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The theoretical and computational complexities involved in non-uniform type-2 fuzzy sets

(T2 FSs) are main obstacles to apply these sets to modeling high-order uncertainties. To

reduce the complexities, this paper introduces a 2uFunction representation for T2 FSs. This

representation captures the ideas from probability theory. By using this representation, any

non-uniform T2 FS can be represented by a function of two uniform T2 FSs. In addition,

any non-uniform T2 fuzzy logic system (FLS) can be indirectly designed by two uniform

T2 FLSs. In particular, a 2uFunction-based trapezoid T2 FLS is designed. Then, it is applied

to the problem of forecasting Mackey–Glass time series corrupted by two kinds of noise

sources: (1) stationary and (2) non-stationary additive noises. Finally, the performance of

the proposed FLS is compared by (1) other types of FLS: T1 FLS and uniform T2 FLS, and (2)

other studies: ANFIS [54], IT2FNN-1 [54], T2SFLS [3] and Q-T2FLS [35]. Comparative results

show that the proposed design has a low prediction error as well as is suitable for online

applications.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Type-2 fuzzy sets (T2 FSs) have the capability tomodelmoreuncertainties in rule-based fuzzy logic systems. Theyhave the

potential to outperform type-1 fuzzy sets (T1 FSs), because their membership grades are fuzzy. However, the computational

and theoretical complexities in inference and type-reduction are major obstacles to the utility of type-2 fuzzy logic systems

(T2 FLSs) in the real-world and on-line applications. Nevertheless, the wonderful benefits of these systems make them

interesting objects for many researchers [1].

The major objectives of the researches on T2 FSs are to: (1) reduce the complexities, (2) exploit the potential of general

T2 FSs (hereafter we call them non-uniform T2 FSs) for practical applications, and (3) develop fuzzy set theory. During two

past decades, the researches focused more on simplest T2 FSs, i.e. interval T2 FSs (hereafter we call them uniform T2 FSs).

The researches on uniform T2 FSs can be divided into twomain groups. First group aims to reduce the complexities in the

inference. For example,Mendel et al. [2,3] usedwavy slice representation [4] for defining efficient inference operations. They

showed that these operations can be obtained by T1 operations. Coupland and John [5] introduced a geometric inference

by the use of the techniques from computational geometry. Second group tries to decrease the complexities in the type-

reduction. For example, Karnik and Mendel [6] proposed an iterative type-reduction, which is widely used in uniform T2

FLSs. Greenfield et al. [7] introduced a collapsing method for the type-reduction. By eliminating type-reduction, Wu and

Mendel [8] defined a centre based on uncertainty bounds. As well, Coupland and John [5] suggested a geometric centre.

The above researches lead to implement uniform T2 FLSs in hardware and make them more applicable. To date, these

systems have been used in various applications such as clustering [9], classification [10–16], person recognition [17–19],
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speech recognition [20,21], forecasting [3,22–25], estimation [26], control [17,27], adaptive noise cancellation [17,23], image

segmentation [9], modeling [28], etc.

These applications demonstrated the significant improvements in the performance of uniform T2 FLSs over T1 FLSs.

However, uniform T2 FSs cannot model convex uncertainties in primary membership grades. Hence, handling non-uniform

and convex uncertainties is an object of growing attention in recent years.

Most of the researches on non-uniform T2 FSs are based on presenting new representations of these sets. These represen-

tations are briefly as follows. Zadeh [29] proposed an α -level set representation for non-uniform T2 FSs. This representation

causes to generalize uniformFSs to non-uniformFSs. Hence, the computations of T2 operations can be easily done byuniform

ones. Starczewski [30,31] introduced a triangular representation originating from triangular fuzzy truth numbers (triangular

FTNs). Coupland et al. [5,32] suggested a geometric representation inspiring from computational geometry. This representa-

tion reduces the execution time of T2 operations. Lucas et al. [33] presented a general footprint of uncertainty representation

(GFOU). This representation helps to simplify the understanding of non-uniform T2 FLSs. Liu et al. [34–36] introduced an

α -plane representation, which is the extended version of alpha-cut for T1 FSs. Wagner et al proposed a zSlice representation

[37,38] by slicing a non-uniform T2 FS in the third dimension.

Among these representations, the zSlice,α-plane, and triangular representations let us model non-uniform T2 FLSs in

terms of uniform T2 FLSs. However, they can only provide a computationally efficient structure for handling the triangular

and trapezoid uncertainties. To date, an efficient approach has not been considered for modeling every form of uncertainty

such as Gaussian. This is the main motivation for this paper. Another motivation is the challenges involved in computing

the set theoretic operations and the type-reduced set. These challenges make non-uniform T2 FSs (except Triangular T2 FSs)

have no applications in rule-based fuzzy logic systems.

The existence of resemblances between theories of fuzzy set and probability leads us to use probability topics as the

key to dealing with all non-uniform uncertainties. In the probability theory, it is difficult to directly generate non-uniform

random numbers (RNs), while uniform RNs are simply generated [39,40]. Hence, in practice, a non-uniform RN is generated

by uniform RNs. For example, a Gaussian RN can be obtained by a function of two uniform RNs [41]. Similarly, in fuzzy set

theory, it is difficult to design non-uniform T2 FLSs. This is because of their computational and theoretical complexities. As

a result, applications rarely employ these systems. However, there are many efficient methods to design uniform T2 FLSs.

As well, these systems are extensively used in many applications.

As it can be seen, there are two similar problems in these two theories: the difficulty in generating non-uniform RVs

and in analyzing non-uniform T2 FLSs. While the first problem has some solutions such as a function of two uniform

RVs, the other is still an open problem. Therefore, this paper proposes a solution similar to the one proposed in prob-

ability. The proposed solution is to design a non-uniform T2 FLS by two uniform T2 FLSs. To do this, a new represen-

tation is presented for non-uniform T2 FSs called a 2uFunction representation. In brief, our main contributions are as

follow:

• A new representation is introduced for non-uniform T2 FSs in such a way that a non-uniform FS is represented by a

function of two uniform T2 FSs.
• A new efficient design is proposed for designing all non-uniform T2 FLSs based on only two uniform T2

FLSs.
• A 2uFunction-based trapezoid T2 FLS is applied to forecasting Mackey–Glass chaotic time series.

This paper is organizedas follows. Section2briefly reviewsall representations that havebeen introduced todate. Section3

demonstrates why the concepts of probability theory lead to our proposed representation. Section 4 presents the proposed

representation and its application for designing non-uniform T2 FLSs. Section 5 applies it to the problem of forecasting

Mackey–Glass chaotic time series. Section 6 discusses the proposed representation. Finally, Section 7 gives conclusions and

suggestions for future works.

2. A brief review on the representations of non-uniform T2 FSs

Themethods for representing non-uniformT2 FSs have a great effect on developing non-uniformT2 FLSs and on reducing

their complexities. Hence, the development of these methods is one of important topics in the researches related to T2 FSs.

To date, several representation methods have been proposed. This section provides a brief review on these methods and

their advantages and applications.

2.1. Vertical slice representation

Let Ãdenotes anon-uniformT2FS;μÃ(x, u)denotes themembership function (MF)of Ã; andμÃ(x)denotes the secondary

MF of Ã. Then, Ã can be represented by its secondary MFs [27,40]:

Ã = {(x, μÃ(x))|∀x ∈ X}. (1)
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or,

Ã =
∫
x∈X

μÃ(x)/x =
∫
x∈X

[∫
u∈Jx

fx(u)/u

]
/x Jx ⊆ [0, 1], (2)

in which u indicates the primary membership grade of Ã; fx(u) indicates the secondary one; and Jx is the domain of μÃ(x).
This representation is very useful for T2 computations. It can also be useful for theoretical studies. However, by using this

representation, computing T2 operations (such as meet, join and type-reduction) is still complex and time-consuming.

2.2. α-Level set representation

This representation includes two stages. First is to extend T1 definitions to uniform T2 definitions. Second is to generalize

uniform T2 definitions to non-uniform T2 definitions by the use of the level-set form of the extension principle [29].

Assume that Ã and B̃ are two non-uniform T2 FSswith secondaryMFsμÃ(x) andμB̃(x); theα-level sets of these functions

are denoted by μα
Ã
(x) and μα

B̃
(x). Now, using the representation, the intersection of these two sets is computed as follows.

Firstly, μα
Ã∩B̃

(x), the intersection of μα
Ã
(x) and μα

B̃
(x), is computed. If μα

Ã
(x) = [a1, a2] and μα

B̃
(x) = [b1, b2], then μα

Ã∩B̃
(x)

is computed as:

μα
Ã∩B̃

(x) = [a1 ∧ b1, a2 ∧ b2]. (3)

Finally, the intersection of Ã and B̃, i.e. μÃ∩B̃(x), can be expressed as the union of μα
Ã∩B̃

(x) [29]:

μÃ∩B̃(x) =
∫ 1

0
αμα

Ã∩B̃
(x). (4)

Comparing (3) and (4), it can be seen that all computations related to the intersection of two non-uniform T2 FSs can be

indirectly done by T1 computations. Hence, this representation has the potential to reduce the complexities involved in T2

operations. It is very useful for T2 computations and theoretical studies. However, an encyclopedic theorywas not presented

for it. Also, no application has been reported for it.

2.3. Wavy slice representation

Let Ã
j
e denote the jth T2 embedded set for a T2 FS Ã, i.e.,

Ãj
e ≡

{(
u
j
i, fxi

(
u
j
i

))
, i = 1, ...,N

}
, (5)

in which u
j
i ∈ {uik, k = 1, ...,Mi}; N is the number of points on x-axis; and Mi is the number of points on the vertical slice

xi.

Then, Ã can be represented as the union of its T2 embedded sets, i.e.,

Ã =
n∑

j=1

Ãj
e, (6)

in which n ≡ ∏N
i=1 Mi [4].

This representation is not recommended for computational purposes, because the number of embedded sets is astronom-

ical. However, it is very useful in the theoretical studies. By utilizing it, Mendel et al. [2] showed that uniform T2 operations

can be obtained through two T1 MFs, namely upper and lower MFs. For example, the intersection of two uniform T2 FSs Ã

and B̃ is computed by:

Ã ∩ B̃ = 1/[μ
Ã
(x) ∧ μ

B̃
(x), μÃ(x) ∧ μB̃(x)], ∀x ∈ X. (7)

Note that (3) is obtained by using Zadeh’s extension principle [42], but (7) is obtained by using wavy slice representation.

2.4. Geometric representation

This representation represents a non-uniformT2 FS by a collection of planar triangles. It utilizes the geometry tomake the

inference operations efficient. Consequently, it leads to the operations to be performed over a continuous domain [32,43]. It

is applied for control of a mobile robot [44]. However, the geometric inference is somewhat slower than discrete inference.

In addition, it is limited to the minimum t-norm and the maximum t-conorm. Moreover, by using this representation, the

type-reduction is departed fromT2 FLSs, and only the result of the defuzzification is available. Therefore, itmay not be useful

when more information is required about the output.
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2.5. Triangular representation

This representation approximates the extended t-norms on triangular FTNs by FTNs of the triangular shape. It also

approximates a triangular type-reduced set by the three-node linear interpolation of the general result for centroid type-

reduction [30,31]. Using this representation, a triangular T2 FLS can be efficiently designed by a T1 FLS and a uniform T2

FLS. This system is applied to the classification of Iris andWine datasets [45]. However, this representation is just presented

for triangular uncertainties.

2.6. GFOU representation

The idea behind this representation is captured from the way of plotting non-uniform T2 FSs. In the plot of a non-

uniform T2 FS, the intensity of the shading is proportional to secondary membership grades. Indeed, this representation is

an extension of Footprint of Uncertainty that is introduced in [4]. Also, it is a simple way to display non-uniform T2 FSs in a

two-dimensional plane. As a result, it makes the understanding of T2 operations easier [33,46]. It applies on the problem of

land cover classification [46]. However, this representation does not provide an efficient design for non-uniform T2 FLSs.

2.7. α-Plane representation

The key idea of this representation is derived from the α-cuts of a T1 FS. Since a T2 FS has a three-dimensional MF, a term

α-plane is used instead of the α-cut. It is clear that the α-plane of a non-uniform T2 FS is associated with a uniform T2 FS

of level α. Therefore, a non-uniform T2 FS can be decomposed to several uniform T2 FSs [34–36]. This makes the design of

non-uniform T2 FLSs easier. It also reduces the computational complexities of T2 operations. For example, computing the

intersection of two non-uniform T2 FSs Ã and B̃ is performed by the computation of their α-planes intersection:

Ã ∩ B̃ = ⋃
α∈[0,1]

α/Ãα ∩ B̃α. (8)

Note that although (8) is similar to (4), this representation is independently developed with different terminologies.

Using this representation, it can be obtained non-uniform T2 operations by uniform T2 operations. Hence, it is very useful

for computational purposes. Also, this representation provides important properties for the centroid of a convex T2 FS. These

properties confirmed by the means of examples are as follows [35,36]:

• The shape of the centroid is predictable and depends on the shape of the chosen secondary MF. For example, “when all

secondaryMFs are normal triangles, then, the centroid is triangle-looking”. Also, “when some or all of the secondaryMFs

are (normal) trapezoids, then, the centroid is trapezoid-looking”.
• The centroid is almost symmetric.
• The centroid of a triangular (or trapezoid) T2 FS can be approximated by linear interpolation of the centroids related to

two planes of α = 0 and α = 1.

By using these properties, Mendel et al. [35] proposed two efficient designs for triangular T2 FLSs and trapezoid T2

FLSs. These designs are based on two uniform T2 FLSs.The applicability of the triangular T2 FLS was shown for forecasting

Mackey–Glass chaotic time series. However, other uncertainties await an application.

2.8. zSlice representation

This representation utilizes the discretization of z-axis (the third dimension of a non-uniform T2 FS) [37,38]. From the

continuous nature of the variable ui in (9) in [38], this representation is an alternative form of the α-cut representation.

Indeed, if a secondary MF is denoted by A, the continuous interval [li, ri] and Z̃i in (9) of [38] are equal to Aα and α.Aα ,

respectively. Therefore, this is similar to α-plane representation [35], but here, a triangular T2 FLS is approximated by four

zSlices instead of two α-planes. The proposed system was used for control of a two-wheeled mobile robot. Nevertheless,

this representation does not provide an efficient design for other non-uniform uncertainties.

3. From the probability theory to a new representation

As explained in Section 2, there are some representations for non-uniform T2 FSs. These representations capture the

ideas from the way of plotting, computational geometry, triangular FTNs, slicing, or α-cut. This paper also proposes a new

representation by inspiring probability theory. Hence, this section provides a probability background. To do this, it firstly

provides a comparison between some definitions used in theories of probability and fuzzy sets. Then, it introduces the topics

of probability that could help to reduce the complexities of non-uniform T2 FLSs. Finally, it demonstrates how these topics

lead to introduce a new representation for non-uniform T2 FSs.
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Table 1

A comparison between three definitions in probability logic and Fuzzy logic.

Probability logic Fuzzy logic

Probability density function Fuzzy membership function

Locus of constant probability [47] Level-sets of a FS [29]

Modeling random uncertainty by the mean and variance [45] Modeling linguistic uncertainty by T2 FSs [45]

By comparing the definitions of the probability and fuzzy set theories, it can be seen that some definitions are somewhat

close together. Some of these similarities are as follows:

• A probability density function is a measure to define a probability distribution of a random variable (RV). Similarly, a fuzzy

membership function is a measure to define a possibility distribution of a fuzzy variable.
• Locus of constant probability shows the locus of values of the RV x where the probability density function is greater than

or equal to a given pre-specified value K [47]. Similarly, Level-sets of a fuzzy set show a non-fuzzy set which comprises all

values whose membership grade is greater than or equal to a given pre-specified value α [29].
• Studies show that a random uncertainty can bemodeled by using at least the first of twomoments of its probability density

function, i.e. the mean and variance [45]. Similarly, linguistic uncertainty can be modeled by using T2 FSs that provide a

measure of dispersion about the mean [45].

Table1showsthesesimilarities, inbrief. Theexistenceof suchresemblancesmotivatesus tosearch the topicsofprobability

that could help us to optimally design a non-uniform T2 FLS and to establish probability-like theorems in fuzzy logic. In the

probability theory, there are two topics close to our aims: non-uniform RV generation and one function of two RVs. In the

following, these two topics are briefly introduced:

• Non-uniform RV generation [39]. The generation of RVs with arbitrary distributions cannot be done directly. The

available algorithms only generate uniform RVs. Hence, the generation of non-uniform RVs is indirectly obtained by a

variety ofmethods involving the uniformRVs [39,40, Chapter 8–5]. For example, a non-uniformRV is generated by simple

transformations of k uniform RVs. “It is remarkable that one can obtain the normal and indeed all stable distributions

using simple transformations of two uniformRVs” [39]. For example, anyGaussian RV is obtained by applying Box-Muller

method [41] to two uniform RVs.
• One function of two RVs [40, p. 135]. Given two RVs x and y and a function g(x, y), the RV z is defined as z = g(x, y).

The statistics of z is defined by:

Fz(z) =
∫ ∫

g(x,y)<z
fxy(x, y) dx dy, (9)

which fxy(x, y) denotes the joint statistics of x and y. If two RVs are independent, then

Fz(z) =
∫ ∫

g(x,y)<z
fx(x)fy(y) dx dy. (10)

For z = x + y, this formula is changed to the convolution of the probability density functions of x and y:

fz(z) =
∫ ∞
−∞

fx(z − x)fy(y)dy. (11)

For example, if the RVs x and y are uniform in intervals (a, b) and (c, d), respectively, then the density of their sum z = x+ y

is a trapezoid. If, in particular, b − a = d − c, then fz(z) is a triangle.

In summary, there are many algorithms for the generation of uniform RVs. However, the generation of non-uniform RVs

is difficult. To tackle this difficulty, there are some solutions which utilize uniform RVs such as a function of two RVs.

Similarly, in fuzzy set theory, there are many methods for the implementation and design of uniform T2 FLSs. These

systems have very manageable computations. Hence, they have been utilized in many applications. However, the design of

non-uniform T2 FLSs is faced with problems. Consequently, these systems are rarely used in engineering applications. The

analysis of non-uniform T2 FLSs is still an open question. This paper proposes the solution similar towhat probability theory

proposes for generating non-uniform RVs. The proposed solution is to represent a non-uniform T2 FS by a function of two

uniform T2 FSs. As well, the analysis of non-uniform T2 FLSs can be indirectly obtained by two uniform T2 FLSs.

4. A new representation for non-uniform T2 FSs

This section introduces a new representation for non-uniform T2 FSs and gives an application for it. Using this repre-

sentation, any non-uniform T2 FS is represented by a function of two uniform T2 FSs. This representation is abbreviated

to 2uFunction. Consequently, the represented T2 FSs are called 2uFunction-based T2 FSs. Rule-based FLSs using these sets

are called 2uFunction-based T2 FLSs, as well. Subsection 4.1 gives all needed definitions for 2uFunction-based T2 FSs. These
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definitions are inspired from the formulas presented in the second topic of Section 3. Subsection 4.2 applies this represen-

tation for designing non-uniform T2 FLSs.

4.1. 2uFunction-based T2 FSs

Definition 1 (2uFunction Representation). By the application of the extension principle for interactive fuzzy numbers [48],

every secondaryMF in the vertical slice x,μÃ(u|x), 1 could be described in terms of a function of two uniformMFsμÃ1
(u1|x)

and μÃ2
(u2|x) as follows:

μÃ(u|x) = ∨
u1,u2

u=g(u1,u2)

μÃ1Ã2
(u1, u2|x), (12)

or,

μÃ(u|x) = υ
u1,u2

u=g(u1,u2)

μÃ1Ã2
(u1, u2|x), (13)

in which ∨ and υ indicate union and averaging operators, respectively. μÃ1Ã2
(u1, u2|x) denotes the joint possibility distri-

bution of Ã1 and Ã2.

Definition 2. A 2uFunction-based T2 FS Ã can be represented by the union of μÃ(u|x) computed by (12) or (13):

Ã =
∫
x∈X

μÃ(u|x)/x. (14)

Remark 1. If u1 and u2 are non-interactive, (12) and (13) turn into the following relations, respectively:

μÃ(u|x) = ∨
u1,u2

u=g(u1,u2)

μÃ1
(u1|x) ∧ μÃ2

(u2|x), (15)

and,

μÃ(u|x) = υ
u1,u2

u=g(u1,u2)

μÃ1
(u1|x) ∧ μÃ2

(u2|x), (16)

which ∧ is an intersection operator. Indeed, these relations are the applications for the extension principle of Zadeh [42].

Note that a non-uniform uncertainty could be obtained by using two uniform uncertainties provided that function g;

the operators of υ , ∨ and ∧; and the interaction between two uniform fuzzy variables are determined. For example, if two

uniform fuzzy variables are non-interactive, the following settings are proposed for triangular and trapezoid uncertainties:

g(u1, u2) = w1u1 + w2u2, 0 ≤ w1,w2 ≤ 1, w1 + w2 = 1,

u1 υ u2 = u1 ⊕γ u2 = (1 − γ )(u1 ∧ u2) + γ (u1 ∨ u2), 0 ≤ γ ≤ 1,

u1 ∨ u2 = u1 + u2 − u1u2,

u1 ∧ u2 = u1u2.

(17)

Definition 3 (weighted fuzzy convolution). If u = u1 + ηu2, the weighted fuzzy convolution of μÃ1
(u1|x) and μÃ2

(u2|x) is
defined as:

(μÃ1
∨ημÃ2

)(u|x) = υ
u2

μÃ1
(u − ηu2|x) ∧ μÃ2

(u2|x), (18)

in which ∨η denotes the weighted convolution operator.

Remark 2. By using (17), the weighted convolution (the convolution) of two uniform fuzzy variables is a trapezoid. Hence,

if the fuzzy variables u1 and u2 are uniform in the intervals (a, b), and (c, d), respectively; and the coefficient γ is defined by

1/max(b− a, d− c), then theMF of their weighted sum (the sum) is a trapezoid (see Fig. 1). If , in particular, b− a = d− c,

then the result is a 2uFunction-based triangular MF.

1 Since every vertical slice of Ã is a function of a secondary variable u, we use the notation μÃ(u|x) instead of a widely used notation μÃ(x). The used notation

was, for the first time, introduced by Mendel et al. [35], but it has not been used to date.
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Fig. 1. FOUs of two uniform T2 FSs are shown in (a) and (b); FOU of a 2uFunction-based trapezoid T2 FS are also shown in (c). In addition, a vertical slice of each

T2 FS accompanying with its secondary MF is displayed.

Example 1. if w1 = w2 = 1, μÃ1
(u1|x) = 1

1
+ 1

2
+ 1

3
and μÃ2

(u2|x) = 1
0

+ 1
1

+ 1
2

+ 1
3
, then according to Remark 2,

μÃ(u|x) will be obtained as follows:

μÃ(1|x) = (μÃ1
∨μÃ2

)(1|x) = υ
u2

(μÃ1
(1 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(1|x) ∧ μÃ2
(0|x), μÃ1

(0|x) ∧ μÃ2
(1|x), μÃ1

(−1|x) ∧ μÃ2
(2|x), μÃ1

(−2|x) ∧ μÃ2
(3|x))

= υ(1, 0, 0, 0) =
(
1 − 1

3

)
(1 ∧ 0 ∧ 0 ∧ 0) + 1

3
(1 ∨ 0 ∨ 0 ∨ 0) = 0.3333.

μÃ(2|x) = (μÃ1
∨μÃ2

)(2|x) = υ
u2

(μÃ1
(2 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(2|x) ∧ μÃ2
(0|x), μÃ1

(1|x) ∧ μÃ2
(1|x), μÃ1

(0|x) ∧ μÃ2
(2|x), μÃ1

(−1|x) ∧ μÃ2
(3|x))

= υ(1, 1, 0, 0) =
(
1 − 1

3

)
(1 ∧ 1 ∧ 0 ∧ 0) + 1

3
(1 ∨ 1 ∨ 0 ∨ 0) = 0.6667.

μÃ(3|x) = (μÃ1
∨μÃ2

)(3|x) = υ
u2

(μÃ1
(3 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(3|x) ∧ μÃ2
(0|x), μÃ1

(2|x) ∧ μÃ2
(1|x), μÃ1

(1|x) ∧ μÃ2
(2|x), μÃ1

(0|x) ∧ μÃ2
(3|x))

= υ(1, 1, 1, 0) =
(
1 − 1

3

)
(1 ∧ 1 ∧ 1 ∧ 0) + 1

3
(1 ∨ 1 ∨ 1 ∨ 0) = 1.

μÃ(4|x) = (μÃ1
∨μÃ2

)(4|x) = υ
u2

(μÃ1
(4 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(4|x) ∧ μÃ2
(0|x), μÃ1

(3|x) ∧ μÃ2
(1|x), μÃ1

(2|x) ∧ μÃ2
(2|x), μÃ1

(1|x) ∧ μÃ2
(3|x))

= υ(0, 1, 1, 1) =
(
1 − 1

3

)
(0 ∧ 1 ∧ 1 ∧ 1) + 1

3
(0 ∨ 1 ∨ 1 ∨ 1) = 1.
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μÃ(5|x) = (μÃ1
∨μÃ2

)(5|x) = υ
u2

(μÃ1
(5 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(5|x) ∧ μÃ2
(0|x), μÃ1

(4|x) ∧ μÃ2
(1|x), μÃ1

(3|x) ∧ μÃ2
(2|x), μÃ1

(2|x) ∧ μÃ2
(3|x))

= υ(0, 0, 1, 1) =
(
1 − 1

3

)
(0 ∧ 0 ∧ 1 ∧ 1) + 1

3
(0 ∨ 0 ∨ 1 ∨ 1) = 0.6667.

μÃ(6|x) = (μÃ1
∨μÃ2

)(6|x) = υ
u2

(μÃ1
(6 − u2|x) ∧ μÃ2

(u2|x))
= υ(μÃ1

(6|x) ∧ μÃ2
(0|x), μÃ1

(5|x) ∧ μÃ2
(1|x), μÃ1

(4|x) ∧ μÃ2
(2|x), μÃ1

(3|x) ∧ μÃ2
(3|x))

= υ(0, 0, 0, 1) =
(
1 − 1

3

)
(0 ∧ 0 ∧ 0 ∧ 1) + 1

3
(0 ∨ 0 ∨ 0 ∨ 1) = 0.3333.

Finally, μÃ(u|x) will be μÃ(u|x) = 0.3333
1

+ 0.6667
2

+ 1
3

+ 1
4

+ 0.6667
5

+ 0.3333
6

.

4.2. 2uFunction-based T2 FLSs

This subsection introduces a design for a non-uniform T2 FLS. To do this, the properties of its centroid are utilized. As

mentioned in Subsection 2.7, the shape of the centroid of a non-uniform T2 FLS is similar to the shape of its secondary

MFs. In addition, using the 2uFunction representation, the centroid can be represented by two uniform FSs. This subsection

proposes that these two sets can be the centroids of two arbitrary uniform T2 FLSs.

Assume that B1 and B2 are the centroids of two uniform T2 FLSs, and B is the centroid of a non-uniform T2 FLS. Also, y1, y2
and y are output fuzzy variables withMFsμB1(y1),μB2(y2), andμB(y), respectively. By utilizing 2uFunction representation,

μB(y) is computed by:

μB(y) = ∨
y1,y2

y=g(y1,y2)

μB1B2(y1, y2) (19)

or,

μB(y) = υ
y1,y2

y=g(y1,y2)

μB1B2(y1, y2). (20)

From these formulas, a non-uniform T2 FLS can be designed by two uniform T2 FLSs. Fig. 2a shows this design, schemati-

cally. The design can be used for any non-uniform uncertainty provided that the following conditions are established. Firstly,

theoretic operators such as t-norm, s-norm and averaging are defined. Secondly, the function g is defined in such a way

that it satisfies design considerations for a T2 FLS. In other words, “when all sources of uncertainty disappear, a T2 FLS must

reduce to a T1 FLS” [35]. Finally, how the uniform variables interact with each other is determined. For example, a design

for trapezoid uncertainties can be done by the settings used in Remark 2. In this case, its centroid could be computed by:

μB(y) = (μB1 ∨η μB2)

(
1

w1

y

)
. (21)

Fig. 2b shows the design for trapezoid uncertainties. In both designs, the final output is obtained by defuzzifying μB(y).
This paper uses centroid defuzzification. Hence, the output in Fig. 2a is obtained by:

yc = g(yc1, yc2), (22)

Fig. 2. New designs for: (a) a non-uniform T2 FLS and (b) a trapezoid T2 FLS.
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inwhich yc1 and yc2 denote the defuzzified output and are computed by (yl1+yr1)/2 and (yl2+yr2)/2, respectively. Besides,
yl and yr are obtained by the Karnik–Mendel algorithm [6] as follows:

yl =
∑L

i=1 f
i
yil +

∑M
j=L+1 f

jy
j
l∑L

i=1 f
i + ∑M

j=L+1 f
j

, (23)

and

yr =
∑R

i=1 f
iyir + ∑M

j=R+1 f
j
y
j
r∑R

i=1 f
i + ∑M

j=R+1 f
j

, (24)

in which R is a switch point from lower MF to upper MF and L is vice versa; f i and f
i
are the bounds for the strength of ith

rule in uniform T2 FLSs; and, yil and yir are the bounds for the output of ith rule.

According to Remark 2, the output in Fig. 2b is obtained by:

yc = w1yc1 + w2yc2, (25)

in which w1 and w2 are the weights for uniform T2 FLSs. In both designs, the parameters of two uniform T2 FLSs are

simultaneously optimized, and because of (22) or (25), a coupled optimization happens.

As it can be seen in Fig. 2, the proposed designs use only two uniform T2 FLSs for a non-uniform T2 FLS. As a result, they

can utilize the results of all researches on uniform T2 FLSs. For example, Mendel et al. [2] showed that a uniform T2 FLS can

be obtained by T1 computations. Consequently, the computations of a 2ufunction-based T2 FLS are greatly decreased. As

well, the proposed designs are much simpler than full-blown T2 FLSs. Therefore, the 2uFunction representation can provide

a good next step in the hierarchy of FLSs from T1 to uniform T2 to non-uniform T2.

5. Forecasting Mackey–Glass chaotic time series

T1 FLSs have been extensively used in time-series forecasting [49–52]. Besides, studies showed that uniform T2 FLSs

obtain better predictions than T1 ones [3,22,23,25,35,53–55]. Since a non-uniform T2 FLS has more design degrees of

freedom than uniform T2 FLSs, it is conjectured that it outperforms existing fuzzy systems. Hence, this section evaluates

the ability of a 2uFunction-based trapezoid T2 FLS (2uF-T2 FLS) to forecast Mackey–Glass chaotic time series. Besides, it

compares the performance of the proposed design with T1 FLS, uniform T2 FLS and the studies done in [3,35,54]. To do

this, three different experiments are used. Subsections 5.1– 5.3 briefly describe the required settings for these experiments.

Subsection 5.4 also introduces the designs for the FLSs.

5.1. The Mackey–Glass chaotic time series

The Mackey–Glass time series has been widely considered as a benchmark for forecasters [49,56]. This series models

white blood cells production in leukemia patients, and is generated by the following differential equation:

ds(t)

dt
= 0.2s(t − τ)

1 + s10(t − τ)
− 0.1s(t), (26)

which, for values of τ greater than 17, exhibits chaos [57]. This paper focuses on τ = 30, which is used in [3,35,54].

To compare our method with the methods studied in [3,35,54], this paper obtains Mackey–Glass time series values in

the following conditions:

• For experiments 1 & 2, Euler’s method [58] is applied to (26) in such a way that the time step is set to 1, and initial values

of s(k) for k ≤ τ are set randomly. Finally, s(k) is derived for 0 ≤ k ≤ 3004.
• For experiment 3, the fourth-order Runge–Kutta method [59] is applied to (26). The time step is set to 1. The following

initial conditions are used: s(0) = 1.2 and s(k) = 0 for k < 0. Finally, s(k) is derived for 0 ≤ k ≤ 1200.

5.2. Noise

Our experiments assume that the noise has a uniform distribution with zero-mean and a given signal-to-noise ratio

(SNR). In experiments 1 and 3, SNR is a certain value such as 0, 4, 6, or 10 dB, while, in experiment 2, SNR varies from 0 to

10 dB. In other words, experiments 1 and 3 use a stationary noise, whereas experiment 2 uses a non-stationary noise.

Assume that the range of SNR is uniformly distributed into 100 levels. Now, for a given SNR, the variance of noise is firstly

computed by:

10 log10 σ 2
n = 10 log10

⎛
⎝ 1

N

N∑
k=1

s2(k)

⎞
⎠ − SNR, (27)
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Fig. 3. Mackey–Glass chaotic time series: (a) the noise-free data and (b) One realization of the noise-corrupted data.

in which σ 2
n denotes the variance of noise; s(k) denotes the time series values; and N is the total number of samples in the

time series. Then, the noise values n(k) can be simulated by a uniform distribution with zero mean and variance σ 2
n . After

that, the noise is added to the time series:

x(k) = s(k) + n(k), (28)

which x(k)denotes noise-corrupted data. Fig. 3 shows a realization of the noise-corrupted data inwhich SNR ranges between

0 and 10 dB.

5.3. Training and test datasets

Assume the time series split into a training set of D points and a test set of N − D points. Recall that, in the forecasting of

time series, the objective is to predict a future point of time series, s(k + l), from a window of p past measurements of s(k)
with a time interval �, i.e. x(k − (p − 1)�), ..., x(t − �), x(k). Consequently, training and test datasets are the matrices

whose dimensions are (D − p�) × (p + 1) and (N − D − p�) × (p + 1), respectively [56].

To obtain training and test dataset, the values of N = 1000, D = 500, and p = 4 are used. The training dataset consists

of points t0 to t0 + 499 (i.e. 500 training data). The following 500 data points are used as test dataset. In addition, the values

of l = � = 1, and t0 = 2000 are used for experiments 1 and 2; and the values of l = � = 6, and t0 = 124 are used for

experiment 3.

5.4. FLS forecasters

One of the common methods in the problem of forecasting is FLSs. This paper evaluates three FLSs with three types

of uncertainty: singleton, uniform, and trapezoid. These forecasters are called T1 FLS, uniform T2 FLS, and 2uF-T2 FLSs,

respectively. They are based on the following settings:

• four antecedents and one consequent per rule;
• the Wang–Mendel algorithm [60] for fuzzy rule extraction;
• two MFs for each antecedent (as in [3,35,49] ), so the number of rules is 16;
• product implication (as in [3,31,35,55]);
• center-of-sets defuzzification for the T1 FLSs, and the center-of-sets type-reduction (as in [6–8,36,61]) for uniform T2

FLSs and 2uF-T2 FLSs;
• Singleton secondary MFs for the T1 FLSs, uniform secondary MFs for the uniform T2 FLSs, and trapezoid secondary MFs

defined by (21) for the 2uF-T2 FLSs;
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Table 2

The design details of T1 FLS, uniform T2 FLS and 2uF-T2 FLS.

Design items T1 Uniform T2 2uF-T2

Fuzzification Singleton Singleton Singleton

The number of primary MFs2 2 2

The shape of primary MFs Triangular Triangular Triangular

The shape of secondary MFsSingleton Uniform Trapezoid

FOU — Uncertain centre Uncertain centre

Fuzzy rule extraction Wang–Mendel algorithm Wang–Mendel algorithm Wang–Mendel algorithm

Implication Product Product Product

Defuzzification Center-of-sets Center-of-sets Center-of-sets

Type-reduction — Center-of-sets Center-of-sets

Optimization method Descent gradient Descent gradient Descent gradient

• Triangular primary MFs for the T1 FLSs, and triangular FOUs with uncertain centre but certain spread for the uniform T2

FLSs and 2uF-T2 FLSs. Triangular MFs are defined as follows:

μ(x, b, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (x − b)/� b − � ≤ x ≤ b,

1 − (x − b)/� b ≤ x ≤ b + �,

0 otherwise.

(29)

in which b and � denote centre and spread, respectively.

Table 2 shows the above settings, briefly. T1 FLSs and uniform T2 FLSs are designed by the methods presented in [62]

and [3], respectively; A 2uF-T2 FLS is designed by the design presented in Fig. 2b. The descent gradient method is used for

parameter optimization. It is based on the minimization of the following objective function:

J = 1

2
(d − y)2, (30)

which d denotes the desired output in FLS forecasters; In other words, it is the noise-free data; and y denotes the defuzzified

output in FLS forecasters. For a uniform T2 FLS, y is defined by:

y = yl + yr

2
, (31)

inwhich yl and yr are lower and upper bounds of the output, respectively. These bounds are computed by the Karnik–Mendel

algorithm [6]. For a 2uF-T2 FLS forecaster, y is defined as follows:

y = w1

yl1 + yr1

2
+ w2

yl2 + yr2

2
, (32)

in which yl1 and yr1 are lower and upper bounds of the output in the first uniform T2 FLS forecaster, respectively; yl2 and

yr2 are the output bounds in the second uniform T2 FLS forecaster.

Using the available input–output data, the parameters of MFs can be optimized as follows:

θ(q + 1) = θ(q) − α
∂e

∂θ

∣∣∣∣
q

, (33)

which q = 0, 1, 2, 3, ...; α is a learning coefficient; and θ is a parameter that will be optimized. The performance of each

FLS forecaster is evaluated by the Root Mean Square Error (RMSE).

5.5. Simulation results

This subsection compares the performance of the following three FLS forecasters: T1 FLS, Uniform T2 FLS, and 2uF-T2

FLS. It also compares the proposed method with ANFIS [54], IT2FNN [54], IT2SFLS [3] and triangular Q-T2 FLS [35]. To do

this, three different experiments are done in noisy conditions. In addition, the settings reported in [3,35,54] are used for

simulating Mackey–Glass time series and designing FLSs.

The initial locations of primary MFs in antecedent are determined by the meanmt and standard deviation σt of training

set. In other words, the initial values of the centre are mt ± 2σt; and Initial values of the spread is 4sσt , which s varies in

[0, 1]. Also, the values of consequent is randomly used in [0, 1]. These settings are close to the settings in [3]. These settings

could be originated from the interval estimation in probability theory. Recall that a confidence interval for a parameter such

as mt is a random interval as [mt − zσt,mt + zσt] constructed from data and depends on z. For z = 1.96, the probability

that the interval contains the true value of the parameter is 96% .[40]. In this paper, the value of z = 2 is applied. Also, the

left-sided and right-sided values in this interval are used as initial values for antecedent MFs.
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Table 3

Initial conditions for FLS forecasters.

Type of FLS Antecedents Consequent

T1 bFik
= mt − 2σt and bFik

= mt + 2σt , �Fik
= 4sσt yi ∈ [0, 1]

Uniform T2 bF̃ik
= [mt − 2σt − 2c1

√
3σn,mt − 2σt] and bF̃ik

= [mt + 2σt,mt + 2σt + 2c1
√

3σn], �Fik
= 4sσt yil = yi, yir = yi

+2c2
√

3σn

1st Uniform T2 in 2uF-T2 bF̃ik1
= [mt − 2σt − 2c3

√
3σn,mt − 2σt] and bF̃ik1

= [mt + 2σt,mt + 2σt + 2c3
√

3σn], �Fik1
= 4sσt yil1 = yi, yir1 = yi

+2c4
√

3σn

2nd Uniform T2 in 2uF-T2bF̃ik2
= [mt − 2σt − 2c5

√
3σn,mt − 2σt] and bF̃ik2

= [mt + 2σt,mt + 2σt + 2c5
√

3σn], �Fik2
= 4sσt yil2 = yi, yir2 = yi

+2c6
√

3σn

Fig. 4. Comparing the results of each design for 6 epochs when different levels of noise are added during 20 realizations: the mean values of RMSEs are shown

in (a), (c), (e), and (g); the std of RMSEs are shown in (b), (d), (f), and (h). The lines marked by square, circle, and asterisk indicate T1 FLS, uniform T2 FLS, 2uF-T2

FLS, respectively.

The range of uncertainty in the centre of primary MFs is based on the standard deviation σn of noise. It is set to 2c
√

3σn,

which comes from the characteristics of the noise. Recall that a uniform RV with the mean equal to zero and standard

deviation σn can take values in the interval [−√
3σn, +

√
3σn] [22]. Therefore, the length of the interval in which the

centre can vary is 2c
√

3σn. Table 3 briefly shows the initial conditions of FLS forecasters. For 2uF-T2 FLS, the values of

w1 = 0.5, and w2 = 0.5 are used. The value of learning coefficient α is set to 0.5 and remains unchanged during the

learning process.

Note that this paper does not try to determine the best initial parameters, because, the goal is to evaluate the effect of

considering more uncertainties in a FLS and to compare the performance of three types of FLSs.
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Fig. 5. Mackey–Glass time series prediction in 20 noisy realizations for first epoch: (a) the mean values of RMSEs, and (b) the std of RMSEs.

Table 4

The mean and std of RMSEs for T1, uniform T2, and 2uF-T2 FLS in the first epoch.

SNR (dB) T1 Uniform T2 2uF-T2

0 0.1885± 0.0166 0.1789± 0.0151 0.1705± 0.0141

4 0.1711± 0.0194 0.1619± 0.0175 0.1502± 0.0149

6 0.1673± 0.0206 0.1602± 0.0164 0.1478± 0.0136

10 0.1639± 0.0187 0.1564± 0.0163 0.1442± 0.0138

Table 5

Comparison of percentage improvement of mean of RMSEs between the designs.

SNR Uniform T2 versus T1 2uF-T2 versus Uniform T2 2uF-T2 versus T1

0 5.09% 4.69% 9.81%

4 5.76% 7.23% 12.5%

6 4.24% 7.74% 11.65%

10 4.58% 7.80% 12.02%

Experiment 1: Mackey–Glass time series prediction for τ = 30, l = � = 1 corrupted by a noise whose SNR is 0, 4, 6, or 10 dB.

Each FLS forecaster is designed over 20 realizations of the time series corrupted by a noise whose SNR is 0, 4, 6, or 10 dB.

For all realizations, c1 and c2 are set to 0.1443 and 0.5774 (as in [3]), respectively; c3, c4, c5, and c6 are set to 0.0722, 0.6495,

0.0722, and 0.8776, respectively; and the value of s = 1 is chosen. For each realization, each FLS is trained by using the

gradient descent algorithmwith a fixed learning rate 0.5 for six epochs. After each epoch, the values of RMSEs are computed

by applying the test data to each FLS. Fig. 4 depicts the mean and standard deviation (std) of RMSEs for each design for 6

epochs when different levels of noise are added. For the first epoch, Fig. 5 depicts the mean and std of the RMSEs for each

design under different noisy conditions. Table 4 numerically shows these results. Table 5 provides the comparative results.

From the results, the following points can be observed:

• All FLS forecasters provide better predictions when SNR increases.
• Increasing uncertainty from singleton to uniform to trapezoid improves the performance of FLS forecaster.
• 2uF-T2 FLSs outperform other designs and show higher improvement than those for all SNRs.
• Since 2uF-T2 FLSs have a smaller std than other designs, they are much more robust to the noise than those.
• Because 2uF-T2 FLSs achieve good predictions at the first epoch, they are a good candidate for real-time applications.

The existing literature on T2 FSs confirms the above points. For example, studies showed that uniform T2 FLSs ob-

tain better predictions than T1 ones [3,22,23,25,35,53–55]. Besides, Mendel et al. [3] showed that a uniform T2 FLS
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Table 6

Comparison of the mean and std of RMSEs in Q-T2 FLS [35] and 2uF-T2 FLS.

SNR Q-T2 2uF-T2

0 0.2695± 0.017840 0.1705± 0.0141

4 0.2276± 0.008670 0.1502± 0.0149

6 0.2026± 0.006768 0.1478± 0.0136

10 0.1550± 0.005076 0.1442± 0.0138

Table 7

Comparison of the percent of improvement in results of Q-T2 FLS [35] and

2uF-T2 FLS to T1 FLS.

SNR Q-T2 versus T1 2uF-T2 versus T1

0 4.40% 9.81%

4 2.76% 12.5%

6 1.65% 11.65%

10 2.39% 12.02%

Fig. 6. A comparison of RMSEs between T1 FLS, uniform T2 FLS, and 2uF-T2 FLS in 50 noisy realizations for 6 epochs: (a) the mean values of RMSEs, and (b) the

std of RMSEs.

in comparison with a T1 FLS is an appropriate candidate for applications of real-time signal processing and adaptive

filtering.

In the following, the performance of 2uF-T2 FLSs are compared with triangular Q-T2 FLSs [35]. Table 6 compares the

values of the mean and std of RMSEs in Q-T2 FLSs [35] and 2uF-T2 FLSs. It shows that the performance of our proposed

method is better than Q-T2 FLS. Table 7 provides the comparative results. To compare these two systems, the relative results

in Table 7 are more appropriate than the absolute results in Table 6, because:

• Using the random initial conditions for simulating the chaotic Mackey–Glass time series affects the results.
• Type of uncertainty in these systems is different. In Q-T2 FLSs, triangular is used, while in 2uF-T2 FLSs, trapezoid is used.
• Different initial conditions are used. This paper designs all three forecasters under the same initial conditions. This allows

us to have a fair comparison between the designs. However, Mendel et al. [35] used the trained T1 and uniform T2 FLSs

to initialize uniform T2 and Q-T2 FLSs, respectively.
• This paper uses the fixed learning coefficient, whileMendel et al. [35] used the adaptive learning coefficient: it decreases

during the training if the RMSE increases.

Experiment 2: Mackey–Glass time series prediction for τ = 30, l = � = 1 corrupted by a non-stationary noise whose SNR

ranges between 0 and 10 dB.
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Table 8

Comparison of the prediction errors in the studies in [54] and the proposed method for SNR 0dB.

Prediction method Secondary MF Training set Test set RMSE

ANFIS [54] Singleton 500 500 0.4000

IT2FNN-1 [54] Uniform 500 500 0.3053

The proposed method Trapezoid 500 500 0.2180

The design of each FLS forecaster is performedover 50 realizations of the noise-corruptedMackey–Glass time serieswhen

SNR is uncertain and changes in the interval [0,10]. Initial values for parameters c1 − c6 and s are similar to Experiment 1.

Since standard deviation of noise changes in [σn0 dB
, σn10 dB

], the value of σn is set to(σn0 dB
+ σn10 dB

)/2.
For each design, the mean and std of RMSEs are computed for 6 epochs under the non-stationary noise. Fig. 6 displays

these results. It shows that 2uF-T2 FLSs outperform other designs and are more robust to a non-stationary noise. These

systems also have the smallest std of RMSEs. By comparing Fig. 6 with Fig. 4 in [3], our percentage improvement of themean

of RMSEs to T1 FLS is higher than T2SFLSs in [3].

Experiment 3: Mackey–Glass time series prediction for τ = 30, l = � = 6 corrupted by a noise with SNR value of 0 dB.

To design 2uF-T2 FLS forecasters, c3, c4, c5, and c6 are set to 0.1443, 0.2887, 0.3, and 1, respectively; s is set to 1.5. After 50

epochs, the results are comparedwith ANFIS [54] and IT2FNN-1 [54]. Since this paper utilizes singleton fuzzifiers, the results

are not compared with IT2FNN-2&3 [54] utilizing T2 non-singleton fuzzifiers with uncertain standard deviation. Table 8

shows the comparative results. As expected, the proposed method has the best performance under very noisy conditions.

6. Discussion

As explained in Section 2, some of the representations utilize uniform T2 FSs to represent a non-uniform T2 FS, such as

α-level set representation [29], α-plane representation [34–36], triangular representation [31], and zSlice representation

[37,38]. Our proposed representation is also based on uniform T2 FSs. Hence, this section provides a comparison between

our representation and four recent representations.

In comparison with the α-level set representation, our representation provides both an efficient design for non-uniform

T2 FLSs and an application for trapezoid T2 FLSs, while α-level set representation is not used in practice. It is only used for

defining T2 operations.

The comparison between our representation and the α-plane representation [34–36] leads to the following results:

• Our method is inspired by probability topics (see Section 3), while Liu’s [35] is the extended form of α-cut in T1 fuzzy

mathematics;
• Our design is efficient for any non-uniform T2 FLSs, while Liu’s [35] provides two efficient designs for only triangular

and trapezoid T2 FLSs;
• In ours, two arbitrary uniform T2 FLSs are used to handle any non-uniform uncertainty, while, in Liu’s [35], two planes

of α = 0 and α = 1 are used to handle triangular and trapezoid uncertainties;
• In ours, according to probability topics, the number of uniform T2 FLSs is set to 2, while, in Liu’s [35], it is experimentally

set to two planes.
• In ours, a trapezoid type-reduced set is obtained from the weighted convolution (the convolution) of two uniform type-

reduced sets with settings (17), while, in Liu’s [35], it is obtained by the linear interpolation of two uniform type-reduced

sets.
• This paper presents the application for a trapezoid T2 FLS, while Liu [35] do not. To our knowledge, to date, no application

exists for trapezoid T2 FLS.

From the comparison of our method with triangular representation [31], it can be concluded that (1) these twomethods

have different origins: probability and triangular FTNs; (2) ours can be utilized to design any non-uniform uncertainties,

whiles Starczewsk’s [31] is limited to triangular T2 FLSs; (3) In ours, a triangular type-reduced set is obtained from the

weighted convolution (the convolution) of two uniform type-reduced sets with settings (17), while, in Starczewsk’s [31], it

is obtained by the three-node linear interpolation of the general results for centroid type-reduction.

By using the zSlice representation, Wagner et al. [38] presented a triangular T2 FLS approximated by four zSlices (four

uniform T2 FLSs), while ours utilizes two uniform T2 FLSs for a triangular T2 FLS. Also, the triangular type-reduced set is

obtained by the linear interpolation of uniform T2 FSs, while, in ours, it is obtained from the weighted convolution (the

convolution) of two uniform type-reduced sets with settings (17). Moreover, the idea of this representation is from the

discretization of z-axis, which is completely different from ours.

Overall, our representation is an entirely new method for representing non-uniform T2 FSs. By utilizing it, any non-

uniform T2 FLS could be indirectly analyzed in terms of a function of two uniform T2 FLSs provided that the function g,

theoretic operators (such as t-norm, s-norm, averaging), and how the uniform fuzzy variables interact with each other are

determined.
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7. Conclusions and future works

This paper introduces a new representation for non-uniformT2 FSs called 2uFunction representation. This representation

is originated from two topics in probability theory: (1) generating non-uniformRVs based on uniformones and (2) a function

of twoRVs. Themainadvantageof this representation is to reduce thecomplexitiesofnon-uniformT2FSs. This representation

is applied to the design of FLS forecasters. Results show that increasing uncertainty in FLSs leads to improve the prediction

accuracy and shows superiority of 2uF-T2 FLSs in comparison with T1 FLSs, uniform T2 FLSs, ANFIS [54], IT2FNN-1 [54],

T2SFLSs [3] and Q-T2 FLSs [35]. Future works will consist in developing a 2uFunction-based Gaussian T2 FLS. To do this, we

will use two following approaches. First is to introduce appropriate definitions for the function g and the theoretic operations.

Second is to use a trapezoidal approximation for representing any non-uniform T2 FSs.
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