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1 What is Linear Programming?

1.1 About the name Linear Programming

Linear Programming might best be called Linear Optimization: it means find-
ing maxima and minima of linear functions of several variables subject to
constraints that are linear equations or linear inequalities. The word “pro-
gramming” has the old-fashioned meaning of “planning” and was chosen
in the forties, before the advent of computers.

1.2 Example: Pig Farming

Say you are a pig farmer and want to find the cheapest way to make sure
your pigs get all the nutrition they need. Let’s say there are three types of
food you are considering and that their nutritional contents, prices and the
pigs’ daily requirements are as follows:
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Corn Silage1 Alfalfa Daily requirement
Carbs 0.9 0.2 0.4 2
Protein 3 8 6 18
Vitamins 1 2 4 15
Cost 7 6 5

Notice that we didn’t specify the units, and it won’t really matter what
they are as long as they are consistent. Let’s say the amounts of nutrients
shown are in units (of carbs, protein or vitamins) per kilogram of food and
that the prices are in cents per kilogram.

To express this problem mathematically choose variables for the amounts
of each the foods we should buy: let c be the number of kilograms of corn
per day you’ll buy and similarly let s be the amount of silage and a the
amount of alfalfa (both in kg/day).

The cost of buying those amounts will be 7c + 6s + 5a cents per day.
This is the amount we wish to minimize. The nutritional requirements give
inequalities that the variables must satisfy. For example, getting two units
of carbs per day means that 0.9c + 0.2s + 0.4a ≥ 2.

Putting all of this together we get a linear program (often abbreviated
LP):

Minimize 7c + 6s + 5a

subject to
0.9c + 0.2s + 0.4a ≥ 2

3c + 8s + 6a ≥ 18
c + 2s + 4a ≥ 15

c, s, a ≥ 0

We added the obvious constraint that all three variable must be non-
negative because while it is commonsense for us, if we didn’t include them
“the math wouldn’t know about it”.

The bulk of this course will be learning how to solve this type of prob-
lem using the Simplex Method.

1.2.1 Terminology

As we’ve mentioned this kind of problem is called a linear program. The
function you are trying to maximize or minimize is called the objective

1Silage is grass or other green fodder that is stored without drying first so that it fer-
ments, and is then fed to cattle, pigs or sheep. It’s also the name of a Christian rock band.
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function. Each of the inequalities or equations the variables must satisfy is
called a constraint. Constraint that simply specify that a variable is non-
negative, such as c ≥ 0, are called positivity constraints. We’ll almost
always assume that each variable has a positivity constraint and the Sim-
plex Method relies on this (we’ll also explain what to do when you don’t
have positivity constraints).

1.2.2 Solving linear programs on a computer

There is software that can solve linear programs. Later on in this course
we’ll often use LINDO to solve LPs. In LINDO you type in a pretty recog-
nizable version of the LP; the pig farming problem would look like this:

minimize 7c + 6s + 5a
subject to

0.9 c + 0.2 s + 0.4 a > 2
3 c + 8 s + 6 a > 18

c + 2 s + 4 a > 15
end

Notice that:

• You only need to type > and LINDO assumes you mean ≥.

• You don’t put in the positivity constraints, LINDO assumes them by
default.

• You need the word end at, well, the end.

1.2.3 More sophisticated models

This example is a simplified versions of a real world problem, you can eas-
ily imagine adding more types of food, or breaking down the nutritional
requirements further. If you want to see more sophisticated models for this
problem, you could take a look at the following articles2:

• A mixed integer linear programming model for optimal delivery of
fattened pigs to the abattoir by Lluís M. Plà-Aragonés, Sara V. Rodríguez-
Sánchez and Victoria Rebillas-Loredo.

2We won’t cover those articles in the course, I’ve only included them if you are curious
to see what more realistic models look like.
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This uses integer programming, which we will discuss much later in
this course.

• Feeding Strategies for Maximising Gross Margin in Pig Production
by David L.J. Alexander, Patrick C.H. Morel and Graham R. Wood.

This uses non-linear functions, so isn’t really linear programming at
all, although it uses linear programming too.

1.3 Example: Gas Blending

Say you need to blend 4000 barrels of aviation gas from three available com-
ponents: Toluene, Alkylate and Pentane. The prices and certain constraints
which must be satisfied by the blend are summarized in the following ta-
ble3:

Constraint Toluene Alkylate Pentane Specification
% aromatics 100 0 0 5 (min)
Reid Vapor Pressure 2.0 4.8 19.7 5.5 (min), 7.0 (max)
Performance Number 100 125 125 115 (max)
Cost ($) per Barrel 45 30 30

The first row of the table says that we need at least 5% of “aromatics”
in the blend, and also that only toluene is an “aromatic”. The objective is
to find the amount of each resource to use in order to minimize the cost
of producing the aviation gas. What happens if resource specifications or
costs or available amounts change?

We can make several choices of how to define our decision variables;
there should definitely be one variable for each of the amounts of toluene
(t), alkylate (a) and pentane (p), but we could choose to represent:

• the number of barrels, so we’d have t + a + p = 4000,

• the percentage of the total blend, so that t + a + p = 100, or,

• the fraction of the blend, so that t + a + p = 1.

Each of these would be a valid choice and would give LPs that are only
slightly different. If we let t be the fraction of toluene in the blend (and
similarly for alkylate and pentane), we’d get the following LP:

3I learned about this problem from Richard Anstee who in turn got it from Bill Pulley-
blank around 1980 and I am uncertain of the original source.
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Minimize 45t + 30a + 30p

subject to
100t ≥ 5

2t + 4.8a + 19.7p ≥ 5.5
2t + 4.8a + 19.7p ≤ 7

100t + 125a + 125p ≥ 115

2 Standard form for linear programs

2.1 What is standard form?

The Simplex Method, which is the procedure we will use for solving linear
programs, is easiest to explain for linear programs that are in a fixed format
we will call the standard form. A linear program in standard form looks
like:

Maximize c1x1 + c2x2 + · · · cnxn

subject to
a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

We can rewrite this is matrix form, by setting:

• x = (x1, x2, . . . , xn)>,

• c = (c1, c2, . . . , cn)>,

• b = (b1, b2, . . . , bm)>, and

• A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

.

With those definitions we can write the LP as:
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Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0

2.1.1 Characteristics of standard form LPs

• They are about maximizing, not minimizing.

• They have a positivity constraint for each variable.

• The other constraints are all of the form “linear combination of vari-
ables ≤ constant”.

2.2 Converting a LP to standard form

You can always convert a LP to an equivalent one that is in standard form.
There are several “errors” which you need to know how to fix.

2.2.1 “Error”: the objective function is to be minimized

This is easy: minimizing c1x1 + c2x2 + · · ·+ cnxn is the “same” as maximiz-
ing −c1x1 − c2x2 − · · · − cnxn.

In what sense is it the same? Well, the maximum value of the new
objective function won’t be the same as the minimum of the old objective
function, but it is predictable: it’s just minus the minimum of the old func-
tion. Also, the values of the variables that lead to the optimum stay the
same.

2.2.2 “Error”: a constraint is lower bound

Also easy: you can replace ai1x1 + · · · + ainxn ≥ bi with −ai1x1 − · · · −
ainxn ≤ −bi. This doesn’t change which values of the xj satisfy the con-
straints.

2.2.3 “Error”: there is an equality constraint

An equality u = v is equivalent to the system of inequalities u ≤ v and u ≥
v. We can use the previous trick to turn those inequalities into something
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acceptable for a standard form LP. All together, an equality ai1x1 + · · · +
ainxn = bi gets replaced by the pair of inequalities

ai1x1 + · · ·+ ainxn ≤ bi

−ai1x1 − · · · − ainxn ≤ −bi

2.2.4 “Error”: a variable lacks a positivity constraint

The most subtle “error” a linear program can have that keeps from being in
standard form is to have a variable that lacks a positivity constraint, such
a variable is called free. We’ll explain two ways to fix that and why you
probably only want to ever use the second way.

1. (Bad) strategy: divide and conquer

If a variable x is not constrained to be non-negative, in the optimal so-
lution to the LP we don’t know if it should take a positive or negative
value. So why not just try both ways? Here’s an example:

Maximize −2x + 3y− 5z
subject to

7x− 5y + 6z ≤ 10
−2x + 8y− 4z ≤ 3

9x− 2y− 5z ≤ 4
y, z ≥ 0

This problem is almost in standard form, the only issue is that x is
missing a positivity constraint. The maximum of the objective can be
found as the maximum of two subproblems: one where we add the
constraint x ≥ 0 and one where we add instead x ≤ 0:

(A) Maximize −2x + 3y− 5z
subject to

7x− 5y + 6z ≤ 10
−2x + 8y− 4z ≤ 3

9x− 2y− 5z ≤ 4
x, y, z ≥ 0

(B) Maximize −2x + 3y− 5z
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subject to
7x− 5y + 6z ≤ 10
−2x + 8y− 4z ≤ 3

9x− 2y− 5z ≤ 4
y, z ≥ 0

x ≤ 0

Problem (B) can be recast in standard form by a change of variables:
flipping the sign of x, say, letting x′ = −x it becomes:

(B’) Maximize 2x′ + 3y− 5z
subject to

−7x′ − 5y + 6z ≤ 10
2x′ + 8y− 4z ≤ 3
−9x′ − 2y− 5z ≤ 4

x′, y, z ≥ 0

Later on we will learn how to solve this LPs, but for know I’ll just list
the solutions:

• For (A) the maximum is 1.125 (achieved, for example, for x =
0, y = 0.375, z = 0).

• For (B’) the maximum is 3 (achieved, for example, for x = 1.5, y =
0, z = 0).

So the maximum for the original problem that had no positivity con-
straint for x is 3, and as this came from (B’), the maximum for the
original problem will have a negative value of x.

The main reason to avoid this strategy is that it creates a lot of extra
work. Even in this example it turned solving one LP into solving
two. But it gets worse if there are more variables lacking a positivity
constraint: if we had k variables lacking a positivity constraint this
strategy would have us solve one LP for every combination of signs
of those k variables, that is, 2k different LPs!

2. Good Strategy: make a difference!

There is a way to turn an LP with free variables into just one equiva-
lent LP via a change of variables. If x is free, we can set x = x′ − x′′
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where x′, x′′ ≥ 0 —a difference of non-negative numbers can have
any sign at all!

Our example from above becomes the following LP in standard form:

Maximize −2x′ + 2x′′ + 3y− 5z
subject to

7x′ − 7x′′ − 5y + 6z ≤ 10
−2x′ + 2x′′ + 8y− 4z ≤ 3

9x′ − 9x′′ − 2y− 5z ≤ 4
x′, x′′, y, z ≥ 0

In what sense is this equivalent to the old LP? Well, given any values
x′, x′′, y, z satisfying the constraints of the new LP, setting x = x′ − x′′

and keeping the value of y and z yields valid values for the original
LP, with the same value for the objective functions. Conversely, if
x, y, z are values satisfying the constraints of the original we can keep
y and z and define non-negative x′, x′′ as follows:

• If x ≥ 0, we can take x′ = x, x′′ = 0.

• If x < 0, we can take x′ = 0, x′′ = −x.

This gets us values satisfying the constraints of the new LP, with the
same value for the objective function. In particular, notice that the
maximum of the objective functions will be the same for the original
and the new LP.

Notice that there are infinitely many choices we could have made
above when picking values for x′ and x′′. For example, if x = −5 we
said take x′ = 0, x′′ = 5, but x′ = 10, x′′ = 15 would also work (since
they are non-negative and x′ − x′′ = x).

3 Thinking of linear programs geometrically

3.1 Representing a two-variable LP graphically

Consider the following linear program:

Maximize x + y
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subject to
2x + 3y ≤ 5
−2x + y ≤ 1

3x− y ≤ 4
x, y ≥ 0

We can represent this graphically in the xy-plane. For each constraint,
the set of points (x, y) that satisfies it is a half-plane; the set of points satis-
fying all of the constraints is then the intersection of all these half planes. In
this example it turns out to be a pentagon, shaded red in the image below.

The set of points that satisfy all the constraints is called the feasible
region. It is always convex, meaning that whenever two points are in the
feasible region, so is the entire line segment connecting them. It doesn’t
have to be of finite size as it is for this linear program, it can “go off to
infinity”. It can also be empty! (It is a good exercise to draw half-planes that
would give a feasible region of infinite extent, and to draw half-plane that
don’t have any point common to all, leading to an empty feasible region.)

How can we represent the objective function? The graph of the function
would require three dimensions to plot (i.e., the graph is the plane z = x + y
in three-dimensional space). To get something we can draw in the same
figure as the feasible region we will instead draw level curves x+ y = k that
you get by setting the objective function equal to a constant k. (Since the
objective function is linear these level “curves” are actually straight lines.)

Here is a picture of the feasible region together with various level lines
for the objective function:
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As you change the constant k, the level line slides around, always keep-
ing the same slope. If for some value of k that line goes through the feasible
region, that means that it is possible to obtain the value k for some choice
of x and y satisfying the constraints. We want the largest such k, so imag-
ine sliding the line around until it is about to fall off the feasible region:
the corresponding k is the maximum4 value of the objective function in the
feasible region and the answer to the optimization question posed by the
linear problem.

3.1.1 Explore the example interactively with Desmos

If you’re reading this on a computer5 you’re in luck: using the lovely online
graphing tool Desmos you can explore the above example interactively.

• Here’s a picture of just the constraints. Each one is drawn as a translu-
cent half-plane, where the half-planes overlap their colors combine.
You can turn each constraint on and off by clicking on the colored
circle next to the inequality in the left-hand column.

4Or minimum, depending on which side it’s falling off! In this example clearly the min-
imum is 0, attained at the origin.

5If you are reading this on paper, I apologize.
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• Here’s a picture of the feasible region6 with a movable level line for
the objective function. Play with the slider to approximately maxi-
mize the objective function!

3.2 Why don’t we just always do this?

For the example above this graphical way of thinking works wonderfully:
we see right away that the optimal solution is at the point where the two
constraints 2x + 3y ≤ 5 and 3x − y ≤ 4 both turn into equalities. Solving
the system of equations we get x = 17/11, y = 7/11, so the maximum of
the objective function is 24/11.

But this isn’t a practical method in general. This LP had only two vari-
ables so our picture was two-dimensional. Natural LPs tend to have many,
many more variables and geometric intuition tends to give out after three
dimensions!

4 Introduction to the simplex method

We’ll start by explaining the “easy case” of the Simplex Method: when you
start with a linear program in standard form where all the right-hand sides
of the constraints are non-negative.

Roughly speaking, you turn the LP into a dictionary7, and then repeat-
edly pivot to get new dictionaries until at some point the numbers in the
dictionary indicate you are done. We’ll illustrate the procedure with the
following example:

Maximize x1 + 2x2 − x3

subject to
2x1 + x2 + x3 ≤ 14

4x1 + 2x2 + 3x3 ≤ 28
2x1 + 5x2 + 5x3 ≤ 30

x1, x2, x3 ≥ 0
6Notice the way all the constraints are combined into one to get the feasible region.

This is just because there doesn’t seem to currently be a way of asking Desmos to intersect
various regions.

7There is an alternative way of presenting the Simplex Method using tableaux instead
of dictionaries. This really just a different way of writing the same calculation. If you’ve
studied linear programming before you are likely to have seen tableaux. It’s a good exercise
to solve the same LP both ways, so you can see how this dictionary method corresponds to
the tableau. If you don’t know about tableaux, don’t worry about them.
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4.1 Slack variables

The first step will be to introduce slack variables, one for each of the con-
straints (except the positivity constraints). These are simply the difference
between the right-hand side and the left-hand side of a constraint. For ex-
ample, for the first constraint we define a slack variable x4 = 14− 2x1 −
x2 − x3. In terms of this new variable, the first constraint is equivalent sim-
ply to x4 ≥ 0, the positivity constraint for x4.

Introducing these slack variables leads to a linear program equivalent
to the original one8 but for which all constraints are either equations or pos-
itivity constraints:

Maximize x1 + 2x2 − x3

subject to

2x1 +x2 +x3 +x4 = 14
4x1 +2x2 +3x3 +x5 = 28
2x1 +5x2 +5x3 +x6 = 30
x1, x2, x3, x4, x5, x6 ≥ 0

4.2 Dictionaries

Solving for the slack variables we get the initial dictionary for our problem:

x4 = 14 −2x1 −x2 −x3
x5 = 28 −4x1 −2x2 −3x3
x6 = 30 −2x1 −5x2 −5x3
z = 0 +x1 +2x2 −x3

The variables on the left, x4, x5, x6, are the basic variables for this dictio-
nary; the set of these variables is called the basis. (In the initial dictionary
the basic variables are the slack variables, that changes after pivoting.) The
rest of the variables are called non-basic. Notice that at the bottom we’ve
added a variable z for the objective function.

Each dictionary is a system of equations that is equivalent to the equal-
ity constraints from the LP obtained from the original LP by adding slack
variables. In terms of dictionaries, the LP we want to solve is equivalent
to “maximize z subject to the equations in the dictionary and to positivity
constraints for all xi”.

8Notice that this equivalent LP is not in standard form.
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4.2.1 The solution associated to a dictionary

To any dictionary there is an associated solution of the system of equations:
just set all the non-basic variables to zero and compute the values of the
basic variables from the dictionary. For the above dictionary the associated
solution is

x1 = x2 = x3 = 0, x4 = 14, x5 = 28, x6 = 30.

4.2.2 Feasibility

The solution associated to a dictionary certainly satisfies all of the con-
straints that are equations, but may fail to satisfy the positivity constraints.
When it does also satisfy the positivity constraints it is said to be a feasible
solution and the dictionary is called feasible too.

Here the initial dictionary is feasible because the LP we started with
happened to have all the right-hand sides of constraints non-negative. This
needn’t always happen and later on we will cover what to do when some
constraints have negative right-hand sides; but for now, let’s focus on the
case when the initial dictionary is feasible, like in this example.

4.3 Pivoting

The main idea of the Simplex Method is to go from dictionary to dictionary
by exchanging a basic variable for a non-basic one, in such a way that:

• The objective function increases at each step9.

• The dictionary is feasible at every step.

Let’s explain how to pick the variables you swap.

4.3.1 Picking a non-basic variable to enter the basis

In the dictionary we have, the z-row is z = 0 + x1 + 2x2 − x3. This tells
us that for the solution associated to the dictionary, the objective function
has the value 0; and it also tells us, for each non-basic variable, whether
increasing that variable will increase or decrease z. Since x1 and x2 have
positive coefficients, increasing them would increase z. On the other hand,
increasing x3 will decrease z.

9Or, at least, doesn’t decrease. Sometimes you are forced to make degenerate pivots
which don’t change the associated solution or the value of the objective function.
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So, to increase z we will choose either x1 or x2 to enter the basis.
Either one would be a valid choice and make some progress toward

solving the LP, but we’ll use a definite rule to pick one:
Standard rule10 for picking the entering variable: among the non-

basic variables that have a positive coefficient in the objective function, choose
the one with the largest coefficient. If more than one variable is tied for
largest coefficient, pick the one with smallest index (e.g., if both x4 and x2
had a coefficient of 3, and 3 was the largest, you’d pick x2).

This is not done for mathematical reasons but for logistical reasons! By
having a standard rule for the course, I can make sure that when you solve
an LP you don’t get crazy numbers, and the course grader has an easier
time, too.

4.3.2 Picking a basic variable to exit the basis

We’ve settled on putting x2 in the basis and now we need to decide which
basic variable to swap it with. The solution associated to our current dic-
tionary has x2 = 0. The idea now is to increase the value of x2 as much as
possible while keeping the resulting dictionary feasible. Let’s focus on how
the values of the basic variables depend on x2 (keeping x1 = x3 = 0):

x4 = 14 −x2
x5 = 28 −2x2
x6 = 30 −5x2
z = 0 +2x2

We see that:

• To keep x4 ≥ 0, we can only increase x2 up to 14.

• To keep x5 ≥ 0, we can only increase x2 up to 14.

• To keep x6 ≥ 0, we can only increase x2 up to 6.

So, to keep all variables non-negative, we can only go up to 6. Since x6
had the strictest requirement on the entering variable x2, we pick x6 as the
exiting variable.

In case two variable are tied for strictest bound on the entering variable
we need a tie breaking rule:

10In some course materials you might see this standard rule called “Anstee’s rule” in-
stead, named tongue in cheek after Richard Anstee who has taught this course many times.
Don’t expect non-UBC people to call it Anstee’s rule.
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Standard rule for picking the exiting variable: In case of ties, pick the
variable with the smallest index.

1. Performing the pivot

So we’ve decided that x2 will enter the basis and x6 will exit. We get
the next dictionary by:

• Solving for x2 in the equation for x6.

• Plugging that value for x2 into the equations for the other basic
variables and the equation for the objective function.

This gives us:

x2 = 6 − 2
5 x1 −x3 − 1

5 x6

x4 = 8 − 8
5 x1 + 1

5 x6

x5 = 16 − 16
5 x1 −x3 + 2

5 x6

z = 12 + 1
5 x1 −3x3 − 2

5 x6

This is a new dictionary that still represents the same LP. The asso-
ciated solution has x1 = x3 = x6 = 0, x2 = 6, x4 = 8, x5 = 16 and
z = 12. This is a feasible solution so we learn that getting z = 12 is
possible, and thus the maximum z, which is what we seek, is 12 or
larger.

2. One way to tell you made a mistake

The solution turned out feasible again by virtue of the way we picked
the exiting variable. If we had, for example, decided to make x2 enter
but x4 exit we would have gotten the following dictionary:

x2 = 14 −2x1 −x3 −x4
x5 = 0 −x3 +2x4
x6 = −40 +8x1 +5x4
z = 28 −3x1 −3x3 −2x4

The associated solution has x6 = −40 violating the positivity con-
straint. If that ever happens, you’ll know you made a mistake some-
where!
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4.3.3 When to stop pivoting

At this point you know how to pivot to increase the objective function while
keeping the dictionary feasible. For example, in the last feasible dictionary
we can pivot by having x1 enter. Either x4 or x5 would have to exit and our
tie-breaking rule has us choose x4. After pivoting we get:

x1 = 5 − 5
8 x4 + 1

8 x6

x2 = 4 −x3 + 1
4 x4 − 1

4 x6
x5 = 0 −x3 +2x4
z = 13 −3x3 − 1

8 x4 − 3
8 x6

This new dictionary has all of the coefficients in the z-row negative, so
we can’t pick a new entering variable. This means we are done with this
problem and z = 13 is the maximum value of the objective function. The
solution associated to this dictionary, x3 = x4 = x6 = 0, x1 = 5, x2 = 4, x5 =
0 is an optimal solution.

Why exactly is z = 13 the maximum? Clearly the Simplex Method stops
here, since there is no way to pick variables for the next pivot according to
the rules, but can’t there be a sneaky way to increase z, say, by doing a pivot
that’s against the rules because it decreases z, followed by a pivot that makes
z even bigger than 13?

There’s no need to worry, that can’t happen and the dictionary tells us
why: we have z = 13− 3x3 − 1

8 x4 − 3
8 x6 and each variable has a positivity

constraint, so that equation really tells us that z = 13− (something non-
negative) ≤ 13.

Additionally we learn that z = 13 only when x3 = x4 = x6 = 0. And
having those variable be zero tells us that x1 = 5, x2 = 4, x5 = 0, so that the
optimal solution we found is the only optimal solution.

5 Multiple optimal solutions

When you reach a feasible dictionary where all the coefficients in the row
for the objective function are negative, why does that mean you have an
optimal solution? For example, if you come to the following dictionary11

you’ve found an optimal solution:

11This dictionary is very similar, but not exactly the same as the final dictionary in the
example we did earlier.
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x1 = 5 − 5
8 x4 + 1

8 x6

x2 = 4 −x3 + 1
4 x4 − 1

4 x6
x5 = 0 −x3 +2x4
z = 13 −3x3 − 3

8 x6

The argument was as follows: since we know that x3, x4, x6 ≥ 0, we
have z = 13− 3x3 − 3

8 x6 ≤ 13. This tells us that 13 is the maximum value
of z, so the associated solution to this dictionary, namely x3 = x4 = x6 = 0,
x1 = 5, x2 = 4, x5 = 0, is an optimal solution.

Now, in an earlier example we reached a final dictionary that was al-
most like this except the z-row was z = 13− 3x3 − 1

8 x4 − 3
8 x6. In that case

to get z = 13 we needed all three non-basic variables to be 0 so that the
solution associated to the dictionary was the only optimal solution. In our
current example, to get z = 13 only x3 = x6 = 0 is required, so it is possible
that there are other optimal solutions in which x4 > 0. Let’s try to find
them:

Setting x3 = x6 = 0, x4 = t we get x1 = 5− 5
8 t, x2 = 4 + 1

4 t, x5 = 2t.
Now this solution will be optimal (because it has z = 13) as long as it is
feasible, that is, as long as all xi are non-negative. This boils down to t ≥ 0
and 5− 5

8 t, because the other inequalities (namely 2t ≥ 0, 4 + 1
4 t ≥ 0) have

a positive coefficient of t and thus follow from t ≥ 0.
Putting it all together we see that for this second dictionary we have

that x3 = x6 = 0, x4 = t, x1 = 5− 5
8 t, x2 = 4 + 1

4 t, x5 = 2t is an optimal
solution for 0 ≤ t ≤ 8, and that this formula gives all the optimal solutions.

5.1 Warning: zeros in the z-row don’t automatically imply multi-
ple optimal solutions

What if we had reached the following dictionary instead? What are the
optimal solutions?

x1 = 5 − 5
8 x4 + 1

8 x6

x2 = 4 −x3 + 1
4 x4 − 1

4 x6
x5 = 0 −x3 +2x4
z = 13 − 1

8 x4 − 3
8 x6

Well, since the non-basic variable x3 is missing from the z-row we might
think there are again multiple optimal solutions, but see what happens
when we carry out the reasoning we used above:
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We have z ≤ 13 and to get z = 13 we need x4 = x6 = 0, but x3 needn’t
be zero. Setting x3 = t we see that x1 = 5, x2 = 4 − t, x5 = −t. What
values can t take? The positivity constraint on x3 tells us that t ≥ 0; the
positivity constraint on x5 tells us that −t ≥ 0, or, t ≤ 0. So we can only
have t = 0, which means that if we had found this final dictionary the
only optimal solution to the LP would be the associated solution to the
dictionary, namely x3 = x4 = x6 = 0, x1 = 5, x2 = 4, x5 = 0. This happened
even though the non-basic variable x3 had a coefficient of zero in the z-row,
because the basic variable x5 had value 0 and a negative coefficient for x3.

5.2 Warning: when more than non-basic variable has a zero coef-
ficient things can get complicated

Don’t get the impression that it is always easy to find formulas for all of
the optimal solution! The examples above gave unique solutions or a line
segment of solutions because only one of the non-basic variables was free to
be non-zero. If more non-basics can be positive the inequalities can become
tricky. This makes sense if you think geometrically: for example if you
have three variables in the original problem, the feasible solutions form a
convex polytope in three dimensional space and the optimal solutions are
the intersection of that polytope with a plane; this intersection could be
either (1) a single vertex, (2) an edge of the polytope, (3) and entire face,
which could be any convex polygon!

For example, imagine we had reached the final dictionary:

x1 = 5 − 5
8 x4 + 1

8 x6

x2 = 4 −x3 + 1
4 x4 − 1

4 x6
x5 = 0 −x3 +2x4
z = 13 −3x3

Then the optimal solutions would have x3 = 0, but x4 and x6 could take
any values as long all the variables are non-negative, that is, they could
take any values solving the following system of inequalities:

5 − 5
8 x4 + 1

8 x6 ≥ 0
4 + 1

4 x4 − 1
4 x6 ≥ 0

2x4 ≥ 0
x4 ≥ 0, x6 ≥ 0

While it may not be easy in such case (specially if there are more vari-
ables!) to find all optimal solutions, it’s usually not hard to find at least two
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optimal solutions. You can always take all the non-basic variables to be 0
(this is the solution associated to the final dictionary), and then by trial and
error guess a second solution. In this example, x4 = x6 = 1 works.

6 Unbounded linear programs

Let’s think about how the Simplex Method stops. In other words: when
can we no longer pivot? We’ve already seen one way this can happen: if
all coefficients in the z-row are non-positive, then we have found an opti-
mal solution. In terms of pivoting, that happens when we can’t choose an
entering variable.

But can pivoting instead fail at the stage where you choose an exiting
variable? That is, could it be that you do have an entering variable but
no exiting variable? Well, the exiting variable is chosen to be the basic
variable imposing the most stringent constraint on the entering variable.
What if none of the basic variable imposes any constraint on how much
you can increase the entering variable? For that to happen we’d need all the
equations for the basic variables to contain the entering variable with a non-
negative coefficient. This can certainly happen, for example, the dictionary
might be:

x1 = 5 +5x4 +x6
x2 = 4 −x3 +x4 −x6
x5 = 2 −x3 +2x4
z = 13 −3x3 +2x4 −3x6

Here x4 is the entering variable and we can increase x4 as much as we
want without x1, x2 or x5 ever becoming negative. And as x4 keeps in-
creasing, z also increases without bound. In this situation z does not have
a maximum and we say the linear program is unbounded. We can use
the entering variable to find formulas for a family of feasible solutions for
which the objective function tends to infinity. Set x4 = t and all other non-
basic variables to zero: x3 = x6 = 0. Then the basic variables become
x1 = 5+ 5t, x2 = 4+ t, x5 = 2+ 2t and the objective function is z = 13+ 2t.
These solutions are feasible as long as t ≥ 0 and we have limt→∞ z = ∞.

Whenever a linear problem is unbounded the Simplex Method will
eventually tell us (by reaching a dictionary that has an entering variable
but no exiting variable) and we can produce an unbounded one-parameter
family of feasible solutions as above.
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6.1 A shortcut that is sometimes available

Consider this slight variation on the previous example, imagine that while
solving a linear program you came across this dictionary:

x1 = 5 +5x4 +x6
x2 = 4 −x3 +x4 −x6
x5 = 2 −x3 +2x4
z = 13 +3x3 +2x4 −3x6

The standard pivoting rule would lead us to choose x3 as the entering
variable and then x5 as the exiting variable. But here x4 has positive coef-
ficients in every row of the dictionary; this tells us already that the linear
program is unbounded and that

x1 = 5 + 5t, x2 = 4 + t, x3 = 0, x4 = t, x5 = 2 + 2t, x6 = 0

for t ≥ 0 is a family of feasible solutions with limt→∞ z = ∞. So, if you no-
tice that some variable (here x4) shows the problem is unbounded, you can
stop pivoting and go straight to the unbounded family of feasible solutions.

What happens if you don’t spot x4 and instead do the standard pivot?
Nothing terrible: you just do a little extra work: since the problem is un-
bounded at some later stage you will be forced to discover that the problem
is unbounded.

7 The 2-phase Simplex Method and infeasible linear
programs

So far we’ve only discussed how to solve linear programs (that are in stan-
dard form and) for which the right-hand sides of the constraints are all
non-negative. Why did we have that restriction? Take this LP, for instance:

Maximize x1 − x2 + x3

subject to
2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0.
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This problem is in standard form, but since there are negative numbers
in the right hand sides of the constraints, introducing slack variables pro-
duces an initial dictionary that is not feasible:

x4 = 4 −2x1 +x2 −2x3
x5 = −5 −2x1 +3x2 −x3
x6 = −1 +x1 −x2 +2x3
z = 0 +x1 −x2 +3x3

The solution associated to that dictionary has, for example, x5 = −5,
which is negative. That means that the second constraint is violated and
indeed, the associated solution has x1 = x2 = x3 = 0 so that 2x1 − 3x2 +
x3 = 0 6≤ −5.

Remember that the simplex method proceeds by pivoting from feasible
dictionary to feasible dictionary until you reach a dictionary from which
you cannot pivot indicating you either have an optimal solution or the LP is
unbounded (in which case you can find an 1-parameter family of solutions
with objective function tending to infinity). So we can’t use this infeasible
dictionary.

It’s possible that choosing a different set of variables (instead of the
slack variables) to be the basic variables and solving for them would pro-
duce a feasible dictionary from which we can start the simplex method. But
how can we find which set of variables to use?

7.1 Phase 1: Finding a feasible starting dictionary

If we had a feasible dictionary to begin applying the simplex method, the
associated solution would be a feasible solution of the LP, that is, it would
have values for the decision variables that satisfy all of the constraints in
original LP. Such values don’t always exist! We’ll now explain how to si-
multaneously find out whether or not there are feasible solutions and, if
there are, how to pick a feasible starting dictionary.

We’ll do it by considering an auxiliary linear program that is constructed
from the original LP by a adding a variable we will call x0 as follows:

Minimize x0 (or, in standard form, maximize −x0)

subject to
2x1 − x2 + 2x3 − x0 ≤ 4

2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x0, x1, x2, x3 ≥ 0.

25



Notice that this auxiliary LP only uses the constraints from the origi-
nal LP, not the objective function. This is reasonable because in this first
phase we are only concerned with finding a feasible starting point for the
second phase (that we’ve already seen how to do); feasibility is all about
the constraints and not the objective function.

This auxiliary LP obviously has feasible solutions: just take x0 very
large and all constraints are satisfied. (In this example, we can take x1 =
x2 = x3 = 0 and x0 = 5.) And this auxiliary LP has a feasible solution
with x0 = 0 if and only if the original LP has a feasible solution! This is an
important point, make sure you understand why that’s true.

If we add slack variables to the auxiliary LP we still get an infeasible
starting dictionary (where I’ve called the objective function w so we can
still use z for the objective function in the original LP):

x4 = 4 −2x1 +x2 −2x3 +x0
x5 = −5 −2x1 +3x2 −x3 +x0
x6 = −1 +x1 −x2 +2x3 +x0
w = −x0

But this kind of infeasible dictionary coming from the auxiliary LP be-
comes feasible after just one pivot! The variables are chosen by a different
rule than the standard pivots we’ve seen, so we’ll call this a special pivot
to feasibility. The entering variable can only be x0, and for the exiting vari-
able we’ll take the one with the most negative value, here x5. After pivoting
we get:

x0 = 5 +2x1 −3x2 +x3 +x5
x4 = 9 −2x2 −x3 +x5
x6 = 4 +3x1 −4x2 +3x3 +x5
w = −5 −2x1 +3x2 −x3 −x5

This dictionary is feasible and tells us that we can achieve w = −x0 =
−5. Remember we’re hoping to achieve x0 = 0. We can use the simplex
method with standard pivots starting from this feasible dictionary to max-
imize w:

x2 enters, x6 exits:

x2 = 1 + 3
4 x1 + 3

4 x3 + 1
4 x5 − 1

4 x6

x0 = 2 − 1
4 x1 − 5

4 x3 + 1
4 x5 + 3

4 x6

x4 = 7 − 3
2 x1 − 5

2 x3 + 1
2 x5 + 1

2 x6

w = −2 + 1
4 x1 + 5

4 x3 − 1
4 x5 − 3

4 x6
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Now x3 enters, x0 exits:

x2 = 11
5 + 3

5 x1 + 2
5 x5 + 1

5 x6 − 3
5 x0

x3 = 8
5 − 1

5 x1 + 1
5 x5 + 3

5 x6 − 4
5 x0

x4 = 3 −x1 −x6 +2x0
w = −x0

At this point, the auxiliary LP is solved: the maximum value of w =
−x0 is 0, which means the auxiliary LP does have feasible solutions with
x0 = 0, namely the solution associated to this dictionary: x0 = x1 = x5 =
x6 = 0, x2 = 11

5 , x3 = 8
5 , x4 = 3. This (ignoring x0 = 0) is also a feasible

solution for the constraints of the original LP. Moreover, setting x0 = 0 we
get a feasible dictionary for the original LP that we can use for the Simplex
Method:

x2 = 11
5 + 3

5 x1 + 2
5 x5 + 1

5 x6

x3 = 8
5 − 1

5 x1 + 1
5 x5 + 3

5 x6
x4 = 3 −x1 −x6

This dictionary is just missing a z-row for the objective function. Now
z = x1 − x2 + x3, but we can’t use this directly since the non-basic variable
for the dictionary are x1, x5, x6. So we simply plug in the values for x2 and
x3 given by the dictionary:

z = x1 − x2 + x3

= x1 − (
11
5

+
3
5

x1 +
2
5

x5 +
1
5

x6) + (
8
5
− 1

5
x1 +

1
5

x5 +
3
5

x6)

= −3
5
+

1
5

x1 −
1
5

x5 +
2
5

x6.

7.2 Phase 2

Adding that formula for z to the above dictionary gives us a complete fea-
sible dictionary for the original linear problem, namely:

x2 = 11
5 + 3

5 x1 + 2
5 x5 + 1

5 x6

x3 = 8
5 − 1

5 x1 + 1
5 x5 + 3

5 x6
x4 = 3 −x1 −x6

z = − 3
5 + 1

5 x1 − 1
5 x5 + 2

5 x6

From there we can do standard pivots until we solve the LP. In this
particular example one pivot suffices: x6 enters, x4 exits and we get the
final dictionary (which is optimal):
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x2 = 14
5 + 2

5 x1 − 1
5 x4 + 2

5 x5

x3 = 17
5 − 4

5 x1 − 3
5 x4 + 1

5 x5
x6 = 3 −x1 −x4
z = 3

5 − 1
5 x1 − 2

5 x4 − 1
5 x5

So the Simplex Method as we studied it initially is really only “Phase
2” of the full 2-phase Simplex Method! It’s just that we initially discussed
only the case where the starting dictionary was feasible, so we could skip
Phase 1.

7.3 Example of an infeasible LP

As we mention above, not all LPs are feasible: sometimes the constraints
are just impossible to satisfy simultaneously. In that case, the Simplex
Method discovers this in Phase 1. For example, consider the following LP:

Maximize x1 − x2 + x3

subject to
2x1 − x2 − 2x3 ≤ 4
2x1 − 3x2 − x3 ≤ −5
−x1 + x2 + x3 ≤ −1

x1, x2, x3 ≥ 0.

We form the auxiliary LP for Phase 1:

Maximize −x0

subject to
2x1 − x2 − 2x3 − x0 ≤ 4
2x1 − 3x2 − x3 − x0 ≤ −1
−x1 + x2 + x3 − x0 ≤ −2

x0, x1, x2, x3 ≥ 0.

Adding slack variables we get the initial dictionary:

x4 = 4 −2x1 +x2 +2x3 +x0
x5 = −5 −2x1 +3x2 +x3 +x0
x6 = −1 +x1 −x2 −x3 +x0
w = −x0
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For the special pivot to feasibility, x0 enters and x5 exits (since −5 is the
most negative value of any slack variable).

x0 = 5 +2x1 −3x2 −x3 +x5
x4 = 9 −2x2 +x3 +x5
x6 = 4 +3x1 −4x2 −2x3 +x5
w = −5 −2x1 +3x2 +x3 −x5

Now standard pivots: x2 enters, x6 exits.

x0 = 2 − 1
4 x1 + 1

2 x3 + 1
4 x5 + 3

4 x6

x2 = 1 + 3
4 x1 − 1

2 x3 + 1
4 x5 − 1

4 x6

x4 = 7 − 3
2 x1 +2x3 + 1

2 x5 + 1
2 x6

w = −2 + 1
4 x1 − 1

2 x3 − 1
4 x5 − 3

4 x6

Now x1 enters, x4 exits.

x0 = 5
6 + 1

6 x3 + 1
6 x4 + 1

6 x5 + 2
3 x6

x1 = 14
3 + 4

3 x3 − 2
3 x4 + 1

3 x5 + 1
3 x6

x2 = 9
2 + 1

2 x3 − 1
2 x4 + 1

2 x5

w = − 5
6 − 1

6 x3 − 1
6 x4 − 1

6 x5 − 2
3 x6

This dictionary is optimal, so we discover that for the auxiliary LP the
maximum value of w is − 5

6 , or, in other words, the minimum value of x0

is 5
6 . This tells us that the original LP is infeasible. (So we’re done for the

original LP: there is no Phase 2, and we just answer: “the LP is infeasible”.)
Let’s go over why this means that the original is infeasible. Indeed, we

just learned that in the auxiliary LP there are feasible solutions with x0 = 5
6

but no feasible solutions with any smaller x0. That is, the inequalities:

2x1 − x2 − 2x3 −
5
6
≤ 4

2x1 − 3x2 − x3 −
5
6
≤ −1

−x1 + x2 + x3 −
5
6
≤ −2

x1, x2, x3 ≥ 0,

have a simultaneous solution (namely, x1 = 14
3 , x2 = 9

2 , x3 = 0, as we see
from the final dictionary), but, if we replace 5

6 with any small number they
have no solution. The inequalities of the original LP correspond to setting
x0 = 0 and so they have no solution —which is exactly what it means to
say the LP is infeasible.
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7.3.1 Sneak Preview: “Magic Coefficients”

The w-row of the final dictionary contains information you can use to find
a quick proof of infeasibility for the original LP:

w = −5
6
− 1

6
x3 −

1
6

x4 −
1
6

x5 −
2
3

x6.

The coefficients of the slack variables x4, x5 and x6 are − 1
6 , − 1

6 and − 2
3 ,

respectively. The negatives of these numbers can be used as coefficients
for a linear combination of the constraints of the original LP. Multiply both
sides of each inequality by the corresponding coefficient and add them up:

1
6
(2x1 − x2 − 2x3) ≤

1
6
(4)

1
6
(2x1 − 3x2 − x3) ≤

1
6
(−1)

2
3
(−x1 + x2 + x3) ≤

2
3
(−2)

1
6

x3 ≤ −
5
6

The answer, 1
6 x3 ≤ − 5

6 , must true for any feasible solution, but this is im-
possible because x3 has a positivity constraint! this contradiction proves
there can be no feasible solution.

We won’t be able to prove this recipe works (i.e., that the coefficients of
the slacks to combine the inequalities always gives an obvious contradic-
tion for infeasible problem) until we discuss Duality Theory later on.

8 Degenerate pivots and cycling

8.1 Degenerate pivots

In each pivot of the Simplex Method we are attempting to do two things
simultaneously: (1) maintain feasibility of the dictionary (this restricts the
choice of exiting variable), (2) increase the value of the objective function
(which restricts the choice of entering variable). It’s in fact not always pos-
sible to achieve the second goal: sometimes we are forced to perform de-
generate pivots that do not increase the objective function, but merely keep
it the same. (Following our pivoting rules does at least guarantee that the
objective function never decreases.)
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When does a degenerate pivot occur? Well, when you pick the enter-
ing variable you pick a non-basic variable with positive coefficient in the
objective function, so that any actual increase in the entering variable will
also increase the objective function. This means that a degenerate pivot can
only occur if the entering variable stays at zero without actually increas-
ing. How much the entering variable is alowed to increase depends on the
formulas for the basic variables in the dictionary: it is stuck at zero only if
there is a basic variable whose value in the associated solution is zero and
that includes the entering variable with a negative coefficient.

A degenerate dictionary is one in which at least one of the basic vari-
ables has the value zero; the associated solution is called a degenerate so-
lution. The above discussion says that a degenerate pivot can only happen
starting from a degenerate dictionary, but not every pivot from a degener-
ate dictionary is degenerate: for a degenerate pivot to occur you don’t just
need a basic variable to be zero, you need one that has the entering variable
with negative coefficient to have the value zero.

8.1.1 An example of degeneracy

Consider the following LP in standard form:

Maximize 2x1 + 2x2 + x3

subject to
2x1 +x3 ≤ 4

x1 +x2 ≤ 1
x1 +x3 ≤ 1

x1, x2, x3 ≥ 0

Add slack variables to get the initial dictionary (no need for Phase 1
here):

x4 = 4 −2x1 −x3
x5 = 1 −x1 −x2
x6 = 1 −x1 −x3
z = +2x1 +2x2 +x3

Now x1 enters, x5 exits.

x1 = 1 −x2 −x5
x4 = 2 +2x2 −x3 +2x5
x6 = +x2 −x3 +x5
z = 2 +x3 −2x5
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Here x3 enters. Of the basic variables, two limit the increase of the en-
tering variable: x4 tells us that x3 can only increase up to 2, but x6 tells us
that x3 can only “increase” up to zero! So we have a degenerate pivot in
which x6 is the exiting variable. The next dictionary is:

x1 = 1 −x2 −x5
x3 = +x2 +x5 −x6
x4 = 2 +x2 +x5 +x6
z = 2 +x2 −x5 −x6

Notice that this dictionary has the same associated solution as the previ-
ous one, namely, x1 = 1, x2 = 0, x3 = 0, x4 = 2, x5 = 0, x6 = 0, z = 2. The
difference is not in the values of the variables, but rather in which variables
are basic.

Let’s continue: x2 enters, x1 exits (a non-degenerate pivot).

x2 = 1 −x1 −x5
x3 = 1 −x1 −x6
x4 = 3 −x1 +x6
z = 3 −x1 −2x5 −x6

And we’ve reached an optimal solution!

8.1.2 Degenerate dictionaries don’t always lead to degenerate pivots

Notice that if instead of the dictionary where we made a degenerate pivot
we had instead come across a dictionary like the following, the next pivot
would not have been degenerate, even though the dictionary is degenerate:

x1 = 1 −x2 −x5
x4 = 2 +2x2 −x3 +2x5
x6 = +x2 +x3 +x5
z = 2 +x3 −2x5

Here, the dictionary is degenerate because the basic variable x6 is zero
in the associated solution, but the pivot we’d make from here has x3 en-
tering and x4 exiting. This pivot does increase x3 (to 2) and is thus non-
degenerate.

8.2 Cycling

Chvátal has a wonderful example showing that the standard rule can get
trapped in a cycle of degenerate pivots!
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Maximize 10x1 − 57x2 − 9x3 − 24x4

subject to
1
2

x1 −
11
2

x2 −
5
2

x3 + 9x4 ≤ 0

1
2

x1 −
3
2

x2 −
1
2

x3 + x4 ≤ 0

x1 ≤ 1
x1, x2, x3, x4 ≥ 0

Putting in the slack variables:

x5 = − 1
2 x1 + 11

2 x2 + 5
2 x3 −9x4

x6 = − 1
2 x1 + 3

2 x2 + 1
2 x3 −x4

x7 = 1 −x1
z = +10x1 −57x2 −9x3 −24x4

Here, x1 enters and x5 exits.

x1 = +11x2 +5x3 −18x4 −2x5
x6 = −4x2 −2x3 +8x4 +x5
x7 = 1 −11x2 −5x3 +18x4 +2x5
z = +53x2 +41x3 −204x4 −20x5

Now x2 enters, x6 exits.

x1 = − 1
2 x3 +4x4 + 3

4 x5 − 11
4 x6

x2 = − 1
2 x3 +2x4 + 1

4 x5 − 1
4 x6

x7 = 1 + 1
2 x3 −4x4 − 3

4 x5 + 11
4 x6

z = + 29
2 x3 −98x4 − 27

4 x5 − 53
4 x6

Here x3 enters, x1 exits.

x2 = +x1 −2x4 − 1
2 x5 + 5

2 x6

x3 = −2x1 +8x4 + 3
2 x5 − 11

2 x6
x7 = 1 −x1
z = −29x1 +18x4 +15x5 −93x6

Next x4 enters, x2 exits.

x3 = +2x1 −4x2 − 1
2 x5 + 9

2 x6

x4 = + 1
2 x1 − 1

2 x2 − 1
4 x5 + 5

4 x6
x7 = 1 −x1
z = −20x1 −9x2 + 21

2 x5 − 141
2 x6
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Then x5 enters, x3 exits.

x4 = − 1
2 x1 + 3

2 x2 + 1
2 x3 −x6

x5 = +4x1 −8x2 −2x3 +9x6
x7 = 1 −x1
z = +22x1 −93x2 −21x3 +24x6

Now x6 enters, x4 exits.

x5 = − 1
2 x1 + 11

2 x2 + 5
2 x3 −9x4

x6 = − 1
2 x1 + 3

2 x2 + 1
2 x3 −x4

x7 = 1 −x1
z = +10x1 −57x2 −9x3 −24x4

And we’ve returned to the very first dictionary!
The moral of the story is that using the standard pivoting rule can lead

to cycling. This is not really a problem for two different reasons:

1. There are other pivoting rules that do guarantee termination, such as
Bland’s Rule.

2. Cycling with the standard rule is pretty unlikely, in particular, you
shouldn’t fear degenerate pivots as they normally do not lead to cy-
cling. Cycling is so rare, many computer implementations don’t bother
checking for it![citation needed]

So we’ll stick with the standard rule for quizzes and such.
In this particular example, we could have chosen to pivot differently

at the last step: instead of following the standard rule and choosing x6 to
enter, we could choose x1 to enter. Then x4 would still exit and instead of
coming back to the first dictionary we would have:

x1 = +3x2 +x3 −2x4 −2x6
x5 = +4x2 +2x3 −8x4 +x6
x7 = 1 −3x2 −x3 +2x4 +2x6
z = −27x2 +x3 −44x4 −20x6

Now the only choice is for x3 to enter and x7 to exit, which is finally a
non-degenerate pivot! And, luckily, we get an optimal dictionary:

x1 = 1 −x7
x3 = 1 −3x2 +2x4 +2x6 −x7
x5 = 2 −2x2 −4x4 +5x6 −2x7
z = 1 −30x2 −42x4 −18x6 −x7
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9 Matrix formulas for dictionaries

9.1 Matrix form of a linear program

Just like linear algebra benefits from formulating linear systems of equa-
tions in matrix notation, so too does linear programming. Recall our stan-
dard form linear program:

Maximize c1x1 + c2x2 + · · · cnxn

subject to
a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

We can rewrite this is matrix form, by setting:

• x = (x1, x2, . . . , xn)>,

• c = (c1, c2, . . . , cn)>,

• b = (b1, b2, . . . , bm)>, and

• A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

.

With those definitions the LP becomes:

Maximize c>x

subject to

{
Ax ≤ b

x ≥ 0

9.2 Adding the slack variables

The first thing we did to solve this LP in the Simplex Method was add
slack variables xn+1, . . . , xn+m, one per constraint (other than the positivity
constraints). In matrix terms that corresponds to considering the following
linear program:
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Maximize c>xdec

subject to

{
Axdec + xslack = b

xdec, xslack ≥ 0,

where xdec = (x1, x2, . . . , xn)> is the vector of original or decision vari-
ables and xslack = (xn+1, xn+2, . . . , xn+m)> is the vector of slack variables.

We can rewrite this last LP in terms of the augmented m× (n + m) ma-
trix Aaug =

(
A I

)
, where I denotes the m×m identity matrix. Using x to

now denote the vector of all variables, both original and slack, and setting
caug = (c1, . . . , cn, 0, . . . , 0)> (with a zero for every slack variable) the LP is:

Maximize (caug)> x

subject to

{
Aaugx = b

x ≥ 0

9.3 Dictionaries

A warm up, let’s consider the initial dictionary. Roughly speaking, it looks
like:

“slack variables = right-hand sides of constraints - left-hand
sides”

“z = objective function”

This is exactly what we get by solving for xslack in the next to last LP we
wrote above:

xslack = b− Axdec
z = c>xdec

Later on in the Simplex Method, after performing some pivots, the non-
basic variables are no longer xdec and the basic variables are no longer xslack.

Let’s say that we are interested in some dictionary where the basic vari-
ables for a vector xB and the non-basic variables form a vector xN . Let AB
and AN denote the submatrices of Aaug formed by the columns correspond-
ing to basic and non-basic variables, respectively. The first order of business
is to see that the equation Aaugx = b can be written as ABxB + ANxN = b.

One way to think about this is to use block matrix multiplication. Think
of ordering the variables in x so that all the basics come first and the vector
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is partitioned as x =

(
xB
xN

)
; rearranging the columns of Aaug in the corre-

sponding order, we get Aaug =
(

AB AN
)
. Then, by block multiplication,

Aaugx =
(

AB AN
) (xB

xN

)
= ABxB + ANxN .

I definitely encourage everyone to learn all about block matrix multi-
plication, but there is a less fancy way to deal with this particular situa-
tion: if you have a matrix M with columns M1, M2, . . . , Mp and a vector
v = (v1, . . . , vp) =, then the product Mv is the linear combination of the
columns of M with coefficients the entries of the vector v, in symbols, Mv =
v1M1 + · · ·+ vp Mp —which you can easily check by computing both sides.
So, if the columns of Aaug are A1, . . . , Am+n, then Aaugx = ABxB + ANxN
simply because both sides work out to be x1A1 + · · ·+ xm+n Am+n.

OK, now that we’ve justified the equation, solving for xB, we get xB =
A−1

B b− A−1
B ANxN . This is the top part of the dictionary that gives formulas

for the basic variables. To get the z-row, we can split the entries of caug into
the coefficients of basic and non-basic variables, say, cB and cN . Then the
objective function is

z = (caug)>x

= c>B xB + c>NxN

= c>B (A−1
B b− A−1

B ANxN) + c>NxN

= c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

Putting it all together, we see that the dictionary whose basic variables
are xB is given by

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

10 Bland’s Rule guarantees termination

Robert G. Bland]] of Cornell University discovered a pivoting rule that is
very similar to what we’ve been calling the standard rule, but that guaran-
tees that the Simplex Method terminates!

Bland’s Rule: For the entering variable choose, among the variables
with a positive coefficient in the objective function, the one with the small-
est index. For the exiting variable choose, the variable imposing the strictest
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limit on the increase of the entering variable, breaking ties by choosing the
variable with smallest index.

Notice that the rule for the exiting variable is the same as the standard
rule for exiting variables.

Theorem 1. The Simplex Method using Bland’s rule is guaranteed to terminate.

We’ll present the proof from Chvátal’s textbook:

Proof. First we’ll explain why the only way for the Simplex Method to fail
to finish when following a given pivoting rule is for it to cycle, which means
to get stuck in a loop of degenerate pivots that bring you back exactly to a
previous dictionary (and once a dictionary repeats, the rule your following
will make you choose the same pivots over and over again).

Imagine that the Simplex Method fails to finish, pivoting for all eternity.
Since there are only a finite number of possible sets of basic variables, at
some point you must reach a dictionary with exactly the same set of basic
variables as a previous dictionary. But then not just the basic variables but
the whole dictionary must repeat: the matrix formulas for the dictionary
we found prove that once you know which variables are basic, the entire
dictionary is determined.

So now all we need to show is that following Bland’s rule we never
repeat a dictionary (or equivalently, never repeat a basis).

Assume for the sake of obtaining a contradiction that D0, D1, . . . , Dk−1,
Dk = D0 is a cycle of dictionaries each obtained from the previous by
Bland’s rule. Of course, all of the pivots must be degenerate since other-
wise the value of the objective function would be larger in the last dictio-
nary than in the first.

For the purposes of this proof, call a variable fickle if it enters or leaves
the basis at some point on the cycle; that is, if it is basic in some dictionary
and non-basic in some other dictionary of the cycle.

Let xt be the fickle variable with largest index. For some dictionary Dp
in the cycle, xt must exit with, say, xs entering. At some later point xt must
enter the basis again, let’s say that it is chosen to enter in the pivot from
dictionary Dq to Dq+1.

Say the dictionary Dp looks like:

xi = bi − ∑
j/∈Bp

aijxj

z = v + ∑
j/∈Bp

cjxj
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(Here Bp is the set of indices of basic variables for dictionary Dp, so the
sums ∑j/∈Bp

range over non-basic variables for Dp, as you’d expect.)
Since all the pivots are degenerate in Dq the objective function still has

value v, so its last row must look like z = v + ∑m+n
j=1 c∗j xj (where, for con-

venience, we’ve listed all the variables, but any basic variable for Dq has
coefficient 0).

All the dictionaries are systems of equations with the same solutions, so
any solution (even if not feasible) of Dp we manage to write down must also
satisfy Dq. Take, for the non-basic variable in Dp the values xs = y, xj = 0
for j 6= s, j /∈ Bp, which force xi = bi − aisy for the basic variables. Since this
choice must also solve Dq, we have, equating the objective functions, that

v + csy = v + c∗s y + ∑
i∈Bp

c∗i (bi − aisy).

This must be true for any value of y, so the two sides must be the same
function of y. The graph of each side as a function of y is a straight line and
since they are equal they must have the same slope, so we learn that

cs = c∗s − ∑
i∈Bp

c∗i ais. (1)

Now we will gather some inequalities about these various quantities
with the eventual aim of showing that Bland’s Rule would not actually
have chosen xt to exit the basis of Dp. That contradiction will show that
Bland’s Rule cannot lead to cycling.

• cs > 0. This is because xs is chosen as the entering variable for Dp, so
it must appear in the objective function with positive coefficient.

• c∗s ≤ 0 and c∗t > 0. This is because in Dq the entering variable is xt and
according to Bland’s rule, xt must the variable with smallest index
that has a positive coefficient in the z-row of Dq. Since s < t (because
we assumed xt had the largest index among fickle variables), we have
c∗s ≤ 0.

Then, by equation (1), we must have that ∑i∈Bp
c∗i ais < 0, so at least one

of the terms c∗i ais must be negative. What can we say about the variable xi?

• It’s basic in Dp because the sum only ranges over i ∈ Bp.

• It’s non-basic in Dq because c∗i 6= 0 (if c∗i were 0, then c∗i ais would be
zero rather than negative).
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• Therefore xi is fickle and i ≤ t (because t was chosen to be the largest
index of a fickle variable).

• But we can’t have i = t! This is because i was chosen so that c∗i ais < 0
but c∗t ats > 0: we already saw that c∗t > 0; and in dictionary Dp the
variable xs was chosen to enter and xt was chosen to exit, so ats > 0
because xt had to impose a restriction on the increase of xs.

Now we can argue that Bland’s Rule actually would have chosen xi
over xt to exit the basis of dictionary Dp. We know that i < t, so if xi is
viable candidate for the exiting variable, then it would be chosen. We need
to show:

1. That ais > 0, so that xi does impose a limit on how far xs could in-
crease.

To see this, it is enough to show c∗i ≤ 0, because i was chosen to satisfy
c∗i ais < 0. Recall that xt was selected by Bland’s Rule to enter the
basis when the dictionary was Dq, so we must have c∗i ≤ 0 because
we know i < t.

2. That the restriction xi imposes, xs ≤ bi/ais, is at least as strong as the
restriction imposed by xt, which is xs ≤ bt/ats.

In fact both bi = bt = 0! Every pivot in a cycle must be degenerate
so that all variables conserve their values throughout the process and
every fickle variable must therefore be zero in the solution associated
to any dictionary in the cycle.

11 Recap of the Simplex Method

• Convert your LP to standard form if necessary.

• If the right-hand sides of the constraints are all non-negative, add
slack variables, write the initial dictionary (by solving for the slack
variables) and skip to Phase 2, otherwise perform Phase 1.

• Phase 1.

– Form the auxiliary LP by adding a variable x0 that you subtract
from all the left-hand sides of constraints and by replacing the
objective function with w = −x0.

40



– Add slack variables and write down the initial dictionary, which
will be infeasible.

– Perform the special pivot to feasibility and then successive stan-
dard pivots until you reach an optimal solution of the auxiliary
LP (this is guaranteed to happen!).

– If the optimal value is negative, then original LP is infeasible. If
the optimal value is zero, then the final dictionary for the auxil-
iary LP furnishes a starting dictionary for Phase 2: set x0 = 0 in
the top part of the dictionary and replace the w-row by the re-
sult of plugging in this top part into the formula for the original
objective function z.

• Phase 2. Repeatedly perform standard pivots until either you reach
an optimal solution (when all coefficients or variables in the z-row
are ≤ 0) or you see the LP is unbounded (when there is a choice of
entering variable upon which no basic variable imposes a limit).

12 Duality theorems

12.1 Bounding the optimal value

As motivation for the dual, let’s discuss how we can bound the optimal
value of a linear program. Let’s stick to the case of a linear program in
standard form. We’ll illustrate with the following example:

Maximize x1 − 2x2

subject to
x1 + 3x2 ≤ 4
x1 − 4x2 ≤ 2

x1, x2 ≥ 0

12.1.1 Lower bounds

For a maximization problem, finding a lower bound is simply a matter of
finding a feasible solution: the value the objective function takes on some
feasible solution is certainly less than or equal to the maximum value it can
take on feasible solutions! Here, for instance, we can easily see that x1 =
2, x2 = 0 is feasible, which shows the optimal value is at least x1 − 2x2 = 2.
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12.1.2 Upper bounds

Finding an upper bound for a maximization problem is necessarily more
subtle: to show that, for example, 2.5 is an upper bound12 for the optimal
value, we would need some argument that explains why none of the feasi-
ble solutions could possibly give an objective function value of more than
2.5.

Here’s one example of an upper bound we can prove for the optimal
value in the example LP:

Suppose x1, x2 are a feasible solution of the LP. Then, x1, x2 ≥ 0
and x1 + 3x2 ≤ 4, from which we can conclude that x1 ≤ 4
—and 3x2 ≤ 4, or, x2 ≤ 4

3 . Because x1 ≤ 4 and x2 ≥ 0, we
conclude z = x1 − 2x2 ≤ 4.

How can we search for better (i.e., smaller) upper bounds? Here we
only used the first inequality in the LP (plus the positivity constraints), we
can try combining both. For example, multiplying the first constraint by 1

3
and the second by 2

3 and adding we get 1
3 (x1 + 3x2) +

2
3 (x1 − 4x2) ≤ 4

3 +
4
3 ,

that is, x1 − 5
3 x2 ≤ 8

3 . Since x2 ≥ 0, we have z = x1 − 2x2 ≤ x1 − 5
3 x2 ≤ 8

3 .
Can we find even better upper bound by using different coefficients?

Let’s be systematic about it. Say we multiply the first constraint by y1 and
the second by y2. To keep the inequalities going in the same direction we
will require y1, y2 ≥ 0. Adding those multiples of the constraints we get:

y1(x1 + 3x2) + y2(x1 − 4x2) ≤ 4y1 + 2y2.

When will the left hand side be≥ z? Let’s regroup to see the coefficients
of x1 and x2 explicitly, we can rewrite the inequality as:

(y1 + y2)x1 + (3y1 − 4y2)x2 ≤ 4y1 + 2y2.

Since z = x1 − 2x2 (and x1, x2 ≥ 0!), we will have z ≤ (y1 + y2)x1 +
(3y1 − 4y2)x2 as long as:

y1 + y2 ≥ 1
3y1 − 4y2 ≥ −2

All together we have shown that whenever y1, y2 ≥ 0 satisfy the above
inequalities, then the number 4y1 + 2y2 is an upper bound for the optimal
value of the LP we started with.

12We’ll see that it is not! But this is irrelevant to the point being made.
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We might now ask what is the best (i.e., smallest) upper bound obtain-
able by this method? Well, the answer is given by the optimal value of the
following LP called the dual of the original LP:

Minimize 4y1 + 2y2

subject to
y1 + y2 ≥ 1

3y1 − 4y2 ≥ −2
y1, y2 ≥ 0

12.2 The dual of a linear program in standard form

Repeating the steps that led to the dual LP in the above example but now
for a general LP in standard form, we see that the dual of:

Maximize c1x1 + c2x2 + · · · cnxn

subject to
a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

is given by:

Minimize b1y1 + b2y2 + · · · bmym

subject to
a11y1 + a21y2 + · · ·+ am1ym ≥ c1

a12y1 + a22y2 + · · ·+ am2ym ≥ c2

...
a1ny1 + a2ny2 + · · ·+ amnym ≥ cm

y1, y2, . . . , yn ≥ 0

Or, even better, in matrix form the dual of:

Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0
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is the problem:

Minimize b · y

subject to

{
A>y ≥ c

y ≥ 0

This formula for dual of a LP only applies to problems in standard form!
To find the dual of a LP that is not in standard form you need to convert to
standard form first. A good exercise is to show that the dual of the dual of
a problem is equivalent to the problem you started with!

12.3 Weak duality theorem

From the way we constructed the dual it is clear that the value of the dual
objective function on any feasible solution of the dual is an upper bound
for the objective function of the original or primal problem. This fact is
important enough to be recorded as a theorem:

Theorem 2. Weak duality. Consider the following pair of dual linear programs:

Primal LP Dual LP
max c · x min b · y
subject to subject to
Ax ≤ b A>y ≥ c
x ≥ 0 y ≥ 0

If x is any feasible solution of the primal and y is any feasible solution of the
dual, then c · x ≤ b · y.

Moreover, if equality holds, that is if c · x = b · y, then x is be an optimal
solution of the primal LP and y is an optimal solution of the dual LP.

Proof. The first part, the part before “moreover”, we already proved at the
same time as we introduced the dual!

Here’s another proof though, to get some practice with matrix manipu-
lations:

Assume x is feasible for the primal and y is feasible for the dual. Then

c>x ≤ (A>y)>x = y>Ax ≤ y>b.

Where:

• the first inequality is because A>y ≥ c and x ≥ 0,
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• the equality is by standard properties of the transpose,

• and the second inequality is because Ax ≤ b and y ≥ 0.

Now for the “moreover” part.
Assume, as before, that x is feasible for the primal and y is feasible for

the dual, and that c · x = b · y. Let’s show that x is optimal for the primal
LP; a very similar argument would show that y is optimal for the dual LP.

Let x′ be any other feasible solution for the primal. To show that x is
optimal, we need to show that c · x′ ≤ c · x. But by the first part of the the-
orem applied to x′ and y, we know that c · x′ ≤ b · y; and we are assuming
that b · y = c · x, which finishes the proof.

12.4 Possibilities for a primal-dual pair of LPs

Recall that the fundamental theorem of linear programming says that any
LP falls into exactly one of three cases: it’s infeasible, unbounded or has an
optimal solution. For a LP and it’s dual which combinations are possible?
The duality theorems rule some combinations out. Already the weak du-
ality theorem tells us that if both primal and dual are feasible, then neither
can be unbounded (“each bounds the other”). A stronger version of the
duality theorem, which we will discuss next rules out the possibility of one
problem of the pair being infeasible while the other has an optimal solution.
It turns out all other combinations are possible (this needs to be shown by
giving examples of each case, maybe this would be a good problem for a
later assignment!). Here’s a table summarizing:

Primal/Dual infeasible unbounded optimal
infeasible yes yes no (SD)
unbounded yes no (WD) no (WD)
optimal no (SD) no (WD) yes

12.5 Strong duality theorem

Theorem 3. Strong duality. Assume a primal-dual pair of linear problems sat-
isfies any of the following conditions:

1. the primal has a optimal solution,

2. the dual has an optimal solution, or,

3. both primal and dual are feasible,
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Then both primal and dual must have optimal solutions (say x∗ and y∗) and
the optimal values of the objective functions are equal (c · x∗ = b · y∗, using the
above notation for the primal and dual).

Proof. We’ll first argue it is enough to show the following claim:

If the primal has an optimal solution x∗, then the dual has a
feasible solution y∗ such that c · x∗ = b · y∗.

Notice that by the second part of the weak duality theorem, the con-
clusion of the claim implies that y∗ is optimal for the dual. So the claim is
enough to show strong duality in case 1. Case 2 is just case 1 applied to
the dual problem, and case 3, by weak duality implies that both primal and
dual have optimal solutions, so we can establish case 3 using either case 1
or 2.

Now we show the claim. Imagine we solve the primal problem by the
Simplex Method and we get as final dictionary the one corresponding to a
basis xB. Then the final dictionary is

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

Since this is the final dictionary and we have an optimal solution, all the
coefficients in the z-row must be non-positive, so we know that

c>N − c>B A−1
B AN ≤ 0.

That vector of coefficients has one entry for every non-basic variable,
and the entry corresponding to a particular non-basic xj is cj − c>B A−1

B Aj
(where Aj is the j-th column of Aaug, the column corresponding to xj). So
we’ve learned that cj − c>B A−1

B Aj ≤ 0 for every j such that xj is non-basic in
the final dictionary.

We want to know that this inequality is also true for j’s such that xj is a
basic variable. Those inequalities for xj basic put together would say that

c>B − c>B A−1
B AB ≤ 0,

which is certainly true because the left-hand side is zero!
So now we know that cj − c>B A−1

B Aj ≤ 0 for every j. Now separate the
variables into original variables and slack variables to get:
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c> − c>B A−1
B A ≤ 0 (2)

0> − c>B A−1
B I ≤ 0 (3)

(Recall that the columns of Aaug corresponding to the original variables
form the matrix A and the columns for slack variables form an identity
matrix; also, the entries of caug for the original variables form the vector c
and the entries for the slacks are all 0.)

The feasible solution of the dual that we seek is given by y∗> = c>B A−1
B

(so y∗ = (A−1
B )>cB). We just need to check it really is feasible for the dual

and that c · x∗ = b · y∗:

Main constraints: A>y∗ ≥ c is equivalent to (2) (just transpose both sides
of the inequality).

Positivity constraints: y∗ ≥ 0 is equivalent to (3).

Equality of objective functions: we have b ·y∗ = y∗>b = (c>B A−1
B )b, which,

as you can see from the final dictionary for the primal, is the optimal
value of the primal objective function.

12.6 Magic coefficients

Notice from the proof (not just the statement!) of the strong duality theorem
that an optimal solution of the dual can be read off from the final dictionary
for the primal! The proof shows you can take y∗> = c>B A−1

B as an optimal
dual solution, and looking at how we obtained (3), we see we can describe
the vector c>B A−1

B more intuitively as minus the coefficients of the (primal) slack
variables in the z-row of the final dictionary. We’ll call this phenomenon, magic
coefficients.

Take, for example, the following LP:

Maximize x1 + 2x2 − x3

subject to
2x1 + x2 + x3 ≤ 14

4x1 + 2x2 + 3x3 ≤ 28
2x1 + 5x2 + 5x3 ≤ 30

x1, x2, x3 ≥ 0
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After running the Simplex Method on it we obtained as final dictionary:

x1 = 5 − 5
8 x4 + 1

8 x6

x2 = 4 −x3 + 1
4 x4 − 1

4 x6
x5 = 0 −x3 +2x4
z = 13 −3x3 − 1

8 x4 − 3
8 x6

The slack variables are x4, x5, x6, which appear with coefficients− 1
8 , 0,− 3

8
in the z-row (the coefficient of x5 is 0 because it is basic in the final dictio-
nary). So by “magic coefficients”, y1 = 1

8 , y2 = 0, y3 = 3
8 is an13 optimal

solution of the dual.

13 Complementary Slackness

13.1 The theorem

Theorem 4. Consider the usual primal-dual pair of problems where A is an m× n
matrix:

Primal LP Dual LP
max c · x min b · y
subject to subject to
Ax ≤ b A>y ≥ c
x ≥ 0 y ≥ 0

Let x be feasible for the primal LP and y be feasible for the dual. Then we have
that x and y are optimal solution of their respective LPs if and only if complemen-
tary slackness holds:

1. For 1 ≤ i ≤ m, either yi = 0 or bi −∑n
j=1 aijxj = 0 (or both).

Notice that bi −∑n
j=1 aijxj is the slack in the i-th constraint in the primal.

2. For 1 ≤ j ≤ n, either xj = 0 or ∑m
i=1 aijyi − cj = 0 (or both).

Notice that ∑m
i=1 aijyi − cj is the slack in the j-th constraint in the dual.

Proof. Each statement in this list is equivalent to the next:

• x and y are optimal for their respective LPs

13It’s not the only one! Can you find all of them without using the Simplex Method on
the dual?
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⇐⇒ 14 (by weak duality)

• c>x = y>b

⇐⇒ (recall the proof of Weak Duality: c>x ≤ y>Ax ≤ y>b )

• c>x = y>Ax and y>Ax = y>b.

⇐⇒ (algebra)

•
(

A>y− c
)> x = 0 and y> (b− Ax) = 0.

⇐⇒ (see below)

• The complementary slackness conditions hold.

The last equivalence is for the following reason: all of A>y− c, x, y and
b− Ax are vectors with non-negative entries, so their dot product is zero if
and only if for each j one of the two vectors has a zero in the j-th entry.

13.2 Examples

One thing we can use complementary slackness for is to verify claims about
optimal solutions.

Example 1. Say someone tells us that x∗1 = 9
7 , x∗2 = 0, x∗3 = 1

7 is an
optimal solution for the following LP:

Maximize x1 − 2x2 + 3x3

subject to
x1 + x2 − 2x3 ≤ 1

2x1 − x2 − 3x3 ≤ 4
x1 + x2 + 5x3 ≤ 2

x1, x2, x3 ≥ 0

Let’s try to verify that claim.
At least those values satisfy the constraints! Now let’s see what com-

plementary slackness would tells us about an optimal solution y∗1 , y∗2 , y∗3 of
the dual.

14Read this as “if and only if”.
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Because x∗1 and x∗3 are non-zero, the first and third constraints of the
dual have no slack:

y∗1 + 2y∗2 + y∗3 = 1
−2y∗1 − 3y∗2 + 5y∗3 = 3

That’s only two equations for three unknowns! But checking the primal,
we see that the alleged optimal solution shows some slack in the second
constraint (that is 2x∗1 − x∗2 − 3x∗3 = 15

7 < 4), and thus, by complementary
slackness again, y∗2 = 0. Plugging that in we get the following system:

y∗1 + y∗3 = 1
−2y∗1 + 5y∗3 = 3

The only solution is y∗1 = 2
7 , y∗3 = 5

7 . So the dual should have optimal
solution y∗1 = 2

7 , y∗2 = 0, y∗3 = 5
7 . Does it really? We can use complementary

slackness again to check! We need to check it is feasible for the dual and
that complementary slackness holds, and most of that has already been
done in the process of coming up with these values of the y∗i .

We still need to check one inequality for feasibility: y∗1 − y∗2 + y∗3 ≥ −2,
which clearly holds.

And we still need to check, since y∗1 , y∗3 > 0, that in the primal the first
and third constraints have no slack. Plugging in we see that indeed they
don’t, and so we conclude that the x∗i and y∗i are indeed optimal for the
primal and dual respectively.

Example 2. Now imagine someone told us instead that x∗1 = 9
7 , x∗2 =

0, x∗3 = 1
7 was an optimal solution for the following different LP:

Maximize x1 + 2x2 + 3x3

subject to
x1 + x2 − 2x3 ≤ 1

2x1 − x2 − 3x3 ≤ 4
x1 + x2 + 5x3 ≤ 2

x1, x2, x3 ≥ 0

(The only difference is the sign of the coefficient of x2 in the objective
function!)

We can argue similarly to the first example and conclude that y∗1 =
2
7 , y∗2 = 0, y∗3 = 5

7 is the only possibility for an optimal solution of the dual.
But now this dual solution is not feasible! This shows that the proposed
optimal solution of the primal is not actually optimal.
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14 Theorem of the Alternative

We can apply duality theory of linear programs to prove statements that
don’t mention linear programming at all! Here’s an example. Notice that
the statement of the theorem doesn’t mention maximizing or minimizing
at all, just linear inequalities.

Theorem 5. (of the Alternative) Let A be an m× n matrix and b be a vector
with m entries. Either there exists a vector x such that Ax ≤ b and x ≥ 0, or
there exists a vector y such that A>y ≥ 0, y ≥ 0 and b · y < 0, but not both.

Proof. Since the alternatives both are reminiscent of LPs, let’s try to build
up a primal-dual pair based on the alternatives we’re aiming for. First of
all, Ax ≤ b and x ≥ 0 definitely look like primal constraints; A>y ≥ 0
and y ≥ 0 look like dual constraints. Now, what to do with b · y < 0?
Despite being an inequality, it doesn’t look too much like a constraint: it
says something is strictly less than zero and our constraints usually include
the possibility of equality; also, the dot product looks more like an objective
function for the dual. So let’s try b ·y as the dual objective function and deal
with the “< 0” part later, in the course of the proof.

The only thing left to decide is what the objective function of the primal
should be, but having the dual complete, we can just remember that the
primal is the dual of the dual, and since the main constraint of the dual
is A>y ≥ 0, the primal objective function must be 0 · x. The finished pair
looks like this:

Primal LP Dual LP
max 0 · x min b · y
subject to subject to
Ax ≤ b A>y ≥ 0
x ≥ 0 y ≥ 0

In terms of these LPs, the theorem we are trying to prove can be ex-
pressed as follows:

Either the primal is feasible, or the dual has a feasible solution
with negative objective function, but not both.

Let’s see what’s special about these LPs:

• Since the objective function of the primal is the constant zero, the pri-
mal can’t possibly be unbounded.
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• The dual is automatically feasible! Indeed, taking y = 0 we can sat-
isfy both constraints in the dual.

So the primal can only be infeasible or have an optimal solution, while
the dual can only be unbounded or have an optimal solution. Which com-
binations are possible? By strong duality, if either one has an optimal solu-
tion, then both do. So the only cases are:

Both primal and dual have optimal solutions: In particular the primal is
feasible, which is the first of the alternatives we were aiming for.

The primal is infeasible and the dual is unbounded: In this case the dual
has a family of feasible solutions with objective function tending15 to
−∞. In particular, the dual must have feasible solutions with b · y <
0. So in this case, the second alternative holds.

We still need to show that both alternatives can’t happen at the same
time, but that’s just from weak duality: x would be feasible for the primal,
y would be feasible for the dual, but then weak duality would tell us that
0 · x ≤ b · y, which is incompatible with b · y < 0.

14.1 Variants of the theorem of the alternative

The theorem of the alternative presented above “corresponds” to the stan-
dard form of a linear program. There are many variations that deal with
LPs that are in other forms. The basic strategy for all variants is to setup
a primal dual-pair whose constraints and objective functions match the al-
ternatives the variant is about and then reason using the basic theorems we
have at our disposal: the fundamental theorem of linear programming and
the duality theorems.

Notice that you can even use your knowledge of duals to come up
with the full statement given one of the alternatives. For example, say we
wanted a variant that goes like:

Either there exists a vector x such that Ax ≤ b, or there exists a
vector y such that ???, but not both.

We can write down the primal with those constraints for x, and take it’s
dual (remember free variables produce equations in the dual):

15Remember that the dual is a minimization question, so for it being unbounded means
the objective function can be as negative as you want.
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Primal LP Dual LP
max ? · x min b · y
subject to subject to
Ax ≤ b A>y = ?

y ≥ 0

The question mark still needs to be decided. If we take ? = 0, we can
directly reuse the logic of the proof above (check this!). We get the following
variant of the theorem of the alternative:

Either there exists a vector x such that Ax ≤ b, or there exists a
vector y such that A>y = 0 and y ≥ 0, but not both.

14.2 Streamlined logic

When I wrote the proof of theorem of the alternative above I tried to mo-
tivate each step, but strictly speaking that’s not necessary for a proof to be
correct (though motivation sure helps to make the proof easier to under-
stand, and above all, to feel non-magical). Here’s a streamlined proof that
tries not to do more than necessary. When you later prove variants of the
theorem of the alternative, you might want to think as in the first proof,
but only write in the style of this next proof. (Although, there absolutely
nothing wrong with writing your motivation anyway, to help the reader!)

Proof. Consider the following primal dual pair:

Primal LP Dual LP
max 0 · x min b · y
subject to subject to
Ax ≤ b A>y ≥ 0
x ≥ 0 y ≥ 0

Notice the dual is automatically feasible, because y = 0 is a feasible
solution. By the fundamental theorem of linear programming that leaves
two cases:

The dual is unbounded: Then the dual has a family of feasible solutions
with objective function tending to −∞. In particular, the dual must
have feasible solutions with b · y < 0. So in this case, the second
alternative holds.
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The dual has an optimal solution: Then so does the primal, by strong du-
ality, in particular the primal is feasible which is the first alternative.

We’ve shown that in any case one of the alternatives holds. We still need
to show that not both of them can hold simultaneously. If they did, then
x and y would be feasible for the primal and dual respectively, and weak
duality would tells us that 0 · x ≤ b · y, contradicting that b · y < 0.

15 Marginal values

This section is dedicated to all the economics majors taking the course (but everyone
else needs to learn this stuff too!)

15.1 The archetypal factory problem

Say you run a factory and are trying to decide how many units of each kind
of product to manufacture; let xj be the number of units of product #j you
plan to make. Each of the n products requires some amount of each of m
different resource; let aij be the amount of resource #i needed to manufac-
ture one unit of product #i. Say also that bi is the amount of resource #i
you have available and that cj is the predicted profit you make from each
unit of product #j. Then to maximize profit you would want to solve the
standard form linear program:

Maximize c1x1 + c2x2 + · · · cnxn

subject to
a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

Here the constraints16 express that the manufacture of all the products
together should not require more than the available amount of each re-
source.

16The ones that are not just positivity constraints, I mean.
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(Notice that not all standard form linear programs can be interpreted as
a factory-type situation: in these situations all aij ≥ 0 and all bi ≥ 0. It’s
still a good guide for intuition in general.)

In this model, what do the dual variables y1, . . . , ym mean? Let’s start
by figuring out their units. The dual constraints look like ∑m

i=1 aijyi ≥ cj.
So the units of yi must be something that whose product with the units of
aij matches the units of cj. The units of aij are (whatever unit resource #i
is measured in) per (unit of product #j); and the units of cj are, say, dollars
per (unit of product #j). This means that yi is measured in units of dollars
per (whatever unit resource #i is measured in).

That should make it plausible that, in an optimal dual solution, yi is
the marginal value of resource #i, that is, yi is the amount of extra profit
you’d expect to make for each additional unit of resource #i available. This
is therefore also the price that you, as factory planner, should think is fair
for one unit of resource #i. So, if someone offers to sell you resource #i at
less than yi dollars per unit, that’s a good deal and you should buy some if
you can.

This advice is only “local”, that is, for small enough changes in the
amount of resource #i available, yi correctly predicts the change in profit,
but for larger changes the situation can change. If you like multi-variable
calculus, you can think of the marginal values this way: the optimal value
of the primal LP is a function of all the aij, bi and the cj; let’s focus on the bi
and regard the aij and cj as constants and let z(b1, . . . , bm) be the maximum
profit as a function of available resources. Then we are saying that yi =

∂z
∂bi

.
We will now prove a theorem which says that, with some caveats, this

interpretation is correct.

15.2 The marginal values theorem

The following theorem won’t mention anything about resources or facto-
ries, but it might be more intuitive if you keep the above interpretation in
mind. The theorem has two parts: the first shows that the marginal values
bound the optimal value of the altered primal, the second gives a condition
under which that bound really is the new optimal value.

Theorem 6. Consider the following standard form LP, its dual and an altered
primal with slightly modified constraints:
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Primal LP Dual LP Altered Primal LP
max c · x min b · y max c · x
subject to subject to subject to
Ax ≤ b A>y ≥ c Ax ≤ b + ∆b
x ≥ 0 y ≥ 0 x ≥ 0

1. Assume the primal (and therefore also its dual) has an optimal solution,
and let y∗ be any optimal solution of the dual; so that the optimal value
of the primal is z∗ = b · y∗. If x is any feasible solution of the altered
primal, then c · x ≤ z∗ + y∗ · ∆b. In particular, if the altered primal is
feasible (it may not be, depending on ∆b), then its optimal value z′ satisfies
z′ ≤ z∗ + y∗ · ∆b.

2. Consider the basis xB of the final dictionary that the Simplex Method pro-

duces for the primal LP and use AB, cB, etc. as usual. Take y∗ =
(

c>B A−1
B

)>
as the optimal dual solution. If A−1

B (b + ∆b) ≥ 0, then the altered pri-
mal is guaranteed to have an optimal solution and the optimal value is
z′ = z∗ + y∗ · ∆b.

Proof. 1. Notice that the dual of the altered primal is

Minimize (b + ∆b) · y

subject to

{
A>y ≥ c

y ≥ 0

In particular, notice that it has the same constraints as the dual of the
original primal. This tells us that y∗, the optimal dual solution, is still
feasible for the altered dual. And so, weak duality for the altered LPs
directly says that given any feasible solution of the altered primal, say
x, we have c · x ≤ (b + ∆b) · y = z∗ + ∆b · y.

2. Now, consider the final dictionary in the Simplex Method for the orig-
inal primal LP:

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

What if we try to use the same basis for the altered LP? The dictionary
would look like this:
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xB = A−1
B (b + ∆b)− A−1

B ANxN

z = c>B A−1
B (b + ∆b) +

(
c>N − c>B A−1

B AN

)
xN

Is this an optimal dictionary for the altered LP? Well, the z-row has
the same coefficients as before so they are all non-positive as required
for optimality. But this new dictionary is not necessarily feasible!
Feasibility requires A−1

B (b + ∆b) ≥ 0. So, under that assumption,
we do get an optimal dictionary for the altered primal, and the op-
timal value of the altered LP is c>B A−1

B (b + ∆b) = y∗ · (b + ∆b) =
z∗ + y∗ · ∆b, as desired.

15.2.1 The case of non-degenerate optimal solutions

How often should you expect the second half of the theorem to be ap-
plicable? To answer that notice that typically optimal solutions are non-
degenerate: typically all the basic variables in the final dictionary have
strictly positive values, that is, A−1

B b > 0. In that case, any vector ∆b
whose entries are close enough to zero will satisfy A−1

B (b + ∆b) ≥ 0.
You may have noticed that the first part of the theorem is for any optimal

dual solution but the second part is only for y∗ =
(

c>B A−1
B

)>
. In the non-

degenerate case where A−1
B b > 0, the dual optimal solution is unique, so

you needn’t worry then about the distinction! Indeed, all the basic variables
xB are positive, so complementary slackness gives us m different equations
for y1, . . . , ym; namely, we get that A>B y∗ = cB. The only solution of that

system is y∗ =
(

A>B
)−1 cB =

(
c>B A−1

B

)>
.

16 The Revised Simplex Method

The way we’ve performing the Simplex Method so far is by writing a full
dictionary at each step, but this is potentially wasteful: the matrix formu-
las for the dictionary tells us that knowing the basic variables is enough to
reconstruct the whole dictionary and we don’t even need all of the dictio-
nary to figure out what pivot to perform, and thus to figure out what the
next basis will be. For example, we never need to know the current value
of the objective function. From the z-row we only need the coefficients of
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non-basic variables, to pick the entering variable, and then to pick the ex-
iting variables we only need two columns of the dictionary: we need the
values of the basic variables in the solution associated to the dictionary and
we need the coefficients of the exiting variable in the formulas for the basic
variables.

For example in the following dictionary we don’t need any of the ques-
tion marks to figure out that x2 should enter and x6 should exit:

x3 = 3 + ?x1 − 4x2 + ?x5

x4 = 1 + ?x1 + 2x2 + ?x5

x6 = 2 + ?x1 − 3x2 + ?x5

z = ?− 2x1 + 4x2 + 2x5

The idea of the Revised Simplex Method is to avoid having to compute
the full dictionary after every pivot. Instead, we’ll only keep track of some
of the information, including the current basis, and use the matrix formulas
to compute the portions of the dictionary we need.

We’ll describe two versions of the Revised Simplex Method: one where
we only keep track of the current basis variables, the current solution and
compute everything else (to avoid computing A−1

B , we’ll solve systems of
equations instead), and one where we additionally keep track of A−1

B .

16.1 Revised Simplex Method, version 1

In this version, we keep track only of the basis xB and the current solu-
tion17, x∗B = A−1

B b. To deal with any occurrences of A−1
B in the formulas,

we’ll solve systems of equations. When we say we “keep track” of some
data, it means that when we start a pivoting step we will have that data
available for the current basis, and also that we must compute that data for
the next basis. Throughout we will need to refer to the matrix formulas for
the dictionary:

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

We’re given xB and the numbers x∗B. Now we must determine the enter-
ing variable. For that we need to calculate the coefficients of the non-basic

17The x∗B are the values of the basic variables in the solution associated to the dictionary for
the basis B. This determines the entire associated solution, because the non-basic variables
have the value 0.
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variables in the z-row, i.e., c>N − c>B A−1
B AN . All of the pieces, cB, cN , AB

and AN , can be found from the original LP (or more, precisely, from the
augmented caug and Aaug you get after adding the slack variables). But
we’d like to avoid calculating A−1

B , so we’ll get y> := c>B A−1
B by solving the

system of equations A>B y = cB.
Once we have y we can compute the vector of coefficients of xN in the

z-row as c>N − y>AN . We can then following the standard pivoting rules
to choose the entering variable: we look for the largest positive coefficient,
and in case of ties pick the one corresponding to the non-basic variable xj
with smallest j.

To choose the entering variable, we need x∗B and the vector of coeffi-
cients of xj in the top portion of the dictionary (the xB part). From the
matrix formulation of the dictionary, this vector is −A−1

B Aj (recall that Aj
is the column of Aaug corresponding to the variable xj). Again, we avoid
inverting AB by solving a system of equations, namely, we get d := A−1

B Aj
by solving ABd = Aj.

Once we have d, we can choose the exiting variable according to the
standard pivoting rules: xj starts at 0 and is allowed to increase as long as
all the xB stay ≥ 0. So, the value of xj in the solution associated to the next
basis (in which xj will be basic!), is given by max{t ≥ 0 : x∗B − td ≥ 0}. Of
course, there may be no maximum, that is, it might happen that x∗B− td ≥ 0
for all t ≥ 0; if so, that means the LP is unbounded and that xN = 0,
xB = x∗B − td is an unbounded family of feasible solutions.

If there is a maximum value of t, one or more of the entries of x∗B − td
becomes 0 (when t has the maximum value). Each entry of that vector
corresponds to a basic variable; and we choose the exiting variable xi to
be the one whose entry becomes 0 —or, if there are several, the one with
smallest i.

It only remains to make sure we have the next-basis versions of all the
data we gave ourselves. The new xB is, of course, just obtained from the
previous one by removing the exiting xi and putting in the entering xj. The
new associated solution requires is also pretty easy: as we said above, the
value x∗j of xj in the next dictionary is that maximum t, and the new values
of xB are given by x∗B− td (again, for that maximum t). Note that the vector
x∗B − td includes a zero in the entry corresponding to the exiting variable
xi, all the other entries correspond to variables that are still basic in the next
dictionary.
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16.1.1 Recipe

Summarizing the above discussion, these are the steps you take given the
list of basic variables xB and their values in the associated solution, x∗B:

1. Find y by solving A>B y = cB.

2. Compute c>N − y>AN , which is the vector of coefficients in the z-row.
Use it to choose the entering variable xj by looking for the largest
positive entry. If all entries of the coefficient vector are non-positive,
then stop: you have reached optimality!

3. Find d by solving ABd = Aj.

4. Find the maximum value of t such that x∗B − td ≥ 0. From now on,
let t be that maximum.

5. The exiting variable xi will be the one (with smallest i, in case of ties)
for which the corresponding entry of x∗B − td is zero.

6. Find the values of the basic variables in the next dictionary:

• For xj the value will be that maximum t.
• The other basic variables are the current ones, xb, but without xi.

Their values are x∗B − td —this will include the value zero for xi,
which won’t be basic anymore.

16.2 Revised Simplex Method, version 2

In this version, we additionally keep track of the matrix A−1
B . If we have

A−1
B , the steps where we compute y and d can be done by simple matrix

multiplication instead of solving a linear system. Of course, it’s not all
roses: we need to figure out how to compute the next A−1

B , that it is, the
matrix A−1

B′ where B′ is the next basis.
To write down the AB and AB′ matrices you need to pick a specific order

for the basic variables. Let’s agree that the basis xB′ will have the same
order as xB with the exiting variable xi replaced by the entering variable xj.
With that convention, if xi occurs in position ` of xB, then AB′ and AB differ
only in the `-th column: AB has Ai as `-th column, while AB′ has Aj.

This means that AB′ = ABE where E is the matrix whose `-th column
is d = A−1

B Aj and otherwise agrees with the identity matrix. Why is that?
Well, for any matrices M and N, if the columns of N are v1, . . . , vm, it fol-
lows that the columns of the product MNare the vectors Mv1, . . . , Mvm. In
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particular, if the columns of the identity matrix are e1, . . . , em, then Mei is
simply the i-th column of the matrix M. For the matrix E, whose columns
are e1, . . . , e`−1, d, e`+1, . . . , em we see that the columns of ABE are the same
as the columns of AB except that the `-th one is ABd = Aj; i.e., the columns
of ABE are exactly those of AB′ !

From this we can easily state the update rule for A−1
B , namely, A−1

B′ =

E−1A−1
B . And this is extremely handy, because E−1 is very easy to calculate:

namely, E−1 also agrees with the identity matrix except in the `-th column,
which is given by the following recipe: if d> =

(
d1 d2 . . . dm

)
, then the

`-th column of E−1 is given by(
−d1/dl −d2/dl . . . −d`−1/dl 1/dl −d`+1/dl . . . −dm/dl

)> .

Notice that the `-th entry of that vector is the one on the diagonal of the
matrix E−1 and does not follow the pattern of the others.

For example, if E =


1 p 0 0
0 q 0 0
0 r 1 0
0 s 0 1

, then E−1 =


1 −p/q 0 0
0 1/q 0 0
0 −r/q 1 0
0 −s/q 0 1

 .

This is easy enough to check by multiplying out. But for completeness’s
sake let’s prove it:

Proposition 1. If E is a square matrix that only differs from the identity ma-
trix in the `-th column, where E has instead the column

(
d1 d2 . . . dm

)>,
then E−1 also only differs from the identity matrix in the `-th column which is(
−d1/dl −d2/dl . . . −d`−1/dl 1/dl −d`+1/dl . . . −dm/dl

)>.

Proof. Let e1, . . . , em be the columns of the identity matrix. We know that
the columns of E are given by Eek = ek for k 6= l and Ee` = ∑m

k=1 dkek. Mul-
tiplying both sides of these equations by E−1 gives us, first, that ek = E−1ek
for k 6= `, and second, that e` = ∑m

k=1 dkE−1ek. So we’ve already obtained
that all columns of E−1 other than the `-th are the same as those of the iden-
tity matrix. Plugging that into the last equation we get, e` = ∑k 6=` dkek +

d`E−1e`. Solving, we get that E−1e` = ∑k 6=`(−dk/d`)ek + (1/d`)e`, as de-
sired.

16.2.1 Recipe

To summarize, these are the steps you take given the list of basic variables
xB, their values x∗B in the associated solution, and the matrix A−1

B :
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1. Compute c>N − c>A−1
B AN , which is the vector of coefficients in the z-

row. Use it to choose the entering variable xj by looking for the largest
positive entry. If all entries of the coefficient vector are non-positive,
then stop: you have reached optimality!

2. Compute d = A−1
B Aj.

3. Find the maximum value of t such that x∗B − td ≥ 0. From now on,
let t be that maximum.

4. The exiting variable xi will be the one (with smallest i, in case of ties)
for which the corresponding entry of x∗B − td is zero.

5. Find the values of the basic variables in the next dictionary:

• For xj the value will be that maximum t.

• The other basic variables are the current ones, xb, but without xi.
Their values are x∗B − td —this will include the value zero for xi,
which won’t be basic anymore.

6. Find the next A−1
B : it is E−1A−1

B , where E is the matrix that differs
from the identity matrix only in the column in the position of the
entering/exiting variable, where E has the vector d.

16.3 Invertibility of AB

The formula AB′ = ABE finally let’s us repair a long standing omission: we
haven’t actually proved that AB is invertible! To be clear, we’re not saying
that whenever you pick some columns of Aaug that form a square matrix
that matrix is automatically invertible. What is true is that for any basis
arising in the Simplex Method, the corresponding AB will be invertible, as
required for the matrix formulas for the dictionary to make sense!

At the very first step of the Simplex Method the basic variables are the
slack variables and AB is an identity matrix, which is, of course, invertible.
Now, imagine that for some dictionary AB is known to be invertible. Let’s
show the next matrix, namely AB′ = ABE, is invertible too. It’s enough to
show E is invertible, since then AB′ is a product of two invertible matrices
and thus invertible itself.

So why is E invertible? Well, we found the inverse already! But for that
inverse to make sense, we do need that d` 6= 018. Alternatively, expanding

18A point which was glossed over in the proof of the proposition!
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by the `-th row, we see that the determinant of E is exactly d`. At any
rate, all we have left to show is that d` 6= 0. This comes from the way
pivots are chosen: d` is minus the coefficient of the exiting variable xj in the
formula for the entering variable xi, so it has to be strictly positive (since the
coefficient must be negative, otherwise xi wouldn’t be the exiting variable).

17 Sensitivity Analysis

When using linear programming to model real world situations we of-
ten need to solve new linear programs obtained by making small changes
to problems we’ve already solved. This can happen for various reasons,
among many others:

• The coefficients might have been estimates of key quantities, later
with more information we might have better estimates.

• Even if the coefficients were completely accurate they might change
over time, for example, if we needed to take into account the price of
some resource, as that price changes we’d want to update our model.

• We might realize we forgot a constraint, or suddenly have an extra
variable we want to know about.

• We might want to replace any coefficients that were estimated with
more pessimistic estimates to compute a worst case scenario.

We can handle this problem by simply solving the new LP from scratch
using the Simplex Method, but we can often reuse the work done in solving
the original LP to solve the new one faster than we could from scratch. This
ability of the Simplex Method to “reuse work” gives it an advantage when
solving many related LPs over other methods that might be faster for single
LPs but need to start over for every change. (We won’t actually cover any
other methods for solving LPs in this course, and you can take this as part
of the justification for that.)

The study of how solutions of LPs change when you change the LP is
called sensitivity analysis, and we’ve already seen some of it: the marginal
values theorem tells us something about what happens in a standard form
LP if you change the right-hand sides of the constraints. It gave us an up-
per bound for the new optimal solution and conditions under which that
estimate was exactly right. Now we’ll complete this analysis, indicating
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what to do when those conditions don’t hold; as well as analyze various
other changes we can make to an LP.

Consider an LP in standard form:

(P) Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0

We can consider changes such as:

• Changing the objective function, c.

• Changing the right-hand sides of the constraints, b.19

• Changing (some entries of) the matrix of coefficients, A.

• Adding or removing a constraint.

• Adding or removing a variable.

For each type of change we’d like to know:

• Conditions for which the solution of the new LP is easy to get from
the old optimal solution, say, for when the old optimal solution is still
optimal, or at least the old optimal basis is still optimal even if the
values of the variables need recomputing (this is what happens in the
marginal values theorem).

• What to do if those conditions don’t hold and we need to work more
to solve the new LP. Ideally, this would be better than doing the Sim-
plex Method from scratch on the new LP.

Each type of change needs separate analysis, and in each case we’ll start
by looking at the matrix formulas for the final dictionary of the original LP
to see what changes.

19Notice that in a sense this is the same kind of change as the previous one: we can view
this in the dual as changing the objective function. Here we’ll stick with the point of view
of the primal and treat this as a different case.
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17.1 Changing the objective function

Let’s consider changing c to ĉ in the problem (P) to get a problem (P̂). Say
xB is an optimal basis for (P). The matrix formulas say the dictionary is
given by:

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

Let’s try to use the same basis for the new problem. The dictionary
would be:

xB = A−1
B b− A−1

B ANxN

z = ĉ>B A−1
B b +

(
ĉ>N − ĉ>B A−1

B AN

)
xN

Notice that the top part, the formulas for the basic variables, hasn’t
changed at all. In particular, this dictionary is feasible! And if the new
coefficients in the z-row are non-positive, that is, if ĉ>N − ĉ>B A−1

B AN ≤ 0,
then this dictionary is even optimal!

And if ĉ>N − ĉ>B A−1
B AN has some positive entries we can just use the

above dictionary as the initial dictionary for the Simplex Method to solve
P̂.

17.2 Adding a variable

Now let’s consider adding a new variable xm+n+1 to an LP. The new vari-
able should come, of course, with coefficients: we need a cm+n+1 for the
objective functions and a new column Am+n+1 for the matrix of coefficients
of the constraints.

Inspired by the initial dictionary (where we take the slack variables as
basic and the non-slack variables as non-basic) we will make the guess that
the new variable should be added as a non-basic variable to the final dic-
tionary. Using the matrix formulas to compute the new column, we get this
dictionary for the LP with the extra variable:

xB = A−1
B b− A−1

B ANxN − A−1
B Am+n+1xm+n+1

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN + (cm+n+1 − c>B A−1

B Am+n+1)xm+n+1

This dictionary is feasible, because the first column hasn’t changed, but
the new coefficient in the z-row may have any sign. If we’re lucky, cm+n+1−
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c−1
B Am+n+1 ≤ 0 and this dictionary is already optimal! If not, since it is at

least feasible, we can just use it as the initial dictionary for the Simplex
Method.

17.3 Other types of changes

If you attempt this sort of analysis for a change of b, or for adding a con-
straint (guessing the new slack variable is basic), you’ll see that, while we
can easily formulate a criterion for when the modified dictionary is optimal,
when it isn’t we won’t be left with a feasible dictionary! Instead we’d get a
dictionary that is not feasible but “looks optimal”: all of the coefficients in
the z-row are non-positive.

Such a dictionary can’t be used in the Simplex Method: the Simplex
Method pivots from feasible dictionary to feasible dictionary working to-
wards non-positive coefficients in the z-row. To take advantage of this
infeasible dictionary that “looks optimal”, instead of the Simplex Method
we’ll use a very similar pivoting technique called the Dual Simplex Method.
That’s our next topic.

18 The Dual Simplex Method

The Simplex Method20 pivots from feasible dictionary to feasible dictionary
attempting to reach a dictionary whose z-row has all of its coefficients non-
positive. In sensitivity analysis certain modifications of an LP will lead to
dictionaries whose z-row “looks optimal” but that are not feasible. To take
advantage of those those dictionaries, we will develop a dual version of
the Simplex Method. Call a dictionary dual feasible if all the coefficients in
its z-row are non-positive. The Dual Simplex Method will pivot from dual
feasible dictionary to dual feasible dictionary working towards feasibility.

This new pivoting strategy is called the Dual Simplex Method because
it really is the same as performing the usual Simplex Method on the dual
linear problem. This also explains the term “dual feasible”: each dictionary
for the primal has a corresponding dictionary for the dual and a primal dic-
tionary is dual feasible exactly when the corresponding dictionary for the
dual is feasible (in the usual sense). We won’t really take advantage of this
correspondence, though: we won’t directly talk about the dual LP instead

20More precisely, we’re talking about Phase 2 —and the portion of Phase 1 after the first
special pivot to feasibility.
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explaining how to perform these dual pivots directly on a dual feasible dic-
tionary for the primal.

But before that, let’s show how certain kinds of sensitivity analysis nat-
urally lead to dual feasible dictionaries.

18.1 Change of right-hand sides

Let’s start, as usual, with the linear program:

(P) Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0

Now consider changing b to b̂ = b + ∆b in the problem (P) to get a
problem (P̂). Say xB is an optimal basis for (P). The matrix formulas say
the dictionary is given by:

xB = A−1
B b− A−1

B ANxN

z = c>B A−1
B b +

(
c>N − c>B A−1

B AN

)
xN

Let’s try to use the same basis for the new problem. The dictionary
would be:

xB = A−1
B b̂− A−1

B ANxN

z = c>B A−1
B b̂ +

(
c>N − c>B A−1

B AN

)
xN

Notice the coefficients of xN in the z-row are unchanged, so this dic-
tionary is automatically dual feasible. But this dictionary is not necessarily
feasible: it is feasible precisely when A−1

B b̂ ≥ 0. So we recover what we
knew from the marginal values theorem: when A−1

B b̂ ≥ 0 the same basis is
still optimal for the modified primal (P̂).

And when that condition does not hold, we are left with a dictionary
that is dual feasible but infeasible. The Dual Simplex Method will let us
solve the modified LP using this as starting dictionary.

18.2 Adding a constraint

Now consider instead adding a new constraint to (P). The new constraint
will require adding a new slack variable, say xm+n+1. We need to add this
new variable to the final dictionary as either a basic or non-basic. Once
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again we take our inspiration from the way one writes an initial dictionary:
we’ll guess this new slack variable should be basic.

We can easily express the new slack variable in terms of the original
(i.e., non-slack) variable of (P), indeed, if the new constraint is am+1,1x1 +
am+1,2x2 + · · · + am+1,nxn ≤ bm+1, then the new slack variable is simply
xm+n+1 = bm+1 − am+1,1x1 − am+1,2x2 − · · · − am+1,nxn. But to add a row to
the dictionary for xm+n+1 we’ll need a formula for it in terms of the basic
variables. That’s both easy and familiar: it’s just like the step in the 2-phase
Simplex Method right after phase 1 is over and we need to find a formula
for the objective function in terms of the current basis variables. Here we
do the same thing: in the formula for xm+n+1 above we plug in whatever
the dictionary says for each basic variable occuring, to obtain a formula in
terms of only non-basics.

The resulting dictionary for (P̂) just has an extra row compared to the
final dictionary for P; in particular, it has exactly the same z-row, so it is
automatically dual feasible. And it is “mostly feasible” too: all the basic
variables except for the new one, namely xm+n+1, have the same values as
before, so they are all non-negative.

So, if the resulting value for xm+n+1 in the new row is non-negative,
then the new dictionary is optimal. If not, it is at least dual feasible and the
Dual Simplex Method can take it from there.

18.3 Performing dual pivots

OK, so now we have to explain how to perform a dual pivot. Remember
we will start from a dictionary that is dual feasible and must maintain dual
feasibility. For example, say we have the dictionary:

x2 = 5 −2x1 −x3 +2x6
x3 = −3 +2x1 +4x3 −3x6
x5 = −4 +2x1 −3x3 +x6
z = 2 −x1 −3x3 −2x6

We first pick the exiting variable, for which we should take one of the
variables with a negative value in the associated solution. We’ll pick x5 to
exit, because it has the most negative value21. Now let’s pick the entering

21This is in analogy with the standard pivoting rule. Recall that for the (usual) Simplex
Method we can pick the entering variable to be any of the non-basic variables whose coef-
ficient in the z-row is positive (all of those choices serve to increase the objective function),
but specific pivoting rules tell you exactly which one to pick: the standard rule says to pick
one with the largest positive coefficient, while Bland’s rule says to pick among the variables
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variable, keeping in mind that we want to preserve dual feasibility.
Once we decide on which variable xj enters, the z-row in the next dictio-

nary is obtained as follows: solve the x5 equation for xj and plug that into
the equation for z. Another way to get the same effect is to add a multiple
of the x5-row to the z-row so that xj cancels. If we just use an unknown co-
efficient t, we can do this calculation even before deciding which variable
enters! Namely, the next z-row will come from the following equation:

z + tx5 = (2− x1 − 3x3 − 2x6) + t(−4 + 2x1 − 3x3 + x6),

so the next z-row will be

z = (2− 4t) + (−1 + 2t)x1 + (−3− 3t)x3 + (−2 + t)x6 − tx5,

where we need to choose the value of t so that all the coefficients are non-
positive (to maintain dual feasibility), and so one of the variables x1, x3, x6
disappears from the z-row —that variable will be the entering variable.

Since by design the coefficient of the exiting variable x5 is −t, we see
that t ≥ 0. So then we need to choose the largest non-negative value of t so
that −1 + 2t,−3− 3t,−2 + t ≤ 0. Let’s see how each inequality constrains
t ≥ 0:

• From −1 + 2t ≤ 0, we see t ≤ 1/2.

• The second inequality, −3− 3t ≤ 0, is true for all t ≥ 0 so it does not
impose any restriction on t.

• From −2 + t ≤ 0, we see t ≤ 2.

For all three inequalities to hold we need t ≤ 1/2 (i.e., that is the strong
restriction). So we pick t = 1/2 and x1 will be the entering variable. Now
we can perform the pivot. As a small shortcut, to get the new z-row we can
just plug t = 1/2 into the equation we obtained for z. The next dictionary
works out to be:

x2 = 1 −4x3 +3x6 −x5
x3 = 1 +7x3 −4x6 +x5

x1 = 2 + 3
2 x3 − 1

2 x6 + 1
2 x5

z = 0 − 9
2 x3 − 5

2 x6 − 1
2 x5

with positive coefficient the one with the smallest index. For the Dual Simplex Method we
won’t insist on always following a standard pivoting rule as much as we did for the regular
Simplex Method (since we’ll typically use it in cases where only one pivot suffices).
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We got lucky! This new dictionary turns out to be feasible, so we have
reached optimality after only one dual pivot. Of course, in general, since
we only worried about preserving dual feasibility, the dictionary we get
after pivoting will be dual feasible, but not necessarily feasible. If it’s not
feasible, we just do more dual pivots.

We only described Dual Phase 2. We won’t need the Dual version of
Phase 1 because we will only use the Dual Simplex Method for some cases
of sensitivity analysis, which provide us a dual feasible dictionary.

Also, notice that the step in dual pivoting where we pick the entering
variable is very much like the step in the Revised Simplex Method where
we pick the exiting variable by finding the maximum t ≥ 0 such that x∗B −
td ≥ 0. There, x∗B was the vector of values of the basic variables, and −d
was the vector of coefficients of the entering variable in the top part of the
dictionary. We can make the dual pivoting step look even more similar
to (a transposed version of) this by writing it in terms of row vectors. In
the example above, we were looking for max{t ≥ 0 :

(
−1 −3 −2

)
+

t
(
2 −3 1

)
≤ 0}. Both row vectors are vectors of coefficients of the non-

basic variables x1, x3, x6:
(
−1 −3 −2

)
is the vector of coefficients in the

z-row, and
(
2 −3 1

)
is the vector of coefficients in the x5-row (and x5 is

the variable selected to exit the basis).

19 Some combinatorial optimization problems

Here we’ll mention some examples of modeling problems in combinatorics
using linear programs with binary variables, that is, variables that are re-
stricted to be either 0 or 1.

19.1 The subset sum problem

Given a list of numbers a1, a2, . . . , an and a target sum s, choose some of the
numbers so that their sum is as close as possible to s.

We can model this as an integer programming problem, with a binary
variable xi for each of the number. Here, “binary” means xi is only allowed
to take the values 0 or 1; which in LINDO is expressed by adding INT xi
after the END of an LP. (Variables allowed to take any non-negative integral
value are indicated with GIN xi —the G is for “general”.)

The variable xi will be 1 or 0 according to wheter the number ai is among
the chosen ones. Then the sum of the chosen numbers is a1x1 + . . . + anxn.
So we can model a few variants of this question as integer programs:
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The price is right If we want the sum to be as close as possible to s, without
going over, we can solve:

Maximize a1x1 + . . . + anxn

subject to
a1x1 + . . . + anxn ≤ s

x1, . . . , xn ∈ {0, 1}

Can we get within k? Here we are only interested in whether the constraints
are feasible, so we pick the objective function to be the constant 0: this
makes sure the LP cannot be unbounded.

Maximize 0
subject to

a1x1 + . . . + anxn ≤ s + k
a1x1 + . . . + anxn ≥ s− k

x1, . . . , xn ∈ {0, 1}

Notice that k is a parameter (i.e., a number we need to pick), not a
variable in the LP.

What’s the closest we can get? Just make k a variable too!

Minimize k
subject to

a1x1 + . . . + anxn ≤ s + k
a1x1 + . . . + anxn ≥ s− k

x1, . . . , xn ∈ {0, 1}

19.2 The partition problem

Given a list of numbers a1, . . . , an, split them into two bunches such that the
sums of the numbers in each bunch are as close as possible.

Minimize k

subject to

a1x1 + . . . + anxn ≤ (a1 + · · ·+ an)/2 + k
a1x1 + . . . + anxn ≥ (a1 + · · ·+ an)/2− k

x1, . . . , xn ∈ {0, 1}
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19.3 Shortcomings of these examples

The point of these easy examples is that many questions that seem very
combinatorial and have initially nothing to do with linear programming
can be encoded as linear program with binary variables. Of course, some
encodings can be more clever that others! The ones above aren’t much
good: one way to tell is that the relaxation of those problems is too easy,
which is to say, the whole difficulty of the problem is packed into the con-
straint of the variables being 0 or 1.

For example, the LP for the partition problem always has the optimal
solution k = 0, x1 = x2 = . . . = xn = 0.5, no matter what the ai are!

Next we’ll take a look at a better example of encoding a combinatorial
question as an integer linear program. It has more interesting constraints,
capturing more of the problem and it’s relaxation is not trivial.

19.4 Graph coloring

A graph is simply a collection of vertices some pairs of which are connected
by edges. A proper coloring of the graph is an assignment of a color to
each vertex in such a way that any two vertices connected by an edge are
assigned different colors (but vertices that are not connected directly by
an edge may be assigned the same color). We can model proper colorings
using linear constraints on binary variables as follows:

Let v1, v2, . . . , vn the vertices of the graph and let c1, . . . , cm the available
colors. Introduce a variable xij for every pair of a vertex vi and color cj: xij
will be 1 if vi is assigned color cj and 0 if not. In terms of these variables we
can express the constraints of a proper coloring:

Each vertex must be assigned a color For each i, we have xi1 + xi2 + xim =
1.

Vertices connected by an edge must be assigned different colors For each
pair of vertices vi1 and vi2 that are connected by an edge, and for ev-
ery color cj, we can express that vi1 and vi2 cannot both be color cj via
the constraint xi1 j + xi2 j ≤ 1.

If we want to find out if a graph can be properly colored with some
given number of colors, then these constraints are all we need. What if we
want to know the minimum number of colors in a proper coloring? Well,
if the graph has n vertices, and you have at least n colors available it is
certainly possible to find a proper coloring: just give each vertex a different
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color! And by cleverly choosing an objective function we can find out the
minimum numbers of colors needed (the so-called chromatic number of
the graph).

Say the graph has 9 vertices, for example. Then 9 colors certainly suf-
fice. For every coloring of the graph imagine forming the number whose
digits are simply the number of times each color was used. For example,
the number 000120303 = 120303 means that only four colors we actually
used, one once, one twice, and two colors three times. Depending on how
you number the colors, that same coloring could have gotten the numbers
312030, 2331, or 1233. Notice that 1233 is the smallest number that such
a coloring (i.e., one using four colors, those numbers of times) can receive.
Since numbers with more digits are always larger than numbers with fewer
digits, if you look at the numbers associated to all colorings, the smallest
one must correspond to a coloring with as few colors as possible! So, for
our graph with 9 vertices, the objective function ∑9

j=1

(
∑9

i=1 xij

)
10j−1 is

minimized when the number of colors actually used is as small as possible.
For a graph with n vertices the same thing works, replacing those base

10 numbers with base n + 1 numbers, that is, ∑n
j=1
(
∑n

i=1 xij
)
(n + 1)j−1 will

be minimized at the same time as the number of colors is minmized. Of
course, the minimum value of that objective function is not the minimum
number of colors need to properly color the graph, but given an optimal
solution xij you can easily figure out how many colors it used: just count
for how many j at least one of the xij is 1.

19.4.1 LINDO LP generator

If you are reading this on the website, below you’ll a form that can generate
these LPs in LINDO format, given a description of your graph. If you are
reading this in PDF, the rest of this section will look empty.

20 The tollbooth staffing problem

min x1+x2+x3+x4+x5+x6+x7+x8+x9+x10
+x11+x12+x13+x14+x15+x16+x17+x18+x19
+x20+x21+x22+x23+x24

subject to
12:00am) x1+x17+x18+x19+x20+x22+x23+x24 > 2
1:00am) x1+ x2+x18+x19+x20+x21+x23+x24 > 2
2:00am) x1+ x2+ x3+x19+x20+x21+x22+x24 > 2
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3:00am) x1+ x2+ x3+ x4+x20+x21+x22+x23 > 2
4:00am) x2+ x3+ x4+ x5+x21+x22+x23+x24 > 2
5:00am) x1+ x3+ x4+ x5+ x6+x22+x23+x24 > 2
6:00am) x1+ x2+ x4+ x5+ x6+ x7+x23+x24 > 8
7:00am) x1+ x2+ x3+ x5+ x6+ x7+ x8+x24 > 8
8:00am) x1+ x2+ x3+ x4+ x6+ x7+ x8+ x9 > 8
9:00am) x2+ x3+ x4+ x5+ x7+ x8+ x9+x10 > 8

10:00am) x3+ x4+ x5+ x6+ x8+ x9+x10+x11 > 4
11:00am) x4+ x5+ x6+ x7+ x9+x10+x11+x12 > 4
12:00pm) x5+ x6+ x7+ x8+x10+x11+x12+x13 > 3
1:00pm) x6+ x7+ x8+ x9+x11+x12+x13+x14 > 3
2:00pm) x7+ x8+ x9+x10+x12+x13+x14+x15 > 3
3:00pm) x8+ x9+x10+x11+x13+x14+x15+x16 > 3
4:00pm) x9+x10+x11+x12+x14+x15+x16+x17 > 6
5:00pm) x10+x11+x12+x13+x15+x16+x17+x18 > 6
6:00pm) x11+x12+x13+x14+x16+x17+x18+x19 > 5
7:00pm) x12+x13+x14+x15+x17+x18+x19+x20 > 5
8:00pm) x13+x14+x15+x16+x18+x19+x20+x21 > 5
9:00pm) x14+x15+x16+x17+x19+x20+x21+x22 > 5

10:00pm) x15+x16+x17+x18+x20+x21+x22+x23 > 3
11:00pm) x16+x17+x18+x19+x21+x22+x23+x24 > 3

end

21 Matrix Games

Now we’ll discuss some game theory. This is a broad topic and we’ll only
cover a small portion of it that has a close connection to linear program-
ming. We’ll talk about a particular kind of game we’ll call a matrix game.
These are two player games that proceed in a series of identical rounds, in
each round the two players make a move and depending on the moves ei-
ther a tie is declared or one player is declared the loser and has to pay the
winner a certain amount (that can depend on the moves chosen). To ana-
lyze these games mathematically, we can ignore the nature of the moves:
all we need is to know for each pair of moves for the two players, who wins
and how much. This is recorded in the payoff matrix, a matrix A = (aij)
where aij records the payoff in a round where player one makes move #i
and player two makes move #j; this number aij will be:

• positive if player one wins the round,
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• zero if the round is a tie, and

• negative if player two wins the round.

If we think of winning a negative amount as meaning you actually lost
and you pay the absolute value of that negative amount to the other player,
then we can just think of aij as the winnings for player one in around where
player one makes move #i and player two makes move #j.

Take rock, paper, scissors for example. In each round each player picks
one of those 3 objects and the rules are that rock beats scissors, scissors beats
paper and, somewhat counter-intuitively, paper beats rock. Say that we just
want to keep track of how many more times player one won than player
two. We can say the winner of each round gets a dollar from the loser, then
the net winnings will be simply #wins− #loses. The payoff matrix is:

rock paper scissors
rock 0 -1 1
paper 1 0 -1
scissors -1 1 0

These matrix games are examples of what are called zero-sum games
in game theory: if you add the winnings (with loses counting as “negative
winnings”) of all the players the net result is zero! Indeed, for our games,
in every round the amount one player wins is exactly the amount the other
player loses!

Notice that we’ve made the choice to record the payoff for player one,
i.e., we decided positive numbers mean player one wins and negative num-
bers mean player two wins. We’ll describe this by saying the payoff matrix
is “from the point of view of player one”. What’s the payoff matrix “from
the point of view of player two”? Well, its (i, j)-th entry should be the pay-
off for player two when player two makes move #i and player one makes
move #j; that’s −aji, so the payoff matrix for player two is −A>.

When the rules of the game treat both players exactly the same, the
game is called symmetric, which may be a little confusing because it cor-
responds to the payoff matrix being anti-symmetric, which simply means
A = −A>, i.e., the payoff matrix from the point of view of player two is the
same as the one from the point of view of player one. Rock, paper, scissors
is a symmetric game. Below we’ll see some examples of games that aren’t
symmetric.
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21.1 Mixed strategies

We want to figure out how to maximize your winnings when playing a
matrix game (or at least minimize your losses if the game is stacked against
you!). That sounds like a maximization problem, but what are we maximiz-
ing over? We want to pick the best strategy so we’ll need a mathematical
model of a playing strategy.

One strategy you could follow is to always pick the same move in every
round. We’ll call these pure strategies and there is one for every choice
of move. These are typically poor strategies: for example, if you use the
strategy always play rock in rock, paper, scissors, your opponent will soon
catch on and start using the paper 4ever strategy.

You can do much better by mixing it up unpredictably! In rock, paper,
scissors playing each move one third of the time chosen randomly22 will
protect you against any possible strategy of player two: you will on average
win a third of the rounds, tie a third of the rounds and lose a third of the
rounds. That’s the best you can hope for, since if player two uses that same
uniformly random strategy you won’t win more than a third of the time on
average.

In rock, paper, scissors all the moves are basically equivalent: each
move beats one of your opponents moves, ties with one and loses against
one. So in a random strategy it makes sense to pick them all with the same
probability. In general matrix games this need not be true, so we should
consider playing randomly, but where each move is assigned a possibly
different probability of being chosen.

This is what we will call a mixed strategy: a strategy described by as-
signing each move a certain probability and then playing randomly accord-
ing to those probabilities. If player one has n possible moves, a mixed strat-
egy for player one is given by choosing probabilities x1, x2, . . . , xn. The vec-
tor of probabilities

(
x1 x2 . . . xn

)> is called a stochastic vector, mean-
ing a vector whose entries are non-negative and satisfy x1 + x2 + · · ·+ xn =
1.

Notice that pure strategies are a special case of a mixed strategy: they
are the case where one of the xi = 1 and all the other are 0. So maybe a
better name would be “potentially mixed” strategies, but of course, that’s
just too long! In fact we’ll mostly just say “strategies” instead of “mixed
strategies”.

22For example, you could roll a die and pick rock if it lands 1 or 2, paper for 3 or 4, and
scissors for 5 or 6
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How do we measure how good a mixed strategy is? As a first step,
let’s see how to measure how good a mixed strategy when played against
a specific mixed strategy for the other player. For example, say in rock,
paper, scissors the two players decided to use the following strategies:

Player Rock Paper Scissors
One 1/2 1/2
Two 1/2 1/3 1/6

How do those strategies fare against each other? If the game goes on
for N rounds, we’d expect it to go approximately like this (where Pi means
player #i):

# of rounds P1 P2 P1’s Payoff
N/4 rock rock 0
N/6 rock paper -1
N/12 rock scissors 1
N/4 scissors rock -1
N/6 scissors paper 1
N/12 scissors scissors 0

So the net winnings for player one over the course of those N rounds
will be −N/6 + N/12− N/4 + N/6 = −N/6, for an average of −1/6 per
round. Notice that the N just “comes along for the ride” and cancels in the
end. We could find the average winnings just thinking about probabilities:
for example, with probability (1/2)(1/3) = 1/6, player one picks rock and
player two picks paper, and since with those moves player one loses 1, this
contributes a −1/6 to the average winnings.

In general, assuming player one will follow the mixed strategy x and
that player two will follow the mixed strategy y, we can compute the ex-
pected23 winnings for player one as follows: with probability xiyj player
one will make move #i and player two will make move #j; that combina-
tion results in player one winning aij, so in total the expected winnings of
player one are ∑i,j aijxiyj = x>Ay.

21.2 The value of a game

Now that we know how to evaluate any pair of mixed strategies against
each other, let’s think about how to find optimal strategies. Let’s think

23“Expected” is a term from probability theory, you can think of these expected winnings
as the average winnings per round of player one if both players used those strategies over
the course of many, many rounds.
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from the point of view of player one. Player one has no control over what
strategy player two will use, so to play it safe, player one should pick one
that maximizes her winnings assuming player two responds as well as pos-
sible against the strategy. If player one use strategy x, the best player two
can do against that would be to pick a strategy y that minimizes x>Ay —
remember that that expression computes the expected winnings for player
one, so player two wants to minimize it! So if player one uses strategy x, she
can’t guarantee she’ll win more than minstoch. y x>Ay (where the minimum
is taken over all stochastic vectors y) on average per round. To be prepared
for player two playing as smart as possible, player one should choose the
strategy x that maximizes that number, i.e., player one should compute:

v(A) = max
stoch. x

(
min

stoch. y
x>Ay

)
.

We’ll call that number the value of the game. It is the largest num-
ber v so that player one has a mixed strategy that guarantees an expected
winnings per round of at least v. To compute v(A) we will phrase the
maximization as a linear program, which can then solved via the Simplex
Method.

The key step is that the inner minimization is actually very simple! For
a fixed stochastic vector x we want to find the minimum value of x>Ay
where y varies over all stochastic vectors (of the appropriate size). We can
think of this in terms of the game: player one is committed to using strategy
x, player two knows this and is trying to figure out how to best respond.
In that situation, player two could simply figure out which pure strategy
is best against x and just use that! For example, if in rock, paper, scissors
player one proclaims: “I shall play rock 70% of the time, paper 20% and
scissors 10%!”, player two should respond by always playing paper!

In more algebraic terms, what we are saying is that

min
stoch. y

x>Ay = min entry of x>A.

This is not hard to prove formally: if x>A = (s1, s2, . . . , sm) and sj is the
smallest of those entries, we have for any stochastic vector y:

x>Ay = s1y1 + s2y2 + · · ·+ smym

≥ sjy1 + sjy2 + · · · sjym = sj(y1 + · · ·+ ym) = sj.

Since when we take y to be the pure strategy for move #j equality is at-
tained, we can conclude that minstoch. y x>Ay = sj.
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Using this we can easily turn the computation of the value of the game
into a linear program. We’ll add a variable z to stand for the minimum
entry of x>A. Of course, we can’t simply put “z = min entry of x>A” as
a constraint in the linear program. But if we put in constraints that say
“z ≤ jth entry of x>A” for each j, then those already tells us z is at most the
minimum entry. Since z is exactly what we wish to maximize, in any opti-
mal solution z will be equal to that minimum entry. Putting it all together
this is the LP we get:

Maximize z

subject to (
z z . . . z

)
≤ x>A

x1 + x2 + · · ·+ xn = 1
x1, x2, . . . , xn ≥ 0

The optimal value of this LP is v(A), the value of the game with matrix
A. Notice that this LP always has an optimal value:

• It is feasible because we can get a feasible solution by taking x to be
any stochastic vector and z to be the minimum entry of x>A.

• It is bounded because as x varies over all stochastic vectors, the en-
tries of x>A are bounded (by ∑i,j |aij|, for example), and thus so is the
objective function z.

21.3 The minimax theorem

The analysis above is written from the point of view of player one. Player
two could also carry out similar reasoning and reach the conclusion that
the smallest number v such that player two has strategy that guarantees
that player one can’t find a strategy against it with more than v expected
winnings is equal to

min
stoch. y

(
max
stoch.x

x>Ay
)

.

We can also repeat the argument in the last section: first, to show that

max
stoch. x

x>Ay = max entry of Ay,

and second, to find an LP whose optimal value is that minimum that player
two wants:
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Minimize w

subject to (
w w . . . w

)> ≥ Ay
y1 + y2 + · · ·+ ym = 1

y1, y2, . . . , ym ≥ 0

If you look at this LP carefully you’ll notice something wonderful: it’s
the dual of the LP for player one!24 Let’s figure out what duality theory
for these LP’s means in terms of the games. For that, notice that there is
a strong connection between feasible solutions and mixed strategies. Take
the LP for player one, for instance. Its variables are the xi and an extra
variable z. A feasible solution is precisely a stochastic vector x together with
a number z that is at most the minimum entry of the vector x>A. Given any
stochastic vector x we can get a corresponding feasible solution simply by
setting z := min entry of x>A; and this value of z is the maximum we can
take for a feasible solution that includes x.

Using that correspondenc we can translate results from duality theory
for LPs to results about matrix games.

Strong duality tells us the optimal values of primal and dual must agree
(when those LPs have optimal solutions, which as we saw above, is guar-
anteed in this case). This translates to:

Theorem 7. (Minimax) For any matrix A the value of the game with payoff
matrix A can be computed in the folowing two equivalent ways:

v(A) = max
stoch. x

(
min

stoch. y
x>Ay

)
= min

stoch. y

(
max
stoch.x

x>Ay
)

.

We can also use duality theory to get a very convenient way to check
whether or not strategies are optimal. The fact that given feasible primal
and dual solutions they are optimal if and only if their objective functions
agree translates to:

Theorem 8. Let A be the payoff matrix of a game. Then two stochastic vectors x∗

and y∗ are optimal strategies for players one and two if and only if

min entry of x∗>A = max entry of Ay,

in which case the common value of those expressions is the value of the game.

24Exercise: carefully check this!
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If you have a good guess as to what optimal strategies for players one
and two are then the above theorem is certainly the best way to prove your
guess is correct. But even if you only have a guess for player one it might be
that the easiest way to show you’re right is to make a guess for an optimal
strategy for player two and check using this theorem.

21.4 Symmetric games are fair

A game is called fair is its value is zero. This means that on average the
wins and loses for each player balance out. Remember that a game is sym-
metric if “its rules are the same for player one and player two”, or mor
formally, if its payoff matrix is antisymmetric: A = −A>. It seems obvi-
ous that a symmetric game is fair: if the rules are the same for both player,
neither player should have an advantage! Let’s show that.

Lemma 1. For any payoff matrix A, v(A) = −v(−A>).

Notice that this is for an arbitrary matrix, we are not assuming that
A = −A>.

Proof. We can argue directly in terms of games: remember that −A> is the
payoff matrix from the point of view of player two, so v(−A>) is the value
of the game from the point of view of player two. This of course is just
−v(A).

Alternatively, we can compute from the formula for the value:

v(−A>) = max
stoch. x

(
min

stoch. y
x>(−A>)y

)
=(1) max

stoch. x

(
min

stoch. y
−y>Ax

)
=(2) max

stoch. x

(
− max

stoch. y
y>Ax

)
=(2) − min

stoch. x

(
max

stoch. y
y>Ax

)
=(3) − min

stoch. y

(
max

stoch. x
x>Ay

)
= −v(A).

Where the equalities are true for the following reasons:

1. Since x>A>y is a 1× 1 matrix it is automatically equal to its tranpose
x>A>y =

(
x>A>y

)
= y>Ax
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2. The minimum of minus something is equal to minus the maximum
of that something.

3. The names of the variables are irrelevant, we can rename x to y and
viceversa.

Now if the game is symmetric, that is, if A = −A>, the lemma tells us
that v(A) = −v(−A>) = −v(A), from which we conclude that v(A) = 0.

21.5 Dominated moves can be removed

Certain moves are never a good idea. If player one has two moves, say #k
and #i such that against every move of player two the payoff using move
#k is at least as much as it is for move #i, then player one can simply decide
to never use move #i and doesn’t miss out any potential payoff. We’ll say
that move #k dominates move #i.

We can state that dominated moves are irrelevant as follows:

Proposition 2. If a payoff matrix A satisfies that rowk(A) ≥ rowi(A), then
there exists an optimal strategy x∗ for player one in which x∗i = 0.

Before we prove this, a couple of remarks:

• Notice that we can’t claim that in every optimal strategy for player one
we have x∗i = 0, i.e., that move #i is never used in an optimal: for one
thing rows k and i could be equal, but even if they are not, they could
differ only in entries occurring in columns that an optimal strategy
for player two doesn’t need to use, in which case the difference is not
relevant. The best we can say is that it is possible to avoid using move
#i in an optimal strategy.

• By symmetry there is an analogous proposition for player two: if
colk(A) ≥ coli(A), then there is an optimal strategy y∗ for player
two in which y∗k = 0. Notice that with that inequality, move #k is the
one that player two can avoid: it always give a payoff for player one
that is at least as large as the one from move #i.

Proof. We’ll argue that given any optimal strategy x∗ for player one, if we
shift all the probability from move #i to move k (to get a new strategy that
gives move #i a probability of 0), the new strategy is also optimal.
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Let ei be the stochastic vector that has a 1 in spot i and 0s everywhere
else. Then the strategy obtained from x∗ by shifting all the weight from
move #i to move #k is x◦ := x∗ − x∗i ei + x∗i ek. To check this new mixed
strategy is still optimal, we just need to show that for the corresponding
feasible solution of the player one LP the objective function is at least as
large as it was for x∗. Since x∗ achieved the maximum, that would imply
the objective functions are actually equal and the strategy x◦ is optimal too.

So we need to show that min entry of x◦>A ≥ min entry of x∗>. This
follows from:

x◦>A = (x∗ + x∗i (ek − ei))
> A

= x∗>A + x∗i (e
>
k A− e>i A)

= x∗>A + x∗i (rowk(A)− rowi(A))

≥ x∗>A.

Once we know that a move can be avoided, we can just remove that row
or column from the matrix and get a smaller game with the same value! And
sometimes after removing a move there appears a new dominated move
that can be removed in turn and so on. For example, consider the game
with payoff matrix:

A =


3 4 1 −5 −2
1 −3 10 −1 2
7 −1 8 5 6
8 −2 9 4 3

 .

Columns 1 and 3 are both dominated by column 4, so we can reduce to:

A′ =


4 −5 −2
−3 −1 2
−1 5 6
−2 4 3

 .

Now rows 2 and 4 are dominated by row 3 (and this wasn’t true in A!),
so we can reduce to:

A′′ =
(

4 −5 −2
−1 5 6

)
.

Finally, column 3 is dominated by column 2, so we can reduce to:

A′′′ =
(

4 −5
−1 5

)
.
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At this point no move dominates another move so if we want to com-
pute v(A′′′), we need to do something else. We could of course just use the
Simplex Method on the LP for player one:

Maximize z

subject to
z ≤ 4x1 − x2

z ≤ −5x1 + 5x2

x1 + x2 = 1
x1, x2 ≥ 0

But maybe for such a small problem it’s not worth it to bust out the
Simplex Method. Just let t = x1 so x2 = 1− t. The LP becomes:

Maximize z

subject to
z ≤ 5t− 1
z ≤ 5− 10t
0 ≤ t ≤ 1

Now, 5t − 1 ≤ 5 − 10t when t ≤ 2/5. So for 0 ≤ t ≤ 2/5 we have
z ≤ 5t − 1 and the maximum is for t = 2/5, z = 1. For 2/5 ≤ t ≤ 1 we
have z ≤ 5− 10t and the maximum is again t = 2/5, z = 1.

So we get that v(A′′′) = 1 and that an optimal strategy is given by(
2/5 3/5

)>. This in turn means that v(A) = 1 with optimal strategy(
0 2/5 0 3/5 0

)>.

21.6 Example games

21.6.1 Battleship

Let’s look at an overly simplified version of the game of Battleship. In
Battleship each player hides some rectangular ships on a board and then
the two players take turns picking locations on the board to shoot, try to
sink the other player’s ships. Our simplified version pares this down a lot:

There is a rectangular board of size m× n. Player one moves by placing
a ship of length ` somewhere on the board (either horizontally as an `× 1
rectangle, or vertically as a 1× ` rectangle). Player two picks one of the mn
squares on the board to shoot at. Player two wins the round if he hits the
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ship that player one hid, otherwise player one wins the round. The payoff
is 1 to the winner of the round.

Let analyze the example of a board of size 2 × 3 with player one placing
a ship of length 2.

1. LINDO LP generator

If you are reading this in PDF form, the rest of this section is empty,
but in the webpage version, there is an interactive Battleship LP gen-
erator that will write the LP to compute the value of the game given
the size of the board and the size of the ship.

21.6.2 Morra

The game of Morra is played as follows. In each round each player hides
either one or two francs and also guesses how many francs the other player
hid (they guess in secret and reveal their guesses simultaneously). If either
both players guess incorrectly or both players guess correctly the round
is a tie and no money changes hands. But if exactly one player guesses
correctly, then that player gets to keep the francs hidden by both players!

So the moves can be described by a pair of numbers: how many francs
you hide and how many francs you guess the other player hid. We’ll use,
for instance, H1G2 to indicate you hide 1 and guess the other player hid 2.
The payoff matrix is then:

H1G1 H1G2 H2G1 H2G2
H1G1 0 2 -3 0
H1G2 -2 0 0 3
H2G1 3 0 0 -4
H2G2 0 -3 4 0

This matrix is anti-symmetric, of course: the game’s rules as the same
for both players. So the value of the game is zero. You can confirm this in
LINDO and find a pair of optimal strategies with the following LP:

max z
subject to

z+2x2-3x3 < 0
z-2x1+3x4 < 0
z+3x1-4x4 < 0
z-3x2+4x3 < 0
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x1+x2+x3+x4 = 1
end
free z

The LINDO output is:

LP OPTIMUM FOUND AT STEP 4

OBJECTIVE FUNCTION VALUE

1) 0.0000000E+00

VARIABLE VALUE REDUCED COST
Z 0.000000 0.000000

X2 0.600000 0.000000
X3 0.400000 0.000000
X1 0.000000 0.142857
X4 0.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.000000
3) 0.000000 0.571429
4) 0.000000 0.428571
5) 0.200000 0.000000
6) 0.000000 0.000000

NO. ITERATIONS= 4

This tells us that the following are optimal strategies:

• For player one: 60% of the time hide 1, guess 2; 40% of the time hide
2, guess 1.

• For player two: 57.1429% = 4/7 of the time hide 1, guess 2; 42.8571%
= 3/7 of the time hide 2, guess 1.

Of course, there are other optimal strategies, the Simplex Method is
content with finding one.

Now imagine that after a while of playing player two gets bored and
cocky and proposes a variant to player one: both players hide 1 or 2 francs
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as before, then player two make a guess and reveals it, then player one
guesses (player one is allowed to change her guess based on player two’s
guess, but not to change the number of francs she hides). Player two fig-
ures that this won’t make a difference: she’s not revealing the number of
francs she hid, only the guess, and player one can’t change the number of
francs she hid after hearing player two’s guess, only guess differently than
she would have. It seems to player two that this will mess with player one’s
mind without actually conferring any advantage, i.e., the value of the game
will still be 0. Is she right?

Let’s see! Player one now has four guessing options: as before she can
guess 1 or guess 2, but now she also has the option of guessing the same as
player two (we’ll denote this by “S” for same), or guessing differently than
player one. The new payoff matrix is:

H1G1 H1G2 H2G1 H2G2
H1G1 0 2 -3 0
H1G2 -2 0 0 3
H2G1 3 0 0 -4
H2G2 0 -3 4 0
H1GS 0 0 -3 3
H1GD -2 2 0 0
H2GS 3 -3 0 0
H2GD 0 0 4 -4

Let’s put this new game into LINDO:

max z
subject to

z+2x2-3x3+2x6-3x7 < 0
z-2x1+3x4-2x6+3x7 < 0
z+3x1-4x4+3x5-4x8 < 0
z-3x2+4x3-3x5+4x8 < 0
x1+x2+x3+x4+x5+x6+x7+x8=1

end
free z

The result may be a little surprising:

LP OPTIMUM FOUND AT STEP 7

OBJECTIVE FUNCTION VALUE
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1) 0.4040404E-01

VARIABLE VALUE REDUCED COST
Z 0.040404 0.000000

X2 0.565657 0.000000
X3 0.404040 0.000000
X6 0.020202 0.000000
X7 0.000000 0.101010
X1 0.000000 0.070707
X4 0.000000 0.101010
X5 0.000000 0.070707
X8 0.010101 0.000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.282828
3) 0.000000 0.303030
4) 0.000000 0.212121
5) 0.000000 0.202020
6) 0.000000 0.040404

NO. ITERATIONS= 7

The value of the game is 4/99! So player two was wrong: revealing her
guess first does confer a slight advantage to player one!

22 All problems are basically the same

We’ve explained how to use the Simplex Method to solve systems of lin-
ear inequalities and to find optimal strategies for matrix games. In both
cases this was accomplished by taking the problem we wanted to solve
and using it to create a related linear program whose solution would also
tell us how to solve the starting problem. This means that not only the Sim-
plex Method, but any method for solving LPs can be used to for both those
tasks. In particular, linear programming is at least as hard as those other
problems: an easy method for solving linear programs would give us an
easy method for these other problems. But is linear programming equally
hard or is it harder?

We’ll compare the following three problems:
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1. LP: Solving linear programs.

2. Ineq: Solving systems of linear inequalities (and you can allow some
equations thrown in too).

3. Games: Finding optimal strategy for matrix games.

To show two such problems, say A and B, are “equally hard” we have
to reduce A to B and vice versa. Reducing A to B means explaining:

• Given P, an example of a problem of type A (called an instance of
A) how to construct an instance Q of B whose solution will helps us
solve P.

• How to interpret a solution for Q to produce a solution of P.

If we can do both of these things any method of solving problems of
type B can be used to solve problems of type A too. So solving problems of
type A can’t really be harder than solving problems of type B.

22.1 Warm up: LP and LPstd

As an easy warm up let’s consider the tasks LP of solving linear problems
and LPstd of solving linear programs in standard form. Let’s be clear about
what a solution to an LP means in this context: it means that we deter-
mine if the LP is infeasible, unbounded or has an optimal solution; if it is
unbounded we find a 1-parameter unbounded family of feasible solutions,
and if it has optimal solutions we find one.

Clearly it’s not harder to solve standard form LPs than to solve arbitrary
LPs! So LPstd reduces to LP trivially: given a standard form LP you don’t
have to do anything to convert it to an LP, and if you have a solution for it
thought of as an LP that is obviously also a solution for it thought of as a
standard form LP.

The interesting reduction is to go the other way: reduce solving arbi-
trary LPs to solving standard form LPs. This is one of the first things we
studied: converting LPs to standard form. We gave a simple procedure for
doing so, that came with a corresponding procedure to interpret the solu-
tion of the standard form LP as a solution to the original LP.

The only reason I bring this simple example of comparing two problems
up is to point out that when you convert an LP, say P, to standard form, say
Pstd, you really do have to do something to interpret the solution of Pstd as a
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solution to P. It’s not hard, but it’s not nothing either. Here’s a sketch of the
procedure:

If Pstd is infeasible, unbounded or has an optimal solution so does P.
In the infeasible case that’s all there is to say, in the other cases we need
to know how the variables of the two LPs correspond. If P had any free
variables, say x, then Pstd has in place of x two variables x′ and x′′; a solu-
tion for Pstd will include values for x′ and x′′, and to get the value of x in
the corresponding solution of P we set x := x′ − x′′. Also, if the objective
function of P had a constant term, for example, if P started with “maximize
x1 + 2x2 − x3 + 7”, then Pstd had objective function x1 + 2x2 − x3, without
the 7, so the optimal value of P is the optimal value of Pstd plus 7. Even if P
had no constant term, if it was a minimization question, the optimal value
of P is not the same as the optimal value of Pstd: they differ in sign.

OK, enough about that let’s pass to more interesting comparisons.

22.2 LP and Ineq

Let’s start by being clear about what it should mean to solve a system of
linear inequalities: we should be able to decide whether they have a simul-
taneous solution and if they do, to find one.

We already discussed a reduction in one direction between LP and Ineq.
Pause a bit to make sure you know which direction and what we called it.

The reduction of Ineq to LP is basically Phase 1 of the Simplex Method!
Not quite, because we also need to convert to standard form to use the exact
construction we used in Phase 1. Let’s review it:

To solve a system of linear inequalities, you first convert it to standard
form Ax ≤ b, x ≥ 0, just like you do for the constraints of an LP. Once it is
in that form you make the auxiliary LP:

Maximize −x0

subject to

{
Ax−

(
x0 x0 . . . x0

)> ≤ b
x0, x ≥ 0

How do you interpret the solution to this LP as a solution to the sys-
tem of inequalities? Well, this LP always has an optimal solution and all
optimal solutions have the same value of x0

25. If x0 = 0 then the system
of inequalities has solutions and, for the standard form version, a solution

25Exercise: Why was that again?
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is given by the vector x. If x0 > 0 then the system of inequalities has no
solution.

What about the other direction? Does is sound plausible that you can
reduce LP to Ineq? That having the ability to solve systems of inequalities
means you also have the ability to solve any linear program? It does, by
the following clever trick!

Take any LP. We may as well assume it is in standard form, say

Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0

We need to find out if it is infeasible, unbounded or has an optimal
solution, and we are assuming we have the ability to solve systems of linear
inequalities. We can first check if the LP is feasible simply by checking if
the system of inequalities given by the constraints has a solution. If not, we
are done: the LP is infeasible.

So now assume the LP is feasible. Look at the dual:

Minimize b · y

subject to

{
A>y ≥ c

y ≥ 0

We can use our powers of inequality solving to find out if the dual is
feasible. If not, the primal was unbounded (by strong duality).

So now assume both primal and dual are feasible. At this stage we
know the primal must have an optimal solution, but we still need to find
one. To do that we can form the following system of inequalities:

Ax ≤ b
x ≥ 0

A>y ≥ c
y ≥ 0

c · x ≥ b · y

We put in the constraints of both the primal and the dual, and also the
constraint that the objective function of the primal is greater than or equal
to that of the dual. If this system of inequalities has a solution, then x is
feasible for the primal, y is feasible for the dual and the objective functions
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agree: indeed, the system includes the inequality c · x ≥ b · y and the op-
posite, c · x ≤ b · y is true by weak duality. Then, again by duality theory, x
is optimal for the primal.

Notice that in this reduction we reduced solving an LP to solving three
systems of inequalities. We can easily save one: just try the last system
of inequalities first. That’ll discover if the LP has an optimal solution. If
not, try the constraints of the LP: that’ll tells us if the LP was infeasible or
unbounded.

If we had defined “solution of an LP” to mean only “find an optimal
solution if there is one, otherwise just say there is no optimal solution”; call
that modified problem LPopt. Then we would only need the last system of
inequalities, the one with both x and y in it.

22.3 LP and Games

We’ve already seen how to use linear programming to find optimal strate-
gies of games, that is we saw a reduction of Games to LP. Can we go the
other way? Almost, but again the way to do it is a clever trick.

Say you have an LP, that we may as well assume is in standard form:

Maximize c · x

subject to

{
Ax ≤ b

x ≥ 0

We’ll build a payoff matrix out of it as follows:

M =

 0 −c> b>

c 0 −A>

−b A 0


Notice that M = −M> so that v(M) = 0. We won’t quite be able to

interpret an arbitrary optimal strategy for M as a solution for the LP we
started with, so this technically won’t reduce LP to Games. Here’s what we
can prove:

Theorem 9. The LP above has an optimal solution if and only there is an optimal

strategy for M that uses the first move with positive probability. If u =

 s
x′

y′

 is

such an optimal strategy with s > 0, then x := x′/s is an optimal primal solution
and y := y′/s is an optimal dual solution.
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Before we get to the proof: why does this talk about optimal strategy
without specifying the player? Well, since M = −M>, we have (u>M)> =
M>u = −Mu, so the minimum entry of u>M is v(M) = 0 if and only if
the maximum entry of Mu is 0. This shows that u is optimal for player one
if and only if it is optimal for player two.

Proof. Assume first that u =

 s
x′

y′

 is an optimal strategy. Then we know

that the maximum entry of Mu =

−c · x′ + b · y′
sc− A>y′

−sb + Ax′

 is v(M) = 0. In par-

ticular all of the entries of that vector must be ≤ 0. If s > 0, we can divide
all of those inequalities by s to get that x := x′/s is a feasible primal solu-
tion, that y := y′/s is a feasible dual solution and that c · x ≥ b · y, which
implies both are optimal.

Conversely, if the LP has an optimal solution x and an optimal solution

y we can set s := ∑j xj + ∑i yi + 1, x′ := sx, y′ := sy and u :=

 s
x′

y′

.

It is easy to check that u is stochastic and, reversing the work above, that
Mu ≤ 0 and that the first entry is −c · x′ + b · y′ = s(−c · x + b · y), which
is 0 by strong duality. So the maximum entry of Mu is v(M) = 0 and thus
u is an optimal strategy in which s > 0.

So we didn’t quite reduce LP to Games for two reasons:

• We can only tell if the LP has an optimal solution or not. In case it
doesn’t, this game doesn’t seem to tells us whether the LP is infeasible
or unbounded.

• We weren’t using just the ability of finding optimal strategies for ma-
trix games, but rather the souped up ability to tell whether or not
some optimal strategy uses the first move and if so to find one.

So, to be more precise we reduced LPopt to Games’, where:

• LPopt is the problem of determining whether an LP has an optimal
solution and finding one if it does, and

• Games’ is the problem of determining whether or not a game has an
optimal strategy for player one that assigns the first move a non-zero
probability and finding such an optimal strategy if it does.
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23 The cutting stock problem

Chapter 13 of Chvátal’s Linear Programming explains that paper is produced
in big, wide rolls called raws. Customers can order rolls of different widths
which are formed by cutting the raws; the resulting rolls are called finals.
For example, a manufacter that makes raws 200cm wide might receive or-
ders for several finals of 47cm and 33cm and decide to cut a raw into two
rolls of width 47cm and three rolls of width 33cm with 7cm left over as
waste (200 = 47×2 + 33×3 + 2).

We can use linear programming to find the most economical way of
cutting raws into finals. This is known as the cutting-stock problem.

23.1 Specification

Width of raws:

23.2 Cutting Patterns

23.3 Linear Program
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