
Determinants of Linear Judgment: A Meta-Analysis of Lens Model Studies

Natalia Karelaia
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what conditions the application of bootstrapping—or replacing judges by their linear models—is
advantageous. Finally, the authors note shortcomings of the kinds of studies conducted to date,
limitations in the lens model methodology, and possibilities for future research.
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In a seminal contribution, Hammond (1955) suggested using the
conceptual framework of Brunswik’s (1952) lens model to study
processes of clinical judgment. The actual application involved
was the assessment of IQ on the basis of a Rorschach test, but since
that time, many psychologists have used the same conceptual
framework to study the more general process by which humans
make predictions of criteria that are probabilistically related to
cues (see, e.g., Brehmer & Joyce, 1988; Cooksey, 1996; Hastie &
Kameda, 2005). Consider, for example, an analyst examining

financial indicators to predict corporate bankruptcy, a manager
using behavior in interviews to assess job candidates, or a physi-
cian looking at symptoms that indicate the severity of a disease.

In all of these cases, the simple beauty of Brunswik’s lens model
lies in recognizing that the person’s judgment and the criterion
being predicted can be thought of as two separate functions of cues
available in the environment of the decision. The accuracy of
judgment therefore depends, first, on how predictable the criterion
is on the basis of the cues and, second, the extent to which the
function describing the person’s judgment matches its environ-
mental counterpart (or “the ecology” in Brunswik’s, 1955, p. 198,
terms).

But how good are people at making judgments and what factors
affect this process? These are important questions that have gen-
erated considerable controversy in the psychological literature,
whether the issues have been studied in terms of logical coherence
(e.g., Cohen, 1981; Kahneman & Tversky, 1996) or judgmental
accuracy (sometimes called “correspondence”; Hammond, 1996,
pp. 103–110). Moreover, given the complexity of human judg-
ment, it is unlikely that these questions can be answered satisfac-
torily by any single approach.

An advantage of research conducted within the Brunswikian
tradition, however, is that, following the development of statistical
methods in the 1960s, many researchers have used the same
measures for capturing the contribution of different factors that
determine the accuracy of judgment within the lens model para-
digm. Thus, it is possible to aggregate these measures across many
studies and make statements that reflect the accumulation of re-
sults. This is the purpose of the current article, in which we present
a meta-analysis of studies conducted using the lens model over a
period of 5 decades. Consistent with the Brunswikian tradition, a
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major objective is to assess how task characteristics influence
judgment.

We are aware, of course, that different formal methods and
research traditions exist for capturing outcomes and processes of
judgment (see, e.g., Anderson, 1981; Kenny & Albright, 1987).
Moreover, these approaches can illuminate aspects of judgment
that are not considered within the lens model paradigm. However,
the study of judgment beyond this paradigm lies outside of the
scope of the present review. As we demonstrate here, the signifi-
cance of contributions within this tradition justifies limiting the
present focus.

The article is organized as follows. We first describe the math-
ematical formulation of the lens model and, in particular, how
judgmental performance, or “achievement”, can be decomposed
into different measures that form the basis of our subsequent
meta-analysis. Second, we discuss various task and individual
characteristics that, as shown in the extensive lens model literature,
moderate judgmental performance. Third, we specify how we
identified, included, and analyzed studies in our meta-sample.
Fourth, we present the results of our meta-analysis organized
according to four central issues: (a) the overall accuracy of human
judgment, (b) task and individual characteristics that affect accu-
racy, (c) effects of learning and the role of different types of
feedback in this process, and (d) whether and when it is advanta-
geous to replace human judgments by models of those judgments,
so-called paramorphic representations (Hoffman, 1960). This is
known as bootstrapping and has important practical implications
(see, e.g., Russo & Schoemaker, 2002). Finally, we summarize the
main conclusions of the analysis, indicate shortcomings of the

kinds of studies conducted to date, and suggest avenues for future
research.

The Mathematical Formulation of Brunswik’s Lens Model

The use of Brunswik’s lens model received an important impe-
tus in 1964 when a series of articles showed how statistical
methods could be used to capture judgmental processes (Ham-
mond, Hursch, & Todd, 1964; Hursch, Hammond, & Hursch,
1964; Tucker, 1964; see also Castellan, 1973). In this paradigm,
human judgment, denoted Ys, is modeled as a linear function of a
set of k cues, Xj, j � 1, . . . , k. Thus,

Ys � �
j�1

k

�s,jXj � εs, (1)

where the �s,js represent the weights that the person (or judge)
gives to the different cues and εs is the error term of the regression
of Ys on the Xjs.

Similarly, the environmental criterion, Ye, can be modeled as a
function of the same cues, Xj, j � 1, . . . , k. That is,

Ye � �
j�1

k

�e,jXj � εe, (2)

where the �e,js represent the weights that the environment gives to
the different cues and εe is the error term of the regression of Ye on
the Xjs (see Figure 1). Note that both human judgment and the

Figure 1. Diagram of the lens model. From “Heuristic and Linear Models of Judgment: Matching Rules and
Environments” by R. M. Hogarth and N. Karelaia, 2007, Psychological Review, 114, p. 734. Copyright 2007 by
the American Psychological Association. See “The Mathematical Formulation of Brunswik’s Lens Model”
section of the introductory text for a description of terms.
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environment are probabilistic models of the cues, in that the cues
are never perfectly reliable or valid indicators of the criterion
(Brunswik, 1952).

The logic of the lens model is that the person’s decisions will
best match the environmental criterion to the extent that the
judge’s reliance on specific cues matches the model of the envi-
ronment. Moreover, the correlation between criterion and judg-
ment, �YeYs—the so-called achievement index, or ra—can be ex-
pressed by the lens model equation (Tucker, 1964, p. 528):

ra � GReRs � C��1 � Re
2��1 � Rs

2�, (3)

where G��ŶeŶs
(the matching index) is the correlation between the

predictions of both models, that is, between ¥j�1
k �e,jXj and

¥j�1
k �s,jXj; Re and Rs are the multiple correlations of the models

of the environment and the judge, respectively, and capture, on the
one hand, environmental predictability (Re), and, on the other
hand, the consistency with which the judge executes the decision
rule (Rs); and C � �εeεs is the correlation between the error terms
of the two models. If these are independent, that is, if �εeεs � 0,
then judgmental accuracy or achievement (ra) is simply a multi-
plicative function of three terms, matching (G), environmental
predictability (Re), and response consistency (Rs), and neatly cap-
tures the effects of both cognitive and task variables on observed
performance. In practice, C may actually differ from 0 if, say, a
variable has been omitted from the analysis and/or cues are used in
a nonlinear or nonadditive manner.

The Linear Assumption

High linear predictability of the environment (Re) and judgmen-
tal consistency (Rs) observed in various field contexts has led to
the conclusion that both environments and judges are often well
modeled by linear functions. Linear models can indeed often
provide good higher level representations of underlying processes
(Einhorn, Kleinmuntz, & Kleinmuntz, 1979). For example,
Werner, Rose, and Yesavage (1983) analyzed predictions of im-
minent dangerousness of psychiatric patients (i.e., engaging in an
assault during the first few days after being admitted to an acute
care psychiatric unit) made by 30 experienced psychologists and
psychiatrists. In this study, both environmental predictability, Re,
and judgmental consistency, Rs, were high (.82 and .84, respec-
tively), even though overall judgmental achievement was low
(.18). In another study, Ashton (1982) found that Time Inc. em-
ployees were consistent in predicting the actual number of annual
advertising pages that appeared in Time magazine over several
years (Rs of .89). The environment was also highly predictable (Re

of .94) and the task was familiar for these employees who were
involved in budgeting tasks. Mear and Firth (1987) came to the
same conclusion of high linearity in judgments (Rs of .87) when
analyzing the prediction of security returns by financial analysts.
However, environmental predictability was lower (Re of .52).

Are environmental predictability and judgmental consistency
related? On the basis of a sample of 15 studies, Camerer (1981)
reported that judgmental consistency and environmental predict-
ability were weakly (positively) correlated and that judgmental
consistency tended to be generally larger than environmental pre-
dictability. Chasseigne, Grau, Mullet, and Cama (1999) systemat-
ically varied environmental predictability in a task (from .96 to

.32) and found that for each decrement in task predictability, there
was a corresponding equal decrement in judgmental consistency.

These findings raise more specific questions: Does the apparent
linearity apply to both field and laboratory studies? Is there a
relation between linear predictability of environments and judg-
mental consistency? and, Is the latter generally greater than the
former?

Matching

The matching index (G) reflects how well the weights and
function forms applicable to the cues in the ecology are repre-
sented in the linear model of the person’s judgment. This is
sometimes stated to be a measure of a judge’s “knowledge” of the
linear relation in the environment. However, care should be exer-
cised in this interpretation because G can be large even if the
weights used by the judge differ considerably from the weights in
the ecology. This can occur, for example, in the presence of high
inter-cue correlation (Castellan, 1992; Dawes & Corrigan, 1974;
Einhorn & Hogarth, 1975).

Residual Correlation

Residual correlation (C), or the correlation between the residuals
of the models of the environment and the person, captures the part
of judgmental achievement related to cues that have been omitted
from the models, nonlinearities in the cue–criterion relations, and
possible configurality. Thus, high values of C may reflect: (a)
accurate nonlinear or configural use of cues presented by the
investigator, (b) accurate linear, nonlinear, or configural use of
cues that the investigator did not include in the analysis (i.e.,
nonmodeled knowledge); or (c) some combination of both (Gor-
man, Clover, & Doherty, 1978). Configurality concerns interac-
tions between cues (i.e., the impact of one cue on the criterion
depends on the level of another cue), whereas nonlinearity refers to
nonlinear transformations of individual cues before they are com-
bined. Expertise is associated with greater reliance on configural
rules. However, there is little evidence that this improves judg-
mental performance (Camerer & Johnson, 1997).

Composite Indices

In addition to the above lens model statistics, we are interested
in the products of two indices. First, it is illuminating to analyze
the human component of achievement independently of the pre-
dictability of the environment. For situations where C � 0, this can
be represented by the product of matching (G) and response
consistency (Rs). This product (GRs), termed “performance” by
Lindell (1976, p. 741) and “linear cognitive ability” by Hogarth
and Karelaia (2007, p. 738), quantifies the human, as opposed to
the environmental, contribution to achievement and captures the
extent to which judges both match task requirements and are
consistent in the execution of their strategies.

Second, GRe—or the product of matching (G) and environmen-
tal predictability (Re) —is an estimate of the validity of the model
created when a person is replaced by his or her strategy, that is, by
bootstrapping (Camerer, 1981; Dawes, 1971; Goldberg, 1970).
This product (GRe) is of interest because it captures the validity of
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the person’s strategy assuming that this is applied in a perfectly
consistent manner (i.e., when Rs � 1).

Many studies have shown that bootstrapping does better than
individual judges in clinical decision making (Goldberg, 1970),
graduate admissions (Dawes, 1971), employment interviews
(Dougherty, Ebert, & Callender, 1986), predicting violent behavior
of newly admitted inmates (Cooper & Werner, 1990), and other
contexts (sometimes even better than a composite judge, i.e., the
average of individual predictions; e.g., Ashton, 1982). The impli-
cation is that decision making procedures in many organizations
(individual judgment or consensus) should be replaced by models
derived from human decision makers. Some studies, however,
report similar performance by judges and their models (e.g., Mear
& Firth, 1987) or even superior performance by judges (e.g.,
Libby, 1976, but see Goldberg, 1976).

Generally speaking, bootstrapping does better when the judge
has more expertise in the form of valid linear knowledge (high G)
and the environment is predictable (i.e., high Re) (Dawes, Faust, &
Meehl, 1989; Kleinmuntz, 1990). In addition, because the boot-
strapping technique relies on a linear combination of cues identi-
fied by the investigator, linear policy models should be expected to
do better than unaided judgment when the residual correlation (C)
is low. Finally, Camerer (1981) concluded that bootstrapping
improves individual judgment when the criterion for judgment is
missing or vague. We examine these issues below in greater depth.

What Factors Affect the Accuracy of Human Judgment?

One of our major objectives was to illuminate the roles of task
and individual characteristics in explaining variability in judgmen-
tal achievement and its components (see above). Therefore, we
now briefly discuss issues studied within the lens model paradigm
that helped us define the characteristics we considered in the
meta-analysis.1

1. Tasks vary in the number of cues. Given well-established
limitations on human information processing, it is often argued
that the linear model does not provide a good description of
judgment when the number of cues is large (cf. Payne, Bettman, &
Johnson, 1993).

2. In addition to combining information, an important dimension
of many tasks involves identifying and assessing levels of relevant
information (Einhorn, 1972). Therefore, we distinguish between
studies where cues are “given” as opposed to “achieved.” For the
former, decision makers are provided with the explicit values of
the cues by the investigator. For the latter, the values of the cues
need to be inferred—and often even identified—by decision mak-
ers. For example, in a study by Dougherty et al. (1986), judges
predicted future performance of job applicants after watching
audiotape recordings of employment interviews. Job attitudes,
applicants’ compatibility with others, and other cues had to be
inferred by the judges from the recordings. What are the effects of
achieving cue values prior to making judgments?

3. Inter-cue redundancy is an important functional element of
decision environments. In particular, it facilitates the interchange-
ability of cues that Brunswik (1943, 1952) referred to as “vicarious
functioning” on the judgment side and “vicarious mediation” on
the environment side. Redundancy thus contributes to improving
the reliability of overall judgments and can help limit information
search without significant reductions in accuracy (Connolly &

Miklausich, 1978; Einhorn et al., 1979). Naylor and Schenck
(1968) showed that learning increases with positive inter-cue cor-
relations, but Lindell and Stewart (1974) provided evidence that
judgment does not improve as a direct function of the magnitude
of cue redundancy. We therefore distinguish in the meta-analysis
between different levels of inter-cue redundancy.

4. Several studies have focused on how well participants handle
different types of functional relations between cues and the crite-
rion (see, e.g., Brehmer, 1980). We distinguish between linear and
nonlinear forms of functional relations between the criterion and
cues in the ecology. Studies with nonlinear cue–criterion relations
on the environmental side of the lens model include curvilinear or
configural components in the design of environmental structures
(e.g., Rothstein, 1986). Learning nonlinear relations is a difficult
task and even when people acquire such knowledge, they experi-
ence difficulty in applying this knowledge consistently (Deane,
Hammond, & Summers, 1972).

5. In task environments with linear and curvilinear cue–criterion
relations (free of any configurality), an additional important char-
acteristic is the dispersion of weights in the ecology (�e,j). We
distinguish three cue-weighting schemes. First, a weighting func-
tion is additive noncompensatory if, when cue weights are ordered
in magnitude, the weight of each cue exceeds the sum of those
smaller than it (Martignon & Hoffrage, 1999, 2002; see also
Hogarth & Karelaia, 2005). Second, all other weighting functions
are additive compensatory. However, third, among the latter, we
distinguish the special case of equal weighting.

6. An important dimension of the Brunswikian research philos-
ophy is the concept of representative design (Brunswik, 1955).
The idea behind this concept is that greater generalizability of
experimental results can be achieved by conducting experiments
under conditions that are representative of people’s natural ecol-
ogies. We therefore consider differences between laboratory ex-
periments and field studies. In field studies, cue and criterion
values are, by definition, representative of the natural ecology of
the tasks studied, that is, sampled from naturally occurring stimuli.
For example, Kessler and Ashton (1981) used the data on 34
industrial companies listed on Compustat and asked participants to
predict corporate bond ratings assigned by Moody’s to these
companies. In Stewart, Moninger, Grassia, Brady, and Merrem’s
(1989) study of the accuracy of hail forecasts, the experimenters
used a stratified random sampling procedure to select stimuli to
guarantee that the base rate (i.e., proportion of volume scans for
which hail was verified) in the sample matched that in the larger
population of volume scans. In contrast, laboratory studies that use
simulated (i.e., hypothetical) values of cues and criterion are
typically not representative of natural ecologies (although, in prin-
ciple, stimuli could be appropriately constructed and respect, for
example, the ecological cue–criterion and inter-cue correlations).

7. Whereas field studies are contextually situated, laboratory
experiments have involved both contextual and abstract tasks. It is
possible that judgmental achievement and learning may be more
effective in meaningful, contextual tasks by enhancing judges’

1 To simplify our presentation, we provide a description of the coding
scheme used in the meta-analysis (see Method section) following the same
numbers and variables discussed here (e.g., 1 represents number of cues; 2
represents whether cues are given or achieved, and so on).
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interest in getting things right (see, e.g., Miller, 1971).2 For ex-
ample, in Mear and Firth (1987), security analysts made judgments
about security risk on the basis of firms’ financial profiles; in Tape,
Kripal, and Wigton (1992), medical students predicted the risk of
cardiovascular death on the basis of the presence or absence of
various concrete risk factors. In contrast, abstract tasks employ
nonmeaningful environments with unlabeled cues and/or criteria
(e.g., Brehmer, 1974; Jarnecke & Rudestam, 1976).

8. Initial level of expertise in the task domain (i.e., familiarity
with the task and having made similar judgments before) is im-
portant for achievement. We therefore distinguish between inex-
perienced judges and experts. However, it is possible to point to
individual studies of judgmental achievement involving acknowl-
edged experts that indicate both abysmal (Einhorn, 1972; Roose &
Doherty 1976) and incredibly accurate (Stewart, Roebber, & Bo-
sart, 1997) performance. What are the general trends?

9. Learning has been an important topic within the lens model
paradigm, where numerous studies have focused on how people
learn to utilize cues that are only probabilistically related to a
criterion. In the so-called multiple-cue probability learning studies,
judgmental accuracy is measured over several blocks of trials (e.g.,
Brehmer, 1969; Chasseigne, Mullet, & Stewart, 1997; Hammond,
Summers, & Deane, 1973), and feedback is often provided over
the course of these trials. The participants in studies are frequently
nonexperts (Cooksey, 1996, p. 63). Many studies have compared
the effectiveness of outcome feedback, cognitive feedback, and
task information feedback. Outcome feedback is simply knowledge
of the criterion value associated with a specific judgment case or
profile. Cognitive (or process) feedback refers to data involving the
judge’s decision policy (e.g., the weights associated with the
different cues in the model of the judge, the �s,js). Task informa-
tion feedback is information about true relations in the environ-
ment (e.g., �e,js and/or function forms) rather than about relations
implied by the judge’s decisions (i.e., cognitive feedback). Task
information feedback is often described as feed-forward because
relevant information is provided to judges before they make their
judgments.

Previous literature has shown that outcome feedback is helpful
in simple, straightforward tasks (e.g., two cues or high predictabil-
ity of the criterion; Adelman, 1981; Doherty et al., 1988; Hirst &
Luckett, 1992; Muchinsky & Dudycha, 1975; cf., Tape et al.,
1992) but not in complex, uncertain tasks (Brehmer, 1980; Hoff-
man, Earle, & Slovic, 1981). Outcome feedback may even impair
learning under uncertainty (i.e., when cue–criterion relations are
probabilistic) by decreasing consistency in the use of appropriate
task knowledge (Schmitt et al., 1976; Schmitt, Coyle, & Saari,
1977) and/or by impeding the development of task knowledge
(Hammond et al., 1973; Holzworth & Doherty, 1976).

Task information feedback has been shown to be effective (e.g.,
Kessler & Ashton, 1981) and to work better than cognitive feed-
back (Balzer, Doherty, & O’Connor, 1989). Moreover, when com-
bined with cognitive or outcome feedback, task information feed-
back is even more effective (Balzer, Sulsky, Hammer, & Sumner,
1992; Reilly & Doherty, 1992). However, sometimes providing
only task information may be sufficient (Reilly & Doherty, 1992;
Remus, O’Connor, & Griggs, 1996). In addition, experience is an
important determinant of judges’ ability to benefit from feedback.
In particular, Steinmann (1976) found that experienced judges

used cognitive feedback and task information feedback to improve
their judgments to a greater degree than less experienced judges.

Method

Database for the Meta-Analysis

By extensively searching several common databases (e.g., Psyc-
INFO), identifying references to key articles, and consulting lead-
ing contributors to the literature, we identified more than 200
published and unpublished works that suggested that they might
contain lens model data, specifically the components of Equation
3.3 Of particular assistance was the “Annotated Bibliography of
Cue Probability Learning Studies” prepared by R. J. Holzworth,
which includes 315 references to journal articles, book chapters,
doctoral dissertations, and technical reports that appeared between
1955 and 1999.4 Furthermore, we placed requests for any related
data on electronic mailing lists for members of the Brunswik
Society and the Social Psychology network and thereby accessed
several recent published and unpublished manuscripts.5 Finally,
we searched the reference sections of all retrieved reports. In cases
in which some data were missing from reports or were unclear, we
sent requests to authors to obtain the data. We did not explicitly
limit the linguistic coverage of items searched; however, all iden-
tified reports in our database were in English.

Exclusion Criteria

We excluded from consideration experimental reports that did
not model the environmental side of the lens, that is, for which
criterion data were missing (e.g., Kuo & Liang, 2004), research
within the conflict resolution paradigm in which the criterion for
one person is the judgment of others (e.g., Hammond, Wilkins, &
Todd, 1966), and studies in which the unit of analysis was aggre-
gate (typically mean), as opposed to individual, judgments (e.g.,
Gifford, 1994). We note, parenthetically, that whereas there are
numerous studies of the last category (especially in social psychol-
ogy), they are quite contrary to the Brunswikian tradition in that
they confuse idiographic (within-individual) and nomothetic
(within-group) levels of inference. Finally, we excluded works
where the data on judgmental achievement (ra) were not provided
and it was not possible to estimate them by substituting the
available statistics into the lens model equation (e.g., Miklich &

2 We thank one of the reviewers for this idea. In addition, Cooksey
(1996, p. 88) discussed different combinations of expertise and context
within the multiple-cue probability learning paradigm.

3 On completing our analysis, we became aware of another recent
meta-analysis of lens model studies conducted by Kaufmann and Athana-
sou (2007). The scope of their work is more limited than ours, and their
criteria for including studies in the analysis are different (e.g., they ex-
cluded studies that addressed learning and/or the effect of feedback on
human judgment). However, Kaufmann and Athanasou’s analyses covered
issues that are not considered in our article. For example, they compared
the levels of human achievement across different areas of decision making,
such as medical, business, educational, and others. Their work thus should
be considered complementary to what is presented here.

4 This resource is available at: http://www.brunswik.org/resources.
5 These resources are available at http://www.brunswik.org/index.html

and http://www.socialpsychology.org.
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Gillis, 1975). Among all retrieved reports, 86 were retained after
applying the exclusion criteria.

Defining Studies

Many experimental reports contained more than one study, that
is, they examined judgments in more than one environment or
experimental setting using a between-subjects design. Task fea-
tures, characteristics of participants, or experimental procedures
differed across environments within the same report. We defined a
study as the smallest experimental unit described. A study is
therefore a task environment with unique (within the report) fea-
tures of the experimental setting. A few reports contained results
on more than one task administered using a within-subject design.
In such cases, we averaged the results across experimental tasks
and included only these averaged figures in the database to guar-
antee the independence of data points. Thus, all data points in the
database corresponded to different participants and did not over-
lap. The split of the 86 experimental reports into studies led to a
total of 249 different experimental studies, or environments in
which judgments were made.

Coding Studies

We characterized the 249 studies by the averages of the lens
model statistics of the participants in each of these environments.
These averages were taken directly from the articles, inferred (e.g.,
from graphs), or calculated by utilizing the properties of the lens
model equation (Equation 3). In 35 studies, we had to assume the
correlation between the residuals of the models of the judge and
the environment (C) to be 0 in order to calculate missing compo-
nents of the lens equation (judgmental achievement, matching, or
consistency). We later excluded these 35 null values from further
analyses of the residual correlation (C). In the final data sample of
249 environments, 13 values of G, 3 values of Re, 12 values of Rs,
and 45 values of C—but no values of ra—were missing.

When studies explicitly considered learning over several blocks
of trials, we limited our attention to statistics for the first and last
blocks. The latter were used to capture general performance and
aggregated with the nonlearning data. The former were used as a
baseline to capture the effects of learning relative to levels exhib-
ited in the last blocks of trials (see below).

We emphasize that our unit of analysis is the average of statis-
tics of individuals within each environment (i.e., “average judge”)
as opposed to the actual individual statistics. Unfortunately, the
vast majority of articles did not provide individual-level data, so
we are unable to comment on variation within the different envi-
ronments.

In addition to the lens model statistics, we encoded, when
available, the following variables characterizing the specific tasks
and the participants.

Number of cues. We recorded the exact number of cues in
each study and additionally coded the data into three groups: two,
three, or more than three cues.

Type of cues. Studies where participants were provided with
explicit cue values by the experimenter were coded as “given” (0).
When the values of the cues needed to be inferred and/or identified
by participants, we coded the study as “achieved” (1).

Inter-cue redundancy in the ecology. We classified environ-
ments by the level of inter-cue redundancy as either “none” (no
redundancy), “some” (if the average of absolute intercorrelations
was less than or equal to .40 or redundancy was described as being
low, moderate, or some), or “high” (otherwise).

Function form in the ecology. We classified studies as “non-
linear” (1) if they explicitly included either curvilinear or config-
ural relations between criterion and cues in the ecology (e.g.,
Rothstein, 1986). All other studies were coded as “linear” (0).
Among nonlinear studies, we also identified studies where the
criterion was a monotonic function of the cues and where this was
not the case (i.e., U-shaped or inverted U-shaped functions).

Cue weights in the ecology. In studies without any configural
element (i.e., cue interaction), we classified the distributions of the
ecological cue weights into noncompensatory (the weight of each
cue exceeds the sum of those smaller than it in the ordered
sequence of cues) or compensatory (otherwise), except that we
also coded the special case of equal weighting.

Type of study. We classified a study as “field” (1) if it involved
cue and criterion values that were representative of the natural
ecology of the task, that is, sampled from real stimuli. Studies that
used hypothetical values of cues and criterion were coded as
“laboratory” (0).

Context. We coded studies as “abstract” (0) if they used non-
meaningful environments with unlabeled cues and/or criteria and
as “concrete” otherwise (1).

Expertise. We classified participants in three groups by the
level of initial expertise (i.e., before learning trials, if any): “nov-
ices,” “experts” (two extreme categories), and “some training” (an
intermediate category).

Learning and feedback. We distinguished between studies
where examining learning over multiple trials was an explicit
objective and/or in which participants were explicitly given the
possibility to learn through feedback over several blocks of trials
(and therefore the analysis was done within each block) and
studies without this possibility. We labeled the former as multiple-
block studies and the latter as one-shot studies. For multiple-block
studies, we also recorded the number of learning trials and type of
feedback given to participants. We classified feedback into four
categories: “outcome feedback” (1, if provided on learning trials
between the first and last blocks; 0, otherwise), “cognitive feed-
back,” “task information feedback,” and “other types of feedback.”
For studies with outcome feedback, we additionally coded two
variables identifying whether the feedback was provided on the
first block of trials and on the last block of trials. Under other types
of feedback, we classified studies where, for example, the infor-
mation on the relation between the ecology and the judge’s deci-
sion strategy (i.e., functional validity feedback; see Balzer et al.,
1992) was provided to the participants (e.g., O’Connor, Remus, &
Lim, 2005).

The coding form contained 18 variables, a product of author
discussion (N. Karelaia and R. Hogarth), and included moderator
variables suggested by previous literature (see above). All 86
experimental reports were coded independently by each of us.
Disagreements were rare and were resolved through discussion of
the issues involved. We did not quantify intercoder agreement
because the items to be coded were relatively simple and did not

409DETERMINANTS OF LINEAR JUDGMENT



involve subjective judgments, such as, for example, overall quality
of study methodology (Hunter & Schmidt, 2004, p. 471).6

Study Characteristics

The 86 experimental reports included in our analysis appeared
between 1954 and 2007, one half dating before 1981 and the other
half afterwards. When splitting the 1954–2007 interval into 5-year
periods, we found that the 1974–1978 period contained the largest
number of articles: 17. Interest in the topic then declined, as judged
by the number of articles we identified, but increased again at the
end of the 1990s. Of the 86 experimental reports, 4 were unpub-
lished manuscripts, 2 were technical reports, 1 was a book chapter,
1 was a conference proceeding, and the rest were journal articles.
The 86 experimental reports involved 143 different authors.

The mean number of participants in the 249 environments was
20 (interquartile range � 10 to 24), each participant making, on
average, 58 judgments (interquartile range � 25 to 120). Thus, the
total number of individual judgments on which our results were
based was large: about 303,000.7

Analyses

The main dependent variables of interest were the components
of Equation 3. Thus, the data we analyzed consisted of the average
values of these components—that is, average correlations—across
the individual participants within each of the 249 studies (see also
above). We did not apply Fisher’s Z transformation to these
average correlations prior to combining them, as such transformed
estimates have been shown to produce substantial upward biases
(larger than downward biases associated with untransformed cor-
relations coefficients) in meta-analytic models, especially if there
is variation in population correlations across studies8 (Field, 2001;
Hunter & Schmidt, 2004, pp. 82–83; Strube, 1988).9 Notably, in
130 of 249 studies, Fisher’s Z transformation had been applied to
the individual correlations of each participant before they were
averaged. In addition, we applied Fisher’s Z transformation to
individual correlations when such data were available (39 of the
remaining 119 studies) and then calculated averages of the trans-
formed correlations.

To combine the average correlations from different studies and
to correct for study-level sampling error in the estimation of the
population correlations, we used frequency weights (Hunter &
Schmidt, 2004, p. 81). Frequency weights were determined by
multiplying the number of participants in a given study by the
number of judgments each participant made in the study.10 The
results described below are obtained on the weighted data.

Several analyses of the weighted data were performed. First, we
examined average (weighted) lens model indices and confidence
intervals at the aggregate level. To assess variability in the data, we
calculated the within-group heterogeneity statistic, Q (e.g., Ader &
Mellenbergh, 1999, p. 304), as well as the recently proposed I2

index (Higgins & Thompson, 2002). A significant estimate of Q
suggests that variability in the meta-data is greater than would be
expected from sampling error alone, that is, that the population
correlations vary from study to study. The I2 index also quantifies
this variability and is easier to interpret; it corresponds to the total
variability across the meta-data due to true heterogeneity, that is, to
between-study variability. Higgins and Thompson (2002) pro-

posed to interpret I2 percentages of around 25%, 50%, and 75% as
low, medium, and high heterogeneity, respectively.

When analyzing the meta-data, we used random-effects, instead
of fixed-effects, models that allow population correlations to vary
from study to study (DerSimonian & Laird, 1986). This choice was
deliberate because the data contained between-study random dif-
ferences that go beyond within-study sampling variability; that is,
the assumption of between-study homogeneity was suspect (see
analysis below). Moreover, the random-effects approach is better
suited to generalizing results to a wider population of studies
beyond those included in the meta-analysis (e.g., Field, 2001;
Hedges & Vevea, 1998; Hunter & Schmidt, 2004, p. 202;
Rosenthal & DiMatteo, 2001). Random-effects models use ad-
justed weights that incorporate the random-effects variance com-
ponent (e.g., Lipsey & Wilson, 2001, p. 119) and are generally
more conservative than fixed-effects models in that confidence
intervals are larger.

When considerable between-study heterogeneity was detected,
we stratified the studies to identify moderator variables that might
account for variability in the averaged lens model indices. It is
important to note that subgroup meta-analyses are observational by
nature, and reliance on statistical significance tests can be mis-
leading (e.g., Hunter & Schmidt, 2004, p. 70). We therefore
considered, as a rule of thumb, the overlap of 95% confidence
intervals of summary estimates to quantify the magnitude of the
differences between subgroups. In addition, we fit meta-regression
models with several study-level explanatory variables to explore
possible simultaneous effects. Meta-regressions differ from simple
regressions in that they are weighted regressions and random-
effects models that allow for residual heterogeneity among studies
not modeled by explanatory variables.

We assessed the presence of possible publication bias (or avail-
ability bias; Hunter & Schmidt, 2004, p. 493). This refers to a
tendency for published and available (larger) studies to report, on
average, larger mean effect sizes than unpublished and unavailable
(smaller) ones (e.g., Lipsey & Wilson, 2001, p. 165). Parentheti-
cally, in the lens model literature, the objective is not to show that
correlational indices are statistically significant but rather to quan-

6 The spreadsheets that detail the coded data on which our analysis was
based are available online as supplemental material at http://dx.doi.org/
10.1037/0033-2909.134.3.404.supp.

7 In fact, the total was somewhat larger because this figure included only
judgments corresponding to the last block of trials of the studies that report
judgments across more than one block. In what follows, we present
analysis of judgments corresponding to the last block of trials, except when
exploring the effect of learning.

8 There was substantial variability in our data that obliged us to use
random-effects meta-analytic models (see Results section, How Accurate is
Human Judgment Overall?).

9 At very high levels of average correlations, there is no consistent
advantage to using transformed instead of untransformed correlations and
vice versa. In particular, the magnitude of underestimation of the average
population parameters with untransformed correlations becomes similar to
the overestimation with transformed correlations (Field, 2001; see also
Law, 1995).

10 The choice of frequency weights captures the notion that little weight
should be given to studies with either few judgments per individual
participant and/or few participants.
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tify them. Indeed, many published studies have reported low
values of the lens model components, such as judgmental consis-
tency, matching, and achievement, and these findings have been
used to stress the need to use statistical models instead of unaided
human judgment (e.g., Cooper & Werner, 1990; Einhorn, 1972).
Therefore, publication bias, as understood in meta-analysis litera-
ture (i.e., based on statistical significance), was not an issue here.
Nonetheless, we performed formal statistical tests to detect any
publication bias and quantify its magnitude. We used two recently
proposed statistical tests: Begg’s test (Begg & Mazumdar, 1994)
and Egger, Davey Smith, Schneider, and Minder’s (1997) regres-
sion method.11 When both procedures identified publication bias,
we inspected funnel plots12 (e.g., Lipsey & Wilson, 2001, pp.
142–143) to determine whether small studies reporting small cor-
relations were indeed underrepresented and applied Duval and
Tweedie’s (2000) nonparametric trim-and-fill imputation technique.
This method adjusts meta-data to incorporate the theoretical missing
studies with an appropriate fixed- or random-effects model.

All analyses were performed with specific Stata macros written
for meta-analytic data (Sterne, Bradburn, & Egger, 2001).

Results

We structured our results around four questions: (a) How accu-
rate is human judgment overall? (b) What task and individual
factors affect the accuracy of human judgment? (c) How effective
is learning and what is the role of feedback in this process? (d)
What factors affect the accuracy of bootstrapping models? Our
answer to the first question is essentially limited to providing
descriptive statistics of the different components of the lens model
equation identified above. The answers to the remaining questions
involve, first, providing breakdowns of the lens model components
by different task and individual characteristics (variable-by-
variable analysis) and, second, extensive use of meta-regression
techniques to capture the separate and simultaneous effects of
different moderator variables.

How Accurate Is Human Judgment Overall?

The left-hand part of Table 1 reports mean (weighted) values
and 95% confidence intervals of the lens model indices for the

aggregated data, as based on random-effects models. Across all
observations, mean achievement (ra) was .56, mean matching (G)
and mean response consistency (Rs) were both .80, and mean
residual correlation (C) was .04. On the environmental side, pre-
dictability (Re) was, on average, .81. High average values for
environmental predictability and linear response consistency sug-
gest that both environments and individuals can be modeled well
by linear functions of cues. Contrary to Camerer’s (1981) analysis,
Rs was not generally larger than Re.

As for the two composite statistics, mean linear cognitive ability
(GRs) was .66 and the mean validity of bootstrapping models
(GRe) was .65. The latter value exceeded mean achievement of
individual judgment by .10.

To explore relations between the various indices, we considered
the pairwise correlations, as presented in the right-hand part of
Table 1 (DerSimonian & Laird’s, 1986, random-effects weights
were applied). Several significant correlations ( p � .01) were not
unexpected. In particular, consistent with Equation 3, high positive
correlations were observed between achievement (ra) and (a)
matching (G): .78; (b) response consistency (Rs): .56; and (c)
environmental predictability (Re): .43. In addition, the fact that ra

and C, the correlation between residuals, were moderately corre-
lated (.23) suggests significant nonlinear and/or nonadditive usage
of cues and/or omitted variables. Less obvious a priori was the
significant correlation between the two statistics that characterize
performance independent of environmental predictability, namely,
matching (G) and response consistency (Rs). This correlation was
positive (.43) and suggests that judges who match the environment
better are also more consistent in executing their judgment.

Studies with higher environmental predictability tended to re-
port slightly higher judgmental consistency. Consistency (Rs) had
a weak positive correlation with environmental predictability (Re):

11 Begg’s test examines whether the Kendall’s rank correlation between
effect sizes and their standard errors is zero. It is fairly powerful for large
meta-analyses (Ader & Mellenbergh, 1999). The regression method tests
for a linear association between effect sizes and their standard errors.

12 Funnel plots graph effect sizes against study sample size (or sampling
error).

Table 1
Descriptive Statistics of Lens Model Indices

Lens model
index

M
(weighted)

95% confidence
interval n Q I2 (%) �2

Correlations

ra G Re Rs C GRe

ra .56 .53–.59 249 17,319* .057 99 —
G .80 .76–.83 236 19,829* .067 99 .78** —
Re .81 .79–.84 246 10,706* .035 98 .43** .10 —
Rs .80 .79–.82 237 5,644* .019 96 .56** .43** .14* —
C .04 .02–.06 204 6,249* .023 97 .23** .03 �.23** �.05 —
GRe .65 .61–.68 236 20,668* .070 99 .91** .82** .63** .41** �.08 —
GRs .66 .63–.69 236 17,469* .060 99 .83** .92** .12 .72** �.03 .78**

GRe � ra .10 .09–.11 236 2,461* .008 90

Note. See “The Mathematical Formulation of Brunswik’s Lens Model” section of the text for a description of the lens model indices. Q represents
within-group heterogeneity; I2 is the percentage of variation attributable to between-study heterogeneity; �2 is the DerSimonian and Laird (1986) estimate
of between-study variance.
* p � .05. ** p � .01.
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.14 ( p � .05).13 However, the correlation between Re and match-
ing (G) was not significant (.10, ns), suggesting that decision
makers can match environmental models equally well in noisy and
predictable environments. Similarly, linear cognitive ability (GRs)
did not correlate significantly with Re.

For all reported mean (weighted) indices, the estimates of het-
erogeneity (Q) were large and significant ( p � .01), indicating that
the variability across the data points surpassed within-study vari-
ability (the left-hand part of Table 1). This conclusion was con-
firmed by the estimates of I2 percentages. For all lens model
indices, almost 100% of variation in the meta-data was due to
between-study heterogeneity. We provide DerSimonian and Laird
estimates of between-study variance (�2) in the last column of the
left-hand part of Table 1. The estimates are the largest for achieve-
ment (ra), matching (G), and the composite statistics (GRs and
GRe). The considerable between-study variability in the data has
two implications. First, random- instead of fixed-effects models
should be used. Second, the next step should be to determine
moderator variables that explain this variability.

What Factors Affect the Accuracy of Human Judgment?

Table 2 classifies the lens model indices according to the task

and individual characteristics enumerated above (see Coding Stud-
ies in the Method section). The numbers of studies in each cate-
gory, average numbers of judges per study, average numbers of
judgments made by each judge, and mean (weighted) lens model
indices are specified. Table 3 presents the proportion of variance
explained by each variable. All variables were significant in ex-
plaining the variance between the subgroups ( p � .05) except for
one entry marked with an asterisk. This means that the data across
subgroups differed by more than sampling error.

Before providing an analysis of the results presented in Tables
2 and 3, we emphasize three points. First, the categories used, such
as laboratory versus field, multiple blocks versus one shot, and
levels of expertise, were not independent. In particular, in the
laboratory compared with the field category, there were propor-
tionally more learning studies (95% vs. 40%) and studies involving
novice judges (94% vs. 49%) and fewer studies with concrete
context (54% vs. 100%).

13 It is interesting to note that mean Re and mean Rs were close in value.
However, as noted above, mean Re is a “true mean,” whereas mean Rs is
a “mean of means.” Thus, within any given study, values of Rs at the
individual level can vary quite a lot for fixed levels of Re.

Table 2
Mean (Weighted) Lens Model Indices by Different Study Characteristics

Study characteristic
No.

studies

Average no. M (weighted) Adj. (n)

Judges Judgments ra G Re Rs C GRs GRe�ra

No. of cues
Two 72 24 48 .63 .89 .84 (20) .80 .78 .10 .71 .10
Three 77 20 49 .55 .86 .82 (17) .81 .80 �.02* .71 .13
More than three 99 18 73 .52 .70 .82 .82 .04 .59 .08

Type of cues
Given 202 19 48 .56 .81 .77 (36) .80 .77 (25) .81 .78 (41) .04 .67 .10
Achieved 43 28 104 .58 .77 .86 .76 .06* .62 .10

Cue redundancy
None 102 21 47 .66 .89 .85 .81 .04* .75 .11
Some 85 21 54 .48 .71 .80 .83 .03 .55 .09
High 23 22 109 .54 .75 .79 .80 .06* .61 .08

Function form in the ecology
Linear 189 22 60 .56 .81 .80 .82 .03 .68 .09
Nonlinear 56 14 37 .55 .77 .84 .79 (13) .73 .08* .58 .12

Cue weights in the ecology
Compensatory 97 19 58 .55 .76 .85 .84 .05 .65 .09
Noncompensatory 53 20 45 .54 .83 .78 (13) .85 .77 �.04* .67 .15
Equal weighting 33 32 62 .67 .91 .84 .79 �.01* .74 .10

Type of study
Laboratory 183 21 49 .60 .54 (33) .84 .84 .79 .05 .69 .11
Field 65 19 85 .45 .69 .73 .83 .75 (37) .03 .59 .07

Context
Abstract 84 21 48 .56 .84 .80 (14) .83 .76 .02* .67 .13
Concrete 163 20 59 .56 .79 .80 .82 .07 .66 .08

Expertise
Novice 204 21 48 .58 .83 .83 .79 (36) .79 .75 (42) .03 .68 .12
Some training 15 22 115 .51 .77 .66 .84 .08 .67 .03
Expert 29 14 104 .47 .60 .77 .85 .09 .54 .02

Learning
One shot 49 20 101 .41 .63 .71 .80 .07 .52 .05
Multiple blocks 199 21 48 .60 .85 .84 .80 (40) .80 .76 (41) .03 .70 .11

Note. See “The Mathematical Formulation of Brunswik’s Lens Model” section of the text for a description of the lens model indices. Correlations adjusted
for publication/availability bias are shown in italics. The trim-and-fill method was used; the number of filled studies is given in parentheses. High
heterogeneity remained within all of the subgroups.
*null effect size ( p 	 .05).
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Second, we assessed the presence of publication bias in the
collected values of ra, G, Re, Rs, and C within all subgroups of
studies. In the subgroups where publication bias was detected by
the Begg and Egger procedures, we recalculated combined effects,
incorporating the “missing” studies according to Duval and
Tweedie’s (2000) trim-and–fill method (see above). These ad-
justed values are shown in italics within the relevant cells in Table
2. The average downward adjustment was .04. Notably, funnel
plots of the relevant subgroups did not contain signs of underrep-
resenting small studies with reported small correlations. Therefore,
the adjusted values should be interpreted with caution and not
taken at face value.

Third, considerable heterogeneity remained in all subgroups (Q:
p � .05; I2 greater than 50%). This implies that no single study-
level variable can account for the variability in the meta-data and
that the influence of several such variables should be examined
simultaneously.

Effects of Specific Moderators

We next analyzed the effect of each moderator separately,
commenting here on the largest proportions of variance explained
by each. We further complemented the variable-by-variable anal-
ysis with the meta-regression technique.

Number of cues. In these data, the number of cues explained
11% of the heterogeneity of G, 8% of the heterogeneity of Rs,
8.4% of the heterogeneity of C, and 11% of the heterogeneity of
GRs. Human achievement, ra, was negatively affected by the
number of cues. In particular, mean ra was only .52 in environ-
ments with more than three cues, whereas it reached .55 and .63 in
the environments with three and two cues, respectively. However,
the number of cues explained only 3.2% of heterogeneity of ra.
Matching (G) decreased when the number of cues increased. The
lowest value of mean G corresponded to the subgroup with more
than three cues (.70; Table 2). Linear cognitive ability (GRs) was
also negatively affected by a greater number of cues. However, the
effect for judgmental consistency (Rs) seemed to be positive. As
for the correlation between residuals (C), it was the highest for the
simplest case of two cues.

Given–achieved cues. The variable of given versus achieved
cues alone explained 6.1% of heterogeneity of achievement (ra)
and lower proportions of variability of Rs, G, and C. The data in
Table 2 suggest that ra was slightly larger in the studies where cues
were achieved by judges (.58) than in the studies where the cues
were provided directly by experimenters (.56). Nevertheless, there
was a significant overlap of the confidence intervals for the pop-
ulation mean (.52–.59 for given cues vs. .51–.65 for achieved
cues). Overall, there were no large differences between studies
with achieved and given cues when this task variable was analyzed
alone.

Cue redundancy. When analyzed alone, cue redundancy neg-
atively affected the average level of matching, G (.89 with none vs.
.71 with some and .75 with high redundancy), explaining 11.8% of
the heterogeneity. As a consequence, linear cognitive ability (GRs)
was also negatively affected by the presence of cue redundancy in
the ecology, with 12.8% of heterogeneity explained. On the con-
trary, mean response consistency (Rs) did not differ much across
the subgroups, and the confidence intervals overlapped substan-
tially. The overall influence of redundancy on achievement (ra)
was negative, with 16.5% of variability explained by redundancy.
However, the possible influence of environmental predictability
(lower in studies with higher redundancy, ceteris paribus) should
be filtered out before drawing any conclusion.

Although surprising at first, the negative effect of redun-
dancy on G may be due (at least partially) to a positive relation
with the number of cues. In particular, only 16% of studies with
more than three cues contain no inter-cue redundancy, which is
well below the 85% of environments with two cues and 61% of
environments with three cues. (In addition, among the environ-
ments with three cues, none is classified as containing high
redundancy.)

To separate the effects of inter-cue redundancy, number of cues,
and linear predictability of the environment, we fit a meta-
regression model, with G as the dependent variable and number of
cues, cue redundancy, and Re as predictors. The results showed
significant negative effects of both cue redundancy (B � �.06,

Table 3
Heterogeneity Explained by Different Study Characteristics

Variable

Qbw Proportion of Qbw to total Q, %

ra G Re Rs C GRs GRe GRe � ra ra G Re Rs C GRs GRe GRe � ra

No. cues 555 2,185 216 862 522 1,921 1,268 252 3.2 11.0 2.0 8.0 8.4 11.0 6.1 10.2
Achieved/given cues 1,054 453 795 25 92 420 1,156 20 6.1 2.3 7.4 0.2 1.5 2.4 5.6 0.8
Cue redundancy 2,852 2,339 1,699 627 314 2,243 3,797 152 16.5 11.8 15.9 5.9 5.0 12.8 18.4 6.2
Function form in the

ecology 1,279 1,276 1,154 25 33 847 2,111 165 7.4 6.4 10.8 0.2 0.5 4.9 10.2 6.7
Cue weights in the

ecology 2,311 2,870 1,600 965 535 2,466 3,936 385 13.3 14.5 14.9 9.0 8.6 14.1 19.0 15.7
Laboratory/field

study 1,974 1,939 1,573 105 4 (ns) 875 3,354 217 11.4 9.8 14.7 1.0 0.1 5.0 16.2 8.8
Context 1,633 1,802 1,183 409 184 1,477 2,547 182 9.4 9.1 11.1 3.8 2.9 8.5 12.3 7.4
Expertise 871 1,722 965 251 328 792 2,245 550 5.0 8.7 9.0 2.3 5.2 4.5 10.9 22.3
Learning 1,128 1,989 841 19 198 1,239 2,247 245 6.5 10.0 7.9 0.2 3.2 7.1 10.9 9.9

Note. See “The Mathematical Formulation of Brunswik’s Lens Model” section of the text for a description of the lens model indices. All between-
subgroup heterogeneity statistics (Qbw) are significant ( p � .05), except where denoted nonsignificant (ns).
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SEB � .03, p � .05)14 and the number of cues (B � �.07, SEB �
.02, p � .01). The regression explained 19% of the variability of
G. A similar meta-regression explained 28% of the variability of
achievement (ra), with negative coefficients for both redundancy
(B � �.06, SEB � .02, p � .05) and number of cues (B � �.04,
SEB � .02, p � .05). That is, people match the environmental
model better when cue redundancy and the number of cues are
smaller, controlling for linear environmental predictability.

Function form in the ecology. Studies with nonlinear cue–
criterion relations, as compared with studies with linear functions
in the ecology, reported lower matching, G (0.77 vs. 0.81), and
judgmental consistency, Rs (0.73 vs. 0.82). However, function
form alone explained only 6.4% of variability of G and 0.2% of
variability of Rs. Of the 56 studies with nonlinear cue–criterion
relations, 50 studies involved nonmonotonic forms (e.g., an in-
verted U-shape).

Cue weights in the ecology. The three-level categorical vari-
able defining the distribution of cue weights explained 13.3% of
the variability of ra, 14.5% of that of G, and 9% of the variability
of Rs. Mean achievement (ra) was highest in equal-weighting
environments (.67). Judgmental consistency (Rs) was smallest in
noncompensatory environments (.77 vs. .79 in equal-weighting
and .84 in compensatory environments). Moreover, the confidence
intervals corresponding to the means of noncompensatory and
compensatory environments did not overlap (.72–.80 and .83–.86).

In matching the environmental model, participants did the best
job, on average, in equal-weighting environments (average G of
.91 vs. .83 in compensatory and .76 in noncompensatory environ-
ments; however, the confidence intervals corresponding to the
equal-weighting and noncompensatory environments overlapped,
.84–.98 and .74–.91).

Laboratory–field. We compared laboratory and field studies
on two dimensions. First, how does performance compare in the
two kinds of environments? Second, do the conditions of labora-
tory studies mirror those of field studies?

The dummy variable, laboratory–field, explained 11.4% of het-
erogeneity of ra, 9.8% of the heterogeneity of G, and 14.7% of the
heterogeneity of Re. In our data, field studies contained more noise
(i.e., smaller Re) than did laboratory studies (Re of .73 vs. .84; no
overlap between confidence intervals: .69 –.77 vs. .81–.87).
Matching (G) was smaller in field than in laboratory studies (.69
vs. .84; no overlap between confidence intervals: .63–.75 vs.
.80–.88). The same pattern was observed for achievement, ra (.45
in field studies vs. .60 in laboratory studies; .54, adjusted for a
possible availability bias). However, high remaining heterogeneity
within the subgroups suggested that other moderator variables
should be sought. In fact, all field studies contained three or more
cues, whereas 72 of the 183 laboratory studies (39%) contained
only two. Moreover, studies classified as field studies contained,
on average, more inter-cue redundancy than did laboratory studies.
In particular, none of our field studies lacked redundancy, whereas
most laboratory studies (68%) had no redundancy.

To separate the effects of these three study-level variables, we
fit meta-regression models with ra and G as dependent variables
(separately) and the laboratory–field dummy variable, number of
cues, level of cue redundancy, and linear predictability of envi-
ronments (Re) as predictors. The results showed that the
laboratory–field dummy variable explained no variance in either ra

(B � �.01, SEB � .04, ns) or G (B � �.02, SEB � .05, ns). The

meta-regressions explained 28.3% of the variability of ra and
18.7% of the variability of G. Thus, similar levels of achievement
and matching can be reached in laboratory and field studies, which
are comparable in terms of numbers of cues, inter-cue redundancy,
and overall linear predictability of the environment.

Does environmental predictability (Re) have the same impor-
tance for human judgment in laboratory and field studies? To
answer this question, we fit meta-regression models separately for
field and laboratory studies, with either G or Rs as dependent
variables and Re as the predictor. Because the laboratory–field
variable was confounded with learning (1 if multiple blocks),
expertise (two dummy variables), and context (1 if concrete), we
added these predictors to the models. The coefficient for Re was
not significant in the regressions run on the subgroup of field
studies (G: B � .18, SEB � .21, ns; Rs: B � .06, SEB � .08, ns).
In laboratory studies, however, when environments were more
predictable, participants were more consistent in their judgments:
The coefficient for Re was positive (.14; SEB � .06, p � .05).
When explaining the variance of matching (G) in laboratory stud-
ies, Re was not significant (B � �.08, SEB � 10, ns).

Context. Studies involving abstract tasks were characterized
by a lower overall level of judgmental consistency than studies
with concrete, contextually situated tasks (Rs of .76 vs. .82). The
context dummy variable explained 3.8% of the variability of Rs.
However, matching (G) was larger in abstract than concrete tasks
(.84 vs. .79). The difference decreased if the figure for abstract
tasks was corrected (until .80) for possible availability bias.

Expertise. Initial level of expertise (as opposed to expertise
acquired through learning across experimental trials) was nega-
tively related to achievement, ra (5.0% of variability explained by
the three-level categorical variable of expertise) and matching, G
(8.7% of variability explained), but positively related to judgmen-
tal consistency, Rs (2.3% of variability explained). Notably, studies
involving participants with some training and experts contained
more noise than studies involving novices (Re of .83 in studies
with novices vs. .66 and .77 in studies with somewhat experienced
participants and experts, respectively). In addition, linear cognitive
ability (GRs) and the validity of linear bootstrapping models (GRe)
decreased with increasing expertise (4.5% and 10.9% of the vari-
ability explained, respectively), but the nonlinearity/configurality
coefficient (C) tended to increase in value with increasing exper-
tise (albeit at an overall low level; 5.2% of variability explained).

To separate the effects of Re and expertise, we fit meta-
regression models, with achievement, matching, response consis-
tency, and residual correlation as dependent variables and with Re,
two dummy variables characterizing levels of expertise, and the
laboratory–field and learning variables (confounded with the level
of expertise) as predictors. The results revealed that experts were
more consistent in applying their linear judgmental policies (B �
.07, SEB � .03, p � .05, n � 233, in the regression with Rs as the
dependent variable; the five variables and the intercept jointly
explained 7% of the variability of Rs). However, there were no
other significant effects. Matching, residual correlation, and
achievement were not related to the level of expertise in these data.

14 B refers to model coefficients; SEB refers to standard errors of the
coefficients.
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Learning. The possibility to learn over multiple trials substan-
tially increased achievement, ra (6.5% of variability explained by
the two-level categorical variable one shot–multiple blocks);
matching, G (10.0% of variability explained); and linear cognitive
ability, GRs (7.1% of variability explained). Interestingly, there
was no difference in the values of judgmental consistency (Rs)
between one-shot and multiple-block studies (0.2% of variability
explained). Note, however, that multiple-block studies contained
less noise than did one-shot studies (Re of .84 and .71, respec-
tively). Meta-regression models with Re, two dummy variables
characterizing levels of expertise, and the laboratory–field and
learning variables as predictors (see above) revealed significant
positive effects of learning on matching, G (B � .15, SEB � .05,
p � .01, n � 233) and on linear cognitive ability, GRs (B � .17,
SEB � .05, p � .01, n � 233).

Simultaneous Effects of Moderators

To complement the above variable-by-variable analysis, we fit
meta-regression models of judgmental achievement, its compo-
nents, and composite lens statistics with all available moderators
included (Table 4). There were 11 dummy predictors in the mod-
els: achieved cues; low–medium redundancy and high redundancy
(for inter-cue redundancy); noncompensatory weights and equal
weights (for cue weighting scheme); nonlinear function; concrete
context; some training and expert (for expertise); multiple blocks
(for learning); and field studies. The models also contained three
continuous variables: number of cues, environmental predictability
(Re), and a measure ofy sample size: the product of number of
judges and number of judgments made. A log10 transformation

was applied to this variable because it had a pronounced positive
skew.15 The results of the meta-regressions can be summarized as
follows.

First, achievement (ra) was lower when there were more cues,
when cues were achieved rather than given, when there was some
redundancy between cues (vs. none), and when the function form
in the ecology was nonlinear (37.6% of the variance explained by
all included predictors).

Second, matching (G) was lower when there were more cues,
when the cues were achieved, and when the cues were correlated
(vs. not correlated at all). In addition, field studies reported higher
levels of matching than did laboratory studies with the same
characteristics on the dimensions included in the model. The
model explained 41.3% of variance of G.

Third, judgmental consistency (Rs) was lower when cues were
achieved, when inter-cue redundancy was high, and when the
cue-weighting scheme in the ecology was noncompensatory
(28.3% of the variance explained by all predictors).

15 Exactly the same results occurred when this explanatory variable
entered the models of ra, Rs, G, C, and GRs as a continuous untransformed
variable, that is, the proportion of explained variance remained the same,
and the same explanatory variables were or were not significant (the only
exception was the nonlinear function dummy that became significant in the
model explaining GRs, B � �.12, SEB � .05, p � .05). The differences
among the models in the advantage of bootstrapping (GRs � ra) are
discussed in the Results section, What Factors Affect the Accuracy of
Bootstrapping Models?

Table 4
Meta-Regression Models of Lens Model Indices

Predictor

Dependent variable

ra G Rs C GRs GRe � ra (1) GRe � ra (2)

B SEB B SEB B SEB B SEB B SEB B SEB B SEB

Intercept .16 .16 .76** .17 .77** .10 .25 .14 .58** .17 �.19** .07 .02 .08
Re .69** .10 �.02 .11 .03 .07 �.17 .10 .04 .11 .16** .04 .16** .05
Rs �.25** .05
C �.23** .04
No. cues �.02** .01 �.03** .01 .00 .00 .00 .01 �.03** .01 .00 .00 .00 .00
Achieved cues �.13** .05 �.13* .05 �.12** .03 �.07 .05 �.17** .05 .00 .02 �.03 .02
Low-medium cue redundancy �.13** .05 �.19** .05 �.06 .03 .05 .05 �.18** .06 �.03 .02 �.03 .02
High cue redundancy �.10 .07 �.22** .07 �.12** .04 .13* .06 �.24** .07 �.07** .03 �.07** .03
Cue weights:

noncompensatory �.05 .04 �.05 .05 �.07* .03 �.07 .04 �.08 .05 .01 .02 �.02 .02
Cue weights: equal .09 .05 .02 .06 �.06 .04 .05 .05 �.03 .06 �.06* .02 �.06* .03
Nonlinear function �.12* .05 �.07 .05 �.04 .03 .03 .04 �.11 .06 .01 .02 .01 .02
Context: concrete .05 .04 .06 .05 .01 .03 .12** .04 .03 .05 �.01 .02 .01 .02
Some training .12 .07 .04 .07 .01 .04 .03 .07 .06 .08 �.06* .03 �.07* .03
Expert .08 .06 .01 .06 .04 .04 .08 .05 .06 .07 �.08** .03 �.04 .02
Multiple blocks .02 .05 .09 .06 .06 .03 �.09 .05 .13* .06 .02 .02 .01 .02
Field study .06 .05 .13* .05 .04 .03 �.13** .05 .13* .06 .04* .02 .03 .02
Log (judges 
 judgments) �.02 .04 .06 .05 .01 .03 �.03 .04 .06 .05 .07** .02 .07** .02
�2 (unexplained variability) .036 .040 .013 .024 .043 .005 .003
% of variability explained 37.6% 41.3% 28.3% — 28.5% 36.8% 55.3%
n 173 166 166 141 167 166 140

Note. See “The Mathematical Formulation of Brunswik’s Lens Model” section of the text for a description of the lens model indices.
* p � .05. ** p � .01.
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Fourth, residual correlation (C) was higher (i.e., judges use
omitted cues and/or integrate cues in a nonlinear or configural
manner) when inter-cue redundancy was large and the task was
context-specific. Field studies reported lower levels of C than did
comparable laboratory studies. The model, however, hardly ex-
plained any variance of C.

Fifth, linear cognitive ability, GRs, was lower under the same
conditions as G, that is, under conditions of more cues, achieved
cues, and correlated cues. This composite statistic was higher in
studies that examined judgment over multiple blocks (vs. one-shot
studies with comparable characteristics) and field studies (vs.
laboratory studies with comparable characteristics). The model
explained 28.5% of the variability of GRs.

In all five models, the unaccounted residual variance exceeded
50%, suggesting that important moderator variables may be miss-
ing from this meta-analysis. Interestingly, the variables that define
the level of expertise (some training and expert) were not signif-
icant in any of the models. Therefore, experts apparently do not
perform better than less experienced judges on comparable tasks.
We further discuss below the definition of expertise used to code
the studies in this meta-analysis and the importance of distinguish-
ing between experience and expertise.

How Effective Is Learning? The Role of Feedback

We next examined the effect of experience acquired through
learning across experimental trials in studies with multiple blocks
of judgments. Our objective was to quantify learning and to
compare effects of different types of feedback. In our sample, 199
studies explicitly addressed the question of learning over multiple
blocks of judgments (Table 2).

Main Effects

To quantify the magnitude of learning, we calculated the shifts
in achievement, matching, judgmental consistency, residual corre-
lation, and linear cognitive ability by subtracting the results ob-
served in the first block of trials from those of the last block.
Among 199 learning studies, 96 to 139 studies contained both
pre-learning (i.e., the first block) and post-learning (i.e., the last
block) data of various lens model statistics. On average, there were
176 learning trials between the first and last blocks of judgments
in these studies (interquartile range � 40 to 125). Table 5 con-
tained weighted means (calculated with random-effects models),

95% confidence intervals for the means, and various measures of
between-study variability.

All lens model statistics improved over multiple experimental
trials. Mean improvement of achievement (ra) and matching (G)
was .20, whereas judgmental consistency (Rs) and residual corre-
lation (C) increased by .08. None of the confidence intervals
contained zero. To calibrate these results, we compared them with
average (weighted) values of lens model statistics corresponding to
the first block of judgments (i.e., the first block of trials): on
average, ra increased by 48%, G by 31%, Rs by 11%, and GRs by
42%. As for residual correlation, C, its pre-learning average value
was .00 (z � .01). Notably, however, significant between-study
heterogeneity remained in the average shifts of the lens model
correlations after correcting for sampling error, that is, large and
significant estimates of heterogeneity (Q); high percentages of
variation attributable to between-study heterogeneity (I2); and es-
pecially large DerSimonian and Laird estimates of between-study
variance (�2), for achievement (ra), matching (G) and linear cog-
nitive ability (GRs).

Types of feedback. Different types of feedback available to
participants in the learning studies were examined as potential
moderators of changes in the lens model indices. Outcome feed-
back on learning trials was provided in 94 studies (with both pre-
and post-learning data available for at least one lens model index),
task information feedback in 55 studies, cognitive feedback in 26
studies, and other types of feedback in 16 studies. However, in
many studies a combination of different types of feedback was
provided. Thus, 69 studies had outcome feedback alone, 14 studies
had only task information feedback, and 5 studies had only cog-
nitive feedback. Both cognitive and task information feedback
were provided in 17 studies, and outcome and task information
feedback were available in 21 studies. All three types of feedback
were present in 3 studies, and, finally, participants in 1 study
received both outcome and cognitive feedback.

Meta-regression models were fit to the shifts in the lens model
indices (Table 6). Predictors included (a) pre-learning levels of
human performance, as these can limit the space for learning; (b)
the number of cues and predictability of the environment (Re) as
two measures of task difficulty (e.g., it could be more difficult to
learn in noisy environments); (c) a log10-transformed measure of
sample size (i.e., the product of number of judges and number of
judgments per judge); and (d) the log10-transformed number of

Table 5
Descriptive Statistics of Learning Effects

Shift of: M (weighted) 95% confidence interval n Q I2 (%) �2

ra .20 .16–.25 139 5,968* 98 .070
G .20 .15–.26 128 8,178* 98 .105
Rs .08 .06–.11 127 1,303* 90 .017
C .08 .04–.13 96 2,181* 96 .045
GRs .21 .16–.27 129 7,621* 98 .096

Note. See “The Mathematical Formulation of Brunswik’s Lens Model” section of the text for a description of
the lens model indices. Q represents within-group heterogeneity; I2 is the percentage of variation attributable to
between-study heterogeneity; �2 is the DerSimonian and Laird (1986) estimate of between-study variance.
* p � .05.
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learning trials (the untransformed distribution was heavily posi-
tively skewed).

For each lens model statistic, we fit two models. The first model,
(indicated by M1) included three dummy variables identifying the
exclusive availability of outcome feedback, task information feed-
back, or cognitive feedback. Two additional dummies identified
studies with two available types of feedback: outcome and task
information feedback, and cognitive and task information feed-
back.16 The second model (indicated by M2) included four dummy
variables that identified the availability (either exclusive or not) of
outcome feedback, task information feedback, cognitive feedback,
and other type of feedback.

Achievement. The results of the meta-regressions revealed that
judgmental achievement (ra) improved more in the studies that
contained less noise in the environmental model (i.e., higher Re)
and a longer sequence of learning trials. In addition, achievement
improved more in the studies where task information feedback was
available, either alone or in combination with other types of
feedback, than in the comparable studies (i.e., same number of
learning trials, number of cues, and Re) without such information:
ra (M2). The two models explained about 65% of the variability of
shifts of ra that occurred across learning trials.

Consistency. Similarly, judgmental consistency (Rs) increased
more when Re was higher and task information feedback (either
alone or in any combination) was available: Rs (M2). There was no
effect of the number of learning trials: Rs (M1) and (M2). More-
over, judgmental consistency decreased across learning trials in the
studies that had only outcome feedback: Rs (M1). Interestingly, the
intercepts were large and significant in both Rs (M1) and Rs (M2),
indicating that judgmental consistency increased with experience,
regardless of the type of feedback (if any). The models explained
about 67% of the variability in shifts of Rs.

Overall, outcome feedback played a negative role in the dynam-
ics of judgmental consistency (Rs). However, does it matter when
outcome feedback is administered? There were 72 studies that
provided outcome feedback both on the first (pre-learning) and last
(post-learning) blocks of trials. In addition, in 8 studies outcome
feedback was provided on pre-learning but not on post-learning
trials, and in 19 studies this type of feedback was available on
post-learning but not on pre-learning trials.

To understand the role of outcome feedback better, we added
two new dummy variables to Rs (M2): one for studies with
outcome feedback available on the first block of trials (outcome
feedback, pre-learning block) and another for studies with outcome
feedback available on the last block of trials (outcome feedback,
last block). This new meta-model, Model 3, Rs (M3), showed that
the moment at which outcome feedback becomes available is
important. In particular, outcome feedback improved judgmental
consistency when it was available on the pre-learning block, that
is, when participants had the least knowledge about the task (B �
.09). The coefficients for the dummies defining outcome feedback
available on learning trials (outcome feedback) and on the last
block of trials (outcome feedback, last block) were negative (�.06
and �.05) but only showed a trend toward significance ( p � .10).
Adding two dummies related to outcome feedback increased the
proportion of variance explained by 6.5%.17

Matching. The models of the matching index (G) indicated
that people were better able to acquire linear task-specific knowl-
edge when task information feedback was available—either alone

or in any combination— G (M2), 77.5% of variance explained. No
other type of feedback was helpful. Moreover, noise in the envi-
ronment was not a determinant of the magnitude of changes in G.
Large and significant intercepts in the models of shifts of G
indicated that experience improved matching across the conditions
examined here, in a manner similar to consistency.18

Residual correlation. The increase due to learning of nonlin-
ear or configural knowledge (C) was naturally stronger in envi-
ronments with lower linear predictability: GRs (M2), 51% of
variance explained. No specific type of feedback was important for
acquiring such knowledge; in fact, other types of feedback (e.g.,
relations between the ecology and the judge’s strategy) were
detrimental (B � �.11). Interestingly, the length of the learning
period was positively related to improvements in C, but larger
studies (as defined by the product of judges by the number of
judgments per judge) reported smaller shifts.

Linear cognitive ability. Finally, the models explaining shifts
of linear cognitive ability (GRs) reflected a positive effect of task
information feedback but no effects of Re or of any other type of
feedback: GRs (M2), 76.3% of variance explained.

Summary. We found that, first, achievement, matching, con-
sistency, and linear cognitive ability all increased with experience.
Judgmental consistency was the least sensitive to learning. Second,
less noise in the ecology facilitated improvements in judgmental
consistency and achievement but was irrelevant for matching.
Third, the availability of task information magnified the positive
effect of (linear) learning. Fourth, outcome feedback was benefi-
cial for judgmental consistency when the judge was unfamiliar
with the task but detrimental when some familiarity had already
been acquired. In addition, outcome feedback did not affect
achievement, matching, or linear cognitive ability.

Other Effects

The data showed that some kinds of feedback can be helpful.
However, is feedback helpful only in simpler tasks, for example,
more predictable environments, situations with fewer cues? Does
inter-cue redundancy help or hurt? And do experts learn from
feedback better than novices? We next examined the role of each
of these variables.

Environmental predictability and the number of cues. Because
the median Re in the studies with multiple blocks of trials was .91,
we fit meta-regression models similar to those presented in Table
6 separately on the subgroups of studies with Re � .91 and Re �
.91. The results of these models showed that task information
feedback was only beneficial for achievement (ra) and judgmental
consistency (Rs) in the studies with Re � .91 (B � .15, SEB � .07,
p � .05, n � 69, and B � .11, SEB � .04, p � .01, n � 59,

16 Dummies for identifying other combinations of feedback (i.e., out-
come and cognitive; outcome, cognitive, and task information) were not
included because of insufficient numbers of studies with such characteris-
tics (1 and 3, respectively).

17 A similar split in Model 2 of the other dependent variables had no
effects on coefficients or on the explanatory power of the models.

18 It should be noted, however, that higher pre-learning levels of match-
ing were stronger impediments to learning than were higher pre-learning
levels of consistency (B � �0.64 and B � �0.55 in G (M1) and Rs (M1),
respectively).
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respectively). In contrast, for matching (G), this was only the case
in the studies with Re �.91 (B � .07, SEB � .03, p � .05, n � 60).
Using the same .91 split, we found that outcome feedback pro-
vided on the first block of trials was beneficial for Rs only in the
subgroup with Re � .91 (B � .11, SEB � .05, p � .05, n � 59).
In short, there is some evidence that feedback is more beneficial
when the ecology contains less noise. However, given the high
level of Re observed in our data, we believe that this should be
considered more a hypothesis than a conclusion.

Among studies with multiple blocks of trials, there were 51 with
two cues, 56 with three cues, and 32 with more than three cues. We
fit meta-regression models, such as those presented in Table 6,
separately on the subgroups of studies with two or three cues, on
the one hand, and with more than three cues, on the other. These
models showed that in the studies with more than three cues (n �
30), task information feedback had positive effects on ra (B � .16,
SEB � .07, p � .05), G (B � .17, SEB �.08, p � .05), and Rs (B �
0.12, SEB � .05, p � .01). However, in the studies with fewer cues
(n � 90), the only significant effect of task information feedback
was on Rs (B � .05, SEB � .02, p � .05). As for outcome feedback,
its effect was significant only in the studies with fewer cues
(positive if available in the first block of trials, B � .08, SEB � .02,
p � .01, and negative if available in the last block, B � �.07, SEB

� .03, p � .05).
Redundancy. Cue redundancy was absent in 74 studies with

multiple blocks of trials, 45 studies contained some redundancy,
and 8 had a lot of redundancy. Meta-regression models were fit
separately on the subgroup of studies with and without redun-
dancy. The results revealed that task information feedback im-
proved ra and G only when redundancy was present (B � 0.12,
SE

B
� .06, p � .05, n � 45, and B � .15, SEB � .06, p � .05, n �

39, respectively) and improved Rs only when it was absent (B �
.10, SEB � .03, p � .01, n � 69). Similarly, the effect of outcome
feedback on Rs was significant only in the subgroup of studies with
no redundancy (positive if available in the first block of trials, B �
.12, SEB � .04, p � .01).

In brief, it seems that judges can use outcome feedback, either
for the good or the bad of their judgmental consistency, only in
tasks with few cues. Task information feedback, on the contrary,
improved judgmental consistency, regardless of the number of
cues. Moreover, inter-cue redundancy reduced the sensitivity of
judgmental consistency to feedback. Providing task-relevant infor-
mation increased linear task-specific knowledge (G) and overall
judgmental achievement (ra) only in tasks with more cues and
more redundancy.

Expertise. Most studies with multiple blocks of trials were
done with novices (n � 127). Only 12 studies involved somewhat
experienced judges and experts. Therefore, one should be cautious
in making general statements from comparing these two sub-
groups. The regressions showed that whereas task information
feedback increased G in subgroups of novices as well as those
consisting of more experienced judges (B � .11, SEB � .04, p �
.05, n � 108, and B � .13, SEB � .06, p � .05, n � 11,
respectively), its beneficial effect on Rs and ra was significant only
in the subgroup involving novices (B � .07, SEB � .02, p � .01,
n � 109, and B � .10, SEB � .04, p � .05, n � 120, for Rs and
ra, respectively). Outcome feedback was irrelevant for the Rs of
somewhat experienced judges, beneficial for the Rs of novices
(n � 109) when available on the first block (B � .08, SEB � .02,

p � .01), and detrimental for the Rs of novices when available on
the last block (B � �.07, SEB � .03, p � .05).

What Factors Affect the Accuracy of Bootstrapping
Models?

The validity of bootstrapping models can only really be tested
on out-of-sample cross-validation. However, it is instructive to
analyze the potential sizes of effects due to different variables on
the basis of past samples of data. Our objective, therefore, is to
isolate the conditions under which the application of bootstrapping
is likely to be advantageous.

The average (weighted) advantage of bootstrapping models,
found as the difference between linear achievement with perfect
consistency and human achievement (i.e., GRe � ra) was .10, with
a tight 95% confidence interval of .09 � .11 (Table 1). As might
be expected, the effect of eliminating judgmental inconsistency
more than outweighed the advantage of any residual correlation
(C), and bootstrapping was, on average, effective (Camerer, 1981;
Dawes et al., 1989; Goldberg, 1970). However, in 30 of 236
studies for which the bootstrapping advantage could be measured,
GRe was inferior to ra, which suggests limitations in applying
bootstrapping. High heterogeneity in the values of GRe � ra (i.e.,
high Q and I2 in Table 1) further highlights the importance of
identifying the task and judge characteristics that favor bootstrap-
ping.

Variable-by-variable analysis (Tables 2 and 3, last columns)
revealed substantial differences in bootstrapping advantage be-
tween studies of different characteristics. Study-level variables that
explained higher proportions of variance between the subgroups
were the following: expertise (22.3% of variance explained), cue
weights in the ecology (15%), number of cues (10.2%), and
learning (9.9%). The average bootstrapping advantage differed
from zero in all subgroups ( p � .05). High heterogeneity is present
in all entries of Table 2 and thus variable-by-variable analysis is
insufficient.

A meta-regression model, similar to those described above
for the lens model components, was fit with GRe � ra as the
dependent variable: Table 4, GRe � ra (M1), with 14 predictors
and an intercept. The model explained 36.8% of the variance in
the values of bootstrapping advantage and showed that boot-
strapping models are differentially advantageous in tasks with
less noise (or larger Re, B � .16). The advantage of bootstrap-
ping is smaller when cues are highly correlated (B � �0.07) or
equally weighted (B � �.06) and when judges have some
experience (B � �.06 for some training and B � �.08 for
expert). In addition, there was a positive effect for field as
opposed to laboratory studies (B � .04).

The predictive power of the model was substantially improved
by adding two additional predictors: judgmental consistency (Rs)
and residual correlation (C): Table 4, GRe � ra (M2), 55.3% of
variable explained. Now it is apparent that the bootstrapping
advantage is smaller when judges are more consistent in applying
their linear policies (B � �.25), use cues not included in the
model, and/or aggregate cues in an appropriate (i.e., corresponding
to the ecology) nonlinear or configural manner (B � �.23). The
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field study and expert variables, however, proved to be insignifi-
cant in this second model.19

Discussion

Our first goal in conducting this meta-analysis was to quantify
levels of human judgmental achievement, as captured by lens
model indices. Our second goal was to account for variability in
performance due to individual and task characteristics (i.e., mod-
erator variables). Our third goal was to illuminate the conditions
that facilitate or impede learning, as studied within the lens model
paradigm (i.e., by examining effects of different types of feed-
back). Our fourth goal was to illuminate the conditions under
which bootstrapping models are more likely to be effective than
unaided human judgment. Below we discuss conclusions reached,
limitations of this particular meta-analysis, and the implications of
our work.

Major Conclusions

Although subject to limitations (of generalization), the studies
we examined essentially demonstrate three important findings: (a)
People are capable of achieving high levels of judgmental perfor-
mance, (b) people learn best from feedback that instructs them
about the characteristics of the tasks they face, and (c) the incon-
sistency that people exhibit in making judgments is sufficient for
models of their judgments to be more accurate than they are
themselves (i.e., eliminating inconsistency outweighs the benefits
of idiosyncratic knowledge that is not captured by linear models).

Our meta-analysis shows that evidence accumulated over the
past 5 decades is consistent with the conclusion that linear models
can provide good higher level representations of both human
judgment and task environments (Einhorn et al., 1979; Payne et al.,
1993). Linear models capture similar proportions of variance in
environmental outcomes and human judgments (around 64% on
average). However, there are clearly situations where human de-
cisions are better described by nonlinear processes. For example,
under time pressure, experts may rely more on intuitive judgment,
consider few (if more than one) alternatives, simulate scenarios
using imagination, and engage in experience-based pattern match-
ing (Hogarth, 2001). The extent to which such tacit decision
processes can be represented by linear models remains an open
question.

In our sample, task environments in laboratory studies generally
contained less noise than those in field studies that represent
decision makers’ natural ecologies. Moreover, laboratory—but not
field—studies with high environmental linear predictability tend to
report higher judgmental linear predictability (i.e., consistency).
Parenthetically, we note that some 30 years ago, Brehmer (1976)
showed, in a small sample, that environmental and judgmental
linear predictabilities were positively correlated in field studies
and claimed that this relation was also observed in laboratory
studies. Our larger sample does not support the former claim.

We identify other differences between laboratory and field stud-
ies. For example, laboratory studies focus more on learning, use
mostly novice (naı̈ve) participants, and involve fewer cues with
less inter-cue redundancy. We find that, even after controlling for
task differences between laboratory and field studies, field studies
tend to report higher linear matching, obtain lower residual corre-

lation between the linear models of the judge and the environment,
and suggest greater advantages of bootstrapping models over un-
aided human judgment. Therefore, extrapolating the results ob-
served in laboratory studies to people’s natural environments im-
plies underestimating human linear knowledge and the advantage
of bootstrapping models and overestimating nonlinear (configural)
knowledge.

Consistent with the Brunswikian tradition, we identified several
task characteristics that affect judgmental performance. First,
when the number of cues is large, judges are less effective at
matching environmental models. Consequently, levels of perfor-
mance are lower (cf. Einhorn, 1971; Payne et al., 1993). Second,
inter-cue redundancy also makes it more difficult to match envi-
ronmental models and thereby reduces achievement (but see our
arguments below as to why the lens model methodology may not
be appropriate for capturing effects of redundancy). We also find
that people respond to feedback more when redundancy is low.
Third, identifying cues and quantifying their values is a hard task,
and accuracy is better when cue values are directly supplied by
investigators as opposed to being “achieved” by judges. Whereas
there may be a relation between whether the cues are given or
achieved and intrinsic interest in the task (Michael Doherty, per-
sonal communication, February 23, 2007), motivation to exert
additional effort does not necessarily lead to better performance
(Camerer & Hogarth, 1999; Pelham & Neter, 1995). Fourth, hu-
man achievement is lower when there are nonlinearities in the
ecology. In addition, in environments that involve additive non-
compensatory cue weighting (i.e., differentially weighted cues),
consistency in applying judgmental policies is less than in envi-
ronments with compensatory weighting schemes.

These results suggest that individuals may have preconceived,
simplified expectations of decision environments and try to apply
decision strategies that are coherent with these expectations (see
also Brehmer, 1980, 1994). In our data, redundancy-free and
equal-weighting environments are most favorable to the strategies
that judges use. Perhaps, within the class of linear strategies, equal
weighting is most attractive psychologically because it guarantees
that the judge considers all information. It is also possible that the
judge gives equal weights to the cues when he or she lacks
knowledge about their differential validities. Equal-weighting
strategies generally provide a good default (Dawes & Corrigan,
1974).

The presence of redundancy and differential cue weights creates
an imbalance between individual expectations and environmental
structure and, therefore, hurts performance. In the presence of such
imbalance, many learning trials are needed for improvement to
occur. The correct application of decision strategies that rely
heavily on a single cue or a few cues (e.g., availability, Tversky &
Kahneman, 1973; “take-the-best”, Gigerenzer & Goldstein, 1996)
requires a certain level of expertise (Hogarth & Karelaia, 2007).

19 When the log10 transformation was not applied to the product of
number of judges and number of judgments, the proportion of explained
variance in both models remained the same. However, the significance of
some coefficients was affected. In particular, in both models, the equal cue
weights variable became marginally significant ( p � .057); the variable,
some training, gained in significance ( p � .01); and the field study variable
became significant (B � .05, SEB � .02, p � .05).
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Indeed, some studies report that experts use surprisingly little
information (Goldberg, 1970; Shanteau, 1992b). Performance lev-
els that can be achieved by novices when applying such strategies
are limited, especially in environments where cue redundancy, and
therefore cue interchangeability, is low.

With regard to expertise, our data do not suggest that experts
match environmental models better than novices (cf. Shanteau,
1992b), nor do experts rely more than novices on configural,
nonlinear judgmental strategies. Thus, both expert and novice
judgment can be well described by simple linear models, although
we do find that experts are more consistent than novices in apply-
ing their decision policies (cf. quasi-rationality hypothesis; Breh-
mer, 1994). However, the effect disappears when we control for a
wider range of study-level characteristics. This may suggest that
the conditions under which novice and expert judgments are stud-
ied are different and that the results of novices and experts are not
directly comparable. The finding that more expertise does not lead
to better judgmental achievement echoes a review by Dawes et al.
(1989), in which the authors suggest that in some domains, exper-
tise can be difficult to develop and is therefore only weakly related
to performance criteria (see also Shanteau, 1992a). It is important
to note that we coded as expert all studies where participants were
described as being familiar with the task to be performed and/or to
have made similar judgments repeatedly before. Therefore, al-
though our expert judges were experienced, the extent to which
they had developed domain knowledge—or expertise—is unclear.
Moreover, if expertise is defined ex post, on the basis of judgmen-
tal performance, the participants classified as experts in our data
should be referred to as “experienced” rather than “expert.”

With regard to learning, we find that decision makers are capa-
ble of learning when they repeat a task over multiple trials.
Judgmental consistency, however, is the least sensitive component
of the lens model indices to learning. Our results show that more
learning occurs in less noisy environments where there is greater
consistency in applying individual decision policies. The learning
of domain-specific linear knowledge, however, is not related in our
data to the predictability of the task environment. With regard to
feedback, it is task information that improves learning, whereas
cognitive feedback does not help. Outcome feedback, when pro-
vided alone, has a negative effect on judgmental consistency and
no effect on either matching or overall judgmental accuracy. The
effectiveness of task information feedback has been emphasized
previously in the literature (e.g., Balzer et al., 1989), whereas the
effectiveness of outcome feedback has also been questioned (e.g.,
Brehmer, 1980; Hammond et al., 1973; Hoffman et al., 1981).
However, we find that outcome feedback can be beneficial for
learning (i.e., it improves judgmental consistency) when judges are
unfamiliar with the task. Notably, none of the types of feedback
considered in this analysis improves nonlinear (configural) knowl-
edge.

Our meta-sample contains some evidence that decision makers
are only able to use outcome feedback in tasks with few (and
uncorrelated) cues. The effects of outcome feedback on judgmen-
tal consistency can be sometimes positive and sometimes negative.
Task information feedback, on the contrary, improves judgmental
consistency whatever the number of cues. We also hypothesized,
on the basis of limited data, that task information feedback and
outcome feedback affect only novice (naı̈ve) judges. We do not
find any evidence that more experienced judges benefit more from

cognitive or task information feedback than do novices (Stein-
mann, 1976).

We identified several relevant task and judge characteristics that
delimit the conditions under which bootstrapping human judgment
is effective. The advantage of bootstrapping models over unaided
human judgment is larger when there is less noise in the ecology;
cue redundancy is low; cues are differentially weighted in the
ecology; and the judge is less experienced, is less consistent in
applying his or her linear policies, only uses the same cues as in the
linear model, and does not rely on any nonlinear (configural)
component. The latter, however, comes as no surprise, as boot-
strapping models are linear models of judges.

What explains these findings? Following Camerer’s (1981)
analysis of the situations in which bootstrapping will be more
effective than unaided human judgment, the roles of noise in the
ecology, judgmental inconsistency, and any residual correlation
are quite clear. However, the “vicarious” role of cue redundancy
(Brunswik, 1952) can explain why bootstrapping models lose their
advantage when redundancy increases. Cue redundancy reduces
the importance of accurately detecting the most valid cues in the
ecology, thereby making the cues interchangeable. As for cue
weights in the ecology, the greater advantage of bootstrapping in
environments where cues are differentially valid echoes our result
that judgmental consistency is lower when these are noncompen-
satory. Finally, experienced judges may rely more on tacit, intui-
tive decision schemes that are difficult to capture by a statistical
model such that their bootstrapping models are merely imperfect
mirrors of the judges “corrected” for inconsistency.

In terms of more detailed findings, it is useful to consider what
the data reveal about the effects of the different lens model
statistics represented in Equation 3. The pattern of correlations
between the various indices (Table 1) reveals that judgmental
achievement is more strongly correlated with judgmental consis-
tency than with environmental linear predictability (.56 vs. .43)
and that whereas judgmental consistency is correlated with match-
ing, environmental predictability is not. Thus, although environ-
mental predictability necessarily limits achievement, in our data it
explains little variance in differential achievement. Instead, this
variance is more adequately captured by the human side of the lens
model, that is, by the particular strategy the judge uses and how
consistently this is executed. The result that matching and envi-
ronmental predictability do not correlate echoes the Brunswikian
idea of the overall ecological adaptability of human judgment
processes (Brunswik, 1952).

Limitations and Further Research

Our meta-analysis was limited in that it did not consider several
factors that could potentially affect judgmental accuracy. Indeed,
we know there is variance in judgmental performance that is
unexplained even after accounting for the factors coded in this
article. For example, we did not consider possible effects of cue
reliability as defined by variability in multiple observations of
cues; York et al. (1987), for example, found that people weighted
more reliable cues more heavily regardless of their validities. Nor
did we consider the sign of cue validities (e.g., Lafon et al., 2004).

However, important limitations on our conclusions result from
the fact that, taken as a whole, the 249 studies included in this
analysis could hardly be described as being generated by principles

421DETERMINANTS OF LINEAR JUDGMENT



of representative design (Brunswik, 1955; Dhami, Hertwig, &
Hoffrage, 2004). For example, most of the laboratory studies in our
sample had little or no inter-cue redundancy, an important com-
ponent of realistic task environments that was present in the field
studies. Care should be exercised in generalizing from a research
sample, as studies are often crafted to focus on specific cues,
values, and ranges.

Interestingly, the presence of redundancy is an important com-
ponent of Brunswik’s (1952, 1955) psychological framework and
suggests that people use different combinations of cues across
different trials (so-called vicarious functioning). Unfortunately, by
estimating unique sets of weights for individuals across trials—and
assuming that people are always applying the same weights—the
linear lens model methodology does not capture this aspect of how
people may be processing information (cf. Ullman & Doherty,
1984). Thus, there is a need to develop methodology that can
capture this dimension of behavior within a lens model framework
and thereby lead to a better understanding of the effects of redun-
dancy (for a discussion of alternatives to the lens model frame-
work, see Cooksey, 1996, p. 331).

Recently, there have been some promising and illuminating
examples of how lens model research can be conducted in more
representative and naturally occurring environments. Specifically,
Gosling and his colleagues have investigated overall achievement
and matching (of “cue validities” with “utilization coefficients”) in
judgments of personality made on the basis of the target person’s
office or bedroom (Gosling, Ko, Mannarelli, & Morris, 2002),
Websites (Vazire & Gosling, 2004), musical preferences (Rent-
frow & Gosling, 2006), and sounds experienced over 2 days
(Mehl, Gosling, & Pennebaker, 2006). We see this work as being
very much in the right direction, as it neatly captures what people
actually do in their natural ecologies.20

One advantage of the mathematical formulation of the lens
model (i.e., Equation 3) is the neat expression of results in terms
of correlational statistics. However, underlying this feature is the
implicit assumption that errors in judgment should, in effect, be
penalized by a symmetric squared error loss function. It may be
that in some situations—and particularly in field studies —this
assumption is not appropriate (see also Holzworth & Doherty,
1976). For example, consider the relative importance of the two
types of errors in medical decision making (e.g., Einhorn, 1972),
predicting violent behavior of newly admitted inmates (Cooper &
Werner, 1990), or predicting the number of annual advertising
pages in a journal (e.g., Ashton, 1982). Work in extending the
mathematical framework would thus be most important. It is
possible that some of the results we have obtained should be
modified.

An important limitation of our investigation was that few studies
reported individual-level data, and thus we were forced to make
our analyses on the basis of average lens model statistics. The
effect of some task variables, for example, inter-cue redundancy,
could be more accurately assessed through within-judge analyses
and, therefore, the conclusions reached from the aggregated data
should be interpreted with caution. The data describing the “aver-
age judge” clearly limited our ability to comment on individual
variability but reflect reporting practices in science as opposed to
specific limitations of lens model studies per se. Improvements in
information processing and storage in recent years could be har-
nessed to alleviate this problem in the future. It would also be

useful, for example, to utilize multilevel hierarchical techniques
(see, e.g., Raudenbush & Bryk, 2002) to understand simultaneous
group- and individual-level behavior in lens model studies (Schill-
ing & Hogge, 2001).

Castellan (1973, 1992) has provided an illuminating critique of
the meaning of the matching index, G, in lens model studies,
pointing out limitations in its interpretation due to mathematical
constraints. In our data, however, we find little evidence for
Castellan’s critiques. One reason could be the artificial nature of
many of our studies (with orthogonal cues), which allow less
ambiguous inferences. Second, most studies involved only two or
three cues, although it is true that G was lower, with more than
three cues and particularly in field studies.

Our results regarding the factors that affect the accuracy of human
judgment and the effectiveness of learning also suggest promising
directions for further research. First, interactions between task vari-
ables can be studied to identify conditions favorable to human judg-
ment. For example, the data we examined suggest that feedback is
better assimilated in environments with less redundancy. It would also
be interesting to investigate, in more detail, the interaction between
the effects of feedback and expertise. The data in our sample are
insufficient to draw any definite conclusion, although our preliminary
investigation shows that experts may be more insensitive to outcome
or task information feedback than novices. As another example,
consider our finding that judges match environmental models better in
redundancy-free environments. Does this finding apply to both nov-
ices and experts? Do these two groups of judges react similarly when
handling redundancy?

Parenthetically, we note that advances in technology can help
greatly in collecting data within Brunswik’s (1955) paradigm of
representative design and in linking this with lens model analysis.
Hogarth (2006) and Hogarth, Portell, and Cuxart (2007), for ex-
ample, have exploited the messaging capacity of cell telephones to
conduct experience sampling method studies of decision making
and the perception of risk. In a similar vein, Mehl et al. (2006)
have pioneered the use of the electronically activated recorder to
sample snippets of ambient sounds in people’s environments,
which can subsequently be used as cues for judgments made by
others (see also Mehl, 2006). Moving forward, researchers would
be hard pressed not to find reasons to be optimistic about harness-
ing these and related technological developments.

Concluding Remarks

Experimental sciences—like psychology—advance in incremental
fashion. New studies appear each year, often as a response to imme-
diately preceding articles and what might be referred to as “local”
issues (i.e., those that mark certain points in time). One can under-
stand, therefore, why—at the level of individual studies—researchers
have often adopted simple research designs involving only a few
orthogonal cues. Thus, it is interesting to ask how studies might have
been planned some 50 years ago had a future meta-analysis been
considered a goal of the research program. How would the studies
have differed? What else would be known today had we been able to
plan studies in 249 environments in advance?

20 From our perspective, however, a problem with this work is that the
unit of analysis has predominantly been that of aggregate (mean) judg-
ments.
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This question cannot be answered, of course, unless one first
decides on the appropriate research questions. In broad terms,
therefore, and drawing on hindsight, we observe that the main
questions that dominated the research program centered not so
much on “how good” people are at making judgments per se but on
defining the task conditions that lead to differential levels of
judgment, which, of course, includes learning. This being the case,
it can be regretted now that more attempts were not made to widen
the kinds of environmental tasks that participants faced. At the
same time, the pioneers of lens model studies probably did not
envisage the possibilities of meta-analysis, which is a fairly recent
methodological innovation. However, current researchers are
aware of this methodology and, given that the lens model paradigm
lends itself so well to the methodology, we hope that future
research can take our analysis as a starting point.

Going forward, we note several challenges to research within
the lens model paradigm. One, just noted, is to develop method-
ology that is more flexible in modeling how judges use informa-
tion. The second, also noted above, is the systematic use of
representative design. Despite many lens model studies, it is not at
all clear to which populations results should or could be general-
ized. For example, we found that laboratory studies differed from
field studies on several dimensions and, therefore, laboratory re-
sults should not be blindly extrapolated to judges’ natural habitats.
More generally, this point also speaks to the issue of studying
substantive experts and finding the means to replicate expertise
within laboratory settings.

Finally, whereas we have been critical of the limitations of the
current linear technology of lens model analysis, we are impressed by
the richness of the findings we have uncovered. With more flexible
technology, and clearer ideas of how knowledge can be accumulated,
we believe that Brunswik’s lens model has the potential to unlock
many further insights about human judgmental processes.
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