
Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 24

Chapter 3.  Turbo Code Encoder

This chapter describes the turbo code encoder and its components in detail.  The
fundamental turbo code encoder is built using two identical recursive systematic
convolutional (RSC) codes with parallel concatenation [Ber93].  An RSC encoder is

typically r = 1

2
 and is termed a component encoder.  The two component encoders are

separated by an interleaver.  Only one of the systematic outputs from the two component
encoders is used, because the systematic output from the other component encoder is just
a permuted version of the chosen systematic output.  Figure 3.1 shows the fundamental
turbo code encoder.

Interleaver RSC Encoder 2

RSC Encoder 1x
c1

c2

c3

Figure 3.1:  Fundamental turbo code encoder.

Figure 3.1 shows an r = 1

3
 turbo code encoder.  The first RSC encoder outputs the

systematic c1 and recursive convolutional c2 sequences while the second RSC encoder
discards its systematic sequence and only outputs the recursive convolutional c3 sequence.

3.1 Recursive Systematic Convolutional (RSC) Encoder

The recursive systematic convolutional (RSC) encoder is obtained from the
nonrecursive nonsystematic (conventional) convolutional encoder by feeding back one of
its encoded outputs to its input.  Figure 3.2 shows a conventional convolutional encoder.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 25

DD

+

+

x

c2

c1

Figure 3.2:  Conventional convolutional encoder with r=1/2 and K=3.

The conventional convolutional encoder is represented by the generator sequences
g1 =[111] and g2 =[101] and can be equivalently represented in a more compact form as
G=[g1, g2].  The RSC encoder of this conventional convolutional encoder is represented
as G=[1, g2 / g1] where the first output (represented by g1) is fed back to the input.  In the
above representation, 1 denotes the systematic output, g2 denotes the feedforward output,
and g1 is the feedback to the input of the RSC encoder.  Figure 3.3 shows the resulting
RSC encoder.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 26

D D

+

+

+

x

c1

c2

Figure 3.3:  The RSC encoder obtained from Figure 3.2 with r=1/2 and K=3.

It was suggested in [Bat93] that good codes can be obtained by setting the feedback of the
RSC encoder to a primitive polynomial, because the primitive polynomial generates
maximum-length sequences which adds randomness to the turbo code.

3.1.1 Trellis Termination

For the conventional convolutional encoder, the trellis is terminated by inserting
m = K-1 additional zero bits after the input sequence.  These additional bits drive the
conventional convolutional encoder to the all-zero state (trellis termination).  However,
this strategy is not possible for the RSC encoder due to the feedback.  The additional
termination bits for the RSC encoder depend on the state of the encoder and are very
difficult to predict [Div95a].  Furthermore, even if the termination bits for one of the
component encoders are found, the other component encoder may not be driven to the all-
zero state with the same m termination bits due to the presence of the interleaver between
the component encoders.  Figure 3.4 shows a simple strategy that has been developed in
[Div95a] which overcomes this problem.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 27

D D

+

+

+

x

c2

c1

A

B

Figure 3.4:  Trellis termination strategy for RSC encoder.

For encoding the input sequence, the switch is turned on to position A and for terminating
the trellis, the switch is turned on to position B.

3.2 Recursive and Nonrecursive Convolutional Encoders

The nature of recursive and nonrecursive convolutional encoders is best examined
by an example.  Figure 3.5 shows a simple nonrecursive convolutional encoder with
generator sequences g1=[11] and g2=[10].

D

+
x=[1 0 0 0]

c1=[1 1 0 0]

c2=[1 0 0 0]

Figure 3.5:  Nonrecursive r=1/2 and K=2 convolutional encoder with input and 
         output sequences.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 28

Figure 3.6 shows the equivalent recursive convolutional encoder of Figure 3.5 with
G=[1, g2 / g1].

D+
x=[1 0 0 0]

c1=[1 0 0 0]

c2=[1 1 1 1]

Figure 3.6:  Recursive r=1/2 and K=2 convolutional encoder of Figure 3.5 with input
         and output sequences.

From Figure 3.5 and Figure 3.6, given the same input sequence, the nonrecursive encoder
produces an output codeword with weight of 3 and the recursive encoder produces an
output codeword with weight of 5.  Thus, a recursive convolutional encoder tends to
produce codewords with increased weight relative to a nonrecursive encoder.  This results
in fewer codewords with lower weights and this leads to better error performance.  For
turbo codes, the main purpose of implementing RSC encoders as component encoders is
to utilize the recursive nature of the encoders and not the fact that the encoders are
systematic [Div95b].

Figure 3.7 shows the state diagram of the nonrecursive encoder.

0 1

1/11

0/10

0/00 1/01

Figure 3.7:  State diagram of the nonrecursive encoder in Figure 3.5.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 29

Figure 3.8 shows the state diagrams of the recursive encoder.

0 1

1/11

1/10

0/00 0/01

Figure 3.8:  State diagram of recursive encoder in Figure 3.6.

Clearly, the state diagrams of the encoders are very similar.  The transfer function for

both encoders are identical [Ben96] and is found to be T D
D

D
( ) =

−

3

1
 where N and J are

neglected.  Furthermore, the two codes have the same minimum free distance and can be
described by the same trellis structure [Ber93].  Thus, the codes have the same first event
error probability [Ben96].  However, these two codes have different bit error rates
(BERs).  This is due to the fact that BER depends on the input-output correspondence of
the encoders [Ben96].  It has been shown that the BER for a recursive convolutional code
is lower than that of the corresponding nonrecursive convolutional code at low signal-to-
noise ratios Eb/No [Ber93], [Ben96].

3.3 Concatenation of Codes

A concatenated code is composed of two separate codes that are combined to form
a larger code [Pro95].  There are two types of concatenation, namely serial and parallel
concatenations.  Figure 3.9 shows the serial concatenation scheme for transmission.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 30

Channel

Encoder 1
r1=k1/n1

Encoder 2
r2=k2/n2

Modulator

Decoder 1 Decoder 2
Demodulator

Input

Output

Figure 3.9:  Serial concatenated code.

The total code rate for serial concatenation is

r
k k

n ntot = 1 2

1 2

 (3.1)

which is equal to the product of the two code rates [Pro95].  Figure 3.10 shows the
parallel concatenation scheme for transmission.

Encoder 1

Encoder 2

Multiplexer Modulator

Channel

Demultiplexer Demodulator

Input
   k

Output

n1

n2

General 
Concatenated

Decoder
(Depends on 

Decoder Structure) 

Figure 3.10:  Parallel concatenated code.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 31

The total code rate for parallel concatenation is

r
k

n ntot =
+1 2

(3.2)

For both serial and parallel concatenation schemes, an interleaver is often used between
the encoders to improve burst error correction capacity or to increase the randomness of
the code.

Turbo codes use the parallel concatenated encoding scheme.  However, the turbo
code decoder is based on the serial concatenated decoding scheme.  The serial
concatenated decoders are used because they perform better than the parallel concatenated
decoding scheme due to the fact that the serial concatenation scheme has the ability to
share information between the concatenated decoders whereas the decoders for the
parallel concatenation scheme are primarily decoding independently.  In Chapter 4, it will
be shown how the serial concatenated decoding scheme is implemented for a turbo code.

3.4 Interleaver Design

For turbo codes, an interleaver is used between the two component encoders.  The
interleaver is used to provide randomness to the input sequences.  Also, it is used to
increase the weights of the codewords as shown in Figure 3.11.

Interleaver RSC Encoder 2

RSC Encoder 1x
c1

c2

c3

systematic code

low-weight code

high-weight code

Figure 3.11:  The interleaver increases the code weight for RSC Encoder 2 as  
           compared to RSC Encoder 1.

From Figure 3.11, the input sequence x produces a low-weight recursive convolutional
code sequence c2 for RSC Encoder 1.  To avoid having RSC Encoder 2 produce another
low-weight recursive output sequence, the interleaver permutes the input sequence x to
obtain a different sequence that hopefully produces a high-weight recursive convolutional
code sequence c3.  Thus, the turbo code’s code weight is moderate, combined from
Encoder 1’s low-weight code and Encoder 2’s high-weight code.  Figure 3.12 shows an
illustrative example.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 32

D+

x0=[1 1 0 0]
x1=[1 0 1 0]
x2=[1 0 0 1]

c10=[1 1 0 0]
c11=[1 0 1 0]
c12=[1 0 0 1]

c20=[1 0 0 0]
c21=[1 1 0 0]
c22=[1 1 1 0]

Figure 3.12:  An illustrative example of an interleaver’s capability.

From Figure 3.12, the input sequence xi produces output sequences c1i and c2i

respectively.  The input sequences x1 and x2 are different permuted sequences of x0.
Table 3.1 shows the resulting codewords and weights.

Table 3.1:  Input and Output Sequences for Encoder in Figure 3.12

Input Sequence
xi

Output Sequence
c1i

Output Sequence
c2i

Codeword
Weight i

i = 0 1 1 0 0 1 1 0 0 1 0 0 0 3
i = 1 1 0 1 0 1 0 1 0 1 1 0 0 4
i = 2 1 0 0 1 1 0 0 1 1 1 1 0 5

As it can be seen from Table 3.1, the codeword weight can be increased by utilizing an
interleaver.

The interleaver affects the performance of turbo codes because it directly affects
the distance properties of the code [Jun94].  By avoiding low-weight codewords, the BER
of a turbo code can improve significantly.  Thus, much research has been done on
interleaver design.  The following subsections show representative interleavers commonly
used in turbo code design.

3.4.1 Block Interleaver

The block interleaver is the most commonly used interleaver in communication
systems.  It writes in column wise from top to bottom and left to right and reads out row
wise from left to right and top to bottom.  Figure 3.13 shows a block interleaver.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 33

0 1 ...                      ... 1 0
0 ...                            ... 1
...                                  ...
1 ...                            ... 0
0 0 ...                      ... 1 1

Read Out

Write In

Figure 3.13:  Block interleaver.

From Figure 3.13, the interleaver writes in [0 0 ... 1 0 1 ... 0 ... 1 ... 1 0 1 ... 0 1] and reads
out [0 1 ... 1 0 0 ... 1 ... 1 ... 0 0 0 ... 1 1].

3.4.2 Random (Pseudo-Random) Interleaver

The random interleaver uses a fixed random permutation and maps the input
sequence according to the permutation order.  The length of the input sequence is
assumed to be L.  Figure 3.14 shows a random interleaver with L=8.

00 0 11 1 0 1

41 7 53 6 8 2

00 0 11 0 1 1

Write In

Fixed Random Permutation

Read Out

Figure 3.14:  A random (pseudo-random) interleaver with L=8.

From Figure 3.14, the interleaver writes in [0 1 1 0 1 0 0 1] and reads out
[0 1 0 1 1 0 0 1].

3.4.3 Circular-Shifting Interleaver

The permutation p of the circular-shifting interleaver is defined by
p i ai s L( ) ( ) mod= +   (3.3)



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 34

satisfying a < L,  a is relatively prime to L, and s < L where i is the index, a is the step
size, and s is the offset [Dol95].  Figure 3.15 shows a circular-shifting interleaver with
L=8, a=3, and s=0.

00 0 11 1 0 1

20 7 53 6 1 4

10 1 00 0 1 1

Write In

Circular-Shifted Permutation

Read Out

60 5 71 2 3 4Index i

Figure 3.15:  A circular-shifting interleaver with L=8, a=3, and s=0.

From Figure 3.15, the interleaver writes in [0 1 1 0 1 0 0 1] and reads out
[0 0 0 1 1 1 1 0].  Also, it can be seen that the adjacent bit separation is either 3 or 5.  This
type of interleaver has been shown to do a very good job of permuting weight-2 input
sequences with low codeword weights into weight-2 input sequences with high codeword
weights.  However, because of the regularity (3 or 5 adjacent bit separation for Figure
3.15) inherent in this type of interleaver, it may be difficult to permute higher weight
(weight>2) input sequences with low codeword weights into other input sequences with
high codeword weights [Dol95].

3.4.4 Semirandom Interleaver

The semirandom interleaver is a compromise between a random interleaver and a
“designed” interleaver such as the block and circular-shifting interleavers [Dol95].  The
permutation algorithm for the semirandom interleaver is described below [Dol95].
Step 1.  Select a random index i ∈ [0,L-1].

Step 2.  Select a positive integer S
L<
2

.

Step 3.  Compare i to previous S integers.  For each of the S integers, compare i to see if 
 it lies within ±S.  If i does lie within the range, then go back to Step 1.   
 Otherwise, keep i.

Step 4.  Go back to Step 1 until all L positions have been filled.
Figure 3.16 shows a semirandom interleaver with L=16 and S=2.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 35

1 011 010 1 0 0 1 0 1 0 0 1

10 1192 310 4 5 6 7 8 12 13 14 15

13 1106 930 15 12 8 5 2 4 7 11 14

0 110 100 1 1 0 0 1 1 1 0 0

Write In

Index i

Semirandom
Permutation

Read Out

Figure 3.16:  A semirandom interleaver with L=16 and S=2.

From Figure 3.16, the interleaver writes in [0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1] and reads out
[0 0 0 1 1 1  0 0 1 1 0 1 1 1 0 0].  The semirandom interleaver tries to introduce some
randomness to overcome the permutation regularity; however, the algorithm does not
guarantee to finish successfully [Dol95].

3.4.5 Odd-Even Interleaver Design

The odd-even interleaver design is specifically for the r = 1

2
 turbo code.  A r = 1

2
turbo code is obtained by puncturing the two coded (nonsystematic) output sequences of a

r = 1

3
 turbo code.  However, by puncturing these two coded output sequences, it is

possible that an information (systematic) bit may not have any of its coded bits (both of
the associated coded bits may be punctured out).  Likewise, it is also possible for an
information bit to have one or both of its coded bits.  Thus, if an error occurs for an
unprotected information bit (without any of its coded bits), the turbo code decoder may
degrade on its performance.

The odd-even interleaver design overcomes this problem by allowing each
information bit to have exactly one of its coded bits.  As a result of this interleaver, the
error correction capability of the code is uniformly distributed over all information bits
[Bar94].  The following is an example which illustrates this type of interleaver design.
The labels used are from the fundamental turbo code encoder shown in Figure 3.1.

The information (systematic) sequence x=c1 of L=9 produces a coded sequence c2

for RSC Encoder 1.  From sequence c2, only the odd positioned coded bits are stored as



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 36

shown in Figure 3.17.  Note that the plain subscript denotes the bit position within a bit
sequence.

x1 x2 x3 x4 x5 x6 x7 x8 x9

c21 - c23 - c25 - c27 - c29

Figure 3.17:  Odd coded bits of sequence c2 are stored for information (systematic)
             sequence x.

A 3 x 3 block interleaver is used to permute the information sequence x for RSC Encoder
2 as shown in Figure 3.18.

x1 x4 x7

x2 x5 x8

x3 x6 x9

Figure 3.18:  3 x 3 block interleaver.

The information sequence x is wrote in column wise and read out row wise. The
permuted information sequence x produces a coded sequence c3.  From sequence c3, only
the even positioned coded bits are stored as shown in Figure 3.19.

x1 x4 x7 x2 x5 x8 x3 x6 x9

- c34 - c32 - c38 - c36 -

Figure 3.19:  Even coded bits of sequence c3 are stored for permuted information
              sequence x.

For the r = 1

2
 turbo code, the coded bit sequences must then be multiplexed together as

shown in Figure 3.20.

x1 x4 x7 x2 x5 x8 x3 x6 x9

c21 c34 c27 c32 c25 c38 c23 c36 c29

Figure 3.20: Information sequence x and multiplexed coded sequence.

From Figure 3.20, it can be seen that each information bit has its own coded bit.



Fu-hua Huang                                     Chapter 3.  Turbo Code Encoder 37

3.4.6 Optimal (Near-Optimal) Interleaver

The optimal interleaver can be described as the interleaver that produces the
fewest output coded sequences with low weights [Bar94].  This interleaver design is both
tedious and exhaustive.  The following algorithm describes the interleaver design
concept.
1.  Generate a random interleaver.
2. Generate all possible input information sequences.
3.        For all possible input information sequences, encode each of the input information

sequences and determine the resulting codeword weight.  This gives the weight
distribution of the code.

4. Determine the minimum codeword weight and the number of codewords with that
weight.

This algorithm is repeated for a “reasonable number of times” and keeps the interleaver
that produces the largest minimum codeword weight with the lowest number of
codewords of that weight.


