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The mechanisms by which increased mortality and morbidity occur in individuals with preexistent
cardiopulmonary disease following acute episodes of air pollution are unknown. Studies involving
air pollution effects on animal models of human cardiopulmonary diseases are both infrequent
and difficult to interpret. Such models are, however, extensively used in studies of disease
pathogenesis. Primarily they comprise those developed by genetic, pharmacologic, or surgical
manipulations of the cardiopulmonary system. This review attempts a comprehensive description
of rodent cardiopulmonary disease models in the context of their potential application to
susceptibility studies of air pollutants regardless of whether the models have been previously
used for such studies. The pulmonary disease models include bronchitis, emphysema,
asthma/allergy, chronic obstructive pulmonary disease, interstitial fibrosis, and infection. The
models of systemic hypertension and congestive heart failure include: those derived by genetics
(spontaneously hypertensive, Dahl S, renin transgenic, and other rodent models); congestive
heart failure models derived by surgical manipulations; viral myocarditis; and cardiomyopathy
induced by adriamycin. The characteristic pathogenic features critical to understanding the
susceptibility to inhaled toxicants are described. It is anticipated that this review will provide a
ready reference for the selection of appropriate rodent models of cardiopulmonary diseases and
identify not only their pathobiologic similarities and/or differences to humans but also their
potential usefulness in susceptibility studies. — Environ Health Perspect 106(Supp! 1):111-130
(1998).  http.//ehpnet1.niehs.nih.gov/docs/1998/Suppl-1/111-130kodavanti/abstract. html
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Introduction

The potential for preexistent disease to  animals and considered in estimations of

alter adverse responses to toxicant exposure
is widely acknowledged but poorly under-
stood. The variation in susceptibility to the
health effects of toxicants due to normal
host attributes such as species, age, and
gender (Figure 1) generally is studied in

human health risk (/—4). A solid database
on human susceptibilities related to pre-
existent disease is lacking, in large part
because involving diseased subjects in clini-
cal research is likely to be complicated by
their inherent variability and by ethical
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concerns. Studies involving animal models
of human diseases, on the other hand, offer
more control over both host and environ-
mental variables but the results require care-
ful interpretation when extrapolated to the
human situation. Animal models of human
diseases have been used extensively in inves-
tigations of disease pathogenesis and poten-
tial pharmacologic interventions. However,
their application in ascertaining altered sus-
ceptibility to toxicants has been spotty and
has yet to gain popularity. In this review the
discussion of rodent models of human car-
diopulmonary diseases is focused on their
use in toxicology and the criteria for judg-
ing their appropriateness (where extrapola-
tion to the human situation is critical) as
well as their limitations.

The Need for Studies of Air
Pollutant Exposure Effects

in Susceptible Animals

Several historic episodes of relatively high
levels of air pollution have resulted in
excess mortality, particularly among elderly
individuals with preexistent cardiopul-
monary disease [reviewed in Pope et al. (5)].
Recently, more modest levels of air pollu-
tion, notably particulate matter (PM), have
similarly been linked with increased acute
and long-term mortality among individuals
with cardiopulmonary (but not other)
impairments, even after controlling for the
confounding host factors of age, gender,
education level, smoking status, and occu-
pational exposure history (5-11). Likewise,
increased acute morbidity (e.g., inhaled
bronchodilator use, school absenteeism,
lung dysfunction, and hospital admis-
sions) has also been linked to air PM lev-
els, especially among young asthmatics
(12-14). These findings thus have drawn
renewed attention to the issue of susceptible
groups (5-11).

Of particular interest to the public
health community is that the protection of
susceptible subpopulations is specifically
mandated in the Clean Air Act of 1971
(15), and that health effects have been
associated with PM levels previously con-
sidered harmless, i.e., below contemporary
(as established in 1988) National Ambient
Air Quality Standards for PM <10 pum in
aerodynamic diameter (15). This revital-
ized interest is clearly being driven by PM
(15,16), but other criteria (i.e., ozone [Os],
NO,, CO, SO,) and air toxic pollutants
(e.g., phosgene, acrolein) may also impose
higher risk to susceptible individuals. In
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Figure 1. Host factors that influence the susceptibility to inhaled toxicant-induced injury.

fact some data exist on various animal
disease models to support this possibility
(17,18).

Because of growing concern regarding
the impact of air pollutants on susceptible
subpopulations, there is a need to under-
stand which disease subgroups are specifi-
cally vulnerable and what plausible biologic
mechanisms likely are responsible for the
increased susceptibility. It is not apparent
from current epidemiology whether thresh-
old levels exist for pollutant effects in indi-
viduals with cardiopulmonary disease. Also
there are no data available within these
groups to indicate dose—response relation-
ships. Epidemiology is even more limited
in its ability to identify meaningful biologic
indices of response or underlying mecha-
nisms. Thus, toxicologic studies involving
exposure of various animal models of car-
diopulmonary disease may be critical in
addressing questions of disease-specific sus-
ceptibility to air pollutants. What the ani-
mal model approach offers is the ability to
define and reasonably titrate the attribute
of interest in an otherwise well-defined
study situation in which subject genetics,
husbandry, and personal exposure scenar-
ios are well controlled. Studies of acute air
pollutant effects in such models thus
should be relatively straightforward.

Air pollution exposures in the real
world, however, are likely to be encoun-
tered episodically throughout life and may
pose with each exposure a variable acute (or
perhaps cumulative) threat to cardiopul-
monary compromised individuals. Because
many cardiopulmonary diseases in animal
models are not progressive or chronic in
nature, overlying lifetime exposure studies
would offer challenges to inhalation toxicol-
ogists. However, some models that are
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progressive (e.g., hypertension) were used
in the 1970s and 1980s to study chronic air
pollutant exposures (O3, SO,, CO,
acrolein, and a mixture of urban air pollu-
tants) with resultant mortality (19-23).
Unfortunately these studies have not been
replicated or followed more thoroughly to
investigate the mechanisms, but they never-
theless support the feasibility of investigat-
ing the influence of increased susceptibility
on chronic air pollutant responses in the
experimental laboratory setting.

Of a more acute nature, recent studies
aging adult rodent models of allergical
airways disease [(reviewed by Selgrade and
Gilmour (17) and Gilmour (18)] have in
general complemented epidemiologic find-
ings of exacerbated asthma due to air pol-
lutants (12-14). While it is important to
understand the susceptibility of young
asthmatics to air polution, it may be neces-
sary to involve younger rodents to mimic
the maturity of the immune system. An
approach using young animal models may
be critical to investigations of asthmagene-
sis itself—an approach not amenable to
human study. Likewise, animal studies
provide an avenue for investigation of sus-
ceptibility factors in very young and very
old groups, to which researchers may have
limited access in a clinical setting.

Speculative Mechanisms
of Increased Air Pollutant
Susceptibility

due to Underlying
Cardiopulmonary Disease

Human cardiopulmonary diseases are
diverse; they vary in etiology, the primary
organ involved, and the degree of host
compensation. There is also a spectrum of

severity and time period of onset (chron-
icity). The epidemiologic evidence neither
elucidates whether air pollution-associated
deaths among individuals with cardiopul-
monary disease are related to the chronicity
of the preexistent condition nor provide
clues about how sudden deaths relate to
the severity of underlying disease.

Recent studies in animals compromised
by monocrotaline-induced pulmonary
vasculitis/hypertension and bleomycin-
induced pulmonary injury/inflammation
suggest that these conditions render the
animal model more susceptible to PM-
induced cardiac dysfunction (24-28) by
mechanisms not yet understood. Formal
speculations about the cause of PM effects
in humans such as that proposed by Seaton
et al. (29) on blood clotting events and by
Peters et al. (30) on increased plasma viscos-
ity by pollutants have not as yet been veri-
fied or shown to distinguish susceptible
subgroups. Nevertheless, a number, or per-
haps cascade, of events provoked by pollu-
tant (in this case PM) inhalation can be
hypothesized: 4) enhanced oxidant
production, which causes increased damage
to an already-inflamed lung resulting
in hypoxemia; &) neural irritant reflexes
involving pulmonary afferents and cardiac
efferents leading to cardiac arrhythmias; ¢)
compromised host compensatory mecha-
nisms or loss of reserve, which allow persis-
tent and more critical dysfunction or injury
to occur; &) activation of tissue-specific
mediators or circulating blood elements in
the lung leading to acute vascular spasm or
platelet occlusion in atherosclerotic vessels;
and ¢) disabled host defenses, which can
lead to acute infection. Although to date no
supportive experimental evidence exists for
these speculative mechanisms, it is feasible
that animal models could be instrumental
in elucidating these or alternative proposals.

Scope of the Review

This review provides essential descriptive
information on selected rodent cardiopul-
monary disease models we believe may be
suitable for inhalation toxicology studies
(Table 1). Primary criteria for review are
each model’s appropriateness relative to the
human condition and its ready availability
or ease of generation via experimental
manipulation. Because most rodent models
have been developed to mimic either car-
diac or pulmonary disease, they are divided
accordingly for discussion. However, an
attempt is made to integrate what is known
or might be construed about the health sta-

tus of the cardiopulmonary system as a
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Table 1. Selected human cardiopulmonary diseases and their most extensively used rodent models.?

Primary organ Human disease type Rodent species used Experimental manipulations Air pollutant studied (reference)
Lung Chronic bronchitis Rat, hamster S0, Aerosol, PM (58,59)
Guinea pig Polymyxin B —
Emphysema Rat, hamster, mouse Pancreatic elastase Aerosol, PM, NO,, SO, 05
cigarette smoke, O,
ammonium sulfate (77,86-95)
Mouse Genetic —
Asthma/allergy Mouse, guinea pig, QOvalbumin 03, NO,, SO,, PM
Brown Norway rat (17,18,132-136)
Mouse, Brown Norway rat Dust mite NO, (101)
COPD Hamster Elastase + SO, —
Pulmonary fibrosis Rat, hamsters, mouse Bleomycin PM (25,147,158,159)
Pulmonary infections, viral Mouse, rat Influenza, respiratory 05, phosgene, PM
syncytial virus (17,183,189-194)
Pulmonary infections, bacterial Mouse, rat S. zooepidemicus, PM, 0,, NO,, phosgene,SO,,
H. influenzae, S. aureus, metals (17,193,202-207 )
P. aeruginosa
Cardiopulmonary, Pulmonary Rat Monocrotaline PM (24,26-28)
vascular Rat Hypoxia —
Systemic hypertension Rat Genetic Acrolein, 04, CO, SO,,
PM (20-23, 26)
Hypertension Rat Genetic/salt sensitive —
Rat, mouse Renin transgenic —
Hypertension Rat Genetic —
Congestive heart failure Rat Surgical (aortic coarctation) Mixture of SOz, NO,, 03,
and CO(19)
Rat Surgical (myocardial —
infarction)
Myocarditis Rat Autoimmune (cardiac —
myosin), viral
Cardiomyopathy Rat Adriamycin —
Hamster Genetic —

4This table does not include all available rodent cardiopulmonary disease models; only the more popular models are included. Also, although the table does not give an
exhaustive list of all air pollutant studies, the major studies and in some cases the review papers are listed.

whole and how this information relates to
susceptibility. Models of pulmonary dis-
eases discussed include: various chronic
obstructive pulmonary disease (COPD)-
like models (emphysema, bronchitis, and
asthma), interstitial fibrosis, and infec-
tious lung disease. The cardiopulmonary
vascular disease models considered include:
pulmonary vasculitis/hypertension, systemic
hypertension, and congestive heart failure.
Although animals with targeted genetic dis-
ruptions as models of cardiopulmonary dis-
ease is a growing area of research (3/-33),
this review considers only a limited number
of transgenic animals that appear appropriate
as bona-fide disease models. Whether a
transgenic or knockout model can be
regarded as a true model of cardiopulmonary
disease depends on the relation between the
genetic target being modified and resulting
phenotypic pathology. In most cases it
appears these animals are best used for
studies of specific mechanisms arising from

targeted genetic alterations because they
frequently have phenotypic lesions distinct
from those of the complex pathology of the
human disease (31,33).

To the extent possible, the models of
cardiopulmonary disease are discussed in
the context of their potential use in studies
of susceptibility to air pollution effects
regardless of whether they have previously
been used for such a purpose. The goal is
to present their relevant pathophysiologic
characteristics and potential use rather than
to catalog the existing database of every
application. Understanding differences and
similarities between the human disease and
that in its animal models will enable inves-
tigators to make more appropriate infer-
ences about susceptibility factors and
mechanisms that relate to humans. Because
the information provided in this review on
cardiopulmonary disease models has been
gathered from a multidisciplinary perspec-
tive, every detail pertaining to the specific

phenotypic disease cannot be provided.
Readers are encouraged to consult cited
literature for additional information.

Critical Considerations
and Limitations for the
Use of Rodent Models of
Cardiopulmonary Diseases

Selection criteria for an animal disease
model should be based on the model’s
intended application. Choices for suscepti-
bility studies related to pollutants would
differ from those for basic investigations of
pathogenesis or pharmacologic manipula-
tion. Toxicologists seeking to extrapolate
their data to humans often are faced with
difficult dosimetric issues as well as species
and strain variations in response, problems
that exist even when the studies are con-
ducted in healthy animals. However, using
animal disease models for risk-based toxic-
ity studies imposes the added complication
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of extrapolating from diseased animals to
diseased humans. Thus, the difficulties
inherent in disease models in general
beyond those of standard rodent toxicology
include: differences in disease causation;
qualitative differences in disease pathogen-
esis; acute or subacute onset or induction
of disease in the animal versus the generally
chronic pathogenesis in the human; under-
lying differences in host responsiveness;
and the potential confounding of compen-
satory and defense mechanisms, e.g., the
ability of rat lung to regenerate after an
acute injury. However, because the diffi-
culties in experimentation with human
disease patients are so formidable, animal
disease models often offer the only reason-
able approach to studying those individuals
most impaired.

The etiology, progression, and chronicity
of cardiopulmonary disease can vary con-
siderably between humans and rodents
(34,35). For example, although the cause
of the disease in humans can be multifacto-
rial or even unknown, progressing insidi-
ously over time, diseases in rodent models
typically are induced by acute experimental
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insult. The obvious question then is
whether the model must or even can exhibit
all the characteristics of the human disease
of interest. Ideally, one would like to know
the character and kinetics of the lesion and
the related inflammatory and healing
processes operant in both the model and the
human. However, our understanding of
human disease mechanisms frequently is
rudimentary and although it is advancing
rapidly as molecular and immunochemical
tools become available, the decision about
whether to use a model remains based largely
on its descriptive end-stage pathophysiology.
Selection of the outcome measure(s) in
the assessment of responses in the models
should take into account the pathophysiol-
ogy intrinsic to the model. Intuitively, one
might suspect that the probability of inter-
actions will be greatest when the disease
lesion and the toxicity outcomes are simi-
lar (e.g., edema) and will simply worsen
when disease and pollutant challenges are
combined. However, such an interaction
may not be known a priori and may be
model dependent. Thus, the basic patho-
physiologic characterization of the model

and some knowledge of the effects of the
pollutant in normal animals may be
helpful. For example, in rat models of
bleomycin-induced pulmonary inflaimma-
tion/injury (25) and monocrotaline-induced
pulmonary vasculitis/hypertension (26),
the bronchoalveolar lavage fluid (BALF)
markers of residual oil fly ash (ROFA)-
induced pulmonary edema and inflamma-
tion were of limited value, as these responses
were expressed both dramatically and vari-
ably. However, the relative pathology in
both these models, although of a gross
nature, yielded a clearer separation of the
exaggerated ROFA effects (i.e., in terms of
interstitial thickening and presence of
inflammatory cells; Figure 2). Toxicologic
evaluations should include relevant bio-
marker(s) of response that may not be so
readily obscured by the disease. At pre-
sent there is not sufficient experience with
the toxicologic application of these mod-
els to generalize on the most sensitive
or appropriate biomarkers of response.
Rather, the strategy for end point selection
needs to be developed conceptually with
model characterization.
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Figure 2. Pulmonary pathology from inhaled ROFA in a rat model of monocrotaline-induced pulmonary vasculitis/hypertension. Male SD rats were treated with monocrotaline
{60 mg/kg, ip). and 10 days later exposed to ROFA (15 mg/m3, 6 hr/day for 3 consecutive days). One day after ROFA exposure, rats were sacrificed and paraffin lung sections
stained with hematoxylin and eosin. Monacrotaline (MCT) pretreated rats exposed to ROFA had extensive edema, thickening, and inflammatory response. Relatively small
changes of inflammation and parenchymal thickening were noted in normal (saline treated) rats exposed to ROFA or in monocrotaline-treated rats exposed to air.
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An animal disease model may be
derived through different procedures. For
example, rodent models of pulmonary vas-
culitis/hypertension can be induced by
either prolonged hypoxia or acute treat-
ment with the alkaloid, monocrotaline
(36,37). The models, however, are distinct
in important ways (see model desctiption
for details) and each has similarities and
dissimilarities with regard to primary pul-
monary hypertension in humans. Thus,
when using ostensibly similar models in air
pollution studies, one must consider the
potential impact of specific variables in asso-
ciating susceptibility with the dominant
defect (in this case pulmonary hypertension).

Rodent Models of
Cardiopulmonary Diseases

Pulmonary Diseases

Most human pulmonary diseases are the
result of prolonged or repeated injury to the
airway and/or alveolar parenchymal tissues
and appear to involve chronic inflammation
with coexistent remodeling. Human lung
disease is frequently multidimensional, e.g.,
chronic bronchitis or COPD with concomi-
tant pulmonary bacterial or viral infection
(38,39). In some cases more advanced dis-
ease is initiated through mechanisms that
are more classically immune mediated (e.g.,
chronic allergic asthma). However, over the
course of the disease, stereotypic nonim-
mune mechanisms with their ensuing
pathology frequently become involved. The
end result is a complex of pathologic lesions
and physiologic deficits that together may
underlie the phenotypic susceptibility.
Descriptions of selected pulmonary disease
models potentially useful in air pollution
susceptibility studies are discussed below.
Bronchitis. Human chronic bronchitis
long has been associated with heavy cigarette
smoking and exposure to occupational or
environmental irritants, but it can also result
from recurring airway infections (a frequent
confounder of smoker’s bronchitis) (40).
Symptoms include increased cough and pro-
tracted sputum production (i.e., daily pro-
duction for over 3 months) with underlying
pathologic airway inflammation and epithe-
lial damage, mucus cell hyperplasia and
hypersecretion, airflow obstruction, and in
advanced cases, airway fibrosis (41,42).
Airway hyperresponsiveness to nonspecific
pharmacologic bronchoconstrictors is also
common. Based on this pathophysiology in
humans, the criteria for an animal model of
chronic bronchitis would include mucus
hypersecretion, airway cell metaplasia, airway
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inflammation and possibly fibrosis, and
increased airway responsiveness.

Among the animal models of bronchitis,
those in the rat and dog produced by sub-
chronic SO, exposure have been the most
extensively studied (43—47). Hamsters are
less sensitive to SO,-induced bronchitis but
they also have been employed as models
(48,49). The SO, exposures required to
generate the model in most animals are high
(150 to 600 ppm), not meant to be relevant
to ambient air SO, exposure, and must con-
tinue for 4 to 6 weeks. Occasionally,
aerosolized sodium meta bisulfite has been
used, but SO, is more readily handled in
the laboratory (46,47,50,51). Protracted
exposure to this irritant results in pathologic
changes to the airways; changes similar to
those of chronic bronchitis in humans. The
lesions in the rat include: increased numbers
of epithelial mucus-producing (goblet) cells
extending to peripheral airways and associ-
ated mucus hypersecretion, loss of cilia,
modest airway inflammation, increased
proinflammatory cytokine expression, and
thickening of airway epithelium (47,51).
One difference between the rat and human,
however, is the anatomical absence of sub-
mucosal glands in the rat. Goblet cells pro-
liferate from a small baseline number in rats
relative to that in normal humans (52,53).
Similar to humans, however, rat models
exhibit increased airway responsiveness to
inhaled bronchoconstricting agonists (47).

Because the rat model of bronchitis
exhibits good homologies to the human dis-
ease in pathology and airway reactivity
(47,50) and is well characterized, it would
likely be an appropriate choice for the study
of susceptibility to air pollution effects.
However, it should be noted that with
bronchitis, when the cause or stimulant
(e.g., smoking in humans, SO, in rats) is
removed, the pathology slowly reverses
(50,54), although the time course and
extent of reversal differs significantly
between the rodent and human. The rea-
sons for this difference are unclear but may
relate to a more sustained signal in the
human perpetuating the lesion and the pos-
sible involvement of infection. Alternatively,
efficient hypertrophic/hyperplastic parenchy-
mal growth in response to an injury in the
rat (55) may contribute to the reversibility
of bronchitis upon discontinuation of SO,
exposure. When applying this model to sus-
ceptibility studies, disease etiology and
reversibility thus may be important consid-
erations in the study design.

Lipopolysaccharide (endotoxin) has
also been used in rats to induce a form of

bronchitis (56). Repeated instillation or
inhalation of endotoxin induces an increase
in the amount of intraepithelial mucosub-
stances and marked hypertrophy/hyperpla-
sia of epithelial cells lining the main axial
pathways within the lung (56). These
changes are similar to the secretory epithe-
lial alterations in bronchial airways of
human patients with chronic bronchitis as
well as in the animal SO, model (40,47).
The mucus hypersecretion occurs from
surface goblet cells in the airways, as the rat
lacks the equivalent of human submucosal
glands (52,53,56). The essential differences
between the endotoxin and SO, models
could be the degree of neutrophilic inflam-
mation (greater in the endotoxin model)
and in airway mucus hypersecretion (greater
in the SO, model). The endotoxin model,
however, has the advantage of ease of gen-
eration, both in terms of equipment and
time (-2 weeks) required (56). Repeated
endotoxin exposure may be used to sustain
the bronchitic lesion, but definitive study
in this regard is lacking.

The guinea pig exposed to SO, develops
significant bronchoconstriction that can be
quite stressful (54). Lower more tolerable
levels of SO, apparently are inadequate to
initiate pathology resembling the chronic
bronchitis of the rat model or humans.
Nevertheless, at the higher concentrations
of SO, (similar to those in the rat), acute
bronchitis can be induced in guinea pigs,
but associated mortality complicates the
utility of a model (54).

Bronchitis also has been successfully
induced in guinea pigs by intranasal
administration of polymyxin B sulfate (a
mast cell-degranulating agent) at a concen-
tration of 5 mg/ml/kg twice a week for a
total of 3 weeks (57). An eosinophilic
bronchitis results and is confined largely to
the upper respiratory tract because of the
limited distribution of polymyxin; how-
ever, goblet cell pathology in this model
is not well defined. The near-exclusive
eosinophil cell influx (no lymphocyte and
neutrophil influx) and the lack of airway
hyperresponsiveness to histamine (though
cough receptor sensitivity is increased) (57)
also distinguishes this model from human
bronchitis and the SO, rat model.

The pattern of deposition of various
gases and particles in the bronchitis has
only partially been examined. In the case of
PM, pulmonary distribution in the rat
bronchitis model indicates increased overall
deposition and focal hot spots, especially in
areas most affected by the disease (58).
The biologic reaction to this alteration in
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tissue dosimetry remains to be investigated,
but recent preliminary findings in bron-
chitic rats suggest that the rat model is
hyperresponsive to ROFA PM and may
experience significant mortality (59). The
role of hot spot deposition and focal injury
in this outcome is not known and is but
one area of needed investigation.

Emphysema. The pathology of
emphysema features permanent enlarge-
ment of airspaces distal to the terminal
bronchiole because of destruction of alve-
olar walls (60,61). In humans emphysema
is most often associated with smoking
(61-63) and is also seen in individuals with
a severe genetic deficiency in serum levels of
o-1 antiprotease (64), particularly if they
smoke. In the population at large, emphy-
sema frequently coexists with bronchitis,
may or may not be progressive, and is
attended by significant functional impair-
ments in lung mechanics, gas exchange, and
pulmonary hypertension (61-64).

The prevailing theory of the mechanism
of the disease is that an undetlying inflam-
matory state involving the lung parenchyma
leads to an excess total lung elastase burden
relative to its inactivating protein (0.-1
antiprotease) with eventual matrix degra-
dation (60,61). Because elastic fiber dam-
age is important in the pathogenesis of
emphysema, proteases and in particular
elastases have been extensively used to
induce emphysema in rodents (60,65-67).
Destruction of structural elements of the
lung results in air space enlargement,
which generally is panlobular and most
closely resembles the pathology in a-1
antitrypsin-deficient individuals. Smoking-
or other toxicant-induced emphysema typi-
cally is centrilobular and focuses on the res-
piratory bronchiole regions of the acinus,
which correspond to the site of primary
toxicant deposition (68,69). Interestingly,
hyperoxia, mineral dust, and cadmium
oxide can also induce airspace enlargement
but without the substantial alveolar degen-
eration apparently due to scar retraction of
focal sites pulling open the airspaces. This
lesion is termed paracicatricial emphysema
(61,68,70) and is considered distinct from
the classic smoker’s disease. The criteria
for demonstrating emphysema in rodent
models include destructive anatomical
changes or remodeling, a decrease in alveo-
lar surface area, and lung functional impair-
ment (60,61). The coexistence of these
criteria is important in defining a model as
emphysema because the rodent lung is
capable of hypertrophic enlargement and
may develop enlarged airspaces in the
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absence of evidence of alveolar damage
[e.g., chronic hyperoxia (71)].
Elastase-induced emphysema models
have been used in lung research for more
than two decades (61,65,72). Several
reviews detail various approaches to types
of enzymes used, animal species, structural,
biochemical, and physiologic alterations,
the time course of disease development,
and the degree of reversibility of some of
the structural changes (60,61,65,67,72).
Basic information on the induced and
genetic rodent models of emphysema is
discussed below. Some critical considera-
tions regarding the time course as well as
reversibility of the lesion are also discussed.
ELASTASE-INDUCED EMPHYSEMA. The
hamster has been the most common rodent
emphysema model because of its innate
sensitivity to elastolytic enzymes (60,73).
The rat, mouse, and rabbit also have been
used as models despite their lower sensitiv-
ity to elastase (60,74-76). Most studies
use porcine pancreatic or human neutrophil
elastase (72,73) to induce disease, although
early models (72) used an unpurified cock-
tail of vegetable enzymes (papain).
Pancreatic trypsin also has been used in
some studies (66) but is considerably less
effective than elastase. In the rat the porcine
pancreatic elastase typically is instilled
intratracheally at a dose of 75 to 150 U
elastase activity per 100 g body weight.
The resulting emphysema is dose depen-
dent; higher doses offer no advantage, as
mortality can result from severe pulmonary
hemorrhage (76). More severe disease with-
out increasing mortality can be attained,
however, by exposing animals to cigarette
smoke or by inhibiting elastin cross-linking
(feeding animals with B-aminopropioni-
trile, an inhibitor of lysyl oxidase, in the
diet) following elastase instillation (77,78).
Morphologic alterations produced by elas-
tase treatment resemble human panacinar
emphysema when examined by light
microscopy. Physiologic changes associated
with this treatment include increases in
total lung capacity, static lung compliance,
functional residual capacity, residual volume,
and a diminution in maximum expiratory
flow and CO diffusion (60,61,65).
Immediately after intratracheal instilla-
tion of elastase, degradation of elastin, rup-
ture of the alveolar epithelium, pulmonary
edema, hemorrhage, and modest infiltration
of neutrophils occur, with airspace enlarge-
ment noted within hours of the treatment
(61,72,76). Synthesis of new elastin and
repair begin almost immediately and not-
mal total lung elastin and collagen levels

are restored in 3 to 4 weeks; however,
distortion and derangement of alveolar
structure is progressive through this period
and these changes are largely permanent.
As the lesion matures inflammation recedes
and the structural alterations stabilize
(73,74,76). Pulmonary hypertension devel-
ops, but this has not been well studied in
rodents (65).

GENETICALLY DERIVED MODELS OF
EMPHYSEMA. Spontaneously occurring
genetic models of emphysema are also
available. The blotchy mouse exhibits
spontaneous panlobular emphysema due to
an impairment of copper absorption (essen-
tial for action of copper—dependent lysyl
oxidase involved in elastin cross-linking)
(79). Mechanistically, however, the model
is not considered relevant to the most com-
mon form of human emphysema resulting
from protease—antiprotease imbalance
(72). Emphysema in tight-skin (80) and
pallid mice (81), on the other hand, results
from protease—antiprotease imbalance and
thus is considered more relevant to the
human disease. Homozygous pallid mice
with C57B1/6] backgrounds exhibit severe
genetic 0-1 antiprotease deficiency and
eventually develop emphysema (81). A
progressive burden of excess elastolytic
activity can be observed from the first
month of life. Unlike the exogenous elas-
tase model, total lung elastin appears to
decrease over time and inflammation is not
evident in this model as determined by
BALF analysis (81). Thus, this model may
represent a tool to investigate disease-
related susceptibility in the absence of
coexistent inflammation.

Other models of emphysema have been
developed in rodents by exposing them to
cadmium salts (68,82), NO, (83), hyper-
oxia (71), and tobacco smoke (69), and
through starvation (84) and copper-defi-
cient diets (85). Some of these treatments
are associated with enlargement of air
spaces without elastin damage or protease
involvement and may exhibit coexisting
fibrosis (60,61,68,82). These models have
been used primarily to study pathogenesis
and not as disease models per se, but the
unique pathogenesis of each may be
amenable to examination for subsequent
exposure interactions.

A number of studies have been
conducted that examine susceptibility of
emphysematous animals to inhaled pollu-
tants (77,86-91). In the hamster and rat
models of elastase-induced emphysema,
exposure to hyperoxia, O3, or a mixture of
olefin—O3-SO, reaction products did not
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reveal unusual susceptibility in terms of the
resulting pulmonary inflammation and
lung dysfunction (86,90,92). Similarly,
SO, or ammonium sulfate did not affect
emphysematous rats pretreated with elastase
any differently than normal rats (91).
However, in the guinea pig model of elas-
tase-induced emphysema, exposure to
ammonium sulfate aerosol resulted in more
pronounced lung functional changes (88),
suggesting that interactive effects may be
species dependent. In other studies cigarette
smoke and NO, have been shown to aug-
ment elastase-induced emphysema in Long
Evans rats (77,89), whereas exposure to
NO, or diesel exhaust had no such effect in
elastase-treated Fischer 344 rats (93,94),
suggesting that interactive effects may also
be strain dependent. Interestingly, inhaled
PM had decreased overall deposition in the
emphysematous lungs of hamsters but
showed focal hot spot deposition in central
airway bifurcations as has been predicted
by thepretical deposition estimates (95).
Although it is less likely that air pollution
episodes may have a major impact on acute
exacerbation of emphysema, the loss of func-
tional reserve in this model may diminish
its ability to accommodate even mild toxi-
cant effects. Thus, more studies will also be
required to understand the chronic impact
of inhaled toxicants on the pathogenesis of
the disease, especially with coexistent
inflammation or bronchitis.
Asthma/Allergy. The incidence of
asthma in developed countries has risen
steadily over the past two decades (96).
Asthma is usually episodic but leads even-
tually to chronic and sometimes severe
life-threatening disease. Asthma is a com-
plex pulmonary disease, if not actually a
group of related diseases with similar signs
and symptoms. Atopic or allergic asthma is
more prevalent than the nonatopic form,
especially in children (97-100); the allergy
typically involves environmental antigens
[e.g., dust mites (10I)]. Reexposure of sen-
sitized individuals results in pulmonary
inflammation that may be modulated by
T-helper lymphocytes (102). The cells
exhibiting the T-helper cell type 2 pheno-
type (Th2) are proposed to upregulate IgE
production and release cytokines such as
IL-4 and IL-5 as part of the pathogenesis of
asthma (103). Serum levels of cytophilic
antibodies (e.g., IgE) are considered rea-
sonable indicators of allergic sensitization
in asthmatic humans and many animal
models (97,99,100). Asthma is character-
ized by inflamed airway walls that are prone
to constrict suddenly and vigorously and
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secrete thick mucus that can plug airway
lumens. Local airway cell damage and
edema, thickening of the reticular layer
beneath the basement membrane, varying
degrees of smooth muscle hypertrophy
(104,105), eosinophilic and lymphocytic
inflammation, as well as airway fibrosis
are common features of human asthma
(97). The twitchy airway behavior is fre-
quently quantified by enhanced nonspe-
cific airway reactivity to pharmacologic
bronchoconstrictor agonists such as
acetylcholine, methacholine, or histamine
(97-100). Although a causal link between
airway inflammation and airway hyperre-
activity remains uncertain, it is generally
accepted that there is at least an association
between inflammation, airway damage,
and hyperreactivity (106,107).

The most popular rodent models of
allergic airway disease/asthma involve oval-
bumin-sensitized and -challenged mice,
Brown Norway rats, and guinea pigs
(108-116). Other less frequently used
animal models include sensitized dogs,
monkeys, and sheep (117-120).

Mouse MoDEL. The B6D2F1/] and
BALB/c strains of mice frequently are
used as models because of their well-char-
acterized allergic responses. Sensitization
typically involves single or multiple
intraperitoneal or subcutaneous injections
of ovalbumin (112,115,116,121-123). In
general, adjuvants such as Bordetella pertus-
sis vaccine or aluminum hydroxide are
used; however, in some specific studies the
use of adjuvant has been curtailed because
of nonspecific T-cell responses associated
with the adjuvant (115). The mice may be
challenged 1 to 3 weeks later with one or
more booster doses of intratracheally instilled
or aerosolized ovalbumin. Subsequently,
serum levels of IgE, pulmonary inflamma-
tory responses, and airway hyperrespon-
siveness to one of several agonists or the
allergen are used to define the baseline
model. Eosinophilia can persist several days
after challenge depending upon the chal-
lenge protocol used (115,121-124). To
address questions of interaction with pollu-
tants, alterations in the baseline responses
or kinetics of response can be ascertained
but these are highly protocol dependent.
Laboratory standardization is critical.

BROWN NORWAY RAT MODEL. Among
rats, the Brown Norway strain has the
most marked eosinophilia and clear serum
IgE responses to allergens (/25,126). The
eosinophilia and bronchial hyperrespon-
siveness after allergen challenge in Brown
Norway rats appears to be quite analogous

to reactions in atopic human asthmatics
(127,128). In sensitized dogs and sheep,
allergen exposure causes an increase in
bronchial responsiveness associated with
neutrophilia (117,118); however, in Brown
Norway rats, as in humans, eosinophilia has
been correlated with bronchial hyperre-
sponsiveness to agonist bronchoconstrictors
(109,128). Ovalbumin remains a common
allergen in this model (109,110,126,128),
but recently more relevant antigens (e.g.,
dust mites) have been implemented in the
model with good success (101).

GUINEA PIG MODEL. As with the
murine and rat models, ovalbumin is the
most common allergen used in the guinea
pig (114,129). Two to four weeks after a
parenteral sensitization the animals are
challenged with aerosolized (~1%) ovalbu-
min. Because guinea pigs are sensitive to
atopic bronchoconstriction, antihistaminic
or B-adrenergic receptor blocker drugs are
sometimes administered before challenge to
protect animals from lethal anaphylactic
bronchoconstriction (130). Lung pathology
generally includes airway edema, perivascu-
lar and peribronchiolar eosinophilia, and
epithelial damage. Cytotoxic basic proteins
(markers of eosinophil activation) and
other cell biochemical markers are assessed
in BALF to determine the degree of
inflammation (130). These end points and
the assessments of lung function are gener-
ally used to ascertain the severity of the
reaction to allergen challenge.

Each of these models has advantages
and disadvantages with respect to similari-
ties to human asthma and the availability
of study tools to characterize the model
and its responses. For example, unlike any
other commonly used small laboratory
animal species, normal guinea pigs have a
highly sensitive bronchoconstrictive reflex
(114,131) similar to that of asthmatic
humans. However, most guinea pig-spe-
cific immunologic reagents and antibod-
ies for cytokine and cell marker assays
generally are not available. Murine mod-
els, on the other hand, can be better stud-
ied because of well characterized genetics
and a wide availability of specific cytokine
antibodies and other markers, but they are
less sensitive to bronchoconstriction than
the guinea pig. The murine models offer
an added advantage over the guinea pig
model in that the major allergic cytophilic
antibody class in the mouse is IgE as in the
human and the rat (/12,116), whereas the
guinea pig functions via the IgG, subclass
antibody (114,131). Another general
advantage of mouse models is the growing
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availability of transgenic and gene
knockout animals. Based on available
information it is clear that there is no
ideal rodent model of human asthma and
that selection of any model should be
approached on the basis of the question
being investigated.

Effects of exposure to air pollutants on
pulmonary allergic responses have been
reviewed recently by Selgrade and Gilmour
(17) and Gilmour (18). The Brown
Norway rat model shows interaction
between dust mite allergy and NO, expo-
sure, which suggests its potential utility for
air pollutant studies (101). Prior exposure
of naive rodents to either O3, SO,, or NO,
appears to enhance allergic sensitization
(i.e., adjuvantlike effect), serum antibody
titers, and bronchoconstrictive responsive-
ness to agonists (/8,132). There is some
experimental evidence to indicate that
intratracheally instilled diesel exhaust parti-
cles enhance antigen-induced airway
inflammation and local cytokine produc-
tion in mice (133). Occupationally, expo-
sure to diesel exhaust has been linked to
increased incidence of asthma (134,135).
More experiments are needed to evaluate
the host immune responses to diesel
exhaust emissions in environmentally rele-
vant scenarios. Just as air pollutant expo-
sure before sensitization enhances the
severity of the inflammatory response to
subsequent allergen challenge in rodents,
O3 exposure has resulted in increased
bronchial responsiveness to antigen in asth-
matic humans (136). In general these find-
ings are consistent with epidemiologic
studies demonstrating increased hospital
admissions for asthma during high air pol-
lution episodes (12-14), although the
underlying mechanisms are not clear.
These studies suggest the potential useful-
ness of animal models to study the interac-
tion of allergic airways disease and air
pollutant exposure.

Chronic Obstructive Pulmonary
Disease. Chronic obstructive lung disease
is a collective description for lung diseases
represented by chronic and relatively
irreversible expiratory airflow dysfunction
due to some combination of bronchitis,
emphysema, and/or asthma (38,137).
Airflow in asthma is generally considered
reversible, but in chronic forms of asthma
much of this reversibility can be lost
(138). Also, the chronic hypoxemia of
COPD is usually absent in nonaggravated
asthma (138). COPD may first appear at
about 40 to 60 years of age and typically
progresses, especially with continued
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cigarette smoking or exposure to irritants
(38,137). A form of COPD can also
develop in the young, e.g., in patients with
cystic fibrosis (139). In most COPD
patients airway infection coexists (38,39)
because of impaired mucociliary clearance
and phagocytic function and excess mucus
production. In the advanced disease, the
presence of hypoxemia and hypercapnia
promotes pulmonary hypertension and
right heart enlargement (cor pulmonale).
The ideal animal model of COPD should
exhibit signs of emphysema with an air-
way inflammatory component (e.g.,
bronchitis). Such models combining SO,
and elastase as well as a viral infection
have been attempted in hamsters, result-
ing in pathology more closely resembling
human advanced COPD (48,49); however,
detailed characterization beyond pathology
was not pursued. It is likely that similar
approaches can be adapted to refine an
appropriate COPD model for toxicologic
application. Rat models of SO,-induced
bronchitis or monocrotaline-induced pul-
monary hypertension (introduced else-
where in this review) occasionally have
been referred to as COPD models as they
exhibit some COPD-like characteristics.
However, unlike the acute manifestation
of the disease induced in rats by artificial
means, human COPD is usually the result
of life-long processes (137).

Limited studies with human subjects
have indicated that COPD patients retain a
larger dose of inhaled PM in their lungs
than healthy individuals (140,141), and
thus the cumulative focal dose may be more
toxic for them than for healthy individuals.
On the other hand, the effects of acute O;
exposure on forced expiratory volume in 1
second and forced vital capacity have been
variable in COPD patients (/42). Clearly,
more thorough investigations need to be
conducted. Because the responses to air pol-
lutant exposure in COPD patients or
animal models may be complicated by
differential host sensitivity/compensatory
repair capability as well as the total and
regional doses of a toxicant, interpretations
of challenge response data in COPD
subjects must be done with care.

Pulmonary Fibrosis. Human pul-
monary fibrosis long has been associated
with environmental and occupational
exposure to various metals, minerals, or
organic dusts (/43,144). Typically, the
condition develops over many years.
Idiopathic or drug-induced pulmonary
fibrosis, on the other hand, can develop
fairly rapidly (within months), but such

cases are relatively rare (143,145). The
etiology of nonoccupational fibrotic disease
is unclear but involves inflammation,
which may be partially autoimmune in ori-
gin (143,145). The pathologic manifesta-
tion of either disease is characterized by
widespread fibrous or diffuse lesions and
bridging of foci by collagen, which ulti-
mately leads to decreased compliance and
occasionally to airway obstruction. The
toxicant-induced forms are frequently
more regional, preferentially distributed to
certain lung lobes, and may have a granu-
loma character (e.g., silicosis). A number of
animal models of pulmonary fibrosis have
been described, but for studies of clinically
relevant pathogenesis, the most extensively
used and best characterized rat model is
that induced by the antineoplastic agent
bleomycin (146).

Bleomycin is recommended for the
treatment of certain malignant diseases;
however, its clinical use is constrained by
increased risk of pulmonary fibrosis with
cumulative dose. The drug has been used
widely in the rat, mouse, and hamster for
fibrosis model development. Although
hamsters are more sensitive to bleomycin
and the resulting lesion is more widely dis-
tributed through the lung (147,148),
mouse strains exhibit differential sensitiv-
ity to bleomycin and are being used to
exploit molecular mechanisms of fibrosis
(149,150). Empbhasis in this review is on
the rat model because of its greater potential
application to studies of toxic inhalants.

Typically, rats are instilled intratracheally
with 2 to 5 U/kg body weight pharmaceuti-
cal-grade bleomycin sulfate (151-153).
Events preceding fibrosis include pulmonary
edema and inflammation through the first 3
to 7 days, with the development of focal
alveolar fibrotic lesions starting at about 1
week and progressing to a plateau level
approximately 3 weeks postinstillation
(151,152). Extensive alveolar and airway
remodeling occurs during bleomycin-
induced fibrogenesis starting from 2 days to
3 weeks and involves expression and produc-
tion of proinflammatory cytokines and
growth factors and fibroblast-mediated
matrix synthesis (148,151,154).

A concern with this model in rats is
that the lesions are focal, are largely peri-
bronchiolar, and can be quite severe.
Moreover, there is evidence that in response
to injury compensatory hypertrophic and
hyperplastic lung tissue growth occurs in
the nonfibrotic lung areas, with some func-
tional restoration, i.e., in terms of diffusing
capacity (155). To overcome the problem
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of focality of fibrotic lesions, some
investigators have modified the treatment
protocol to include exposing the rats to
hyperoxia following lower doses of
bleomycin (155,156). This treatment regi-
men results in a more diffuse lesion and
may result in a better model of diffuse
fibrosis than that from instillation of
bleomycin alone. Although the morphol-
ogy and severity of fibrotic lesions in these
rat models compare reasonably well with
those of idiopathic fibrosis in humans, the
lesions in the rat are not progressive and
inflammation wanes.

Other rat models of environmentally or
occupationally related fibrosis have been
developed by intratracheal instillation of
silica or asbestos fibers (144). The mecha-
nisms by which asbestos and silica cause
fibrosis are reasonably well understood.
They involve prolonged presence of the
particles, protracted cytotoxicity, inflam-
mation, and a network of cytokines and
growth factors (144,157).

Application of the bleomycin-induced
fibrosis model to pollution research has
been limited to studies of regional deposi-
tion and clearance of inhaled submicro-
scopic particles in the rat, mouse, and
hamster (147,157-159). In a rat model of
bleomycin-induced fibrosis, we recently
showed that modest mortality in response
to ROFA instillation occurs only when the
model exhibited active inflammation,
though the dose of ROFA required to
cause this response was rather high (25).
Thus, the susceptibility of the fibrosis
model may depend on the pathogenic state
of the disease. Silica- and asbestos-induced
fibrosis models have only rarely been used
to study air pollutant-induced susceptibil-
ity (160); however, they provide fertile
opportunities to address long-term interac-
tion studies because of their progressive
nature and their relevance to occupational
and environmental exposures.

Pulmonary Infection. Respiratory
infections are very common and rank as
one of the most common causes of death. A
variety of microorganisms infect the upper
and lower respiratory tract in humans and
depending on the infectious organism, dis-
ease symptoms and severity vary. Infections,
although quite common in all individuals,
typically are cleared quickly in healthy peo-
ple depending on the virulence of the agent
or organism. However, in individuals with
underlying immunologic impairment or
lung diseases such as cystic fibrosis, asthma,
or COPD, the residence time for an organ-
ism in the lung is extended, allowing even
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less virulent types to proliferate (161-165).
Common community-acquired bacterial
infections that occur in humans include
nontypable Haemophilus influenzae,
Staphylococcus aureus, Mycoplasma pneumo-
niae, Legionella species, Chlamydia pneumo-
niae, and Streptococcus pneumoniae
(161-163). Pseudomonas aeruginosa and
Streptococcus aureus infections are common
in cystic fibrosis patients (139), whereas
nontypable Hemophilus influenzae plays a
prominent role in exacerbations of COPD
(165-167). Respiratory viral pathogens
include rhinovirus, respiratory syncytial virus,
influenza, and parainfluenza viruses; these
generally are self-limiting and resolve in
healthy individuals who usually mount
antiviral immune responses (168,169). A
variety of infectious agents have been used to
develop infection models in rodents. The
review by O’Reilly (161) cites the relevance
of several animal models of bacterial infec-
tions to humans. The commonly used rodent
models of viral and bacterial infections are
described below.

VIRAL INFECTION MODELS. Viral infec-
tions, although common in all individuals,
occur more frequently during early child-
hood (170,171). These acute viral infec-
tions cause epithelial necrosis, increased
bronchial epithelial and endothelial perme-
ability, and inflammatory cell influx. The
immune cascade is thought to involve the
T-helper type 1 (Th1) cell, as evidenced by
increased production of interferon-y and
interleukin-2 (96,102,172). Although ini-
tial clearance of virus is mediated by CD8*
cytotoxic T lymphocytes (172), under cer-
tain conditions viral infections can evoke
T-helper type 2-like responses associated
with allergy and atopy (96,173,174). This
has been thought to alter sensitivity to
aeroallergens in the young (175-177).
Although most individuals with COPD
and asthma recover from acute infection,
severe or multiple infections have been
implicated in the worsening of chronic dis-
ease and its resulting airway dysfunction.
Following an acute episode of viral bronchi-
tis, asthmatic children frequently develop
repeated episodes of wheezing and symp-
tom exacerbation that last for weeks and are
easily induced by challenges previously hav-
ing little or no impact (178-180).

Viral infection models most frequently
use mice and rats. Infection models typi-
cally are achieved by intranasal inoculation,
intratracheal instillation, aerosol dispersion,
or intravenous infusion. Assessments focus
on proliferation and clearance of the infec-
tious organisms and associated pulmonary

injury or pathology (176,177,181-183).
Lebrec and Burleson (783) have described
three influenza models: first, a model with
a highly virulent, lethal strain (influenza
A/Hong Kong/8/68, H3N2 virus) adapted
to B6C3F1 and CD mice; second, a CD
mouse model involving a less virulent
strain (A/Port Chalmers/1/73, H3N2); and
third, a similar (A/Port Chalmers/1/73,
H3N2) nonlethal rat-adapted influenza
virus model (RAIV). In contrast to the lethal
mouse model that terminates in extensive
pneumonia and lung consolidation, the
A/Port Chalmers/1/73, H3N2 models
exhibit airway epithelial damage, immune
responses including interferon induction,
neutrophilic, and lymphocytic influxes,
and eventual antibody formation in keep-
ing with the Th1 concept (183,184).
Airway reactivity associated with the RAIV
model subsides and recovery apparently is
complete in about 2 weeks (185).

The BALB/c mouse model of human
respiratory syncytial virus yields an airway
injury that is similar to but milder than the
human infection; it peaks during the first
week postinoculation and the mice recover
quickly during ensuing weeks (181,186).
Using the genetically immunosuppressed
cotton rat does not seem to enhance the
response to this virus despite rather high
doses of inoculum (187). Only the guinea
pig developed significant complications
and overt clinical disease related to this
infection, thus more closely mimicking
human infection (182).

A neonatal rat model of parainfluenza
type 1 (Sendai virus) infection results in the
usual epithelial desquamation initially and
persistent airway pathology including hyper-
responsiveness even 16 weeks after challenge
(175). However, this model evokes consid-
erable airway remodeling with the pro-
tracted infection, which is not common to
most viruses. Also, Sendai virus may impose
additional critical problems regarding gen-
eral animal husbandry because it is quite
infectious. This model may be more applic-
able to determining interactions of air pollu-
tants in young hosts as a model of severe
childhood respiratory infections.

Rodent models of viral infection have a
history of use in studies of air pollution
(17,183,188-193). In a murine influenza
model, prolonged O3 exposure after virus
inoculation reduced virus replication and
antibody titer (/89) while potentiating the
postinfection alveolitis and parenchymal
changes (190). Prior exposure to O3 in
mouse models of influenza infection
yielded variable responses in terms of viral

119



pathogenesis and Oj exposure protocols
(17), indicating the complexity of inter-
pretation and extrapolation to the human
situation. More recently, the RAIV model
has been used to study the effects of coex-
posure to pollutants such as phosgene, O3,
and PM (191,192,194). The interactive
effects observed in these studies were also
exposure and infection protocol dependent.
However, studies to determine how pollu-
tants interact with viral infections in rodent
models clearly are feasible and may aid in
understanding the effects of pollutants on
infectious diseases.

BACTERIAL INFECTION MODELS.
Bacterial infections of the respiratory tract,
although not as common as viral infections,
can be quite pathogenic in humans. Those
with underlying diseases such as COPD,
cystic fibrosis, asthma, or various types of
immune deficiency may be at particular risk
of persistent and progressive bacterial infec-
tion (161). Bacterial pathogenesis in healthy
individuals includes an initial proliferative
phase and phagocytic cell-mediated clear-
ance of the organisms. Efficient macrophage
function and mucociliary clearance are criti-
cal to the initial defense against bacteria.
Any impairments in these functions greatly
increase the risk of protracted or severe
infection and resultant lung injury. Because
human bacterial infections are frequently
associated with persistent pulmonary dis-
eases, various experimental approaches are
being taken to develop chronic infection
models (161).

In general the mouse and rat models
develop signs similar to those in humans,
but the pathology in the rodents tends to be
relatively mild, perhaps because human pre-
disposing factors are absent (17,195-198).
As with viral infections, bacterial infections
usually are generated by intranasal inocula-
tion or aerosol dispersion. To mimic the
more chronic bacterial infections experi-
enced by humans with other underlying
diseases, bacteria were encased in agar beads
to prevent the rapid clearance of inoculum
(161,162). This has been attempted in the
rat using nontypable Hemopbhilus influenzae
(162) and Pseudomonas aeruginosa (199).
Pulmonary epithelial mucosal damage
induced by hexamethylphosphoramide or
cobra venom factor promotes colonization
of Hemophilus influenzae, which suggests
that such intervention may also be useful in
retaining the bacteria for a longer period to
promote long-term infection (200,201).
Models of chronic infections in mice are
produced by experimental immunosuppres-
sion with dexamethasone pretreatment to
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mimic humans receiving glucocorticoid
therapy (196). Empirically, immunosup-
pressed mice (e.g., CB-17 +/+ and CB-17
scid/scid, SCID) develop spontaneous fun-
gal (Pneumocystis carinii) but not bacterial
infections and thus have been used in
mechanistic studies of such infections
(195). These chronic infection models may
be particularly important in considerations
of host susceptibility in those already com-
promised with diseases such as COPD.

Bacterial infectivity models long have
been used in air pollution studies, particu-
larly to show increased bacterial infection-
related mortality (17,193). In the mouse
model of Streptococcus zooepidemicus infec-
tion, prior exposure to either O3, NO,,
phosgene, or SO, enhances infection-asso-
ciated mortality and pathology (202-206).
Preexposure to a variety of PM and metal
salts has also resulted in increased infec-
tion-related mortality in this model (207).
Impairment of alveolar macrophage func-
tion by air pollutant exposure and conse-
quent diminished clearance of bacteria are
suggested to cause the decreased resistance
(193). Thus it appears that air pollution
exposure can alter host responsiveness and
result in more persistent and virulent infec-
tions. Models of bacterial infectivity gener-
ally involve preexposure to the pollutant
followed by bacterial challenge with the
aim of assessing subsequent infection. The
converse approach of bacterial infection
followed by the pollutant has not been
widely explored, however. Thus, the possi-
bility of such a response in the model or
the human is questionable and requires
more study.

Cardiopulmonary Vascular Diseases

Cardiopulmonary diseases typically are
diseases that involve not only the basic
parenchyma of the heart and lungs but also
their respective vasculature. It is also impor-
tant to recognize that disease in either the
lung or the heart may affect the other
because of their intimate hemodynamic
relationship. Indeed, the loss of vascular
integrity may result from or cause organ
dysfunction. On the other hand pulmonary
vascular diseases can contribute secondarily
to heart disease as the entire cardiac output
must be pumped through the pulmonary
vasculature (208-210). Chronic pulmonary
disease frequently involves pulmonary
hypertension and right ventricular hyper-
trophy, which when advanced can indi-
rectly alter left ventricular function and
contribute to blood gas abnormalities.
Conversely, left-sided cardiac disease can

also alter pulmonary venous pressure
(211-213). Each of these conditions may
sensitize the lung and/or heart to the effects
of inhaled toxicants. In the context of this
review, we consider pulmonary and sys-
temic vascular diseases (including pul-
monary and systemic hypertension) and
congestive heart failure models.

Pulmonary Vasculitis/Hypertension.
Pulmonary vasculitis/hypertension refers to
an increase in pulmonary arterial pressure
because of pulmonary vascular remodeling,
pulmonary capillary bed damage, or dis-
ease. The etiology of human idiopathic or
primary pulmonary hypertension is unclear
but appears to involve selective damage or
alteration to the pulmonary vasculature; it
is relatively rare, almost always fatal, and
affects mostly young women (214). A
mild, nonpathogenic, and nonprogressive
pulmonary hypertension occurs in native
highlanders as part of a compensatory
response to the chronic alveolar hypoxia due
to an altitude-associated reduction in oxy-
gen pressure (215). However, pulmonary
hypertension in humans is most frequently
a secondary development to airway and
vascular pathology associated with COPD,
chronic asthma, or cystic fibrosis (208,210).
Loss of the pulmonary vascular bed from
disease and inadequate gas exchange appears
to play a significant role. Pulmonary hyper-
tension can also be found in a variety of
congenital heart diseases and in acquired
left-sided heart diseases (216).

Two rat models of pulmonary vasculi-
tis’hypertension have been widely used to
study the pathobiology of this syndrome:
parenteral treatment with monocrotaline
(217-219) and chronic inhalation hypoxia
(220-223). Although each of these models
exhibits functional pulmonary hyperten-
sion, they offer the advantage of distinctly
different mechanisms of induction and
differences in the character of the syn-
drome, which may allow segregation of the
mechanisms of interaction with pollutants.

MONOCROTALINE-INDUCED
PULMONARY VASCULITIS/HYPERTENSION.
Monocrotaline-induced vascular disease
has been well characterized in the rat and
in a number of other animal species
(217-219,224-227). The proposed mech-
anism of injury includes selective pul-
monary endothelial damage by the pyrrole
metabolite of monocrotaline with induc-
tion of progressive pulmonary arteriolar
muscularization (219). As impedance to
blood flow through the lung increases,
pulmonary artery hypertension develops
(218,224,228). A single intraperitoneal or
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subcutaneous injection of monocrotaline
(50-60 mg/kg) produces pulmonary
hypertension in the rat starting at 10 to 15
days posttreatment (217-219,225). This
in turn causes right ventricular hypertro-
phy (as measured by weight of right ventri-
cle/[left ventricle + septum]; RV/[LV+S]).
At about 1 month there may be some mor-
tality—depending in part on rat strain—
because of the progression of pulmonary
hypertension and inflammation (217-219).
However, animals that do not die within
the first 1 or 2 months can live with pul-
monary hypertension for a long period
(217-219). Pulmonary and vascular
inflammation in surviving animals have
not been characterized.

In addition to remodeling of arterioles
and perhaps venules, pulmonary parenchy-
mal changes including alveolar thickening,
edema, and inflammation with frank
endothelial and epithelial cell damage is
evident (229,230). Hypoxemia, perhaps as
a result of damage to the pulmonary vascu-
lature and increased edema, is also appar-
ent in this model (231) and oxygen therapy
decreases pulmonary vascular resistance if
given 10 to 21 days after treatment (232).
Despite pulmonary hypertension no
major impact on systemic circulation or
hematocrit has been noted (226,233).
Hepatotoxicity may become apparent at
very high doses of monocrotaline (120-140
mg/kg); therefore, it is recommended that
doses not exceed 50 to 60 mg/kg body
weight to avoid these systemic effects
(217-219,224).

HYPOXIA-INDUCED  PULMONARY
HYPERTENSION. Hypobaric and nitrogen
dilution hypoxia have been used to gener-
ate pulmonary hypertension in rats. A con-
tinuous 3-week exposure of rats to a low
FO, (10-12%, in nitrogen) with normo-
baria or to a simulated altitude of 16,000 ft
(hypobaric chambers, Pp,, = ~-250 mmHg)
results in progressive lung vascular muscu-
larization and pulmonary hypertension
(36,223,234-238). Unlike the monocro-
taline model, little if any pulmonary edema
and inflammation are present in the estab-
lished model (36,239,240). Acute hypoxia
induces pulmonary hypertension through
an increase in pulmonary arteriolar con-
striction, which causes resistance to blood
flow through the lung. Erythropoietin-
mediated polycythemia follows with an
increase of atrial natriuretic peptide (a car-
diac hormone) in the blood (236,241).
The hypoxia also stimulates production of
vascular endothelial growth factor and
expression of its receptor (223) as well as
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expression of fibronectin and laminin
(220), interleukin-1o (242), nitric oxide
synthase (240), interleukin-6 (243), and
endothelin (222), all of which are linked to
vascular remodeling.

Although the pathogenesis of the
lesions is significantly different between the
monocrotaline and hyopxia models, the
lesions in each model result in functional
pulmonary hypertension and vascular
remodeling reminiscent of the idiopathic
human disorder (36,37). Chronic hypoxia
typically yields a largely reversible pul-
monary hypertensive condition, whereas
monocrotaline results in a progressive, irre-
versible, and frequently fatal disorder. In
comparison, human primary pulmonary
hypertension is typically insidious and
exhibits little nonvascular alveolar remodel-
ing or inflammation, but it is generally
progressive and fatal (244). The greatest
relevance of these models for air pollution
studies lies not in their similarity to human
pulmonary hypertension but in their dis-
tinctive hypertensive/inflammation charac-
ter, which may differentiate the role of
inflammation in the secondary pulmonary
hypertensive state common in advanced
lung diseases.

To date, the application of the
monocrotaline model to air pollution
studies has been limited to PM. This model
is uniquely sensitive to inhaled (27) or
intratracheally instilled anthropogenic
ROFA PM (24,26,28). The hypoxia
model of pulmonary hypertension has yet
to be used for similar studies. This collec-
tive data set on PM-associated susceptibil-
ity in the monocrotaline model has been
the major impetus for the rekindling of
interest in using diseased animal models of
susceptibility for studies of air pollution.
The underlying mechanisms and whether
other air pollutants will yield analogous
interactions remain to be determined.

Systemic Hypertension and Congestive
Heart Failure. Together hypertension and
heart diseases constitute the leading cause
of death in the United States (245,246).
Although diet and lifestyle are thought to
play critical roles in development and pro-
gression of systemic hypertension and
other vascular diseases such as atherosclero-
sis, genetic susceptibility may be the most
important determinant of the condition.
Both epidemiologic and experimental
studies using animal models indicate that
while cardiac disease can occur indepen-
dently, long-lasting systemic hypertension
can hasten atherosclerotic cardiovascular
disease and culminate in an infarct with

cardiac injury or failure (247-259). Animal
models of hypertension and congestive heart
failure have been used extensively to investi-
gate basic disease pathogenesis (247-251)
with the rat as the model of choice in the
majority of studies. Several rodent hyperten-
sion models have been developed by breed-
ing over several generations to segregate
phenotypic traits (247). However, alterna-
tive cardiac models can be induced by surgi-
cal or pharmacologic manipulations of the
cardiac vasculature.

MoDELs DERIVED BY GENETIC
MANIPULATIONS. SPONTANEOUSLY HYPER-
TENSIVE RATS. The spontaneously hyper-
tensive (SH) rat represents a model of
essential or primary hypertension derived
from an outbred strain of the Japanese
Wistar Kyoto (WKY) rat. It is the most
widely used genetic model in hypertension
research (247,260). Blood pressure begins
to rise at approximately 5 weeks of age and
increases progressively to about 180 mm
Hg by 10 weeks of age regardless of gender
(247,260-262). After prolonged hyperten-
sion, complications arise that are similar to
those in humans—cerebral and myocardial
lesions (e.g., infarction, hemorrhage) and
nephrosclerosis (247,252,263). Alterations
in the extracellular matrix of cardiac and
vascular tissues progress over this same
time period (257,264).

Hypertension in SH rats resembles
human primary hypertension in that there
is a genetic component, though no specific
pathogenic mechanisms are yet known.
There are other similarities: the course of
pathogenesis, the major cardiovascular
complications of hypertension, increased
peripheral resistance, salt sensitivity, and
finally the effectiveness of antihypertensive
therapy (260). A potential shortcoming of
the SH rat for studies involving the genetics
of hypertension, however, is the appropriate
genotype control for the SH rat; the WKY
rat, the parental stock of the SH rats, is often
used (247,260), but there appear to be con-
founding genotype differences. How this
difference would complicate interpretations
of air pollutant effects is not known.

DAHL SALT-SENSITIVE AND DAHL—IwAI
RaTs. Salt intake can exacerbate essential
hypertension in humans, particularly
if there is familial trend (265). Two
Sprague—Dawley-derived rat strains show
genetically determined differential sensitiv-
ity to salt-induced hypertension. The Dahl
salt-sensitive (Dahl S) rat develops hyper-
tension in 4 to 15 weeks when fed as little
as 4% salt in its diet, whereas the Dahl
salt-resistant (Dahl R) rat does not (266).
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There is evidence that the sympathetic
nervous system is involved in this model, as
is kidney tubular fibrosis (267). However,
unlike most human hypertension the renin
system does not appear to be affected by salt-
induced hypertension in the Dahl § rat
(247,268). Studies involving these rats can
be controlled by the paired S and R rat geno-
type (inbred Dahl-Iwai S/R and outbred
SS/R/jr strains) and the Sprague-Dawley
parentage (269).

RENIN TRANSGENIC RATS. A transgenic
Sprague-Dawley rat model has been devel-
oped that harbors the mouse renin-II gene.
Fulminant hypertension develops by 12 to
14 weeks of age (247,270-275). The hyper-
tension is associated with secretion of adrenal
steroids and increased angiotensin-convert-
ing enzyme activity (270). Myocardial
remodeling (274) and defects in sympathetic
neural control in the left ventricle have also
been noted (276). This model has an advan-
tage over many other hypertension models
because of the involvement of the renin sys-
tem as seen in human hypertension. To date,
however, the model has not been widely
used in hypertension research, and associated
lung attributes have not been investigated.

OTHER GENETICALLY DERIVED MODELS
OF HYPERTENSION AND CONGESTIVE
HEART FAILURE. In addition to their use
as models of hypertension, several SH rat
and other substrains have been generated
that develop congestive heart failure
(247,252,255,277,278). SH rats, if allowed
to age more than 21 months, also develop
congestive heart failure and associated com-
plications (252,263). One SH rat-derived
model that is genetically obese (sponta-
neously hypertensive heart failure/ Mcc-fa?)
exhibits the features of chronic left ventric-
ular failure including myocardial fibrosis,
electrocardiogram abnormalities, pul-
monary and hepatic congestion, dyspnea,
and cyanosis as well as right-heart hyper-
trophy (247). Other cross-bred models
have evidence of atherosclerosis when fed
a high cholesterol diet (SHRSP/Izm)
(247,255,279) or when in possession of a
corpulent gene (LA/N-cp) (280,281). Several
other strains of rats exhibiting hypertension
and heart failure have also been used in
cardiovascular research (247,261,282,283).
Again, the extent of pulmonary studies in
these rats is quite limited, but the models
appear to provide opportunities to explore
risks to inhaled toxicants associated with
chronic cardiac diseases.

A number of earlier studies with the
Dahl S/Dahl R strains chronically exposed to
03, SO, and CO showed greater mortality
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in the Dahl S than in the Dahl R rat strain
(20-23). However, only with CO was there
a relationship with salt or hypertension,
which suggests a genetically linked response
with O3 and SO,. Our recent studies have
shown marked basic differences in BALF
end points (e.g., inflammation and glu-
tathione) for WKY and SH rats (26). The
responses to inhaled ROFA in terms of
inflammation and glutathione levels in
BALF were also markedly different for SH
and WKY rats (26). How this may relate to
increased susceptibility to inhaled air pollu-
tants is not known, but clearly systemic
hypertension as a predisposing condition to
PM-induced increased morbidity remains to
be further investigated.

MoODELS DERIVED BY SURGICAL
MANIPULATIONS. AORTIC COARCTATION AND
OTHER RENIN-DEPENDENT MODELS. Rat
models of renin-dependent hypertension
can be developed by restricting renal blood
flow. Approaches include partial ligation of
the abdominal aorta below the right and
above the left renal artery to unilaterally
restrict blood flow (284-287) or clamping
the left renal artery using a variation of the
Goldblatt method (288). This approach
has also been applied successfully to other
rodents (289). Hypertension develops in
several weeks, is progressive, and leads
eventually to congestive failure. This model
of hypertension may be compared to sec-
ondary hypertension associated with the
renin angjotensin system in humans.

MYOCARDIAL INFARCTION AND ARTERIAL
STENOSIS MODELS. The most widely used rat
model of congestive heart failure is derived
by surgical ligation of the left coronary artery
(290). The degree of cardiac hypertrophy
resulting from coronary artery ligation and
infarct is often assessed by measuring the
absolute and relative weights of the heart
chambers and the dissected infarct areas.
Though this model has high mortality
(25—45%) within 24 to 48 hr of surgery, the
surviving animals with large infarcts begin
progression to congestive heart failure, which
occurs within 4 to 8 weeks (291-295). This
could be a relevant model of human cardiac
failure secondary to ischemic heart disease
with its ensuing pulmonary complications. A
balloon-injury rat carotid artery stenosis
model has also been developed (296-298).
The resulting lesion seems comparable to
human arteriosclerotic lesions.

MyocARDITIS. Viral and giant cell
myocarditis in humans, although uncom-
mon, is an inflammatory heart disease that
is frequently fatal (299,300). 1t is postulated
that in case of giant cell or hypersensitivity

myocarditis, presence of the multinucleated
giant cells in the heart may be due to an
autoimmune response. Viral myocarditis is
characterized by the presence of inflamma-
tory cells and myocardial dysfunction. In
both cases congestive heart failure develops
as a result of myocardial fiber injury and
loss. The Lewis rat model of myocarditis is
based on T-cell-mediated autoimmunity
stimulated by immunizing rats with cardiac
myosin in Freund’s complete adjuvant
(301,302). Myocarditis, characterized by
pericardial effusion, enlargement, and dis-
coloration of the heart and appearance of
the multinucleated giant cells, develops over
4 to 6 weeks (301). The model leads to con-
gestive failure as in the human disease. Mice
(and less frequently hamsters and monkeys)
infected with Coxsackie B virus have been
most often used in developing a model of
myocarditis (299). Despite the fact that
myocarditis is rare in humans, these rat
models may be easily developed and used
for specific mechanistic studies involving
congestive heart failure without marked
chronic systemic alterations.

Susceptibility studies of air pollutants
in surgically derived rodent models of
hypertension/congestive heart failure are
rare. One study conducted using the
Goldblatt hypertension rat model demon-
strated a dose-dependent increase in mor-
tality from a 32-week exposure to a
mixture of gaseous air pollutants (SO,,
NO,, CO, and ammonium sulfate aerosol)
at environmentally relevant levels and
above (19). To our knowledge no follow-
up systematic studies have been conducted
to determine the cause of this unusual sen-
sitivity. Because ischemic heart diseases
appear to be a risk factor of PM-induced
mortality according to epidemiologic
studies (5), rodent models may help eluci-
date possible cardiopulmonary mechanisms
involved in susceptibility.

CARDIOMYOPATHY. CARDIOMYOPATHY
INDUCED BY PHARMACOLOGIC MANIPULA-
7I0N. Clinical use of the anthracycline
antibiotic drug adriamycin in cancer
chemotherapy poses a risk of irreversible
cardiomyopathy (303). The risk in humans
increases with cumulative dose. Rodents
develop similar cardiopathology when
treated over several weeks (304-306).
Cardiomyopathy is particularly severe in
the left ventricle. No reduction in basal
heart rate and aortic flow occurs; however,
coronary artery flow is reduced (305-308).
Increased lipid peroxidation in cardiac
mitochondria is thought to underlie the
pathogenesis (308). Brain and kidney
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effects become significant, especially at
higher concentrations of adriamycin
(309,310), but pulmonary effects have
not been studied in detail. Increases in
angiotensin-converting enzyme activity
have been noted in the lung (309); this
may be secondary to left ventricular
myopathy. This model of congestive car-
diomyopathy offers an advantage of ease of
induction and has demonstrated character-
istic alterations in cardiac myocytes similar
to the pathologic findings in human idio-
pathic dilated heart muscle disease (conges-
tive cardiomyopathy). However, as with
any drug-induced model, the possible
involvement of other damaged organs in the
susceptibility state is a potential confounder.

GENETIC PREDISPOSITION TOWARD
CARDIOMYOPATHY. Cardiomyopathy charac-
terized by focal cardiac lesions develop in a
strain of Syrian hamster at 40 to 50 days
after birth and progresses with time. As a
result congestive heart failure and death
occur within 1 year of birth (209,311-314).
There is also evidence of some degree of
skeletal muscle degeneration in this model.

The cardiomyopathy is characterized by
ventricular dilation, focal areas of fibrosis,
myocytolitic necrosis, and cellular hypertro-
phy. Alterations in lung natriuretic peptide
receptors have been noted in this model of
cardiomyopathy (209). These findings also
occur frequently in congestive heart failure
in humans.

These models of cardiomyopathy have
not been used for susceptibility studies
involving air pollutants; however, they repre-
sent yet another tool to investigate mecha-
nisms of susceptibility when damage to
myocardium is not caused secondarily by
systemic or other organ failures. The poten-
tial utility of cardiac disease models in the
study of air pollutant effects has to date been
underappreciated. Because heart diseases are
the predominant ailment of aging humans,
the public health significance of a demon-
strated cardiac-related susceptibility would
be dramatic. Animal models of cardiac dis-
eases, although used only sparingly in the
past, represent potentially useful tools to
address the questions that would be difficult

to explore in cardiac disease human patients.

One specific advantage with cardiac disease
models is that as with humans, they are
largely chronic in nature and thus may be
specifically useful in chronic pollution expo-
sure studies. It remains to be seen which ani-
mal model affords the best instrument for
these studies and to what extent coexisting
pulmonary impairments may be involved.

Conclusion

The issue of susceptibility as it relates to
the threshold of response and the basic
risk of adverse effects associated with air
pollution is gaining wide public health
and political interest. By the nature of
their illnesses, many perceived susceptible
humans are not available for direct study.
Thus, animal models of disease provide
opportunities to explore basic issues of sus-
ceptibility, mechanism, and risk, albeit
with the limitations of extrapolation. With
careful preparation of the models and con-
servative interpretation of the data, animal
models may provide toxicologists with
another tool to investigate environmental
cardiopulmonary disease.
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