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ABSTRACT
Supported by increasingly efficient HPC infra-structure, nu-
merical simulations are rapidly expanding to fields such as
oil and gas, medicine and meteorology. As simulations be-
come more precise and cover longer periods of time, they
may produce files with terabytes of data that need to be effi-
ciently analyzed. In this paper, we investigate techniques for
managing such data using an array DBMS. We take advan-
tage of multidimensional arrays that nicely models the di-
mensions and variables used in numerical simulations. How-
ever, a naive approach to map simulation data files may lead
to sparse arrays, impacting query response time, in particu-
lar, when the simulation uses irregular meshes to model its
physical domain. We propose efficient techniques to map
coordinate values in numerical simulations to evenly dis-
tributed cells in array chunks with the use of equi-depth his-
tograms and space-filling curves. We implemented our tech-
niques in SciDB and, through experiments over real-world
data, compared them with two other approaches: row-store
and column-store DBMS. The results indicate that multidi-
mensional arrays and column-stores are much faster than a
traditional row-store system for queries over a larger amount
of simulation data. They also help identifying the scenarios
where array DBMSs are most efficient, and those where they
are outperformed by column-stores.

1. INTRODUCTION
Scientific applications produce ever increasing amounts of

data that need to be managed and analyzed. A numeri-
cal simulation (simulation for short) is a type of simulation,
based on numerical methods, used to represent the evolution
of a physical system quantitatively. It has been extensively
adopted in many disciplines, such as: astronomy; medicine,
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biology, and oil and gas. It enables the investigation of phe-
nomena where observed data is not available, such as the
state of our universe after the big bang, or even when a
complex and dangerous intervention, as in medicine, needs
to follow some trials.

A simulation solves a set of differential equations, repre-
senting the physics involved in the studied phenomenon and
its evolution in space and time. The simulation adopts a spa-
tial representation of the phenomenon domain in the form of
a geometrical mesh, composed of triangles or tetrahedrons,
that guides the computation through a discretization of the
space on its elements such as: vertexes, edges and faces. The
solution of the equations finds the values for the predictive
variables, such as velocity and pressure, and their variation
along the discretized space and time. Moreover, a simulation
may combine one dimension (1D) with 3 dimensional (3D)
meshes. The latter requires more intensive computation and
is left for areas of the simulation domain that demand more
precise calculation.

Simulations need to have their initial conditions tuned in
order to improve their quality. Aiming at finding the right
parameter composition, modelers run parameter sweeps, that
iterate the simulation execution with different parameter
values. Thus, the combination of precise 3D space model
and extended time-step simulation interval, with parameter
sweeps leads to large simulation output files.

In this work, we are interested in managing the data pro-
duced by simulations. Such data can be viewed as a recur-
ring point cloud that repeats itself along many time steps
and simulation trials ( see Figure 1). Each point on a cloud
is associated to predictive variables, whose values vary on
each time step and simulation trial, forming a set of point
clouds.

Typically, the simulation output is written to disk as raw
files. The latter may be input into a visualization tool, such
as Paraview, which allows the modeler to visually assess the
simulation quality. Similarly, modelers may apply quanti-
tative analysis on the predictive variable results by writ-
ing specific programs to process the simulation files. This
method becomes inefficient and hard to scale as the vol-
ume of data increases. As an example, our colleagues at
HeMoLab have written programs that load in memory large
simulation datasets to capture the simulation results in a
zone of interest, such as looking for the behavior on a brain
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Figure 1: Recurring Point Cloud Data on Different
Time Steps and Simulations

aneurysm region [3], which requires a query on a space-
time slice of the dataset. Traversing thousands of simu-
lation datasets and comparing results in a particular region
and time interval can be efficiently computed in a parallel
DBMS, if the parameter sweep computation output is well
stored in a distributed system.

Furthermore, due to the lack of isolation between the ap-
plications and the data, any eventual changes to the data
(i.e. improving the simulation) might require the software
to be changed as well. In this context, providing the ben-
efits of a declarative query language for simulation results
analysis and a system that scales to support large numerical
simulation data will bring state-of-the art data management
techniques to this area.

Figure 2 illustrates an analysis used to evaluate the sim-
ulation output. It comprises the calculation of the mean
squared error between the simulation data (denoted by F )
and a reference function (denoted by G), in order to deter-
mine how much the resulting predictive values deviate from
a pre-calculated reference value in every point. If the data
is stored in a DBMS, this analysis can be expressed by a
declarative (SQL-like) query, instead of requiring additional
coding of another application.

Figure 2: Mean Squared Error Analysis Example

Traditional row-store DBMSs, usually tailored for OLTP
workloads, are considered inadequate for the analytical work-

load required by scientific applications [18]. Stonebreaker
has pointed [19] the inability of current relational DBMS
products to satisfy the requirements of a wide range of do-
mains, and argues for specific database engines for different
kinds of data centric applications with distinct data models.

Specific data models can offer not only a more convenient
representation but may improve query performance through
more adequate algorithms. An array DBMS, such as SciDB
[2], offers an interesting multidimensional model to represent
simulation data, as it leads to a very intuitive mapping of
the geometrical portion of simulation data to dimensions
and cells in the array. Specifically, the space-time domain
dimensions and the simulation trials are mapped to array
dimensions, while predictive variable values are mapped to
cells of the multidimensional array.

However, some data characteristics might pose difficulties
for an array representation. Unstructured meshes, designed
to represent complex physical domains, have an irregular
distribution of points in space. Mapping such irregular dis-
tribution of points onto arrays can produce a sparse multidi-
mensional cube, and incur into performance penalties during
array transfer from disk into memory. As our experiments
show, different mappings may produce variations in perfor-
mance of more than 700%. For this reason, we investigate
different techniques for managing the data produced by sim-
ulations, such as those coming from HeMoLab, by using an
array DBMS.

Moreover, recent advances in in-memory column-stores for
analytical workloads in scientific data [4, 10], such as Mon-
etDB [9], may also switch the balance from a choice based on
data representation to an efficient relational DBMS. There-
fore, we implemented our techniques in the SciDB array
DBMS and compared them, through experiments over real-
world data, with two other techniques based on PostgreSQL
(regular row-store RDBMS) and MonetDB (column-store
RDBMS). The experiments are carried out according to a
benchmark composed by range queries and real life analysis
used for improving the simulation.

The experimental results indicate that whenever the com-
plete dataset fits in memory, MonetDB outperforms the
other techniques. For large datasets, SciDB equipped with
our techniques shows better results.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the cardiovascular system simulation, devel-
oped at LNCC, that motivated this work. Section 3 presents
the multidimensional array data model. Section 4 describes
our techniques to represent simulation data using an array
DBMS. Section 5 describes the representation of simulation
data using a relational DBMS. Section 6 presents our experi-
mental evaluation. Section 7 discusses related work. Finally,
Section 8 concludes.

2. NUMERICAL SIMULATION DATA
In order to run a simulation, one must first build the

mathematical model that captures the behavior of the stud-
ied phenomenon. Commonly, mathematical models are ex-
pressed by differential equations that are solved by a vari-
ety of numerical methods, such as FDM (Finite Difference
Method) and FEM (Finite Element Method). The software
component that solves a set of differential equations apply-
ing a particular numerical method is called a solver. The
adopted numerical method might require the discretization
of the physical domain in a form of a mesh.
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Meshes have topological and geometrical representations.
Geometrical aspects are related to shapes, sizes and absolute
positions of their elements, such as vertexes or points. The
topology representation captures the relationships among el-
ements, like their neighborhood or adjacency, without con-
sidering their position in time and space.

The distinction between these two concepts, i.e. mesh
geometry and topology, is important in the context of our
work. We believe that, although the topological represen-
tation might require a more elaborated solution [8], both
arrays and relations can be sufficient to represent the ge-
ometry of a mesh. Indeed, important queries can evaluate
the simulation output by assessing the values of predictive
variables associated to mesh points in time, irrespectively of
topological constraints. Thus, in this paper, we constrain
our discussions to geometric aspects of meshes.

Vertexes in the geometrical representation of a mesh can
be viewed as forming a point cloud. A mesh guides solvers
during simulation computation, such that, the predictive
variables computed by the model have their values assigned
at each vertex point, for each time step. Moreover, runs with
different parameters of the same model may use the same
geometry mesh as space discretization. The resulting output
data, shown in Figure 1, can be viewed as a recurring point
cloud appearing at different time steps and simulations.

2.1 Use Case
The HeMoLab group at LNCC has developed computa-

tional tools to simulate the human cardiovascular system
[7]. The simulation adopts a geometrical representation of
the arteries in the human body in the form of a mesh. This
representation is used in 1D and 3D simulations, working
together as a coupled model [1].

One dimensional (1D) models represent the human car-
diovascular system in a simplified form. Main arteries of
the human body are modeled as a set of lines. Three di-
mensional (3D) models are used in order to achieve a higher
level of detail about the behavior of the blood flow inside an
artery.

Figure 3 shows how the 1D and 3D models are arranged
in space. Both 1D and 3D meshes actually contain points
in 3D with x, y and z coordinates. However, the 1D model
contains a linear representation of the arteries in the entire
body, while the 3D model has a much more detailed repre-
sentation of a single artery. Combined, 1D and 3D meshes
have over 90 thousand points, most of them (about 99%)
belong to the 3D model and the remaining 1% to the 1D
model.

Figure 3: 3D-1D coupled model

The numerical solver, which is in charge of executing the
simulation, computes for each position in the mesh, and
for many time steps, physical quantities; such as: pressure,
blood flow velocity and mesh displacements in the case of
dealing with deformable domains. The solver reads a set of
input files that describe the parameters of the model and
stores the results in raw files, which requires scientists to
write specific applications for any kind of analysis needed. In
this context, storing simulation data in a DBMS would allow
researchers to use a declarative query language to execute
analyses more efficiently.

These analyses could be as simple as retrieving data from
a subset of simulations or time steps, or even obtaining the
result from an aggregation function for a spatial window
(range query). In our benchmark we include more complex
real life analyses, such as calculating the mean squared error
between the data in the simulation and a reference function
(see Figure 2), and obtaining the time step required for an
attribute to reach its maximum value on each point.

The Human Cardiovascular simulation and the analytical
queries mentioned above will form the basis of our bench-
mark to evaluate strategies for managing point cloud data.

3. MULTIDIMENSIONAL ARRAYS
In this section, we describe the multidimensional array

data model, and its implementation in SciDB. We chose to
use SciDB as the array DBMS in our evaluation because it
directly implements the model instead of just adding array
processing capabilities to a relational system. Also, SciDB
is a distributed system, tailored to the requirements of some
scientific application domains.

Multidimensional arrays are defined by a set of named
dimensions. A set of indexes for all dimensions identifies a
cell in the array. Cells can have many attributes in which
the values are stored just like tuples in a relational DBMS.
Cells can be non-existing or empty, and arrays are said to
be sparse if they have many empty cells.

SciDB partitions the array into regular tiles, or chunks [2].
Chunks are physical units of distribution of arrays on com-
puter nodes. The array is partitioned by ranges of indexes
of fixed size on each dimension. The product of the number
of partitions on each dimension gives the number of chunks
the array will be split into.

Figure 4 shows a bi-dimensional array with dimensions i
and j. The chunk size for dimension i is 4 while its total
length is 16. The chunk size for dimension j is 5, and its
total length is 20. This configuration results in a total of
16 chunks. SciDB allocates chunks to worker nodes that are
responsible for maintaining portions of the arrays.

We believe that arrays are a convenient model for repre-
senting simulation data. Different experiments, time steps
and the spatial coordinate system can be mapped to di-
mensions in the array, while the physical quantities can be
stored as attributes. The DBMS takes advantage of the ar-
ray structure in order to answer range queries for dimension
values. Dimensions work like multivalued indexes in a rela-
tional DBMS, which means there is a fast access path to a
set of cells when they are specified by index ranges. In prac-
tice, portions of the array for each dimension or combination
of dimensions can be retrieved efficiently by the DBMS.

Regular tiling or chunk partitioning also plays an impor-
tant role in improving performance. Storing subarrays on
disk as chunks yields an efficient representation of data, i.e.,
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Figure 4: Chunk configuration

cells that are close to each other on the array, will likely
be on the same portion of the disk, since chunks are the
basic I/O unit in SciDB [2]. The advantage of this repre-
sentation is that when a subarray is referenced by a query,
the data will probably be sitting on a limited amount of
disk pages where the chunks containing the data of interest
are stored, instead of being scattered across many different
pages. Obviously, a reduced amount of disk pages read from
disk results in a faster query processing time.

4. ARRAY REPRESENTATION
There is an intuitive simplicity regarding the mapping

of simulation data to multidimensional arrays. However,
a naive mapping of coordinate values onto indexes of an ar-
ray may lead to inefficient access due to the following data
characteristics:

• the subjacent geometry mesh coordinate system may
adopt a non-integer representation.

• the physical geometry of a phenomenon may be mod-
eled by an irregular mesh.

Considering the mapping of dimensions involved in a sim-
ulation, the time-step and the simulation trial dimensions
are both integers and do not include holes in their series,
which leads to a more straightforward mapping to indexes
in the array. Conversely, a mesh whose points are referenced
by non-integer coordinates, when naively mapped onto inte-
ger array indexes, produces huge gaps between neighboring
cells within the array. In this scenario, a space preserving
mapping strategy would induce huge variable density chunks
due to an uneven distribution of points.

Uneven distributed data can directly impact on the cells
distribution per chunk. As the latter is used as I/O access
unit in SciDB, the performance during query processing is
affected by this irregular data distribution. In the following
sections we describe three different techniques for mapping
the coordinate values to integer indexes. We start by for-
malizing the terminology we will use.

• Definition 1. A geometry mesh is defined as M =
(P,E), such that P = {p1, p2, · · · , pn} is a set of ver-
texes and E ⊆ P × P . Moreover, each vertex pi =
(id,Xn), in which Xn is a n dimensional coordinate
index and id is an identifier.

• Definition 2. An array A is defined as A = (D,C),
such as D =< D1, D2, · · · , Dm > is a list of m di-
mensions and C = {c1, c2, · · · , cv} is a set of v at-
tributes. Each dimension Di is indexed from 1 to an
integer maxindex, in one increments. An index i =<
i1, i2, · · · , ik >, with k ≤ m, and 1 ≤ ij ≤ maxindexj ,
for 1 ≤ j ≤ k , defines a subarray of A.

To deal with the problems caused by the irregularity of
data distribution, we classify the mapping techniques into
two groups: space preserving and non-space preserving.

4.1 Precision Elimination Method
We denote by precision elimination, (P.E. for short), the

naive method for mapping coordinate values with finite pre-
cision to integer values. It consists of multiplying each dif-
ferent coordinate value by 10Pr, where Pr is the precision
in which the coordinate values are specified.

Suppose a mesh with dimensions [X1, X2, ... , Xn] con-
taining the point p(x1, x2, ... , xn) specified with Pr dec-
imal places of precision. The array used in this case also
contains the dimensions [D1, D2, ... , Dn], and the data re-
lated to the point p(x1, x2, ... , xn) will be stored on the
cell identified by the indexes (x′

1, x′
2, ... , x′

n) defined as
x′
i = xi ∗ 10Pr.
The method is efficient and enables spatial window queries

to be expressed easily. Consider a region of interest R in
the original mesh representation, specified by their border-
ing points: lower bounds (lr1, lr2, ... , lrn) and upper bounds
(ur1, ur2, ..., urn), where lri/uri is the lower/upper bounds
for all i dimension, 1 ≤ i ≤ n. The subarray S containing
only the cells related to the points within R can be de-
fined with the lower bounds lsi = lri ∗ 10Pr and the upper
bounds usi = uri ∗ 10Pr, for all dimensions i, 1 ≤ i ≤ n.

However, this method has some drawbacks. Multiplying
the coordinate values in order to eliminate the precision may
be undesirable in some applications. The index values will
need to be truncated in case the coordinate values are spec-
ified with many decimal places. It might lead to informa-
tion loss if the original mesh representation is not explicitly
stored somewhere else.

In addition, multiplying coordinate values is equivalent to
scaling up the points. The higher the precision, the higher
the scale factor is, and the farther apart adjacent cells will be
in the array. The highly sparse array obtained can be hard
to deal with, as the cells are distant from each other, and
unevenly distributed throughout array regions. Defining the
partitioning in this case is challenging, and some chunks will
likely be excessively filled while other chunks will contain
just a few cells.

As we show in our experimental evaluation, unbalanced
sparse chunks can negatively affect performance. For this
reason, we propose the following two methods in order to
avoid the sparse and unbalanced data distribution.

4.2 Non Space Preserving Methods
The naive mapping described above is a space preserving

method, i.e., the general form of the mesh is preserved in the
final array representation. However, in order to cope with
the irregular data distribution one must rearrange the points
altering the form of the mesh. We denote by non space pre-
serving methods, the techniques in which the alteration of
coordinate values does not keep the original spatial distri-
bution of mesh points.
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The first step for such methods is to create a more com-
pact data representation. Dead spaces between coordinate
values are removed without changing the relative positions
of the points to each other. This process reduces the spacing
between adjacent points and creates a less sparse array.

A sorted list Li is created for each X1, X2, ... , Xn dimen-
sions, with 1 ≤ i ≤ n. Each list Li contains the coordinate
values ai0, ai1, ai2, ... , aim that appear in some point on
the mesh for the dimension i. Every referenced coordinate
value aij has its position in the compacted representation
given by a function Li(aij). A point p(x1, x2, ..., xn) on
the mesh is replaced by p(l1(x1), l2(x2), ..., ln(xn)). This
means that the existing space among points in the mesh
have been removed, thus producing a more compact array
representation.

Figure 5.2 shows a resulting compact representation. Note
that although the shape of the mesh is deformed, because
the spacing between adjacent coordinate values has been
removed, the relative position of the points is maintained.
This property is important, since the compact form must
allow spatial window querying on the original representa-
tion to be translated into the new representation. Given a
window R enclosing a set of points in the mesh, it must be
possible to define a window R′ on the compact representa-
tion that encloses the exact same set of related points.

This statement can be verified as a coordinate value that
appears on many points will be consistently replaced by the
same integer value wherever it appears. Not only this, but
the integer values are attributed in a fashion that main-
tains the ordering of the coordinate values. As all points
are changed in the same manner, they maintain their rela-
tive position to each other, making it possible to translate
spatial window queries.

Equi-depth Histogram Method
The equi-depth histogram based partitioning method is a
non space preserving mapping strategy. We adopt it in oder
to minimize the irregularity in data distribution and gener-
ate more balanced chunks. Equi-depth histograms are sim-
ilar to equi-width histograms. The main difference is that
regular histograms have bins for equally sized portions of the
data domain, but containing a different number of occur-
rences on each one, while equi-depth histograms have bins
for portions of the domain with variable sizes, but containing
roughly the same amount of occurrences on each one. Thus,
equi-depth histograms help splitting the mesh into regions
containing a close number of points on each one. These re-
gions will be used to define the chunk partitioning scheme
of the multidimensional array.

Figure 5 depicts the steps executed to obtain the mapping
in a 2D projection for the HeMoLab’s 3D model mesh. In
Figure 5.1, we have the original points in the mesh projected
in a 2D surface. Figure 5.2 shows the resulting represen-
tation after the first step comprising the removal of dead
spaces.

A set of equi-depth histograms, one for each dimension,
is created in the following step (Figure 5.3). The combina-
tion of histograms for each dimension creates variable sized
regions, which enclose a variable amount of points. The
difference in the amount of points contained in the most
populated and the least populated regions tends to decrease
as we increase the granularity of the partitions (decrease the
bin sizes for the histograms). Thus, we can vary the sizes of

Figure 5: Equi-depth Histogram Based Partitioning
Method

the bins and recreate the histograms until the configuration
that minimizes this difference is found.

The regions created by the combination of the histograms
will be used as the base for the definition of the chunk con-
figuration. Ideally, chunks in SciDB should occupy a few
megabytes on disk [2]. In other words, chunks should con-
tain between 500 thousand to 1 million cells for arrays with
8-bit double precision floating point attributes. Therefore,
the amount of points on most regions should be large enough
so the chunks have enough cells. The higher the granularity,
the smaller is the amount of points on each region. Thus, we
search for the more granular partitioning that still enables
to define sufficiently populated chunks.

As stated previously, the regions depicted in Figure 5.3
have variable sizes, so they cannot be directly used as the
chunk configuration for an array in SciDB, due to the fact
that it only allows regular tiling. To overcome this limi-
tation, points are translated so they become distributed in
equally sized regions of space.

Figure 5.4 depicts the mesh after the points have been
translated. The process to define the new position for a
point is as follows. Every histogram Hi has a set of bins
Bi0, Bi1, ... , Bi1 for every dimension i. A coordinate value
xi on a point p of the mesh is contained in the range of
values associated to bin Bij (the jth bin for the histogram
associated with the dimension i). The index j of a bin Bij

associated to a coordinate value xi is denoted by Bi(xi).
We define as IBi(xi) the initial coordinate of a bin, i.e., the
smallest value contained in a bin Bi that also contains the
coordinate value xi.

The size of the new equally sized regions in the dimension
i will be given by the largest bins LBi for the histograms Hi.
Note that in Figure 5.4, the new regions of the space have
the length in dimension i of the largest bin for the histogram
Hi. Every point p(x0, x1, ..., xn) is replaced by a new point
p′(x′

0, x′
1, ..., x′

n). The new coordinate values for p′ are
given by the formula: x′

i = LBi ∗ Bi(xi) + (xi − IBi(xi))
for 1 ≤ i ≤ n.

The array used to store data mapped with the use of this
method has the dimensions [X1, X2, ... , Xn] and the coor-
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dinate values of every p′ will be used as indexes to allocate
the points in the array. The LBi values are used to define
the chunk sizes for each dimension. It is important to note
that even after moving the points, we still are able to trans-
late spatial window queries, as long as the mapping between
the original coordinate values and the indexes used for the
points is explicitly stored.

The final array representation is still sparse, but the cells
will be distributed much more evenly among the chunks,
which is the main advantage of this technique. This method
not only maps the coordinate values into indexes, but also
helps defining the chunk configuration, which is an impor-
tant aspect in designing multidimensional arrays in SciDB.

However, the process for creating this mapping might be
costly as we potentially need to create many histograms and
evaluate the partitions given by their combinations. Addi-
tionally, every spatial window query specified based on the
original mesh representation must be translated into a re-
gion in the array.

This translation can be described as follows. Suppose a re-
gion of interest R in the original mesh representation, spec-
ified as lower bounds (lr1, lr2, ... , lrn) and upper bounds
(ur1, ur2, ..., urn). We define a function Mi(xoi) → x′

i that
maps the original real coordinate value to the correspond-
ing index stored in the array. The values for this function
are pre-calculated and explicitly stored, thus, evaluating the
function requires a lookup in the structure used to store the
mapping. The subarray S containing only the cells related
to the points within R can be defined with the lower bounds
lsi = Mi(lri) and the upper bounds usi = Mi(uri) for ev-
ery dimension i.

We consider the use of this technique under two main
assumptions about the underlying mesh:

• It has low dimensionality (usually 2D or 3D).

• It is a relatively small portion of the entire dataset.

In our use case, the main dataset contains data from 20
simulations, each one possessing 240 time steps. The num-
ber of data records is equal to the product of the number
of points in the mesh (close to 90 thousand), the number
of simulations and time steps, which amounts to over 430
million. Since the number of points in the mesh is much
smaller than the amount of records in the entire dataset,
maintaining and querying the mapping, that is as large as
the amount of points in the mesh, should be much cheaper
than maintaining and querying the entire dataset.

Space-Filling Curve Method
Although a more balanced data distribution is achieved with
the use of the second method, the resulting array is still
sparse and contains irregularly filled chunks. Our third
method to map coordinate values to array indexes relies on
the use of space-filling curves to create a dense data repre-
sentation.

Space-filling curves can be understood as a path that de-
fines a order in which points are visited. They enable the
mapping of multidimensional points into a single scalar value
or code, that depends on the position of the point in the
curve. Space-filling curves are defined in such manner that
adjacent codes will be attributed to points that are rela-
tively close to each other in space, because the next point
the curve passes by is likely to be on the neighborhood of
the last visited point.

This characteristic of space-filling curves makes them use-
ful in indexing points, because it helps maintaining a co-
herent data representation. With this method, the original
mesh dimensions X1, X2, ... , Xn are represented by a single
dimension D in the array. A single index is attributed for
points according to a space-filling curve, in such a manner
that adjacent indexes are given to points that are close in
space.

Spatial window queries, previously defined as a set of up-
per and lower bounds for different dimensions, now have to
be expressed with multiples ranges of values for a single di-
mension. The points enclosed in a window R of the original
mesh representation will be distributed in a set of contin-
uous intervals of code values [L1, U1], [L2, U2], ..., [Ln, Un].
The best, and very unlikely, scenario is when all points are
contained in a single interval. The worst scenario is when
the number of intervals is equal to the number of points
within R, which means that the codes are scattered in non-
contiguous intervals.

In a multidimensional array, fewer intervals for a range
query means data will probably be sitting on a limited num-
ber of chunks. Fewer chunks, means faster retrieval time,
and faster query processing time. It is common that just
a portion of the data contained in the chunk is necessary
to answer a query. Therefore, minimizing the amount of
chunks read from disk to memory is also going to minimize
the amount of unnecessary data loaded along the data of
interest.

The Hilbert Space-Filling curve has very interesting clus-
tering properties [13] that help creating an efficient data rep-
resentation in a single dimension. We use compact Hilbert
indexes [6] to allocate the positions of the points in the ar-
ray. Figure 6 shows a mesh with vertexes colored by their
respective compact Hilbert indexes. Note that large clusters
of points in a same region of the mesh have similar colors,
indicating their respective indexes have also close values.

Figure 6: 3D Model Mesh Points Colored by Their
Hilbert Codes

The process of attributing indexes to points goes as fol-
lows. First, we create a compact integer representation of
the mesh as explained in section 4.2. Then, for every point
p(x0, x1, ..., xn) in the compact representation, we obtain
chi(p), that is the compact Hilbert index for p. All points
p are ordered according to their chi(p) value and are added
to a list Lchi. Finally, the index for the point in the array
is attributed according to the order of the points in Lchi.
This is done because not necessarily the chi(p) values will
be contiguous. There may be intervals of indexes that are
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not attributed to any point p. These intervals would create
an undesirable sparse distribution, so they are removed once
the indexes are attributed according to the order in which
the points appear in Lchi.

In order to enable querying and rebuilding the original
space distribution, an auxiliary one-dimensional array must
be created, containing a dimension D′ and an attribute set
[Xa0, Xa1, ..., Xan] for every dimension in the original
mesh representation where each attribute holds values for
a given mesh dimension. This array contains the mapping
between the original coordinate values representing a point
and the associated indexes. Spatial window queries are ex-
pressed with joins between the main array and the auxiliary
array, which is slightly less efficient than directly expressing
the boundaries of the spatial window.

Even though range queries might not be as efficient in
this representation, the overall performance of queries that
represent more elaborated data analyses are expected to be
improved for two main reasons. The resulting array is dense,
and the data distribution per chunk is perfectly balanced.
The array has a smaller dimensionality that might affect
positively the performance for executing array operations
that are the building blocks of complex queries.

5. RELATIONAL REPRESENTATION
As expected, one may argue using relational DBMSs to

represent and store simulation data. This section briefly
describes a relational structure used to represent simulation
data in relational DBMSs. In our evaluation, we use both
a row-store DBMS and a column-store DBMS, respectively
PostgreSQL and MonetDB.

Schemas in both systems are roughly the same. The data
is stored in a single table containing attributes to repre-
sent the physical quantities, the mesh coordinate system,
the time and the simulation identifiers. A single table offers
a simple representation of data and does not require costly
joins in order to answer range queries.

Different from the array representation that requires a
mapping between coordinate values to integer indexes, the
relational representation naturally allows the original mesh
coordinate values to be directly stored as double precision
floating point numbers in columns of the relation. Any range
query can be expressed as a logical predicate using the SQL
operator BETWEEN for defining intervals and clauses to
implement analytical aggregations.

The primary index for the relation is composed by the set
of attributes containing the combination of the coordinate
values for the points in the mesh and the time and simulation
identifiers. This combination of values uniquely determines
another set of attributes that represent the physical quanti-
ties, such as pressure, velocity and displacement related to
the points in a instant in time.

Regarding the physical model, we considered the construc-
tion of indexes to improve query performance, when suited.
Our preliminary tests showed that independent secondary
indexes have better performance for the workload under
consideration in our benchmark. Thus, we use secondary
indexes for every attribute on the primary key, enabling the
DBMS to decide which index or combination of indexes will
be more efficient. The definition of secondary indexes is nec-
essary only for PostgreSQL, since MonetDB implements the
Imprints index structure [17] that is created during query
processing.

6. EXPERIMENTAL EVALUATION
In this section we present our experiment results. We start

describing the computational environment, followed by the
benchmark composed of representative simulation quantita-
tive analysis. Next, we discuss the performance of the pro-
posed methods for representing simulation data in SciDB
and finally we compare SciDB, using the proposed methods,
with relational systems.

6.1 Environment
The benchmark was executed in a virtual machine envi-

ronment (single core, 12GB of memory and 250 GB of stor-
age), with Ubuntu Server 14.04 LTS as both the guest and
the host system. The choice of a single core VM aimed at
reducing uncontrolled internal system parallelism that could
affect results. We used versions 14.12, 5.0 and 9.4 for SciDB,
MonetDB and PostgreSQL respectively. For the compara-
tive tests, all DBMSs were running with a single instance,
while for the distributed tests we evaluate SciDB alone using
4 and 8 instances distributed respectively in 2 and 4 nodes.

6.2 The Benchmark
The benchmark is designed considering typical quanti-

tative analysis performed while evaluating the quality of
simulation or supporting the interpretation of the modeled
phenomenon. It includes the data from the cardiovascular
system simulation implemented into SciDB, MonetDB and
PostgreSQL and four set of analytical queries.

6.2.1 Data Definition
We defined the schemas in SciDB using the DDL for the

AQL (Array Query Language). AQL is one of the two lan-
guages supported in SciDB. The following CREATE AR-
RAY commands define the schemas for arrays that imple-
ment the P.E., Histograms Based Partitioning and Hilbert
Space-filling Curve methods respectively (main and auxil-
iary mapping arrays).

CREATE ARRAY Prec i s i onE l im ina t i on <pre s su re : double> [ x
=0:∗ ,350000 ,0 , y=0:∗ ,350000 ,0 , z =0:∗ ,350000 ,0 ,
t ime s tep =0:∗ ,50 ,0 , s imulation number =1 :∗ , 4 , 0 ] ;

CREATE ARRAY Histogram <pre s su re : double> [ x=0:∗ ,16091 ,0 , y
=0:∗ ,24565 ,0 , z =0:∗ ,25186 ,0 , t ime s tep =0:∗ ,50 ,0 ,
s imulation number=1:∗ 4 , 0 ] ;

CREATE ARRAY HistogramAux <x : double , y : double , z : double ,
x map : double , y map : double , z map : double> [ i
:∗ , 1 000000 , 0 ] ;

CREATE ARRAY Hi lbe r t <pre s su re : double> [ h i lbertCode
=0:∗ ,5000 ,0 , t ime s tep =0:∗ ,50 ,0 , s imulation number
=1 :∗ , 4 , 0 ] ;

CREATE ARRAY HilbertAux <x : double , y : double , z : double> [
h i lbertCode =0:∗ , 5000 ,0 ] ;

Attributes are listed between angle brackets and dimen-
sions are specified between square brackets. Each dimen-
sion is defined with a name and boundaries, followed by two
numbers representing the chunk size and the overlap be-
tween chunks. Chunks sizes are defined according to each
strategy. Larger chunks are specified for the very sparse
PrecisionElimination array, while more compact chunks are
defined by the Histogram Based Partitioning strategy for the
Histogram array. The Hilbert array contains dense chunks
whose sizes on each dimension are defined in such manner
that the total amount of cells is 1 million (5000 * 50 * 4).

Tables for the relational schema are defined with the fol-
lowing CREATE TABLE command. The only difference
between the schemas is the addition of secondary indexes in
PostgreSQL.
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The dataset consists of 20 simulations comprising 240 time
steps and over 90 thousand points for the 3D-1D mesh. The
total amount of records (rows and cells) is bigger than 430
million.

CREATE TABLE [ postgreSQLTable/monetDBTable ] ( s imulat ion
BIGINT , t ime s tep BIGINT , x DOUBLE, y DOUBLE, z
DOUBLE, pre s su r e DOUBLE, PRIMARY KEY ( s imulat ion ,
t ime step , x , y , z ) ) ;

6.2.2 Queries
Four sets of queries are used in our benchmark. Two

sets are composed of spatial window queries (range queries)
evaluating the results of an aggregation function on a region
of space. The regions of space selected are the complete
1D model, and a portion of the 3D model representing an
aneurysm formed on the artery.

The 1D model region of the mesh is very sparse and has
a relatively small amount of points compared to the entire
mesh. The aneurysm region contains much more points,
that are arranged in a denser region of space. These two
opposite regions of the mesh are chosen to evaluate the per-
formance of each strategy in different scenarios.

We denote by Hemolab 1 the third set of queries in our
benchmark. Hemolab 1 comprises the calculation of the
mean squared error between the data in the simulation and a
reference function. The values for this reference function are
precalculated and stored in the database. The final result
for this query is a single value for each point for every sim-
ulation under consideration. The value is the mean squared
error between the values on the simulation and the reference
function on each point of the mesh. This query evaluates the
execution of a join operator based only on dimension values.

The hemolab 1 query in AFL and SQL is:

AGGREGATE(
APPLY(

CROSS JOIN(
BETWEEN(PROJECT( [ARRAY] , p r e s su re ) , nul l ,

nul l , [SIM NUM] , nul l , nul l , [SIM NUM] )
as a , [REFERENCE ARRAY] as b , a .

t ime step , b . t ime step , a . space , b .
space

)
, prod , ( a . p r e s su r e − b . p re s su re ) ∗( a . p r e s su re − b

. p re s su re )
)
,sum( prod ) , simulation number , space

)

SELECT SUM(( a . pressure− b . p re s su re ) ∗( a . pressure− b .
p re s su re ) )
FROM (SELECT pressure , s imulat ion , x , y , z ,

t ime s tep
FROM [TABLE] WHERE s imulat ion = [SIM NUM] )

AS a
INNER JOIN

(SELECT pressure , s imulat ion , x , y , z ,
t ime s tep
FROM [REFERENCE TABLE] ) AS b

ON a . x = b . x AND a . y = b . y AND a . z = b . z AND a .
t ime s tep = b . t ime s tep GROUP BY a . x , a . y , a . z ,
a . s imulat ion ; ”

The fourth set of queries is denoted by Hemolab 2. This
analysis is executed in order to obtain the time required for
attributes in the simulation to reach their maximum values
for the first time. Maximum values of the attributes on every
point are calculated with use of an aggregation function.
After that, values are joined with the original dataset so they
can be paired up with the time steps in which they occur.
Once we have all time steps in which the attribute value is
at its peak, we simply return the lowest time step, i. e., the
first to present the maximum value. The result for this query
is also a single value for every point, that represents the
time necessary for the attribute to reach its maximum value.
This query contains a join based on attribute values, and it

evaluates performance for queries that need to perform this
kind of operation.

The hemolab 2 query in AFL and SQL is:

CROSS JOIN(
AGGREGATE(

FILTER(
CROSS JOIN(

APPLY(BETWEEN(PROJECT( [ARRAY] , p r e s su re ) ,
nul l , nul l , 1 , nul l , nul l , 1) , time

, t ime s tep ) AS a ,
AGGREGATE(BETWEEN( [ARRAY] , nul l , nul l , 1 ,

nul l , nul l , 1) , max( pre s su re ) AS
max , simulation number , space ) AS b ,

a . simulation number , b . simulation number ,
a . space , b . space

) ,
a . p r e s su re = a .max

) ,
min ( a . time ) , simulation number , space

) AS a ,
PROJECT(APPLY( [ARRAY MESH] , norm , SQRT(x∗x + y∗y + z∗z

) ) , norm) AS b ,
a . space , b . space

)

SELECT A. s imulat ion , a . x , a . y , a . z , min ( a . t ime s tep ) , sq r t
( a . x∗a . x + a . y∗a . y + a . z∗a . z )

FROM (SELECT simulat ion , x , y , z , t ime step , p r e s su re
FROM [TABLE] WHERE s imulat ion <= [SIM NUM] ) AS a

INNER JOIN
(SELECT simulat ion , x , y , z , max( pre s su re ) AS max

FROM [TABLE] WHERE s imulat ion <= [SIM NUM] GROUP
BY simulat ion , x , y , z ) AS b

ON a . s imulat ion = b . s imulat ion AND a . pre s su r e = b .
max AND a . x = b . x AND a . y = b . y AND a . z = b . z
GROUP BY A. s imulat ion , a . x , a . y , a . z ;””

6.3 Experiments with SciDB
This section presents the experimental results for different

methods of representing simulation data in SciDB arrays.
The charts contain the average execution time for 30 runs.
Queries were executed with three configurations, containing
1, 4 and 8 SciDB instances. Tags below the horizontal axis of
the charts in this section indicate the number of instances
related to the execution time. All queries in this section
evaluate data from all time steps and simulations. This is
true even for spatial range queries.

Figure 7 shows the results for the 1D model range query.
The 1D model mesh contains a relatively small portion of
the points. In this case, the sparse representation generated
by the P.E. method was more efficient. The irregular data
distribution in this case creates a set of almost empty chunks
containing data for the points on the 1D model only. These
chunks do not contain the dense data for the 3D model,
and thus, the DBMS does not read and process unnecessary
data.

The exact opposite happens for the Histogram Base Par-
titioning method. In this case, the more balanced chunks
contain data from both 3D and 1D models, which means
SciDB needs to read chunks filled with data unnecessary to
answer the query, making the total execution time many
times higher.

Figure 8 shows the results for the range query evaluating
the region encompassing the aneurysm in artery. This is
a subset of the data from the 3D model only. The results
differ from those of Figure 7. In general, there is no chunk
configuration that is good for all range queries. Ideally, a
dense and well distributed configuration, such as the one
provided by the Hilbert space-filling curve method, would
minimize the variations between distinct queries, improving
the overall processing time for different queries.

The irregular precision elimination method is two times
slower than other strategies for the aneurysm range query.
Since the entire 3D model is distributed in a small portion of
space, the related points are also sitting on a limited amount
of chunks. In order to retrieve data for just a portion of the
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Figure 7: 1D Model Range Query Results

3D model enclosing the aneurysm, the system needs to read
chunks filled with cells for the entire 3D model. The His-
togram Based Partitioning method has the best performance
in this case, because the granular and balanced distribution
of 3D model points enabled SciDB to access chunks that en-
compass the data of interest more closely, thus diminishing
the need to read from disk regions of the array that do not
intersect with the range query.

Figure 8: Aneurysm Range Query Results

Figures 9 and 10 show the results for queries Hemolab 1
and Hemolab 2 respectively. The Hilbert Space-filling curve
method offers the best option among the multidimensional
array representations. For instance, it is up to 60% faster
for Hemolab 2 than the Precision Elimination method and
the Histograms Base Partitioning method. The dense and
balanced data distribution together with the lower dimen-
sionality enable analyses to be executed more efficiently.

Figure 9: Hemolab1 Query Results

Figure 10: Hemolab2 Query Results

6.4 SciDB vs MonetDB vs PostgreSQL
In this section we compare our techniques with array rep-

resentation in SciDB with relational representation in Mon-
etDB and PostgreSQL. The charts show the execution time
of different runs using as input variations on the number
of time steps and number of run simulations. The horizon-
tal axis of charts shows the results for the same analyses
repeated by taking into consideration different numbers of
time steps and simulations. The labels of columns indicate
the number of time steps and simulations. Numbers pre-
ceded by S indicate the amount of simulations under con-
sideration, and the number preceded by T the amount of
time steps under consideration.

Figure 11 shows the time required to load data into the
DBMSs in each case. A COPY command was used to load
the entire dataset at once for relational systems, and specific
array operators, such as LOAD and REDIMENSION, were
used to load the data into SciDB.

MonetDB is the most efficient because all it does is to
append data to files for each column on the relation. Both
PostgreSQL and SciDB need to execute costly operations
during data loading. Operations responsible for ordering
data and dividing it into chunks take a longer time than
just adding records to data files. Also, PostgreSQL needs
to maintain the secondary indexes for each attribute on the
primary key, which slows down the row insertions.

Figure 11: Loading Time

Figure 12 shows the results for the range queries evalu-
ating data of the 1D model in a distributed settings. The
results observed in the sequential scenario discussed in Sec-
tion 6.3 remain valid. In this context, the PE method is
again more efficient and the Histogram Base Partitioning
method reads unnecessary data.

PostgreSQL shows better results than most other meth-
ods, except P.E., as the amount of data under consideration
is very small, and the system is able to use a combination
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Figure 12: 1D Model Range Query Results

of indexes to retrieve a minimum amount of disk pages to
answer the query. However, as the next results show, Post-
greSQL is not able to maintain fast execution time when we
increase the amount of data.

Figure 13 shows the result obtained for the range query
evaluating a region of the 3D model enclosing an aneurysm.
For this query, and all following analyses, PostgreSQL has
the worst performance by a great margin. Both MonetDB
and SciDB are tailored for analytical workloads, and offer
a much better performance for analyses containing a larger
amount of data.

Figure 13: 3D Model Aneurysm Range Query Re-
sults

MonetDB is very efficient in the second analysis. Even
though no index is previously defined, it is able to execute
the analyses almost as rapidly as SciDB with the Histogram
Based Partitioning Method. Another point to highlight is
that the Hilbert Space-filling curve method obtained inter-
mediate results in both range queries. The need to execute

a join operation slightly increases execution time, but the
dense array representation with lower dimensionality makes
it still a good alternative, even for range queries.

Figures 14 and 15 show the results for the queries Hemolab
1 and Hemolab 2 respectively. Each figure contains two
charts, the upper chart gives the results for all systems and
the bottom chart for MonetDB and SciDB.

Figure 14: Hemolab 1 Query Results

The hemolab 1 results for analyses with 1 and 10 sim-
ulations are favorable to MonetDB. However, the Hilbert
Space-filling curve yields a better performance when the
query is scaled up to 20 simulations.

MonetDB has better performance for Hemolab 2 in all
cases. Hemolab 2 in SciDB requires a join to be performed
between attributes of the array instead of dimension indexes,
which is inefficient. MonetDB column-store model, along
with its dynamic index creation, is able to completely out-
perform SciDB in this scenario.

The Hilbert Space-filling curve method offers the best op-
tion among the multidimensional array representations. It
is 60% faster for Hemolab 2 than P.E method and the His-
tograms Base Partitioning method. The dense and balanced
data distribution allied with the lower dimensionality en-
ables analyses to be executed more efficiently.

6.5 Comment on Execution Profile
MonetDB execution model heavily relies on the materi-

alization of intermediate query results. When these inter-
mediate results do not fit into main memory, they must be
swapped to disk, resulting in performance loss. SciDB, on
the other hand, has an execution model based on pipelining,
and intermediate arrays do not always need to be completed
materialized during query execution. Therefore, SciDB per-
formance was less dependent on the amount of memory
present on the system.
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Figure 15: Hemolab 2 Query Results

The differences between SciDB and MonetDB execution
models is further evidenced in Figure 16. The charts show
the CPU usage and Disk I/O accomplished during execution
of Hemolab 1 query. SciDB and MonetDB exhibit com-
pletely different patterns. MonetDB’s CPU usage varies
much more, and is interleaved with high disk I/O peaks.
SciDB maintains a steady CPU usage throughout most of
the execution time, and performs much less disk I/O than
MonetDB.

Figure 16: Hemolab 1 execution profile in MonetDB
and SciDB

7. RELATED WORK
In this work, we are interested in managing scientific data

generated by numerical simulations computed according to
a space discretization modelled as an irregular mesh. There
are few relevant works that discuss this topic.

A notorious example of work in mesh data management
is Howe’s [8] Gridfields data model, developed to represent
computational meshes. The model is not bounded to any

data structure, and separates mesh topology and mesh ge-
ometry. Another model designed to represent unstructured
meshes is ImG-Complex [15]. This model represents meshes
by using incidence multi-graphs. Both works deal with the
topological representation of meshes and its underlying data.
In our use case, we are concerned about executing analyses
depending only on the geometric aspects, and thus, we do
not require a specific model for dealing with topology yet.

Histograms have long been used in database management,
mainly in query optimization. A technique to generate his-
tograms for multidimensional data taking into account its
sparsity is proposed in [5]. The use of histograms in query
optimization and load balancing for cloud environments is
discussed in [16]. These works are only examples of how his-
tograms have been widely used in data management. The
main point to highlight is that instead of using histograms in
query optimization, we use equi-depth histograms as the ba-
sis for the multidimensional array partitioning strategy over
distributed nodes so that each chunk holds approximately
the same number of points, obeying the ordering on each
dimension.

There is an extensive literature [14][11] in multidimen-
sional indexing structures for databases using space-filling
curves. In [12], there is a discussion involving the use of
space-filling curves in point cloud data management with
MonetDB. The main difference with our work is that in-
stead of having a dataset of simple point cloud data, we
have a recurring point cloud structure associated with other
dimensions, and we evaluate the use of multidimensional ar-
rays and a space-filling curve to represent it.

8. CONCLUSION
In this paper, we proposed the use of array DBMSs to

manage the data produced by simulations. We considered
multidimensional arrays as it nicely models the dimensions
and variables used in numerical simulations. We presented
methods for the efficient mapping of variable values in sim-
ulations to evenly distributed cells in array chunks with the
use of equi-depth histograms and space-filling curves.

We also considered the use of a row-store DBMS, Post-
greSQL, and MonetDB a column-store DBMSs designed to
provide better performance for analytical workloads. Unlike
the multidimensional array data model, the relational model
does not require any modification in the original data.

Our experiments show that using our techniques in an
array DBMS produces a consistent allocation of simulation
data within chunks with respect to a query workload. Each
technique shows better performance results in comparison
to MonetDB and PostgreSQL, at least on a particular class
of the benchmark queries. Furthermore, our solution be-
comes less sensitive to restrictions on available memory than
MonetDB. Nevertheless, both SciDB and MonetDB showed
significant better performance than PostgreSQL, indicating
that row-store DBMSs are not a good solution for analytical
queries. Conversely, MonetDB offers a much simpler data
representation with generally good performance.

We observe that the choice of DBMSs, as expected, im-
pact on our results. For instance, column-stores adopting an
in-memeory pipeline execution model may not incur in the
problems observed with MonetDB for large datasets. Simi-
larly, the mapping stucture needed by the Histogram-based
method could have been implemented in a relational system
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with spatial indexing support, improving the query resolu-
tion performance.
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