients are taken to be functions of the input vector x. The functions
#;(t | x) represent the conditional density of the target vector t for the :*" kernel. Various
choices for the kernel functions are possible. For the purposes of this paper, however, we
shall restrict attention to kernel functions which are Gaussian of the form

$i(t | x) = ;exp {_M} (23)

(27)e/20;(x)° 20;(x)?

where the vector p,(x) represents the centre of the :*® kernel, with components ;. In
(23) we have assumed that the components of the output vector are statistically inde-
pendent within each component of the distribution, and can be described by a common
variance o;(x). This assumption can be relaxed in a straightforward way by introduc-
ing full covariance matrices for each Gaussian kernel, at the expense of a more complex
formalism. In principle, however, such a complication is not necessary, since a Gaussian
mixture model, with kernels given by (23), can approximate any given density function to
arbitrary accuracy, provided the mixing coefficients and the Gaussian parameters (means
and variances) are correctly chosen (McLachlan and Basford, 1988). Thus, the represen-
tation given by (22) and (23) is completely general. In particular, it does not assume

that the components of t are statistically independent, in contrast to the single-Gaussian
representation in (11).

For any given value of x, the mixture model (22) provides a general formalism for mod-
elling an arbitrary conditional density function p(t | x). We now take the various pa-
rameters of the mixture model, namely the mixing coefficients «;(x), the means p,(x)
and the variances o;(x), to be general (continuous) functions of x. This is achieved by
modelling them using the outputs of a conventional neural network which takes x as its
input. The combined structure of a feed-forward network and a mixture model we refer
to as a Mizture Density Network (MDN), and its basic structure is indicated in Figure 2.
By choosing a mixture model with a sufficient number of kernel functions, and a neural
network with a sufficient number of hidden units, the MDN can approximate as closely
as desired any conditional density p(t | x).

conditional

robabilit
pdensity d ﬁ p(t]x)

4)
AN I
AN I
WA

parameter ﬁ 7
vector

e ™
neural
network
_ Y,

input
vector X

Figure 2: The Mixture Density Network consists of a feed-forward neural network whose
outputs determine the parameters in a mixture density model. The mixture model then
represents the conditional probability density function of the target variables; conditioned
on the input vector to the neural network.

The neural network element of the MDN can be any standard feed-forward structure with
universal approximation capabilities. In this paper we consider a standard multi-layer
perceptron, with a single hidden layer of sigmoidal units and an output layer of linear
units, and we shall use z; to denote the output variables. Note that the total number
of network outputs is given by (¢ 4 2) x m, as compared with the usual ¢ outputs for a

network used in the conventional manner.

It is important to note that the mixing coefficients a;(x) must satisfy the constraint

m

Yoai(x)=1 (24)

=1

This is achieved by choosing «;(x) to be related to the networks outputs by a ‘softmax’
function (Bridle, 1990; Jacobs et al., 1991)

exp(z]")
=M ay
Zj:l eXp(Z])
where z{ represent the corresponding network outputs. This can be regarded as a gener-

alization of the usual logistic sigmoid, and ensures that the quantities «; lie in the range
(0,1) and sum to unity, as required for probabilities.

(25)

The variances o; represent scale parameters and so it is convenient to represent them in
terms of the exponentials of the corresponding network outputs

o; = exp(z7) (26)

which, in a Bayesian framework, would correspond to the choice of an un-informative
Bayesian prior, assuming the corresponding network outputs z7 had uniform probability
distributions (Jacobs et al., 1991; Nowlan and Hinton, 1992). This representation also has
the additional benefit of avoiding pathological configurations in which one or more of the
variances goes to zero. The centers u; represent location parameters, and the notion of an
un-informative prior suggests that these be represented directly by the network outputs

ik = 2, (27)

As before, we can construct a likelihood function using (12), and then define an error
function by taking the negative logarithm of the likelihood, as in (13), to give the error
function for the Mixture Density Network in the form

E=>) E° (28)
q
where the contribution to the error from pattern ¢ is given by

E? = —ln{z a; (x?) s (7 | Xq)} (29)
i=1

with ¢;(t | x) given by (23). We have dropped the term)~ p(x?) as it is independent of
the parameters of the mixture model, and hence is independent of the network weights.
Note that (29) is formally equivalent to the error function used in the ‘competing lo-
cal experts’ model of Jacobs et al. (Jacobs et al., 1991). The interpretation presented
here, however, is quite different. Instead of seeking to impose soft competition between a
number of competing simpler network modules, the aim is to model the complete condi-
tional probability density of the output variables. From this density function, any desired
statistic involving the output variables can in principle be computed.

In order to minimize the error function, we need to calculate the derivatives of the error
E with respect to the weights in the neural network. These can be evaluated by using

the standard ‘back-propagation’ procedure, provided we obtain suitable expressions for
the derivatives of the error with respect to the activations of the output units of the
neural network. Since the error function (28) is composed of a sum of terms, one for each
pattern, we can consider the derivatives 6] = 9E?/0z, for a particular pattern ¢ and then
find the derivatives of £ by summing over all patterns. The derivatives 6] act as ‘errors’
which can be back-propagated through the network to find the derivatives with respect
to the network weights. This is discussed further in Section 4. Standard optimization
algorithms, such as conjugate gradients or quasi-Newton methods, can then be used to
find a minimum of K. Alternatively, if an optimization algorithm such as stochastic
gradient descent is to be used, the weight updates can be applied after presentation of
each pattern separately.

We have already remarked that the ¢; can be regarded as conditional density functions,
with prior probabilities «;. It is convenient to introduce the corresponding posterior
probabilities, which we obtain using Bayes theorem

a; P;

as this leads to some simplification of the subsequent analysis. Note that the posterior
probabilities sum to unity:

’/TZ'(X,t) = (30)

Consider first the derivatives with respect to those network outputs which correspond to
the mixing coefficients «;. Using (29) and (30) we obtain
6Eq T
= —— (32)

8% o

We now note that, as a result of the softmax activation function (25), the value of «;
depends on all of the network outputs which contribute to the priors, and so we have

gj}é = (52'ka2' — ;O (33)
From the chain rule we have 9 9E 3
Q;
— 34
0z ZZ: OJa; Oz (34)
Combining (32), (33) and (34) we then obtain
oLk
aza = Q0 — Tk (35)
k

where we have used (31).
For the derivatives corresponding to the o; parameters we make use of (29) and (30),

together with (23), to give
k1 It —]| c _
—a Z_ = —T7; {73 - — (36)

Using (26) we have
602-

=0; 37
0z7 (37)
Combining these together we then obtain
L1 ”t y’iHQ .

Finally, since the parameters p;; are given directly by the z!, network outputs, we have,

using (29) and (30), together with (23),
Jo0 vt
oLt _ 77'{7('“ k ’“)} (39)

wo T 2
0zh,

g;

The derivatives of the error function with respect to the network outputs, given by (35),
(38) and (39), can be used in standard optimization algorithms to find a minimum of the
error. For the results presented in this paper, the optimization of the network weights
was performed using the BFGS quasi-Newton algorithm (Press et al., 1992).

In the previous section we considered the properties of the standard least-squares network
model in the limit of an infinite data set. We now perform the corresponding analysis for
the Mixture Density Network. Taking the infinite data set limit of (28) and (29), we can
write the error function in the form

E= —// ln{éai(x)@(t | x)} p(x, t) dx dt (40)

If we set the functional derivatives of £ with respect to z%(x), 27 (x) and z/(x) to zero we

obtain, after some algebraic rearrangement, the following conditions which are satisfied
by the mixture model parameters at the minimum of the error function

ai(x) = (m|x) (41)

(mit | x)
pi(X) e (42)

(mi | x)

. . _ 1112
o2(x) = (mi [l ps(x) — ¢ | x)) (13)
(mi | x)

where m; = m;(x,t), and where the conditional averages are defined by (7) as before.

These results have a very natural interpretation. For each value of the input vector x,
(41) shows that the priors «;(x) are given by the corresponding posterior probabilities,
averaged over the conditional density of the target data. Similarly, the centers (42)
are given by the conditional average of the target data, weighted by the corresponding
posterior probabilities. Finally, the variance parameters (43) are given by the conditional
average of the variance of the target data around the corresponding kernel centre, again
weighted by the posterior probability of that kernel.

Once an MDN has been trained it can predict the conditional density function of the
target data for any given value of the input vector. This conditional density represents a

10

complete description of the generator of the data, so far as the problem of predicting the
value of the target vector is concerned. From this density function we can calculate more
specific quantities which may be of interest in different applications. Here we discuss some
of the possibilities.

One of the simplest statistics is the mean, corresponding to the conditional average of the
target data, given by

t1%) = Salx) [tolt|x)dt (44)

= Z ;i (x) g (x) (45)

7

where we have used (23). This is equivalent to the function computed by a standard
network trained by least-squares. Thus, MDNs contain the conventional least-squares
result as a special case. We can likewise evaluate the variance of the density function
about the conditional average, to give

s(x) = (It —(t[x)]?|x) (46)

2

= > ai(x){ou(x)* +

7

(47)

pi(x) — Z O‘J'(X)IL]'(X)

which is more general than the corresponding least-squares result since this variance is
allowed to be a general function of x. Similar results can be obtained for other moments
of the conditional distribution.

For many problems we might be interested in finding one specific value for the output
vector. The most likely value for the output vector, for a given input vector x, is given
by the maximum of the conditional density p(t | x). Since this density function is repre-
sented by a mixture model, the location of its global maximum is a problem in non-linear
optimization. While standard techniques exist for solving such problems (Press et al.,
1992), these are iterative in nature and are therefore computationally costly. For applica-
tions where speed of processing for new data is important, we may need to find a faster,
approximate, approach.

If we assume that the component kernels of the density function are not too strongly
overlapping, then to a very good approximation the most likely value of t will be given
by the centre of the highest component. From (22) and (23), we see that the component
with the largest central value is given by

mfx{ig))c} "

and the corresponding centre g, represents the most likely output vector, to a good

approximation. Alternatively, we may wish to consider the total ‘probability mass’ asso-
ciated with each of the mixture components. This would be appropriate for applications
involving multi-valued mappings with a finite number of distinct branches, in which we are
interested in finding a representative vector corresponding to the most probable branch.

11

(This approach is also less susceptible to problems due to artificially small values of o;
arising from regions of sparse data). An example of such a problem, involving the kine-
matics of robot arms, is discussed in the next section. Since each component of the
mixture model is normalized, [¢;(t | x) dt = 1, the most probable branch of the solution,
assuming the components are well separated and have negligible overlap, is given by

max {a;(x)} (49)
The required value of t is then given by the corresponding centre p,.

A whole variety of other statistics can be computed from the conditional probability
density, as appropriate to the particular application.

4 Software Implementation

The implementation of the MDN in software is very straightforward, and for large-scale
problems will typically not lead to a significant computational overhead compared with
the standard least-squares approach. Consider a multi-layer perceptron network trained
by minimizing a sum-of-squares error function using a standard optimization procedure
(such as gradient descent or quasi-Newton). The only modification to the software which
is required arises from the modified definition of the error function, with all other aspects
of the implementation remaining unchanged. In general, we can regard the error function
as a ‘module’ which takes a network output vector z? (for a particular pattern ¢) and a
corresponding target vector t? and which can return the value of the error £? for that
pattern, and also the derivatives §? of the error with respect to the network outputs z?.
This is illustrated in Figure 3. The derivatives of the error function with respect to one
of the weights w in the network is obtained by use of the chain rule

8E 8Eq 82’2 . qaZi
Ow XZ: 0z; Ow - 6 ow

(50)

where the quantities 6] = 9E?/0z; can be interpreted as ‘errors’ which are to be back-
propagated through the network. For the particular case of the sum-of-squares error
function we have

1
E1 = 5|zq—tq|2 (51)
6! = z'—t* (52)

In order to modify the software to implement the MDN, (51) and (52) must be replaced by
the appropriate expressions. The error function for a particular pattern is given by (29),
while the elements of the vector § are given by (35), (38) and (39). The implementation
of an MDN is particularly simple and natural in an object oriented language such as
C++, since the error module can be represented as a class, with methods to set the
mixture parameters for a given set of network outputs, and to return the error function
or its derivatives. The error function class can also be provided with methods to return
the value of the conditional probability density for given values of x and t, or to return

12

q
Z —» error > F

tt —f function | 5 5i_yEge

. S

Figure 3: For the purposes of software implementation, an error function can be regarded
as a module which takes a network output vector z? (for a particular pattern ¢) and a
corresponding target vector t? and which can return the value of the error E? for that
pattern, as well as the derivatives of the error with respect to the network outputs, 8¢ =

V. E1.

other statistics derived from the conditional probability density (such as the centre vector
corresponding to the most probable kernel).

For applications involving large numbers of input variables, the computational require-
ments for the MDN need not be significantly greater than with a standard network trained
using a sum-of-squares error function, since much of the computational cost lies in the
forward and backward propagation of signals through the network itself. For networks
with a large number of inputs (and hence a large number of weights in the first layer) this
will exceed the cost of evaluating the error function and its derivatives.

In any algorithm which uses gradient-based methods to perform error minimization, a
very powerful check on the software can be made by comparing the error derivatives
obtained from the analytic expressions with those calculated using finite differences. Close
agreement between these two approaches demonstrates that a high proportion of the code
has been implemented correctly. Note that substantially improved accuracy is obtained if
symmetric central differences are used, rather than simple finite differences, since in the
latter case we have

E(w+e¢e¢)— E(w) O0F
= —+ O(e 53
6 o8 4ol (53)
where € is a small parameter, whereas central differences give
Ew+e)— FEw—¢) 0FE
= — 4 O(¢ 54
2¢ ow +0(€) (54)
for which the correction terms are much smaller. Of course, for use in error minimization,
the analytic expressions should be used in preference to the finite difference formulae
since, not only are they more accurate, but they are substantially more computationally

efficient (Bishop, 1995).

5 A Simple Inverse Problem

Many potential applications of neural networks fall into the category of inverse problems.
Examples include the control of industrial plant, analysis of spectral data, tomographic
reconstruction, and robot kinematics. For such problems there exists a well defined for-
ward problem which is characterized by a functional (i.e. single-valued) mapping. Often

13

this corresponds to causality in a physical system. In the case of spectral reconstruction,
for example, the forward problem corresponds to the prediction of the spectrum when
the parameters (locations, widths and amplitudes) of the spectral lines are prescribed.
For practical applications, however, we generally have to solve the corresponding inverse
problem in which the roles of input and output variables are interchanged. In the case
of spectral analysis, this corresponds to the determination of the spectral line parameters
from an observed spectrum. For inverse problems, the mapping can be often be multi-
valued, with values of the input for which there are several valid values for the output.
For example, there may be several choices for the spectral line parameters which give rise
to the same observed spectrum (corresponding, for example, to the exchange of width
parameters for two co-located lines). If a standard neural network is applied to such
inverse problems, it will approximate the conditional average of the target data, and this
will frequently lead to extremely poor performance. (The average of several solutions is
not necessarily itself a solution). This problem can be overcome in a natural and effective
way by appropriate use of a Mixture Density Network instead.

In order to illustrate the application of the MDN, we begin by considering a simple
example of an inverse problem involving a mapping between a single input variable and a
single output variable. Consider the mapping from ¢ (regarded here as an input variable)
to = (regarded as an output variable) defined by

x=1+0.3sin(27t) + ¢ (55)

where € is a random variable with uniform distribution in the interval (—0.1,0.1). The
mapping from ¢ to x provides an example of a forward problem. In the absence of the
noise term €, this mapping is single-valued, so that each value of ¢ gives rise to a unique
value of . Figure 4 shows a data set of 1,000 points generated by sampling (55) at
equal intervals of ¢ in the range (0.0,1.0). Also shown is the mapping represented by
a standard multi-layer perceptron after training using this data set. The network had
1 input, 5 hidden units with ‘tanh’ activation functions, and 1 linear output unit, and
was trained for 1,000 complete cycles of the BFGS quasi-Newton algorithm. It can be
seen that the network, which is approximating the conditional average of the target data,
gives an excellent representation of the underlying generator of the data. This result is
insensitive to the choice of network structure, the initial values for the network weights,
and the details of the training procedure.

We now consider the corresponding inverse problem in which we use exactly the same
data set as before, but we try to find a mapping from the z variable to the ¢ variable.
The result of training a neural network using least-squares is shown in Figure 5. Again
the network tries to approximate the conditional average of the target data, but now
this corresponds to a very poor representation of the process (55) which generated the
data. The precise form of the neural network mapping is now more sensitive to network
architecture, weight initialization, etc., than was the case for the forward problem. The
mapping shown in Figure 5 is the best result obtained after some careful optimization
(with the network often finding significantly poorer solutions). The network in this case
had 20 hidden units and was trained for 1,000 cycles of the BFGS algorithm. It is clear that
a conventional network, trained by minimizing a sum-of-squares error function, cannot
give a good representation of the generator of this data.

We next apply an MDN to the same inverse problem, using the same data set as before.

14

1.0

0.5} R0 °

%80 05 w10

Figure 4: A simple example of a forward problem, showing 1,000 data points (the circles)
generated from the mapping =t + 0.3sin(27¢) + ¢ where ¢ is a random variable having a
uniform distribution in the range (—0.1,0.1). The solid curve shows the result of training a
multi-layer perceptron network with 5 hidden units using a sum-of-squares error function.
The network approximates the conditional average of the target data, which gives a good
representation of the generator of the data.

080~ 05 x L0

Figure 5: This shows precisely the same data set as in Figure 4, but with the roles of input
and target variables interchanged. The solid curve shows the result of training a standard
neural network using a sum-of-squares error. This time the network gives a very poor fit,
as it tries to represent the conditional average of the target data.

15

For clarity we restrict attention to MDNs with 3 kernel functions, as this is the minimum
number needed to give good solutions for this problem (since the inverse mapping has 3
branches at intermediate values of x, as is clear from Figure 5). In practice, the appropri-
ate number of kernels will not be known in advance and must be addressed as part of the
model order selection problem. Experiments with 5 kernel functions on this same problem
give almost identical results to those obtained using 3 kernels. We shall discuss the prob-
lem of selecting the appropriate number of kernel functions in Section 7. The network
component of the MDN was a multi-layer perceptron with 1 input, 20 hidden units with
‘tanh’ activation functions, and 9 output units (corresponding to the 3 parameters for
each of the 3 Gaussian kernel functions). This network structure has not been optimized
to any degree since the main purpose of this exercise is to illustrate the operation of the
MDN. The MDN was trained with 1,000 cycles of the BFGS algorithm. Once trained,
the MDN predicts the conditional probability density of ¢ for each value of x presented
to the input of the network. Figure 6 shows contours of p(¢ |) as a function of ¢ and x.
It is clear that the MDN has captured the underlying structure in the data set, despite
the multi-valued nature of the inverse problem. Notice that the contour values are much
higher in regions of = where the data is single-valued in ¢. This is a consequence of the
fact that p(t | x) satisfies [p(t | x)dt = 1 at each value of z, and can be seen more clearly
in Figure 7 which shows plots of p(¢ |) versus ¢ for 3 values of x. Note particularly that,
for x = 0.5, the MDN has correctly captured the tri-modal nature of the mapping.

1.0

0.5

0.0 =
0.0

Figure 6: Plot of the contours of the conditional probability density of the target data
obtained from a Mixture Density Network trained using the same data as in Figure 5. The
network has 3 Gaussian kernel functions, and 5 sigmoidal units in the hidden layer.

The outputs of the neural network part of the MDN, and hence the parameters in the
mixture model, are necessarily continuous single-valued functions of the input variables.
The MDN is able to produce a conditional density which is unimodal for some values
of and trimodal for other values, as in Figure 6, by modulating the amplitudes of the
mixture components. This can be seen in Figure 8 which shows plots of the 3 priors a;(x)
as functions of z. It can be seen that for + = 0.2 and = = 0.8 only one of the 3 kernels has
a significant prior probability. At x = 0.5, however, all 3 kernels have comparable priors.

16

20 .

PAR) | 1 o2 X
10 +

Figure 7: Plot of the conditional probability densities of the target data, for various values
of z, obtained by taking vertical slices through the contours in Figure 6, for 2 = 0.2, x = 0.5
and z = 0.8. It is clear that the Mixture Density Network is able to capture correctly the
multi-modal nature of the target data density function at intermediate values of z.

1.0

0.0

0.0 1.0

Figure 8: Plot of the priors a;(z) as a function of « for the 3 kernel functions from the same
Mixture Density Network as was used to plot Figure 6. At both small and large values of
z, where the conditional probability density of the target data is unimodal, only one of the
kernels has a prior probability which differs significantly from zero. At intermediate values
of x, where the conditional density is tri-modal, the three kernels have comparable priors.

17

Having obtained a good representation for the conditional density of the target data, it is
then in principle straightforward to calculate any desired statistic from that distribution.
We consider first the evaluation of the conditional mean of the target data (¢t | z), given
by (45), and the squared variance s*(z) of the target data around this mean, given by
(47). Figure 9 shows a plot of (¢t | x) against = for the MDN used to plot Figure 6,
together with plots of (¢t | #) + s(x). This representation corresponds to the assumption
of a single Gaussian distribution for the target data, but with a variance parameter which
is a function of x. While this is more general that the standard least-squares approach
(which assumes a constant variance) it still gives a poor representation of the data in the
multi-valued region. Notice that, in the regions where the data is single valued, the MDN
gives a much smoother and more accurate representation of the conditional average of the
target data than was obtained from the standard least-squares neural network as shown
in Figure 5. This can be attributed to the fact that the standard network is having to
make a single global fit to the whole data set, whereas the MDN uses different kernels for
the different branches of the mapping.

1.0

0.5

0.0
0.0 05 x 10

Figure 9: This shows a plot of (¢ | z) against & (solid curve) calculated from the MDN
used to plot Figure 6, together with corresponding plots of (¢ |) &+ s(z) (dashed curves).
Notice that for small and large values of z, where the mapping is single-valued, the MDN
actually gives a better representation of the conditional average than the standard least-
squares approach, as can be seen by comparison with Figure 5. This can be attributed to
the fact that the standard network is having to make a single global fit to the whole data
set, whereas the MDN uses different kernels for the different branches of the mapping.

We can also consider the evaluation of the centre of the most probable kernel according
to (49), which gives the result shown in Figure 10. This now represents a discontinuous
functional mapping from x to ¢, such that, at each value of z, the MDN make a good
prediction for the value of ¢, which lies well within one of the branches of the data. It
can be seen that the discontinuities correspond to the crossing points in Figure 8 which
separate the regions in which different priors have the largest value. Comparison with
the corresponding mapping obtained with the standard neural network approach, given
in Figure 5, shows that the MDN gives substantially improved predictions for the inverse

18

mapping.

1.0 5

0.5 %83
0o

080 05 x L0

Figure 10: Plot of the central value of the most probable kernel as a function of z from
the Mixture Density Network used to plot Figure 6. This gives a (discontinuous) functional
mapping from z to ¢t which at every value of « gives an accurate representation of the data.
The diagram should be compared with the corresponding result obtained from a conventional
neural network, shown in Figure 5.

6 Robot Kinematics

As our second application of Mixture Density Networks, we consider the kinematics of
a simple 2-link robot arm, as shown in Figure 11. For given values of the joint angles
(01, 0), the end effector is moved to a position given by the Cartesian coordinates

x1 = Llcos(0y) — L2 cos(0; + 6,) (56)

xg = Llsin(0y) — L2sin(0; + 6,) (57)

where L1 and L2 are the lengths of the two links of the robot arm. Here we consider
a particular configuration of robot for which L1 = 0.8 and L2 = 0.2 and where 6, is
restricted to the range (0.3, 1.2) and 6, is restricted to the range (7 /2,37 /2). The mapping
from (61, 03) to (1, x2) is known as the forward kinematics, and is single-valued. However,
for practical robot control, the end effector must be moved to prescribed locations and it
is therefore necessary to find corresponding values for the joint angles. This is called the
inverse kinematics and corresponds to the mapping from (x1, z3) to (61,6:). In general,
the inverse kinematics is not a single-valued mapping. This is illustrated in Figure 12,
where we see that there are two configurations of the joint angles, known as ‘elbow up’
and ‘elbow down’, which both give rise to the same end effector position. The extent
of the elbow up and elbow-down regions, for the particular configuration of robot arm
considered here, is shown in Figure 13. We see that there are regions (A and C) which
are accessible using only one of the two configurations, and for end effector positions in

19

either of these regions, the inverse kinematics will be single valued. There is also a region
(B) in which end effector positions can be accessed by both elbow-up and elbow-down
configurations, and in this region the inverse kinematics is double-valued.

(X1, %)

Figure 11: Schematic illustration of a two-link robot arm in two dimensions. For given values
of the joint angles #; and f,, the position of the end effector, described by the Cartesian
coordinates (1, z3), is uniquely determined. In practice, control of the robot arm requires
the solution of the inverse kinematics problem in which the end effector position is specified
and the joint angles #; and #; must be found.

We first consider the use of a standard neural network, trained by minimizing a sum-of-
squares error function, to learn the inverse kinematics mapping. A training set of 1,000
points was generated by selecting pairs of joint angles at random with uniform distribution
within the allowed limits, and computing the corresponding end effector coordinates using
(56) and (57). A test set, also of 1,000 points, was generated in a similar way, but with
a different random selection of joint angles. A standard multi-layer perceptron network
having 2 inputs, N hidden units with ‘tanh’ activation functions, and 2 linear output
units was used. Here N was set to 5, 10, 15, 20, 25 and 30, and in each case the network
was trained for 3,000 complete cycles of the BFGS algorithm. The performance of the
network was assessed by presenting the test set end effector coordinates as inputs and
using the corresponding values of joint angles predicted by the network to calculate the
achieved end effector position using (56) and (57). The RMS Euclidean distance between
the desired and achieved end effector positions is used as a measure of performance. This
measure is evaluated using the test set, after every 10 cycles of training using the training
set, and the network having the smallest RMS error is saved. All the networks gave
very similar performance. Figure 14 shows the positioning errors achieved by the best
network (20 hidden units) for all of the points in the test set. Comparison with Figure 13
shows that the positioning errors are largest in region B where the inverse kinematics
mapping is double valued. In this region the end effector positions achieved by the robot
lie at the outer boundary of the accessible region, corresponding to a value of 6, = 7.

20

elbow
up \

/ elbow
/ down
/
/
/

Figure 12: This diagram shows why the inverse kinematics mapping for the robot arm is
multi-valued. For the given position (1, 23) of the end effector, there are two solutions for
the joint angles, corresponding to ‘elbow up’ and ‘elbow down’.

1.0 .

0.0 '
0.0 0.5 1.0

Figure 13: For the particular geometry of robot arm considered, the end effector is able to
reach all points in regions A and B in the ‘elbow down’ configuration, and all points in regions
B and C in the ‘elbow up’ configuration. Thus, the inverse kinematics will correspond to a
single-valued mapping for positions in regions A and C, and to a double-valued mapping for
positions in region B. The base of the robot arm is at (0.0, 0.0).

21

Examination of Figure 12 shows that this is indeed the result we would expect, since the
average of the joint angles for an elbow-up configuration and the corresponding elbow-
down configuration always gives this value for 6;.

1.0 .

X,

05+

0.0 :
0.0 0.5 1.0

Figure 14: This shows the result of training a conventional neural network, using a sum-of-
squares error function, on the inverse kinematics problem for the robot arm corresponding
to Figure 13. For each of the 1,000 points in the test set, the positioning error of the end
effector is shown as a straight line connecting the desired position (which forms the input
to the network) to the actual position achieved by the robot when the joint angles are set
to the values predicted by the outputs of the network. Note that the errors are everywhere
large, but are smaller for positions corresponding to regions A and C' in Figure 13 where
the inverse kinematics is single valued, and larger for positions corresponding to the double
valued region B.

The same datasets were also used to train an MDN having two kernel functions in the
mixture model. The network component of the MDN was a standard multi-layer percep-
tron having two inputs, N hidden units and 8 output units, and the same optimization
procedure was used as for the previous network trained by least squares. In this case the
best network had 10 hidden units, and the corresponding position errors are plotted in
Figure 15. It is clear that the positioning errors are reduced dramatically compared to
the least-squares results shown in Figure 14. A comparison of the RMS positioning errors
for the two approaches is given in Table 1, which shows that the MDN gives an order of
magnitude reduction in RMS error compared to the least-squares approach.

| Model | RMS positioning error |

Least squares 0.0578
MDN 0.0053

Table 1: Comparison of RMS positioning errors for the robot end effector, measured using
the test set, for a standard neural network trained by least-squares, and for a Mixture
Density Network.

22

1.0 .

0.0 '
0.0 0.5 1.0

Figure 15: As in Figure 14, but showing the corresponding results obtained using a Mixture
Density Network. The RMS error in positioning the end effector is reduced by an order of
magnitude compared with the conventional network, and the errors remain small even in
the region where the inverse kinematics is double-valued.

7 Discussion

In this paper we have introduced a new class of networks, called Mixture Density Net-
works, which can model general conditional probability densities. By contrast, the conven-
tional network approach, involving the minimization of a sum-of-squares error function,
only permits the determination of the conditional average of the target data, together
with a single global variance parameter. We have illustrated the use of Mixture Density
Networks for a simple 1-input 1-output mapping, and for a robot inverse kinematics prob-
lem. In both of these examples the required mapping is multi-valued and so is poorly
represented by the conditional average.

There are many other approaches to dealing with the problem of learning multi-valued
mappings from a set of example data. In general, however, these are concerned with
generating one specific solution (i.e. one branch of the multi-valued mapping). The Mix-
ture Density Network, by contrast, is concerned with modelling the complete conditional
density function of the output variables, and so gives a completely general description
of the required mapping. From the conditional density, more specific information can
be extracted. In particular, we have discussed methods for evaluating moments of the
conditional density (such as the mean and variance), as well as for selecting a particular
branch of a multi-valued mapping.

Implementation of Mixture Density Networks is straightforward, and corresponds to a
modification of the error function, together with a different interpretation for the network
outputs. One aspect of the MDN which is more complex than with standard models is
the problem of model order selection. In applying neural networks to finite data sets,

23

the degree of complexity of the model must be optimized to give the best generalization
performance. This might be done by varying the number of hidden units (and hence
the number of adaptive parameters) as was done for the simulations in this paper. It
could also be done through the use of regularization terms added to the error function, or
through the use of ‘early stopping’ during training to limit the effective number of degrees
of freedom in the network. The same problem of model complexity must also be addressed
for MDNs. However, there is in addition the problem of selecting the appropriate number
of kernel functions. Changes to the number of kernels leads to changes in the number
of adaptive parameters in the network through changes to the number of output units
(for a given number of hidden units), and so the two problems are somewhat interrelated.
For problems involving discrete multi-valued mappings it is important that the number
of kernel functions is at least equal to the maximum number of branches of the mapping.
However, it is likely that the use of a greater number of kernel functions than this will
have little ill effect, since the network always has the option either of ‘switching off’
redundant kernels by setting the corresponding priors to small values, or of ‘combining’
kernels by giving them similar g; and o; parameters. Preliminary experiments on the
problems discussed in this paper involving a surplus of kernels indicates that there is no
significant reduction in network performance. Future research will be concerned with the
automation of model order selection for Mixture Density Networks, as well as with the
performance of these networks in a range of large-scale applications.

Acknowledgements

I would like to thank Pierre Baldi, David Lowe, Richard Rohwer and Andreas Weigend

for providing helpful comments on an earlier draft of this report.

24

References

Bishop, C. M. (1994). Novelty detection and neural network validation. IEFE Proceed-
ings: Vision, Image and Signal Processing 141 (4), 217-222. Special issue on appli-
cations of neural networks.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University
Press.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In F. Fogelman Soulié

and J. Hérault (Eds.), Neurocomputing: Algorithms, Architectures and Applications,
pp- 227-236. New York: Springer-Verlag.

Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and the
bias/variance dilema. Neural Computation 4 (1), 1-58.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks
are universal approximators. Neural Networks 2 (5), 359-366.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991). Adaptive mixtures
of local experts. Neural Computation 3 (1), 79-87.

McLachlan, G. J. and K. E. Basford (1988). Mizture Models: Inference and Applications
to Clustering. New York: Marcel Dekker.

Nowlan, S. J. and G. E. Hinton (1992). Simplifying neural networks by soft weight
sharing. Neural Computation 4 (4), 473-493.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical
Recipes in C: The Art of Scientific Computing (Second ed.). Cambridge University
Press.

White, H. (1989). Learning in artificial neural networks: a statistical perspective. Neural
Computation 1 (4), 425-464.

25

