
Mathematica as an Environment for

Doing Economics and Econometrics

David A. Belsley1

Boston College

June 11, 1997

Today's graduate students in economics must master early on a computational envi-

ronment suitable for their research needs. A case is made here why Mathematica is

an eminently reasonable choice for this purpose for many students. Salient features

of Mathematica are examined in this context, and the breadth of economic research

accomplished in Mathematica is illustrated.

Introduction

Sooner or later, most of today's graduate students in economics will be faced with a critically important deci-

sion: which computational environment to learn and use.2 And more often than not, they will be ill equipped

to make this choice. While various of a student's professors and classmates will undoubtedly advocate speci�c

software, such suggestions are often salted with confusing contradictions and unassessable evangelism, and,

to make matters worse, local computer facilities will likely make only certain of the alternatives available at

reasonable cost.

The need for this choice may possibly come to some as an unpleasant and belated surprise. Initially,

course emphasis is likely placed on theory. But at some point, the rudeness of \doing" arises|sometimes not

until well into the graduate curriculum, and sometimes not until the beginning of thesis writing. In years past,

this problemmight have been resolved simply by the student's learning to use a canned regression, statistical,

or econometric package. But, more and more, students are �nding the need to learn the programming skills

to develop one's own models and statistical tools. And thus the daunting situation arises in which the student

must undertake a major new learning experience totally distracting to any intended economic research.

Students' reactions to this vary. Some take time out to determine what software environment is needed

and learn to use it well before returning to their economic researches. Some do the same, but get lost

in the lure of their new-found game, never to return to economic research again. Others try to learn a

software environment and simultaneously continue researches. Yet others compromise, mechanically learning

\just what's needed" of particular software packages to keep their research momentum alive. A few simply

1 The author is grateful to Christopher F. Baum for helpful comments.
2 See Amman and Kendrick (1997) for a more complete discussion of this topic.

ounder. Except for the last, each of these reactions has its various pros and cons. However, I would argue

that there are very few pros to the just-what's-needed approach. This method invariably results in little

real understanding and produces skills that are quickly forgotten. When the skills are needed again or must

be modi�ed, it's \back to the drawing boards," often with an element of panic that can easily cause the

student to block, i.e., resist undertaking important new research elements or even initiating the research at

all. I would also argue that it typically requires an exceptional student simultaneously to learn a software

environment and continue high-level graduate research.

Thus, the best solution to my mind is to begin at the very outset of one's graduate career learning,

using, and becoming comfortable with some good computational environment|before it is truly needed and

while there is time for the process to occur naturally and systematically, to become ingrained. The problem

with this is that it requires the student to commit to a particular environment before knowing what may be

optimal for his needs. This, however, I claim to be a small problem. For it is far better that the student have

well in hand some (any) good environment that he knows and trusts and can use
exibly and comfortably

in a multitude of needs as they arise than it is to wait to try to �nd a \best" environment.

And this is not a di�cult thing to do; there are a variety of good packages that can serve this need.

The virtue of this may well be seen in the fact that most established economic researchers believe that the

environment that they learned and use is among the very best. People who were weaned on GAUSS cannot

understand how anyone could be excited by Maple, while Maple users look askance at Mathematica users,

etc. With so many happy and devoted users, each of these products must be doing something right. So

the important thing is to pick one, learn it early and well, and use it often and productively|so that it

becomes a real tool and not an impediment. This strategy assures that the student always has some suitable,

if not optimal, computational facility at hand. And it has the added advantage that, having learned one

environment, it is typically much easier to learn new ones. Thus, research can continue even if special

elements of the research may bene�t from the occasional learning of a more optimal procedure.

Numerous environments exist that will be of interest to graduate students in economics. These include

such packages as GAUSS , MATLAB , GAMS , Mathematica, Maple, Derive, Reduce, Macsyma, RATS ,

TROLL, PCGIVE , Ox, SAS , SPSS , S, S+, and Stata. While each of these is potentially useful, they are

not all the same type of environ. At the risk of oversimplifying, the �rst two, GAUSS and MATLAB are

quite specially designed programming environments for doing matrix-type calculations easily and e�ectively.

GAMS is also a special-purpose environment; it is designed for building and manipulating large-scale eco-

nomic models. Similarly, the last nine are basically statistical packages, allowing one to do standard, and

not so standard, statistical calculations with relative ease and
exibility. Among these, RATS , TROLL, and

2

PCGIVE are more econometrically oriented, and S+ is oriented towards data analysis. Stata is somewhere

between a statistical package and a fully extensible econometrics programming language. The remaining

products, particularly Mathematica, Macsyma, and Maple, are more general environments that allow for a

wide spectrum of operations, encompassing most of what has been mentioned, albeit perhaps at the cost of

some e�ciency in carrying out speci�c tasks. Among these, Mathematica and Maple are arguably the two

most popular and widely used.

Thus, the strategy I suggest would point toward selecting an environment like Mathematica or Maple.

These provide powerfulmodeling, graphical, statistical, and programming facilities that allow the user, within

a single environment, to do almost everything. And even if more special-purpose routines are eventually

called for, they allow for rapid prototyping and testing of projects that makes subsequent implementation

in other environments very much easier and surer.

Both Mathematica and Maple, for very good reasons, have their devoted adherents. I happen to be

a Mathematica sort, and it is Mathematica that I want to deal with here. It is not, however, my purpose

to \sell" Mathematica. Rather I want to try to elucidate for those who are considering computational

environments what Mathematica's pros and cons are for use in economic research. To this end, I will try

to explain some of Mathematica's salient features and illustrate the kinds of economic research that have

successfully been accomplished using Mathematica.

This latter objective is made easier by the presence of two excellent volumes, Economic and Financial

Modeling with Mathematica and Computational Economics and Finance: Modeling and Analysis with Math-

ematica, both edited by Hal Varian. Typically, scholarly papers in economics publish methods and results

but provide little insight into the means by which those results are produced. Indeed, one is usually not made

privy to the computational environment used. The studies in these volumes, however, display both means

and results in full. Those whose interest inMathematica is piqued here are well advised to examine these vol-

umes in detail, for they give an excellent idea of the power of Mathematica for doing economic/econometric

research in a wide variety of �elds and provide good examples of how it is done.

Basics

My purpose here is not to provide a tutorial in Mathematica. For this, there is little that surpasses the

introduction of Stephen Wolfram's book Mathematica, now in its third edition, which also contains complete

Mathematica documentation. This book is available separately from the software and is absolutely essential.

The curious with access to Mathematica are well advised to borrow or buy this book and \do" chapter 1.

It's a short period of time well spent. Rather I wish �rst to give the reader a quick feel for and appreciation

3

of what Mathematica is and what it can do, and then we can look at its uses in economics.

Mathematica is a fully integrated symbolic algebraic computational environment. By fully integrated I

mean that, within a single environment, one can do calculations, algebra, calculus, and matrixmanipulations;

one can solve equations, build models, program, enact rule-based transformations, and one can graph the

numeric results. By symbolic, I mean that most of these operations can take place either on numbers

(numerically) or on abstract symbols (symbolically), a feature that is particularly useful in economics. The

heart of this integration lies in the simple, but often overlooked, fact that, in Mathematica, everything|

and I mean everything|is a list. The more you use Mathematica, the more you will realize that it is this

commonality of structure that gives Mathematica its unity, form, and power. And once this fact is truly

appreciated, one has the basis for really understanding how to use Mathematica and how best to exploit its

almost endless possibilities.

A common mistake in learning an environment likeMathematica is trying to learn it all at once. Math-

ematica is a gargantuan program, containing far more substance than you will ever need or want. Most

economists, for example, will likely never need Bessel or M�obius Mu functions. But Mathematica was not

written just for economists, so you must learn wisely. At �rst, things are easy; a good deal of Mathematica

can be used, even productively, without great e�ort. You can solve equations, do calculus, draw graphs,

manipulate matrices almost immediately using Mathematica's many built-in features. But more ambitious

projects require one's own programming. And here Mathematica excels.

Mathematica's programming language is extensive, with commands borrowed from virtually every known

language: LISP, FORTRAN, C, Pascal, Algol|you name it. Thus, those coming to Mathematica with

programming experience will likely be at home with elements of Mathematica's language and will be able

to use many of their familiar programming practices. But beyond this, Mathematica has its own functional

programming structure that, for many purposes, is so much more elegant and powerful that you will �nd

yourself slowly gravitating away from the familiar and into the new. The problem is that this transition

involves a slow, long, and virtually endless learning curve. But this is not a cause for despair|indeed, quite

the opposite. It simply means that the more you use Mathematica, the more you will be able to use it and

do with it.

Mathematica, then, is an environment that one can start using quickly, easily, and productively for

many standard needs. But it is also an environment that can, with learning and e�ort, accommodate almost

any computational research need.

4

An example

Let's give a simple example of a problem every �rst-year grad student knows to be easy in concept, hard in

practice: dealing with determinants of 4 � 4 matrices. Recall, everything in Mathematica is a list, and the

basic list in Mathematica is simply a set of objects, separated by commas within braces. Thus a 4-vector of

numbers is simply a list like

In[]:=

{-1,2,4,2}

and a 4� 4 matrix is simply a list four such lists, such as

In[]:=

{{1,a,6,5},{-1,2,4,2},{5b,6,b,4},{-1,-2,2,4}}

We note that some of the elements here are numbers and some are symbols involving a and b. If I'm

interested in this matrix for di�erent values of a and b, I can write

In[]:=

mat[a_,b_]:={{1,a,6,5},{-1,2,4,2},{5b,6,b,4},{-1,-2,2,4}}

to create a matrix mat as a function of a and b. Thus, the one gets the following input and result for the

determinant of mat for a equal to 6 and arbitrary b:

In[]:=

Det[mat[6,b]]

Out[]:=

-300 + 344b

And, if one wants to know the value of a for which the determinant of mat is zero, one simply gives and

receives

In[]:=

Solve[Det[mat[a,b]]==0,a]

Out[]:=

a ->
2(87+ 7b)
4+ 31b

Recall that a and b are being used symbolically here. This expression holds for any b. Impressed? I

hope so; otherwise do it out by hand! But realize that this is a trivial use of Mathematica. Imagine, then,

a non-trivial use. Slightly higher on the scale, for example, would be to �nd the eigenvalues of mat when a

is, say, 40 and b is 12; i.e.,

In[]:=

Eigenvalues[mat[40,12]]//N

5

Out[]:=

{-8.71359 - 14.5496 I, -8.71359 + 14.5496 I, 3.06334, 33.3639}

One could even ask for, and get

In[]:=

Eigenvalues[mat[a,b]]

i.e., the eigenvalues of mat for general a and b, but the output is too long and messy, even after simpli�cation,

to print here (but, if you've got Mathematica, you can do it for yourself).

Now, suppose we were interested in seeing how the determinant of mat changes when a = -b over the

range of -30 to 30; then

In[]:=

Plot[Det[mat[-a,a]], {a, -30,30}]

-30 -20 -10 10 20 30

-50000

-40000

-30000

-20000

-10000

Out[]:=

-Graphics-

or, more interestingly yet, a 3-dimensional graphic for separate values of a and b:

In[]:=

Plot3D[Det[mat[a,b]], {a,-41,50}, {b,-15,30}]

-40
-20

0

20

40
-10

0

10

20

30

-50000

0

50000

-40
-20

0

20

40

Out[]:=

-Graphics-

6

Here we see how graphics can be produced seamlessly within the Mathematica environment. But even

with this introduction, I suspect you will be amazed at how quickly and e�ortlessly the authors of the papers

in the two volumes cited above are able to produce graphical illustrations of their results.

The structure of Mathematica

Mathematica is available for almost all popular platforms, including Macintosh, NeXT, and IBM personal

computers, and Unix workstations. It comes in two parts, the front-end and the kernel. These can either

be run together on the same machine or separately on di�erent machines. The kernel does the actual

computational crunching and is, in principle, standardized across machines. The front-end is written to take

advantage of the machine it is run on. On personal computers like the Mac and IBM, the front-end takes

the form of a notebook. Notebooks must be seen to be fully understood and appreciated, but they provide

one of the most
exible and useful interactive working environments imaginable. They are unique to the

Mathematica environment.

The notebook is an excellent word processor that also interacts with the kernel. All of Mathematica's

input and output are recorded in a notebook|along with anything else you wish to include. Thus, using

notebooks, one can experiment, make comments, separate wheat from cha�, draft and organize sections, hide

and display material at will in an easily formatted sectional hierarchy. This makes it possible to document,

draft, and even write up your research as you go. It is also possible to print �nal manuscripts directly out

of notebooks, and books can be produced from them. Indeed, many of the chapters in the Varian volumes

cited above were constructed as notebooks. Version 3.0 of Mathematica, released at the beginning of this

year, allows for 2-dimensional mathematical notation (the way mathematics are typically printed in books)

with a TeX-like, or Scienti�c Word-like, input. It is now quite possible to print a �nal book or paper directly

out of a Mathematica notebook.

One can link a notebook front-end on one machine to a kernel running remotely on another. Thus, one

can take advantage of the superior graphics and versatility of a Macintosh for one's input and output while

running the kernel remotely on some other very fast machine, which can be useful for very large projects.

However, many of today's desktops have adequate memory and power to accommodate most Mathematica

projects running barefoot. Mathematica can also make use of MathLink to interact with numerous other

familiar programs such as Excel.

Mathematica's language

Mathematica's programming language cannot be described in a few paragraphs|or even a few books. But

some interesting notions can be introduced here that relate to the type of research economists do. Although

7

the reader may not be able to appreciate them immediately in full, they should germinate with the reader's

increased knowledge of Mathematica. First, it is worth noting that Mathematica contains close variants of

all the standard iterative and logical (branching) commands of other well-known languages, Do's, For's, If 's,

etc. But it is what is beyond this that I wish to introduce now.

A general object in Mathematica is a list of items e1 to en with a head, written

obj = Head[e1,...,en].

Virtually everything in Mathematica has this form; the vector we used above is simply a list of items with

head List

list = List[e1,...,en] = {e1,...,en},

which can also be written in shorthand using braces as noted. This much is easily understood, but, as I said,

everything in Mathematica is a list. Indeed, consider the operation of addition. This is accomplished with

the head Plus acting on the list of things to be summed. Thus,
Pn

i=1
ei becomes

sum = Plus[e1,...,en] = e1+...+en.

WhileMathematica allows the conventional notation e1+...+en as an obvious convenience, it is translated

internally into the Plus[] form. Likewise, a function is a list with head Function and elements that

describe its operation. So are the standard logical forms|the familiar \if" statement is a list with head If

and objects telling what to do in the true and false cases:

If[expression, true, false, unknown].

It is interesting to note that, in Mathematica, true and false need not be the only possible outcomes.

The evaluation of an expression, such as a > 1, branches to the true or false procedures only if

Mathematica knows for sure whether a > 1. Recall that Mathematica can deal with symbols, so if a has

not actually been assigned a numerical value, Mathematica has no way of knowing if a > 1, and hence it

branches to the procedure for unknown. [Standard Aristotelian behavior can be accomplished by wrapping

expression in TrueQ[], which is a function that returns false unless expression is true.]

Because of this commonality of form, all objects in Mathematica can be treated in similar ways, a fact

that allows for functional programming, a concept that we will develop somewhat as we proceed. Consider,

then, the built-inMathematica function Map[], an object whose power will impress you more the more you

use it. Map[] distributes a function f over the elements of an object. For a general object with head Head,

we have

Map[f,Head[e1,...,en]] -> Head[f[e1],...,f[en]].

If the object is a List, we have

Map[f,{e1,...,en}] -> {f[e1],...,f[en]}

8

i.e., mapping f on a list creates a list of f's. And if the object is Plus, we have

Map[f,Plus[e1,...,en]] -> f[e1]+...+f[en].

Map, then, allows operations on each element of an object without having to refer to each element. It is,

in fact, an automatic Do or For statement that requires no indexing, no looping, and no other management.

This is one aspect of functional programming, namely, blocks of usual programming code that require

management are incorporated into a single functional statement that requires no management. In C, such

code might minimally take the form

long e[30], g[30];

void myproc(void)
{
short i;

for(i=1; i<=30; i++)
g[i] = f(e[i]);

}

You must manage everything here: de�ning the arrays, declaring them, setting and specifying the limits,

and de�ning the procedure to accomplish the task. And when you are through, unless additional code and

memory management are provided to allow dynamic sizing, your code works only for an array of size 30 of

long numbers. All this, however, is subsumed in the single Map[] statement. It does the typing, the limit

setting, the incrementing, the looping, and the determination of the size of the array, whatever that size may

be and whatever its objects may be. Indeed, in Mathematica, almost all instances of iterative code can be

replaced with the Map[] function or its allies. The result is simpler code that is more readily and generally

implemented and more quickly executed.

Another important example of such functional programming is the Apply[] function. Since all objects

are lists with heads, one can change one kind of object to another merely by changing its head|and this is

what Apply[] does. Thus

Apply[Newhead, Head[e1,...,en]] -> Newhead[e1,...,en].

So, for example, one can change a sum to a product with

Apply[Times, e1+...+en] -> e1*...*en.

Again we have a procedure with great power. Suppose, as an example, one wants the product of the

logarithms of the elements of a data vector vec (of whatever length it happens to be). Then write

In[]:=

Apply[Times,Map[Log,vec]]

or, more simply,

9

In[]:=

Apply[Times, Log[vec]]

since Mathematica converts vector and matrix shorthand statements like Log[vec] into their obvious

mappings.

The Thread[] function, which distributes a function f over several lists in parallel, provides yet another

important example of functional programming. Here, we have

Thread[f[{a1,...,an},{b1,...,bn}]] -> {f[a1,b1],...,f[an,bn]}.

And if the potential of this is not immediately obvious, stop and juggle it about in your mind for a while.

Next, we note that Mathematica allows for \pure" functions: simply adding an & to the end of a

Mathematica expression Expr|as in Expr&|causes it to become a function for doing Expr. Thus, if one

has an expression like x+10*y>0.0, this can become a function returning True and False for arguments

#1 & #2 simply by writing (#1+10*#2>0.0)&. And if one now de�nes

In[]:=

f = (#1+10*#2>=0.0)&

then the expression f[a,b] works just like a regular function with arguments a and b. One simply cannot

imagine the power and
exibility that such pure functions a�ord, particularly when combined with such

functional constructs as Map[] and Apply[].

Finally, in this short list of Mathematica power tools that are of great use to the types of research

that economists do, we note that Mathematica allows for hierarchical function de�nitions; that is, the same

function name can be given many di�erent de�nitions. This makes it possible to write very complex functions

very easily. To provide a simple illustration of this, suppose one wishes to express the idea that an economic

relation is quadratic for positive x but linear with slope 3 for negative x and with margins that match at

x=0. One need only write

In[]:=

f[x_] := 3*x /; x < 0.0

f[x_] := 3*x+xˆ2 /; x >= 0.0

The /; operator provides a condition, so that the �rst de�nition applies only when x < 0, whereas the

second applies when x � 0. But now f can be treated as a single function; thus

In[]:=

Plot[f[x], {x, -10, 10}

Out[]:=

-Graphics-

10

-10 -5 5 10

-25

25

50

75

100

125

The Cons of Mathematica

The foregoing would surely seem to indicate Mathematica to be a seductive environment for doing eco-

nomic/econometric research, and it certainly has a great deal to be said for it. But it also has it share of

cons. Mathematica has a long learning curve. While many of Mathematica's powerful features can be used

immediately by the novice to great e�ect, the full power of its programming language comes only with time,

energy, and experience. This will be true of any worthwhile research environment. In the long-run, however,

the learning will be worth the trouble. That is why I suggest at the beginning of this piece that the student

commit early to a good environment, and use it well and often. Use it to do even simple things for which it

is overkill. The more one uses a program like Mathematica, the more useful it becomes.

Mathematica is also a real memory hog. Part of the reason it is able to relieve the user of having to

specify types for numbers (such as int, long, short, extended, real, etc.) is because it simply holds

on to everything in some appropriate high-precision form. Arrays of a million numbers that can be made to

�t in moderate core sizes with 8 digit precision can readily blow all bounds when kept with 19 or 20 digit

precision. Furthermore,Mathematica retains all of the input and output of a given session along with added

material for screen display. This can be extremely useful, allowing prior results to be recalled at will, but it

can also chew up memory unmercifully.

The symbolic nature of Mathematica is one of its delights, but it is also able to produce unexpected

and unpleasant surprises. One must use great care to avoid, for example, inadvertently de�ning an object

being used as a symbol. If x is being used symbolically, and somewhere it is written x = 3, then x will be

replaced in every subsequent use by 3|great if it's intended, but devastating if not. One safeguard is to

use the Clear[] command before any such use to be sure the slate has been wiped clean. The power and

complexity of Mathematica allows it to produce many other sorts of surprises as well, but one gets cleverer

at anticipating and avoiding such things as one gains experience.

Mathematica also runs user code only in interpreted mode; that is, it examines and compiles each

statement as it encounters it. There is no precompiling with its attendant increase in run-time speed and

e�ciency. This can be a real advantage while developing code but can become a source of concern during

11

crunch time. There is a Compile[] function that can be used in some situations to great e�ect, but a more

general compilation facility would be a lovely addition to this environment. Mathematica's own built-in

functions, of course, are already compiled and run very quickly; they should be used whenever possible.

The Map[] function, for example, runs as compiled code whereas an equivalent user de�ned do-loop would

run in a much slower interpreted mode. Thus, one encounters the somewhat ironic situation that a home-

brewed Cholesky decomposition, a routine often used because of its computational e�ciency, will run much

more slowly than the more general Mathematica built-in function SingularValues[] that carries out the

computationally much more involved and demanding singular-value decomposition.

Finally, Mathematica is very expensive. Indeed, one of my Italian associates vouchsafed that, while

Mathematica is a wonderful language and environment, it is so expensive that it is di�cult to justify to one's

administration to buy such a program for economics; perhaps if it were called Economica, he suggested. Well,

it could be so called|or Physica, or Chemica, or Psychologica, or Statistica. I hope by now we have seen

that Mathematica is a chameleon that can readily take a multitude of hues depending upon need. However,

Mathematica's academic pricing is really quite reasonable, particularly considering that it buys the entire

package. Several rival products cost as much or more only for the basics; important functions that are part

of Mathematica must be purchased separately at considerable additional cost. And Mathematica's expense

can be even further ameliorated once a university acquires a site license. For then its organizational use to

members of that community is free, and private copies become available to those members at an extremely

reasonable and competitive cost. Such a site license is truly a social good.

Mathematica and Economic Research

Mathematica can be, and has been, used to do virtually any kind of economic research. Let's look at

some examples. As noted, these examples come from the two volumes Economic and Financial Modeling

with Mathematica and Computational Economics and Finance, edited by Hal Varian. To make references

easier, Chapter n of the �rst and second volumes will be denoted I.n and II.n, respectively.

Theory: All �rst-year microtheory courses do the theory of the consumer and producer, many using

Varian's textbook. If you would like to see some of this material done symbolically in Mathematica, look

at Hal Varian's piece I.1, Symbolic Optimization. Unconstrained and constrained optimization are dealt

with along with tests for de�niteness, and examples are given of comparative statics, Cobb-Douglas and

CES utility and cost functions, and monopoly behavior. Also exempli�ed are numeric and symbolic dynamic

programming, both stochastic and non stochastic. In E�ciency in Production and Consumption, II.6, Varian

uses Mathematica to develop measures of e�ciency, the degree to which actual production or consumption

12

behavior achieves optimality.

General equilibrium models, with their dense notation and potentially large sizes, are always a chal-

lenge. In General Equilibrium Models, I.5, Asahi Noguchi shows how to build general equilibrium models

in Mathematica. Two and three sector/factor models are analyzed and graphed. The framework is ripe for

expansion.

Mathematica's pattern recognition facility, by the way, provides an excellent framework in which to do

model building, both for economic theory and econometrics. I have yet to see it fully exploited in such

dimensions.

Optimization: Optimization is a very important element in much of economic analysis, and, as you

might expect, Mathematica provides a very powerful and
exible environment both for carrying out opti-

mization techniques and for developing appropriate optimization algorithms.

Mathematica has its own Linear Programming package LinearProgramming.m that can be of great

service to many economic applications. A Mathematica \package" is essentially a specialized notebook

providing a routine or a collection of related routines written for Mathematica. Hundreds of such packages

are available, either as part of Mathematica from MathSource, made available by Wolfram Research (the

makers of Mathematica), or from Mathematica usergroups, or written by the user. They are typically

identi�able by a .m appended to their names.

Those interested in learning about Linear Programming, or those interested in learning about the use

of Mathematica as an medium for teaching such topics as Linear Programming, will pro�t from Michael

Carter's Linear Programming with Mathematica, II.1. In addition to a lucid explanation of the topic and the

basic simplex method for its solution, additional Linear Programming packages are provided. This package

supplements the one provided with Mathematica and is explained more fully in II.2, Linear Programming

with Mathematica: Sensitivity Analysis, also by Michael Carter. Here more advanced uses of LP are given.

J.-C. Culioli's work, Optimization with Mathematica, II.3, provides even more general and powerful

means for optimization within Mathematica. In addition to a demonstration of how to use (and how not to

use) Mathematica's built-in general procedure FindMinimum[] for doing unconstrained nonlinear program-

ming, the package MultiplierMethod.m is provided for accomplishing a wide variety of more complex

optimization problems, including nonlinear programming with nonlinear equality and inequality constraints.

Thus, consider the problem

miny + x2 s:t: x+ y = 3:5; �x+ 2 � 0; �y + 1 � 0;

whose solution is found as simply as

13

In[]:=

MultiplierMethod[y+xˆ2, {x+y-3.5}, {-x+2,-y+1}, {x,y}
{4.,6.}, DualParameter -> True]

Out[]:=

{5.5, {x -> 2., y-> 1.5}, {-4.44089 10�16},{MMethod0p1 -> -1.},
{2.48065 10�8, -0.5},{MMethod0q1 -> 3., MMethod0q2 -> 0.}}

Here, in addition to the value of the objection function 5.5, we have a solution for x and y, a check that

the equalities and inequalities are satis�ed, the value for the Lagrange multiplier p1 for the equality, and

the values for the dual Kuhn-Tucker parameters q1, and q2. Many other examples are given in the Culioli

study.

Further forms of optimization techniques are found in Paul Rubin's Optimizing with Piecewise Smooth

Functions, II.4. From the short description given above of Mathematica's facility for de�ning segmented

functions, you can well imagine that it is a natural environment for this purpose. Such piecewise functions

occur quite naturally in many inventory and production problems, and are being used more and more in

various nonparametric statistical procedures.

Dynamics and Growth: An excellent exposition of Mathematica's abilities to handle numerous dy-

namical problems of value to economics is to be found in John Eckalbar's piece, I.3, Economic Dynamics.

Means for dealing with one, two, and three variable systems, both linear and nonlinear, are shown along

with elegant use of the graphics to demonstrate paths to equilibrium and relevant force �elds. Consider, for

example, solving and plotting the dynamic path of the following nonlinear 3-variable di�erential system:

x0 = �10x+ 10y

y0 = �xz + 60x� y

z0 = xy � (8=3)z:

In[]:=

sol2=NDSolve[{x’[t]==-10x[t]+10y[t],
y’[t]==-x[t]z[t]+60x[t]-y[t],
z’[t]==x[t]y[t]-(8/3)z[t],x[0]==1,
y[0]==1,z[0]==1}, {x,y,z}, {t,5}]

In[]:=

ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2], {t,0,3.3},
PlotPoints->1000, PlotRange->All, AxesLabel->{"x","y","z"}]

Out[]:=

-Graphics-

14

-20
0

20x

-25

0

25

50
y

0

25

50

75

100

z

-20
0

20x

-25

0

25

50
y

Gary Anderson, in Symbolic Algebra Programming for Analyzing the Long Run Dynamics of Economic

Models, I.6, exploits Mathematica's symbolic nature to analyze various nonlinear economic dynamic systems

including a money-demand model, McCallum's real business-cycle model, and an overlapping-generations

model.

Growth models can also be analyzed with Mathematica. Kenneth L. Judd and Sy-Ming Guu, I.4, in

Perturbation Solution Methods for Economic Growth Models, make use of perturbation-solution methods to

�nd optimal growth solutions (or good approximations thereto). They examine both continuous and discrete

time models, and both stochastic and nonstochastic formulations.

Industrial Organization: Industrial Organization today is su�used with game theory, and it appears

that Mathematica is a wonderful environment for gaming. A crash course in game theory with exemplar

code for determining the various Nash equilibria for a two-person, zero-sum game is given by John Dickhaut

and Todd Kaplan, I.7, in A Program for Finding Nash Equilibria. Here Mathematica is used to illustrate

familiar and common economic tools as well as the Prisoner's Dilemma and the Battle of the Sexes. Todd

Kaplan and Arijit Mukerji, I.2, use game-theoretic techniques based on the Bayesian-Nash equilibrium in

the context of Designing an Incentive-Compatible Contract. In addition to a good graphical depiction of

single-crossing utility functions, this work illustrates Mathematica's graphics and equation-solving facilities

as well as how aMathematica session is easily expanded to deal with ever more complex cases|a two-person

game grows to �nite and, ultimately, limitingly large numbers. A Kuhn-Tucker package is also o�ered for

more complex solutions. Michael Carter, I.8, uses Mathematica to represent and provide solutions for various

Cooperative Games. This is a good environment for formulating, solving and analyzing games and useful

graphical intuition is provided.

Game theory is also used in Mathematica by William W. Sharkey, II.7, in Cost Allocation along with

other techniques to implement cost-allocation pricing rules in both discrete and continuous situations. Means

are also provided for solving for optimal pricing rules when consumer demand functions are given. And

15

Luke M. Froeb and Gregory J. Werden, II.8, in Simulating the E�ects of Mergers Among Noncooperative

Oligopolists, overcome shortcomings of standard techniques for predicting the e�ects of mergers by using

Mathematica to simulate the merger process using standard oligopoly models.

Finance: Options-pricing methods have �gured prominently of late in the �nancial literature|the

Black-Scholes method in particular. Ross M. Miller, I.12, in Option Valuation implements the Black-Scholes

method in Mathematica as well as a symbolic analysis of its delta. This piece also illustrates how object-

oriented approaches can be accommodated within Mathematica. Of course, the closed-form solution of the

Black-Scholes method cannot be used to price all types of options. So Simon Benninga, Raz Steinmetz, and

John Stroughair, II.11, in Implementing Numerical Option Pricing Models, show how to use Mathematica

to price options using numerical methods such as the binary and binomial options-pricing models and by

Monte Carlo techniques.

High frequency �nancial data often possess strong autocorrelation whose variance becomes a center-

piece of the of analysis. Luke M. Froeb, II.13, in Log Spectral Analysis presents a Mathematica package,

LogSpec.m, for conducting a spectral analysis of such data and applies it to an analysis of the futures/spot

price relationship and to test restrictions using the S&P 500 spot and futures data. This is a good example

of using Mathematica to develop time-series techniques.

Auctions have also been studied within Mathematica. In Auctions, John Dickhaut, Steve Gjerstad,

and Arijit Mukherji, II.9, examine and represent various �rst- and second-price auction mechanisms. Their

behavior is also graphed.

The complex pricing schemes adopted by many airlines are examples of yield management. Ward

Hanson, II.10, in Yield Management shows how to use Mathematica to analyze and implement such pricing

schemes. This piece is also an excellent example of how to use the computational kernel of Mathematica

interactively with a spread sheet like Excel as a \user friendly" front end.

In a piece YieldCurve that exempli�es a balanced spectrum of Mathematica facilities, Mark Fisher and

David Zervos, II.12, provide a Mathematica package of the same name that extracts the term structure of

interest rates from a set of default-free, pdv-priced bonds.

Statistics/Econometrics: As noted at the outset, Mathematica is a general-purpose environment,

and, as such, it is ine�cient to try to make it behave like a special-purpose statistical package. But this in

no way means that Mathematica is not a wonderful environment in which to do statistical and econometric

things. Mathematica does indeed have a number of very important statistical items. A set of basic statistics

packages exists that de�nes a full panoply of statistical objects. And Mathematica's built-in matrix language

16

and routines provide basic building blocks for virtually all statistical needs. Further, standard packages exist

de�ning most distribution functions (and their inverses), and an excellent random number generator is evoked

with Random[]. So, one can readily create within Mathematica statistical objects and procedures of all

descriptions, including those that are di�cult to �nd elsewhere. And, if need be, one can recreate standard

procedures specialized to one's personal requirements.

Thus, in Bounded & Unbounded Stochastic Processes, Colin Rose, I.11, builds on Mathematica's Sta-

tistics.m package to produce relevant statistics and distributions for bounded and truncated random

variables. This allows one to deal more realistically with economic variables like prices or interest rates that

are bounded from below. In this work, one �nds routines for determining the means, variances, densities and

cumulative distributions for bounded/truncated random variables. Examples are given using these notions

for exchange rate target zones (stipulated bounds for exchange-rate variation) and irreversible investment

under uncertainty.

In another vein, J. Michael Steele and Robert A. Stine, I.9, in Mathematica and Di�usions, review

the notion of di�usions in economic time series and develop means to de�ne and represent them through

stochastic calculus in Mathematica. These techniques are then applied within the Black-Scholes options-

pricing formula. A stochastic calculus package is also developed that includes a multivariate version of Itô's

formula. These concepts are given greater generality and re�nement in Wilfrid S. Kendall's, I.10, piece,

Itovsn3: Doing Stochastic Calculus with Mathematica.

Mathematica's ability to deal symbolically would seem ideal for optimization techniques that use sym-

bolic di�erentiation. Stephen J. Brown, I.13, in Nonlinear Systems Estimation: Asset Pricing Model Appli-

cation shows how to use the symbolic di�erentiation facility in Mathematica to give analytic expressions for

the derivatives needed by nonlinear estimation packages.

And Eduardo Ley and Mark F. J. Steel, I.15, in Bayesian Econometrics, provide an introductory

package that does the better part of Zellner's classical Bayesian analysis (sorry, I couldn't resist the pun).

It is interesting to see how these techniques can be implemented with Mathematica, again with graphical

embellishments. And it is amazing to see how paragraph built upon paragraph can suddenly be expressed in

Mathematica's powerful language in several well-chosen expressions. An application of Bayesian analysis to

decision theory is given by Robert J. Korsan, I.17, in Decision Analytica: An Example of Bayesian Inference

and Decision Theory Using Mathematica. This piece also provides a package for doing in
uence analysis.

David A. Belsley, I.14, in Econometrics.m: A Package for Doing Econometrics in Mathematica provides

an econometric package (and documentation) for conducting Ordinary Least Squares, Two-Stage Least

Squares, Instrumental Variables, and Mixed-Estimation as well as conditioning diagnostics. This procedure

17

interacts seamlessly with Mathematica's other facilities (such as transformations and graphics) to provide a

package of signi�cant power and
exibility, allowing one to do many econometric procedures without recourse

to additional software.

Mathematica also is a wonderful environment in which to develop Monte Carlo experiments. Those

who have attempted such studies in other environments will not believe how quickly an experiment can

be designed and set underway in Mathematica. This topic is dealt with in Doing Monte Carlo Studies in

Mathematica by David A. Belsley, II.15. Mathematica's excellent random-number generator is discussed here

as well.

The means for handling standard (ARIMA) time-series techniques are given by Robert A. Stine, I.16,

in Time Series Models and Mathematica. Once again, the integration of the techniques and graphics is very

e�ective. We recall that time-series techniques also �gured in Froeb's Log Spectral Analysis paper described

above.

In Data Analysis Using Mathematica, Robert A. Stine, II.14, provides a rich set of data-analytical tools.

Here are added to the Mathematica environment such graphical tools as histograms, kernel densities, box

plots, QQ plots, and scatter plots, along with various smoothing and regression functions.

Finally, Colin Rose and Murray D. Smith, II.16, in Random[Title]: Manipulating Probability Density

Functions, show how density functions can be transformed within Mathematica. Notions such as convolu-

tions, marginalizations, conditionals, expectations and moments, moment-generating functions, and cumu-

lants, both for single- and multi-variate random variables come alive in this work.

Conclusions

It should be clear from the foregoing that, as an environment in which to carry out economic and econometric

research, Mathematica is integrated, full-featured, powerful, versatile, extensible, and e�ective. Once one

gains some control over the programming language, Mathematica provides an environment in which a great

deal of one's research can be done. To my mind, it is one of a very small number of such packages that is

worthy of a student's early and continued attention.

Bibliography

Amman, H. and D. Kendrick (1997), \Programming Languages in Economics", this volume, pp. xxx-xxx.

Varian, Hal R. (ed.) (1993), Economics and Financial Modeling with Mathematica, Springer-Verlag (Telos):
Santa Clara, CA.

Varian, Hal R. (ed.) (1996), Computational Economics and Finance, Springer-Verlag (Telos): Santa Clara,
CA.

18

