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Abstract. — This informal article is an expanded version of two lectures given in Padova
during the “Dwork Trimester” in June 2001. Their goal was to explain the proof of the
p-adic monodromy theorem for de Rham representations and to give some background on
p-adic representations.

Résumé. — Cet article informel est une version longue de deux exposés donnés à Padoue
en Juin 2001 au “Trimestre Dwork”. Leur objet était d’expliquer la démonstration du
théorème de monodromie p-adique pour les représentations de de Rham et de donner des
rappels sur les représentations p-adiques.
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I. Introduction

I.1. Introduction

I.1.1. Motivation. — One of the aims of arithmetic geometry is to understand the struc-

ture of the Galois group Gal(Q/Q), or at least to understand its action on representations

coming from geometry. A good example is provided by the Tate module TℓE of an elliptic

curve E defined over Q. The action of Gal(Q/Q) on TℓE carries a lot of arithmetical

information, including the nature of the reduction of E at various primes and the number

of points in E(Fq).

Let Dp ⊂ Gal(Q/Q) be the decomposition group of a place above p; it is naturally

isomorphic to Gal(Qp/Qp). The aim of the theory of p-adic representations is to extract

information from the action of Dp, on Qp-vector spaces. This is in stark contrast to

the theory of ℓ-adic representations, which endeavors to understand the action of Dp on

Qℓ-vector spaces with ℓ 6= p.

In this latter situation, the topology of Dp is mostly incompatible with that of an ℓ-adic

vector space (essentially because the wild inertia of Dp is a pro-p-group), and the result

is that the theory of ℓ-adic representations is of an algebraic nature. On the other hand,

in the p-adic case, the topologies are compatible and as a result there are far too many

representations. The first step is therefore to single out the interesting objects, and to

come up with significant invariants attached to them. Unlike the ℓ-adic situation, the

study of p-adic representations is therefore of a rather (p-adic) analytic nature.

For example, there exists a p-adically continuous family of characters of the group

Gal(Qp/Qp), given by χs where χ is the cyclotomic character and s varies in weight

space (essentially p− 1 copies of Zp). Out of those characters, only those corresponding

to integer values of s “come from geometry”. This kind of phenomenon does not arise in

the ℓ-adic case, where every character is “good”.

The aim of this article is to introduce some of the objects and techniques which are

used to study p-adic representations, and to provide explanations of recent developments.

I.1.2. Organization of the article. — This article is subdivided in chapters, each of which

is subdivided in sections made up of paragraphs. At the end of most paragraphs, I have

added references to the literature. This article’s goal is to be a quick survey of some

topics and a point of entry for the literature on those subjects. In general, I have tried

to give my point of view on the material rather than complete detailed explanations.

References are indicated at the end of paragraphs. For each topic, I have tried to

indicate a sufficient number of places where the reader can find all the necessary details.
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I have not always tried to give references to original articles, but rather to more recent

(and sometimes more readable) accounts.

I.1.3. Acknowledgments. — The basis for this article are the two lectures which I gave at

the “Dwork Trimester” in Padova, and I thank the organizers, especially F. Baldassarri,

P. Berthelot and B. Chiarellotto for the time and effort they spent to make this conference

a success. After I wrote a first version of this article, M. Çiperiani, J-M. Fontaine and

H. J. Zhu took the time to read it, pointed out several inaccuracies and made many

suggestions for improvement. Any remaining inaccuracies are entirely my fault.

I.2. p-adic representations

I.2.1. Some notations. — The results described in this article are true in a rather general

setting. Let k be any perfect field of characteristic p (perfect means that the map x 7→ xp

is an automorphism), and let F = W (k)[1/p] be the fraction field of OF = W (k), the

ring of Witt vectors over k (for reminders on Witt vectors, see paragraph II.2.1). Let K

be a finite totally ramified extension of F , and let C = F̂ = K̂ be the p-adic completion

of the algebraic closure of F (not to be confused with the field C of complex numbers).

If k is contained in the algebraic closure of Fp, then C = Cp, the field of so-called p-adic

complex numbers.

An important special case is when k is a finite extension of Fp, so that K is a finite

extension of Qp, and F is then the maximal unramified extension of Qp contained in K.

The reader can safely assume that we’re in this situation throughout the article. Another

important special case though is when k is algebraically closed.

Let µm denote the subset of K defined by µm = {x ∈ K, xm = 1}. We’ll choose once

and for all a compatible sequence of primitive pn-th roots of unity, ε(0) = 1, and ε(n) ∈

µpn ⊂ K, such that ε(1) 6= 1 and (ε(n+1))p = ε(n). Let Kn = K(ε(n)) and K∞ = ∪+∞
n=0Kn.

Making such a choice of ε(n) is like choosing an orientation in p-adic Hodge theory, in the

same way that choosing one of ±i is like choosing an orientation in classical geometry.

Here are the various fields that we are considering:

F ⊂

GK︷ ︸︸ ︷
K ⊂ Kn ⊂ K∞︸ ︷︷ ︸

ΓK

= K∞ ⊂ F = K︸ ︷︷ ︸
HK

⊂ C

Let GK be the Galois group Gal(K/K). The cyclotomic character χ : GK → Z∗
p is

defined by σ(ζ) = ζχ(σ) for every σ ∈ GK and ζ ∈ µp∞. The kernel of the cyclotomic

character is HK = Gal(K/K∞), and χ therefore identifies ΓK = Gal(K∞/K) = GK/HK

with an open subgroup of Z∗
p.
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I.2.2. Definitions. — A p-adic representation V of GK is a finite dimensional Qp-vector

space with a continuous linear action of GK . The dimension of V as a Qp-vector space

will always be denoted by d. Here are some examples of p-adic representations:

1. If r ∈ Z, then Qp(r) = Qp · er where GK acts on er by σ(er) = χ(σ)rer. This is the

r-th Tate twist of Qp;

2. if E is an elliptic curve, then the Tate module of E, V = Qp ⊗Zp
TpE is a p-adic

representation of dimension d = 2;

3. more generally, if X is a proper and smooth variety over K, then the étale cohomol-

ogy H i
ét(XK ,Qp) is a p-adic representation of GK .

This last example is really the most interesting (the first two being special cases), and

it was the motivation for the systematic study of p-adic representations. Grothendieck

had suggested in 1970 the existence of a “mysterious functor” (le foncteur mystérieux )

directly linking the étale and crystalline cohomologies of a p-divisible group. Fontaine

gave an algebraic construction of that functor which conjecturally allowed one to recover,

for any i and any proper and smooth X/K, the de Rham cohomology of X/K (which is

a filtered K-vector space) from the data of H i
ét(XK ,Qp) as a p-adic representation. His

construction was shown to be the right one in general by Tsuji; we’ll come back to that

in II.5.1.

The above result is a p-adic analogue of the well-known fact that if X is a proper

smooth variety over a number field L, then over the complex numbers C one has an

isomorphism

C⊗L H
i
dR(X/L) ≃ C⊗Z H

i(X,Z)

given by integrating differential forms on cycles.

I.2.3. Fontaine’s strategy. — Fontaine’s strategy for studying p-adic representations was

to construct rings of periods, which are topological Qp-algebras B, with a continuous and

linear action of GK and some additional structures which are compatible with the action

of GK (for example: a Frobenius ϕ, a filtration Fil, a monodromy map N , a differential

operator ∂), such that the BGK -module DB(V ) = (B ⊗Qp
V )GK , which inherits the

additional structures, is an interesting invariant of V . For Fontaine’s constructions to

work, one needs to assume that B is GK-regular, which means that if b ∈ B is such that

the line Qp · b is stable by GK , then b ∈ B∗. In particular, BGK has to be a field.

In general, a simple computation shows that dimBGK DB(V ) ≤ d = dimQp
V , and we

say that V is B-admissible if equality holds, which is equivalent to having B⊗Qp
V ≃ Bd

as B[GK ]-modules. In this case, B ⊗BGK DB(V ) ≃ B ⊗Qp
V , and the coefficients of a

matrix of this isomorphism in two bases of DB(V ) and V are called the periods of V .
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Let us briefly mention a cohomological version of this: a p-adic representation V deter-

mines a class [V ] in H1(GK ,GL(d,Qp)), and therefore a class [V ]B in H1(GK ,GL(d,B)).

The representation V is B-admissible if and only if [V ]B is trivial. In this case, [V ]B is a

coboundary, given explicitly by writing down a GK-invariant basis of B ⊗Qp
V .

Here are some examples of rings of periods:

1. If B = K, then BGK = K and V is K-admissible if and only if the action of GK on

V factors through a finite quotient. This is essentially Hilbert 90;

2. If B = C, then BGK = K (the so-called theorem of Ax-Sen-Tate, first shown by

Tate) and V is C-admissible if and only if the action of the inertia IK on V factors

through a finite quotient. This was conjectured by Serre and proved by Sen. We

will return to this in IV.4.2;

3. Let B = BdR be Fontaine’s ring of p-adic periods (defined below in II.2.3). It is a

field, equipped with a filtration, and BGK = K. If V = H i
ét(XK ,Qp), for a proper

smooth X/K, then V is BdR-admissible, and DdR(V ) = DBdR
(V ) ≃ H i

dR(X/K)

as filtered K-vector spaces. This is one of the most important theorems of p-adic

Hodge theory.

For rings of periods and Tannakian categories in a general setting, see Fontaine’s

[Fo94b].

I.3. Fontaine’s classification

By constructing many rings of periods, Fontaine has defined several subcategories of

the category of all p-adic representations, and in this paragraph, we shall list a number

of them along with categories of invariants which one can attach to them. Many of the

words used here will be defined later in the text, but the table below should serve as a

guide to the world of p-adic representations.
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p-adic
representa-
tions

Some invariants attached to those repre-
sentations

References
in the
text

ℓ-adic analogue

all of them (ϕ, Γ)-modules III.2.2 –

Hodge-Tate Hodge-Tate weights II.1.2 –

de Rham 1. p-adic differential equations
2. filtered K-vector spaces

II.2.3,
IV.4.1

all ℓ-adic representations

potentially
semi-stable

1. quasi-unipotent differential equations
2. admissible filtered (ϕ, N, GL/K)-
modules

II.3.3,
IV.3.3

quasi-unipotent representations

semi-stable 1. unipotent differential equations
2. admissible filtered (ϕ, N)-modules

II.3.3,
IV.3.3

unipotent representations

crystalline 1. trivial differential equations
2. admissible filtered ϕ-modules

II.3.1,
IV.3.3

representations with good re-
duction

Each category of representations is a subcategory of the one above it. One can associate

to every p-adic representation a (ϕ,Γ)-module, which is an object defined on the boundary

of the open unit disk. This object extends to a small annulus, and if V is de Rham,

the action of the Lie algebra of Γ gives a p-adic differential equation. This equation is

unipotent exactly when V (restricted to GKn
for some n) is semi-stable. In this case,

the kernel of the connection is a (ϕ,N)-module which coincides with the (ϕ,N)-module

attached to V by p-adic Hodge theory (one loses the filtration, however).

All of this will be explained later in the body of the text.

II. p-adic Hodge theory

In this chapter, we’ll define various rings of periods which are used in p-adic Hodge

theory, and give some simple examples of Fontaine’s construction for an explicit geometric

object (an elliptic curve).

II.1. The field C and the theory of Sen

Before we define the rings of periods which are used in p-adic Hodge theory, we’ll

review some simple properties of the field C of p-adic complex numbers. As we have

seen above, C is not a great ring of periods (since C-admissible representations are

potentially unramified while representations coming from arithmetic geometry are much

more complicated than that), but one can still extract a lot of arithmetic information

from the data of C⊗Qp
V : this is the content of Sen’s theory.

II.1.1. The action of GK on C. — An important property of C that we will need is that

we can explicitly describe CH where H is a closed subgroup of GK . Clearly, K
H
⊂ CH
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and therefore K̂
H
⊂ CH . The Ax-Sen-Tate theorem says that the latter inclusion is

actually an equality: K̂
H

= CH . This was first shown by Tate, and the proof was later

improved and generalized by Sen and Ax. Following Sen, Ax gave a natural proof of that

result, by showing that if an element of K is “almost invariant” by H , then it is “almost”

in K
H

.

The first indication that C was not a good choice for a ring of periods was given by a

theorem of Tate, which asserts that C does not contain periods for characters which are

too ramified (for example: the cyclotomic character). More precisely, he showed that if

ψ : GK → Z∗
p is a character which is trivial on HK but which does not factor through a

finite quotient of ΓK , then

H0(K,C(ψ−1)) = {x ∈ C, g(x) = ψ(g)x for all g ∈ GK} = {0}.

In particular, there is no period in C for the cyclotomic character (a non-zero element

of the above set is a period for ψ−1). Let us explain the proof of Tate’s result: by

the Ax-Sen-Tate theorem, the invariants of C under the action of HK are given by

CHK = K̂∞. The main argument in Tate’s proof is the construction of generalized trace

maps prKn
: K̂∞ → Kn. The map prKn

is a continuous, Kn-linear, and ΓK-equivariant

section of the inclusion Kn ⊂ K̂∞. In addition, if x ∈ K̂∞, then x = limn→∞ prKn
(x). We

see that we can and should set prKn
(x) = limm→+∞[Kn+m : Kn]−1 TrKn+m/Kn

(x). The

proof of the convergence of the above limit depends essentially on a good understanding

of the ramification of K∞/K.

Using these maps, one can prove Tate’s theorem. Let x be a period of ψ. Since ψ|HK
=

1, one has x ∈ CHK = K̂∞. We therefore have x = limn→∞ xn where xn = prKn
(x),

and since g(x)− ψ(g)x = 0 for all g ∈ GK , and prKn
is Galois-equivariant, one also has

g(xn) − ψ(g)xn = 0 for all g ∈ GK . If xn 6= 0, this would imply that ψ factors through

Gal(Kn/K), a contradiction, so that xn = 0 for every n. Since x = limn→∞ xn, we also

have x = 0.

General facts on C can be found in Koblitz’s [Kob84], which is a good introduction

to p-adic numbers. The beginning of [DGS94] is a wonderful introduction too. The

proof of Ax-Sen-Tate’s theorem that we referred to is in Ax’s [Ax70], see also Colmez’s

[Col02, §4]. Tate’s theorems on the cohomology of C are in [Tat66] or in Fontaine’s

[Fon00, §1].

II.1.2. Sen’s theory. — The point of Sen’s theory is to study the residual action of ΓK

on the K̂∞-vector space (C ⊗Qp
V )HK , where V is a p-adic representation of GK . We

can summarize his main result as follows. If d ≥ 1, then H1(HK ,GL(d,C)) is trivial and
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the natural map: H1(ΓK ,GL(d,K∞)) → H1(ΓK ,GL(d, K̂∞)) induced by the inclusion

K∞ ⊂ K̂∞ is a bijection.

One can show that this implies the following: given a p-adic representation V , the

K̂∞-vector space (C⊗Qp
V )HK has dimension d = dimQp

(V ), and the union of the finite

dimensional K∞-subspaces of (C⊗Qp
V )HK stable under the action of ΓK is a K∞-vector

space of dimension d. We shall call it DSen(V ), and the natural map K̂∞⊗K∞
DSen(V )→

(C ⊗Qp
V )HK is then an isomorphism. The K∞-vector space DSen(V ) is endowed with

an action of ΓK , and Sen’s invariant is the linear map giving the action of Lie(ΓK) on

DSen(V ). It is the operator defined in End(DSen(V )) by ΘV = log(γ)/ logp(χ(γ)), where

γ ∈ ΓK is close enough to 1 (the definition of ΘV doesn’t depend on the choice of γ).

More precisely, for any k ≥ 1, (1− γ)k is a K-linear operator on DSen(V ) and one can

show that if γ ∈ ΓK is close enough to 1, then the series of operators:

−
1

logp(χ(γ))

∑

k≥1

(1− γ)k

k

converges (in End(DSen(V ))) to an operator ΘV which is K∞-linear and does not depend

on the choice of γ.

The operator ΘV is then an invariant canonically attached to V . Let us give a few

examples: we say that V is Hodge-Tate, with Hodge-Tate weights h1, · · · , hd ∈ Z, if there

is a decomposition of C[GK ]-modules: C ⊗Qp
V = ⊕d

j=1C(hj). This is equivalent to

ΘV being diagonalizable with integer eigenvalues. For this reason, the eigenvalues of ΘV

are usually called the generalized Hodge-Tate weights of V . All representations coming

from a proper smooth variety X/K (the subquotients of its étale cohomology groups)

are Hodge-Tate, and the integers −hj are the jumps of the filtration on the de Rham

cohomology of X. For example, the Hodge-Tate weights of V = Qp ⊗Zp
TpE, where E is

an elliptic curve, are 0 and 1. Here is a representation which is not Hodge-Tate: let V

be a two dimensional Qp-vector space on which GK acts by


1 logp(χ(g))

0 1


 so that ΘV =


0 1

0 0


 .

Relevant papers of Sen are [Sen72, Sen73, Sen80] and [Sen93] which deals with

families of representations. Colmez has given a different construction more in the spirit

of the “ring of periods” approach (by constructing a ring BSen), see [Col94]. For an

interesting discussion of all this, see Fontaine’s course [Fon00, §2].

II.2. The field BdR
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II.2.1. Reminder: Witt vectors. — Before we go any further, we’ll briefly review the

theory of Witt vectors. Let R be a perfect ring of characteristic p. For example, R could

be a finite field or an algebraically closed field, or the ring of integers of an algebraically

closed field (in characteristic p, of course). The aim of the theory of Witt vectors is to

construct a ring A, in which p is not nilpotent, and such that A is separated and complete

for the topology defined by the ideals pnA. We say that A is a strict p-ring with residual

ring R. The main result is that if R is a perfect ring of characteristic p, then there exists

a unique (up to unique isomorphism) strict p-ring A = W (R) with residual ring R. It is

called the ring of Witt vectors over R. Furthermore, because of the unicity, if one has a

map ξ : R→ S, then it lifts to a map ξ : W (R)→ W (S). In particular, the map x→ xp

lifts to a Frobenius automorphism ϕ : W (R)→ W (R).

Let us give a few simple examples: if R = Fp, then W (R) = Zp and more generally, if

R is a finite field, then W (R) is the ring of integers of the unique unramified extension of

Qp whose residue field is R. If R = Fp, then W (R) = OdQunr
p

. In the following paragraphs,

we will see more interesting examples.

If x = x0 ∈ R, then for every n ≥ 0, choose an element x̃n in A whose image in R

is xp−n

. The sequence x̃pn

n then converges in A to an element [x] which depends only on

x. This defines a multiplicative map x 7→ [x] from R → A, which is a section of the

projection x 7→ x, called the Teichmüller map. The Teichmüller elements (the elements

in the image of the Teichmüller map) are a distinguished set of representatives of the

elements of R. One can write every element x ∈ A in a unique way as x =
∑+∞

n=0 p
n[xn]

with xn ∈ R. Given two elements x, y ∈ A, one can then write

x+ y =
+∞∑

n=0

pn[Sn(xi, yi)] and xy =
+∞∑

n=0

pn[Pn(xi, yi)]

where Sn and Pn ∈ Z[Xp−n

i , Y p−n

i ]i=0···n are universal homogeneous polynomials of degree

one (if one decides that the degrees of the Xi and Yi are 1). For example, S0(X0, Y0) =

X0 + Y0 and S1(X0, X1, Y0, Y1) = X1 + Y1 + p−1((X
1/p
0 + Y

1/p
0 )p−X0− Y0). The simplest

way to construct W (R) is then by setting W (R) =
∏+∞

n=0R and by making it into a ring

using the addition and multiplication defined by the Pn and Sn, which are given by (not

so) simple functional equations.

Finally, let us mention that if R is not perfect, then there still exist strict p-rings A

such that A/pA = R, but A is not unique anymore. Such a ring is called a Cohen ring.

For example, if R = Fp[[X]], then one can take A = Zp[[X]], but for all α ∈ pZp, the

map X 7→ X + α is a non-trivial isomorphism of A which induces the identity on R.
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The above summary is inspired by a course given by P. Colmez. The best place to

start further reading is Harder’s survey [Har97]. The construction of Witt vectors is also

explained by Serre in [Ser68] (or in English in [Ser79]).

II.2.2. The universal cover of C. — Let Ẽ+ be the set defined by

Ẽ+ = lim←−
x 7→xp

OC = {(x(0), x(1), · · · ) | (x(i+1))p = x(i)}

which we make into a ring by deciding that if x = (x(i)) and y = (y(i)) are two elements

of Ẽ+, then their sum and their product are defined by:

(x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))pj

and (xy)(i) = x(i)y(i).

This makes Ẽ+ into a perfect local ring of characteristic p. Let ε = (ε(i)) where the ε(i)

are the elements which have been chosen in I.2.1. It is easy to see that Fp((ε−1)) ⊂ Ẽ =

Ẽ+[(ε− 1)−1] and one can show that Ẽ is a field which is the completion of the algebraic

(non-separable!) closure of Fp((ε− 1)), so it is really a familiar object.

We define a valuation vE on Ẽ by vE(x) = vp(x
(0)) so that Ẽ+ is the integer ring of Ẽ

for vE. For example, vE(ε− 1) = limn→∞ vp(ε
(n) − 1)pn

= p/(p− 1).

Finally, let us point out that there is a natural map Ẽ+ → lim←−x 7→xp
OC/p and it’s not

hard to show that this map is an isomorphism.

There is a natural map θ from Ẽ+ to OC, which sends x = (x(i)) to x(0), and the map

θ : Ẽ+ → OC/p is a homomorphism. Let Ã+ = W (Ẽ+) and

B̃+ = Ã+[1/p] = {
∑

k≫−∞

pk[xk], xk ∈ Ẽ+}

where [x] ∈ Ã+ denotes the Teichmüller lift of x ∈ Ẽ+. The map θ then extends

to a surjective homomorphism θ : B̃+ → C, which sends
∑
pk[xk] to

∑
pkx

(0)
k . Let

[ε1] = [(ε(1), · · · )] so that εp
1 = ε, and let ω = ([ε]− 1)/([ε1]− 1). Then θ(ω) = 1 + ε(1) +

· · ·+ (ε(1))p−1 = 0, and actually, the kernel of θ is the ideal generated by ω.

Here is a simple proof: obviously, the kernel of θ : Ẽ+ → OC/p is the ideal of x ∈ Ẽ+

such that vE(x) ≥ 1. Let y be any element of Ã+ killed by θ whose reduction modulo p

satisfies vE(y) = 1. The map yÃ+ → ker(θ) is then injective, and surjective modulo p;

since both sides are complete for the p-adic topology, it is an isomorphism. Now, we just

need to observe that the element ω is killed by θ and that vE(ω) = 1.

These constructions are given in Fontaine’s [Fo94a], but the reader should be warned

that the notation is rather different; for example, Ẽ+ is Fontaine’s R and Ã+ is his Ainf .

In [Fo94a], the title of this paragraph is also explained (the pair (B̃+, θ : B̃+ → C) is the

solution of a universal problem). The most up-to-date place to read about these rings is

Colmez’ [Col02, §8].
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II.2.3. Construction of BdR. — Using this we can finally define BdR; let B+
dR be the ring

obtained by completing B̃+ for the ker(θ)-adic topology, so that B+
dR = lim←−n

B̃+/(ker(θ))n.

In particular, since ker(θ) = (ω), every element x ∈ B+
dR can be written (in many ways)

as a sum x =
∑+∞

n=0 xnω
n with xn ∈ B̃+. The ring B+

dR is then naturally a F -algebra. Let

us construct an interesting element of this ring; since θ(1− [ε]) = 0, the element 1− [ε]

is “small” for the topology of B+
dR and the following series

−
+∞∑

n=1

(1− [ε])n

n

will converge in B+
dR, to an element which we call t. Of course, one should think of t as

t = log([ε]). For instance, if g ∈ GF , then

g(t) = g(log([ε])) = log([g(ε(0), ε(1), · · · )]) = log([εχ(g)]) = χ(g)t

so that t is a period for the cyclotomic character.

We now set BdR = B+
dR[1/t], which is a field that we endow with the filtration defined

by Fili BdR = tiB+
dR. This is the natural filtration on BdR coming from the fact that B+

dR

is a complete discrete valuation ring. By functoriality, all the rings we have defined are

equipped with a continuous linear action of GK . One can show that B
GK

dR = K, so that

if V is a p-adic representation, then DdR(V ) = (BdR ⊗Qp
V )GK is naturally a filtered

K-vector space. We say that V is de Rham if dimK DdR(V ) = d.

We see that GrBdR ≃ ⊕i∈ZC(i), and therefore, if V is a de Rham representation (a

BdR-admissible representation), then there exist d integers h1, · · · , hd such that C⊗Qp
V ≃

⊕d
j=1C(hj). A de Rham representation is therefore Hodge-Tate. Furthermore, one sees

easily that the jumps of the filtration on DdR(V ) are precisely the opposites of Hodge-

Tate weights of V (that is, Fil−hj (D) 6= Fil−hj+1(D)). For example, if V = Qp ⊗Zp
TpE,

then the Hodge-Tate weights of V are 0 and 1.

References for this paragraph are Fontaine’s [Fo94a] for the original construction of

BdR, and Colmez’s [Col02, §8] for a more general presentation. For the behavior of

BdR under the action of some closed subgroups of GK , one can see Iovita-Zaharescu’s

[IZ99a, IZ99b].

II.2.4. Sen’s theory for B+
dR. — Fontaine has done the analogue of Sen’s theory for B+

dR,

that is, he defined a K∞[[t]]-module D+
dif(V ) which is the union of the finite dimensional

K∞[[t]]-submodules of (B+
dR ⊗Qp

V )HK which are stable by ΓK . He then proved that

D+
dif(V ) is a d-dimensional K∞[[t]]-module endowed with a residual action of ΓK . The

action of Lie(ΓK) gives rise to a differential operator ∇V . The representation V is de

Rham if and only if ∇V is trivial on K∞((t))⊗K∞[[t]] D
+
dif(V ). Furthermore, one recovers

(DSen(V ),ΘV ) from (D+
dif(V ),∇V ) simply by applying the map θ : B+

dR → C.
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This construction is carried out in Fontaine’s course [Fon00, §3,4], where BdR-

representations are classified.

II.3. The rings Bcris and Bst

II.3.1. Construction of Bcris. — One unfortunate feature of B+
dR is that it is too coarse a

ring: there is no natural extension of the natural Frobenius ϕ : B̃+ → B̃+ to a continuous

map ϕ : B+
dR → B+

dR. For example, θ([p̃1/p]−p) 6= 0, so that [p̃1/p]−p is invertible in B+
dR,

and so 1/([p̃1/p] − p) ∈ B+
dR. But if ϕ is a natural extension of ϕ : B̃+ → B̃+, then one

should have ϕ(1/([p̃1/p]− p)) = 1/([p̃]− p), and since θ([p̃]− p) = 0, 1/([p̃]− p) /∈ B+
dR.

Another way to see this is that since B
GL

dR = L for every finite extension L/K, the

existence of a canonical Frobenius map ϕ : BdR → BdR would imply the existence of a

Frobenius map ϕ : K → K, which is of course not the case. One would still like to have

a Frobenius map, and there is a natural way to complete B̃+ (where one avoids inverting

elements like [p̃1/p]− p) such that the completion is still endowed with a Frobenius map.

The ring B+
cris is a subring of B+

dR, consisting of the limits of sequences of elements

of B+
dR which satisfy some growth condition. For example,

∑+∞
n=0 p

−n2
tn converges in

B+
dR but not in B+

cris. The ring B+
cris is then equipped with a continuous Frobenius ϕ.

More precisely, recall that every element x ∈ B+
dR can be written (in many ways) as

x =
∑+∞

n=0 xnω
n with xn ∈ B̃+. One then has:

B+
cris = {x ∈ B+

dR, x =

+∞∑

n=0

xn
ωn

n!
, where xn → 0 in B̃+}

Let Bcris = B+
cris[1/t] (note that Bcris is not a field. For example, ω−p is in Bcris but not

its inverse); one can show that (Bcris)
GK = F , the maximal absolutely unramified subfield

of K. Those representations V of GK which are Bcris-admissible are called crystalline,

and using Fontaine’s construction one can therefore associate to every such V a filtered

ϕ-module Dcris(V ) = (Bcris⊗Qp
V )GK (a filtered ϕ-module D is an F -vector space with a

decreasing, exhaustive and separated filtration indexed by Z on K ⊗F D, and a σF -semi-

linear map ϕ : D → D. We do not impose any compatibility condition between ϕ and

Fil). One can associate to a filtered ϕ-moduleD two polygons: its Hodge polygon PH(D),

coming from the filtration, and its Newton polygon PN (D), coming from the slopes of ϕ.

We say that D is admissible if for every subobject D′ of D, the Hodge polygon of D′ lies

below the Newton polygon of D′, and the endpoints of the Hodge and Newton polygons

of D are the same. One can show that Dcris(V ) is always admissible.
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Furthermore, a theorem of Colmez and Fontaine shows that the functor V 7→ Dcris(V )

is an equivalence of categories between the category of crystalline representations and the

category of admissible filtered ϕ-modules (1).

The construction of Bcris can be found in Fontaine’s [Fo94a] or Colmez’s [Col02,

§8]. One should also look at Fontaine’s [Fo94b] for information on filtered ϕ-modules.

The theorem of Colmez-Fontaine is proved in Colmez-Fontaine’s [CF00], as well as in

Colmez’s [Col02, §10] and it is reviewed in Fontaine’s [Fon00, §5]. The ring B+
cris has an

interpretation in crystalline cohomology, see Fontaine’s [Fon83] and Fontaine-Messing’s

[FM87].

II.3.2. Example: elliptic curves. — If V = Qp⊗Zp
TpE, where E is an elliptic curve over

F with good ordinary reduction, then Dcris(V ) is a 2-dimensional F -vector space with a

basis x, y, and there exists λ ∈ F and α0, β0 ∈ O
∗
F depending on E such that:

{
ϕ(x) = α0p

−1x

ϕ(y) = β0y
and Fili Dcris(V ) =





Dcris(V ) if i ≤ −1

(y + λx)F if i = 0

{0} if i ≥ 1

The Newton and Hodge polygons of Dcris(V ) are then as follows:
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If on the other hand an elliptic curve E has good supersingular reduction, then the

operator ϕ : Dcris(V )→ Dcris(V ) is irreducible and the Newton and Hodge polygons are

as follows:
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Newton polygon Hodge polygon

In both cases, it is clear that Dcris(V ) is admissible.

For basic facts about elliptic curves, see for example Silverman’s [Sil86, Sil96]. For

basic facts on Newton polygons, see the first chapter of [DGS94] and for isocrystals, see

[Fon79, Kz79].

(1)admissible modules were previously called weakly admissible, but since Colmez and Fontaine showed
that being weakly admissible is the same as being admissible (previously, D was said to be admissible if
there exists some V such that D = Dcris(V )), we can drop the “weakly” altogether.
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II.3.3. Semi-stable representations. — If an elliptic curve E has bad semi-stable reduc-

tion, then V is not crystalline but it is semi-stable, that is, it is Bst-admissible where

Bst = Bcris[Y ], where we have decided that ϕ(Y ) = Y p and g(Y ) = Y + c(g)t, where c(g)

is defined by the formula g(p1/pn

) = p1/pn

(ε(n))c(g). Of course, the definition of Y depends

on a number of choices, but two such Bst’s are isomorphic. In addition to a Frobenius,

Bst is equipped with the monodromy map N = −d/dY .

Let p̃ ∈ Ẽ+ be an element such that p̃(0) = p, and let log[p̃] ∈ B+
dR be the element

defined by

log[p̃] = logp(p)−
+∞∑

n=1

(1− [p̃]/p)n−1

n
.

One can define a Galois equivariant and Bcris-linear embedding of Bst into BdR, by

mapping Y to log[p̃] ∈ B+
dR, but doing so requires us to make a choice of logp(p). As

a consequence, there is no canonically defined filtration on Dst(V ), only on DdR(V ):

one has to be a little careful about this. This in contrast to the fact that the inclusion

K ⊗F Dcris(V ) ⊂ DdR(V ) is canonical. It is customary to choose logp(p) = 0 which is

what we’ll always assume from now on.

One can then associate to every semi-stable representation V a filtered (ϕ,N)-module

and Colmez and Fontaine showed that the functor V 7→ Dst(V ) is an equivalence of cate-

gories between the category of semi-stable representations and the category of admissible

filtered (ϕ,N)-modules.

See the references for paragraph II.3.1 on Bcris. See II.4.3 for Fontaine’s original defi-

nition of Bst.

II.3.4. Frobenius and filtration. — Although the ring Bcris is endowed with both a Frobe-

nius map and the filtration induced by the inclusion Bcris ⊂ BdR, these two structures

have little compatibility. For example, here is an exercise: let r = {rn}n≥0 be a sequence

with rn ∈ Z. Show that there exists an element xr ∈ ∩k≥0ϕ
kBcris such that for every

n ≥ 0, one has ϕ−n(xr) ∈ Filrn BdR \ Filrn+1 BdR (for a solution, see paragraph IV.3.2).

The reader should also be warned that B+
cris ⊂ Fil0 Bcris = Bcris ∩B+

dR but that the latter

space is much larger. It is true however that if B′
cris is the set of elements x ∈ Bcris such

that for every n ≥ 0, one has ϕn(x) ∈ Fil0 Bcris, then ϕ(B′
cris) ⊂ B+

cris ⊂ B′
cris (ϕ2(B′

cris) if

p = 2).

Given the above facts, it is rather surprising that there is a relation of some sort

between ϕ and Fil. One can show that the natural map B
ϕ=1
cris → BdR/B

+
dR is surjective,

and that its kernel is Qp. This gives rise to an exact sequence

0→ Qp → B
ϕ=1
cris → BdR/B

+
dR → 0
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called the fundamental exact sequence. It is used to define Bloch-Kato’s exponential.

See Fontaine’s [Fo94a] and [Fo94b] or Colmez’s [Col02, §8]. For Bloch-Kato’s expo-

nential, see Bloch-Kato’s [BK91, §3] and Kato’s [Kat93].

II.3.5. Some remarks on topology. — We’ll end this section with a few remarks on the

topologies of the rings we just introduced. Although B+
dR is a discrete valuation ring,

complete for that valuation, the natural topology on B+
dR is weaker than the topology

coming from that valuation. It is actually the topology of the projective limit on B+
dR =

lim←−n
B̃+/ ker(θ)n, and the topology of B̃+ = Ã+[1/p] combines the p-adic topology and

the topology of the residue ring Ã+/p = Ẽ+ which is a valued ring. In particular,

B+
dR/ ker(θ)n is p-adic Banach space, which makes B+

dR into a p-adic Fréchet space.

The topology on Bcris is quite unpleasant, as Colmez points out: “By the construction

of B+
cris, the sequence xn = ωpn−1/(pn − 1)! does not converge to 0 in B+

cris, but the

sequence ωxn does; we deduce from this the fact that the sequence txn converges to 0 in

B+
cris, and therefore that xn → 0 in Bcris, so that the topology of B+

cris induced by that

of Bcris is not the natural topology of B+
cris.” The reason for this is that the sequence n!

converges to 0 in a pretty chaotic manner, and it is more convenient to use the ring

B+
max = {x ∈ B+

dR, x =

+∞∑

n=0

xn
ωn

pn
, where xn → 0 in B̃+},

which is also endowed with a Frobenius map. In any case, the periods of crystalline

representations live in

B̃+
rig[1/t] = ∩+∞

n=0ϕ
nB+

cris[1/t] = ∩+∞
n=0ϕ

nB+
max[1/t]

because they live in finite dimensional F -vector subspaces of Bcris stable by ϕ.

Finally, let us mention an interesting result of Colmez, that has yet to be applied: K

is naturally a subring of B+
dR, and he showed that B+

dR is the completion of K for the

induced topology, which is finer than the p-adic topology. This generalizes an earlier

result of Fontaine, who showed that K is dense B+
dR/t

2. The topology of K induced

by B+
dR is a bit like the “uniform convergence of a function and all its derivatives”, if

one views x ∈ K as an algebraic function of p. For example, the series
∑+∞

n=0 p
nε(n) is

not convergent in B+
dR. A series which converges in B+

dR does so in C, so we get a map

θ : B+
dR → C, which coincides with the one previously defined.

The remark on the topology of Bcris can be found in Colmez’s [Col98a, §III], and

Colmez’s theorem is proved in the appendix to Fontaine’s [Fo94a]. Fontaine’s earlier

result was used by Fontaine and Messing in [FM87]. The ring B̃+
rig has an interpretation

in rigid cohomology, as was explained to me by Berthelot in [Blt01].
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II.4. Application: Tate’s elliptic curve

We will now explicitly show that if E is an elliptic curve with bad semi-stable reduction,

then V = Qp ⊗Zp
TpE is BdR-admissible. After that, we will show that V is actually

semi-stable. We’ll assume throughout this section that K = F , ie that K is absolutely

unramified.

II.4.1. Tate’s elliptic curve. — Let q be a formal parameter and define

sk(q) =

+∞∑

n=1

nkqn

1− qn
a4(q) = −s3(q) a6(q) = −

5s3(q) + 7s5(q)

12

x(q, v) =
+∞∑

n=−∞

qnv

(1− qnv)2
− 2s1(q) y(q, v) =

+∞∑

n=−∞

(qnv)2

(1− qnv)3
+ s1(q).

All those series are convergent if q ∈ pOF and v /∈ qZ = 〈q〉 (the multiplicative subgroup

of F ∗ generated by q). For such q 6= 0, let Eq be the elliptic curve defined by the equation

y2 + xy = x3 + a4(q)x + a6(q). The theorem of Tate is then: the elliptic curve Eq is

defined over F , it has bad semi-stable reduction, and Eq is uniformized by F
∗
, that is,

there exists a map α : F
∗
→ Eq(F ), given by

v 7→

{
(x(q, v), y(q, v)) if v /∈ qZ

0 if v ∈ qZ

which induces an isomorphism of groups with GF -action F
∗
/〈q〉 → Eq(F ).

Furthermore, if E is an elliptic curve over F with bad semi-stable reduction, then there

exists q such that E is isomorphic to Eq over F .

For basic facts about Tate’s elliptic curve, see Silverman’s [Sil96, V.3] for example.

II.4.2. The p-adic representation attached to Eq. — Using Tate’s theorem, we can give

an explicit description of Tp(Eq). Let ε(i) be the pi-th roots of unity chosen in I.2.1 and

let q(i) be elements defined by q(0) = q and the requirement that (q(i+1))p = q(i). Then α

induces isomorphisms

F
∗
/〈q〉 −−−→ Eq(F )

{x ∈ F
∗
/〈q〉, xpn

∈ 〈q〉} −−−→ Eq(F )[pn]

and one sees that {x ∈ F
∗
/〈q〉, xpn

∈ 〈q〉} = {(ε(n))i(q(n))j , 0 ≤ i, j < pn − 1}. The

elements ε(n) and q(n) therefore form a basis of Eq(F )[pn], so that a basis of Tp(Eq) is

given by e = lim←−n
ε(n) and f = lim←−n

q(n). This makes it possible to compute explicitly the

Galois action on Tp(Eq). We have g(e) = lim←−n
g(ε(n)) = χ(g)e and g(f) = lim←−n

g(q(n)) =

lim←−n
q(n)(ε(n))c(g) = f + c(g)e where c(g) is some p-adic integer, determined by the fact

that g(q(n)) = q(n)(ε(n))c(g). Note that [g 7→ c(g)] ∈ H1(F,Zp(1)). The matrix of g in the
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basis (e, f) is therefore given by 
χ(g) c(g)

0 1




II.4.3. p-adic periods of Eq. — We are looking for p-adic periods of V = Qp ⊗Zp
Tp(Eq)

which live in BdR, that is for elements of (BdR⊗Qp
V )GF . An obvious candidate is t−1⊗e

since g(t) = χ(g)t and g(e) = χ(g)e. Let us look for a second element of (BdR⊗Qp
V )GF ,

of the form a ⊗ e + 1 ⊗ f . We see that this element will be fixed by GF if and only if

g(a)χ(g) + c(g) = a.

Let q̃ be the element of Ẽ+ defined by q̃ = (q(0), q(1), · · · ). Observe that we have

g(q̃) = (g(q(0)), g(q(1)), · · · ) = q̃εc(g),

and that θ([q̃]/q(0) − 1) = 0, so that [q̃]/q(0) − 1 is small in the ker(θ)-adic topology. The

series

logp(q
(0))−

+∞∑

n=1

(1− [q̃]/q(0))n

n

therefore converges in B+
dR to an element which we call u. One should think of u as being

u = log([q̃]). In particular, g(u) = g(log([q̃])) = log([g(q̃)]) = log([q̃]) + c(g) log([ε]) =

u+ c(g)t, and we readily see that a = −u/t satisfies the equation g(a)χ(g) + c(g) = a. A

basis of DdR(V ) = (BdR ⊗Qp
V )GF is therefore given by
{
x = t−1 ⊗ e

y = −ut−1 ⊗ e+ 1⊗ f

and this shows that Tp(Eq) is BdR-admissible. Furthermore, one sees that θ(u −

logp(q
(0))) = 0, so that u− logp(q

(0)) is divisible by t and

Fili DdR(V ) =





DdR(V ) if i ≤ −1

(y + logp(q
(0))x)F if i = 0

{0} if i ≥ 1

This gives us a description of DdR(V ). We shall now prove that V is semi-stable. It’s

clearly enough to show that t, u ∈ B+
st. The series which defines t converges in B+

cris (that

is, the cyclotomic character is crystalline), and the series which defines log[q̃/p̃vp(q)] also

does. As a consequence, one can write u = vp(q)Y + log[q̃/p̃vp(q)] ∈ B+
st. This implies

that V is semi-stable. Actually, Fontaine defined Bst so that it would contain Bcris and

a period of Eq, so that the computation of this paragraph is a little circular.

Let us compute the action of Frobenius in the case of Tate’s elliptic curve. On a ring of

characteristic p, one expects Frobenius to be x 7→ xp, and therefore ϕ([x]) should be [xp]

so that ϕ(log[x]) = p log[x]. In particular, one has ϕ(t) = pt and ϕ(u) = pu and the action

of Frobenius on Dst(V ) is therefore given by ϕ(x) = p−1x and ϕ(y) = y. Let us point
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out one more time that the filtration is defined on DdR(V ), and that the identification

Dst(V ) ≃ DdR(V ) depends on a choice of logp(p). The p-adic number logp(q
(0)/pvp(q(0)))

is canonically attached to V and is called the L-invariant of V .

II.4.4. Remark: Kummer theory. — What we have done for Tate’s elliptic curve is really

a consequence of the fact that V = Qp ⊗Zp
TpEq is an extension of Qp by Qp(1), namely

that there is an exact sequence 0 → Qp(1) → V → Qp → 0. All of these extensions are

classified by the cohomology group H1(K,Qp(1)), which is described by Kummer theory.

Recall that for every n ≥ 1, there is an isomorphism δn : K∗/(K∗)pn

→ H1(K,µpn).

By taking the projective limit over n, we get a map δ : K̂∗ → H1(K,Zp(1)) because

lim←−n
µpn ≃ Zp(1) once we have chosen a compatible sequence of ε(n). By tensoring with

Qp, we get an isomorphism δ : Qp ⊗Zp
K̂∗ → H1(K,Qp(1)) which is defined in the

following way: if q = q(0) ∈ Qp ⊗Zp
K̂∗, choose a sequence q(n) such that (q(n))p = q(n−1),

and define c = δ(q) by (ε(n))c(g) = g(q(n))/(q(n)). Of course, this depends on the choice of

q(n), but two different choices give cohomologous cocycles.

It is now easy to show that every extension of Qp by Qp(1) is semi-stable. This is

because tc(g) = g(log[q̃])− log[q̃] with notations similar to those above, and q̃ = (q(n)). If

q ∈ Qp⊗Zp
Ô∗

K then the series which defines log[q̃] converges in B+
cris and the extension V

is crystalline. In general, if q ∈ Qp⊗Zp
K̂∗, then log[q̃] will be in B+

cris+vp(q)Y ⊂ B+
st. The

F -vector space Dst(V ) will then have a basis x = t−1 ⊗ e and y = − log[q̃]t−1⊗ e+ 1⊗ f

so that ϕ(x) = p−1x and ϕ(y) = y. If one chooses logp(p) = 0, then the filtration on

DdR(V ) is given by Fil0 DdR(V ) = (y + logp(q)x)F .

II.5. p-adic representations and Arithmetic Geometry

II.5.1. Comparison theorems. — If X/K is a proper smooth variety over K, then by a

comparison theorem, we mean a theorem relating H i
ét(XK ,Qp) and H i

dR(X/K).

It was shown early on by Fontaine that the Tate modules V = Qp⊗Zp
TpA of all abelian

varieties A are de Rham (he actually showed in a letter to Jannsen that they were poten-

tially semi-stable), and that DdR(V ) is isomorphic to the dual of the de Rham cohomology

of A. Fontaine and Messing then found another proof, in which they explicitly construct

a pairing between V (interpreted as a quotient of the étale π1(A)) and H1
dR(A/K) (in-

terpreted as the group of isomorphism classes of vectorial extensions of A). One should

remember that for an abelian variety A, we have Hom(TpA,Zp(1)) ≃ H1
ét(AK ,Zp).

After that, Fontaine and Messing proved the comparison theorem for the H i
ét(XK ,Qp)

of proper smooth X for i ≤ p − 1 and K/Qp finite unramified. These results were then

extended by Kato and his school (Hyodo, Tsuji). Finally, the general statement that for

a variety X/K, one can recover H i
dR(X/K) from the data of V = H i

ét(XK ,Qp) as a p-adic
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representation was shown by Tsuji. He showed that if X has semi-stable reduction, then

V = H i
ét(XK ,Qp) is Bst-admissible. A different proof was given by Niziol (in the good

reduction case) and also by Faltings (who proved that V is crystalline if X has good

reduction and that V is de Rham otherwise).

In the case of an abelian variety, the rings Bcris and Bst are exactly what it takes to

decide, from the data of V alone, whether A has good or semi-stable reduction. Indeed,

Coleman-Iovita and Breuil showed thatA has good reduction if and only if V is crystalline,

and that A has semi-stable reduction if and only if V is semi-stable. This can be seen as

a p-adic analogue of the (ℓ-adic) Néron-Ogg-Shafarevich criterion.

In another direction, Fontaine and Mazur have conjectured the following: let V be a

p-adic representation of Gal(Q/L) where L is a finite extension of Q. Then, V “comes

from geometry” if and only if it is unramified at all but finitely many primes ℓ, and if its

restriction to all decomposition groups above p are potentially semi-stable.

Note that among all potentially semi-stable representations V of GK , where K is a p-

adic field, there are many which do not come from geometry: indeed, if V = H i
ét(XK ,Qp)

then the eigenvalues of ϕ on Dst(V ) should at least be Weil numbers.

There were many partial results before Tsuji’s theorem was proved in [Tsu99] (see

[Tsu02] for a survey), and we refer the reader to the bibliography of that article. For a

different approach (integrating forms on cycles), see Colmez’s [Col98b].

The conjecture of Fontaine and Mazur was proposed by them in [FM93]. There is

little known in that direction, but there are some partial results: see Taylor’s [Tay01]

and Kisin’s [Kis03] for example.

Regarding the criteria for good or semi-stable reduction, see Coleman-Iovita’s [CI99]

and Breuil’s [Bre00].

II.5.2. Weil-Deligne representations. — Let V be a potentially semi-stable representa-

tion of GK , so that there exists L, a finite extension of K such that the restriction of V

to GL is semi-stable. One can then consider the F -vector space DL
st(V ) = (Bst⊗Qp

V )GL .

It is a finite dimensional (ϕ,N)-module with an action of Gal(L/K). One can attach to

such an object several interesting invariants: L-factors, ǫ-factors, and a representation of

the Weil-Deligne group.

In particular, if E is an elliptic curve, one can recover from the p-adic representation

TpE pretty much the same information as from the ℓ-adic representation TℓE.

The action of the Weil-Deligne group on DL
st(V ) was defined by Fontaine in [Fo94c].
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III. Fontaine’s (ϕ,Γ)-modules

III.1. The characteristic p theory

A powerful tool for studying p-adic representations is Fontaine’s theory of (ϕ,Γ)-

modules. We will first define ϕ-modules for representations of the Galois group of a

local field of characteristic p (namely k((π))) and then apply this to the characteristic

zero case, making use of Fontaine-Wintenberger’s theory of the field of norms.

III.1.1. Local fields of characteristic p. — Let πK be a formal variable (for now), let F ′

be the maximal unramified extension of F in K∞ and (2) let AK be the ring

AK = {
∞∑

k=−∞

akπ
k
K , ak ∈ OF ′, a−k → 0},

so that AK/p = kF ′((πK)). The ring AK (which is an example of a Cohen ring, as in

II.2.1) is endowed with actions of ϕ and ΓK , such that ϕ(πK) = πp
K mod p. The exact

formulas depend on K, but if K = F then ϕ(πK) = (1 + πK)p − 1 and if γ ∈ ΓK , then

γ(πK) = (1 + πK)χ(γ) − 1. We won’t use the action of ΓK in the “characteristic p case”.

Let EK = kF ′((πK)) = AK/p, and let E be the separable closure of EK . Let GEK
be the

Galois group of E/EK. In this paragraph, we will look at p-adic representations of GEK
,

that is, finite dimensional Qp-vector spaces V , endowed with a continuous linear action

of GEK
.

Let BK be the fraction field of AK (one only needs to invert p). A ϕ-module M is

a finite dimensional BK-vector space with a semi-linear action of ϕ. We say that M is

étale (or slope 0 or also unit-root) if M admits an AK-lattice MA which is stable by ϕ

and such that ϕ∗MA = MA (which means that ϕ(MA) generates MA over AK). This

follows for example from ϕ(MA) ⊂MA and p ∤ det(ϕ). The first result is that there is an

equivalence of categories

{p-adic representations of GEK
} ←→ {étale ϕ-modules}

Let us explain where this comes from. The correspondence T 7→ (E⊗Fp
T )GEK is (by

Hilbert 90) an equivalence of categories between the category of Fp-representations of

GEK
, and étale EK-modules. Let A be a Cohen ring over E (we will give a more precise

definition of A below. Suffice it to say that A should be the ring of Witt vectors over

E, but E is not perfect, so that there are several possible choices for A). The ring A

is endowed with an action of GEK
and AGEK = AK . Then by lifting things to charac-

teristic 0 and inverting p, we get an equivalence of categories between the category of

(2)it is incorrectly assumed throughout [Ber02] that F = F ′. The problem is that even if K/F is totally
ramified, K∞/F∞ does not have to be. In general in [Ber02] one should take eK = e(K∞/F∞) and not
[K∞ : F∞].
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Qp-representations of GEK
, and étale BK-modules with a Frobenius (these constructions

were previously used, for example, by Bloch and Katz).

We will now give a construction of the ring of periods A. Let Ẽ+ be the ring introduced

in II.2.2 and let Ẽ be the field of fractions of Ẽ+. Then EK embeds in Ẽ. For example,

if K = F , then EF = k((ε − 1)) ⊂ Ẽ. Let E be the completion of the separable closure

of EK in Ẽ.

One can show that Ẽ is the completion of the algebraic closure of EF so that Ẽ is the

completion of the perfection of E. By a theorem of Ax, Ẽ is also the completion of E.

Let Ã = W (Ẽ) and B̃ = Ã[1/p]. It is easy to see (at least when K = F ) that BK is

a subfield of B̃, with πF = [ε] − 1. If K 6= F , then one should take for πK an element

of A whose image modulo p is a uniformiser of EK = EHK . Let B be the completion of

the maximal unramified extension of BK in B̃, and A = B ∩ Ã. The field B is endowed

with an action of GEK
, and one indeed has BGEK = BK . The field B is also naturally

endowed with a Frobenius map ϕ.

These ideas appear for example in Katz’ [Kz73, chap 4]. We gave their local version,

which is in Fontaine’s [Fon91, A1].

III.1.2. Representations of GEK
and differential equations. — Let us mention an ap-

plication of the theory we just sketched. Let δ be the differential operator defined by

δ(f(π)) = (1 + π)df/dπ on the field BF . This operator extends to B because it extends

to the maximal unramified extension of BF , and then to its completion by continuity.

One can use it to associate to every p-adic representation of GEK
a BF -vector space with

a Frobenius ϕ and a differential operator δ which satisfy δ ◦ϕ = pϕ ◦ δ. When the action

of the inertia of GEK
factors through a finite quotient on a representation V , then there

exists a basis of D(E) in which δ is “overconvergent” (in the sense of III.3 below). One

can use this fact to associate to every potentially unramified representation of GEK
an

overconvergent differential equation. This condition (ϕ and δ overconvergent) is much

stronger than merely requiring ϕ to be overconvergent (which happens very often, see

III.3).

There are many interesting parallels between the theory of finite Galois representations

in characteristic p and differential equations: see Crew’s [Cre85, Cre00] and Matsuda’s

[Mat95] for a starting point.

III.2. The characteristic zero theory

III.2.1. The field of norms. — The next step of the construction is the theory of the

field of norms (of Fontaine and Wintenberger) which gives a canonical isomorphism be-

tween GEK
and HK . Let NK be the set lim←−n

Kn where the transition maps are given
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by NKn/Kn−1
, so that NK is the set of sequences (x(0), x(1), · · · ) with x(n) ∈ Kn and

NKn/Kn−1(x
(n)) = x(n−1). If we define a ring structure on NK by

(xy)(n) = x(n)y(n) and (x+ y)(n) = lim
m→+∞

NKn+m/Kn
(x(n+m) + y(n+m)),

then NK is actually a field, called the field of norms of K∞/K. It is naturally endowed

with an action of HK . Furthermore, for every finite Galois extension L/K, NL/NK is

a finite Galois extension whose Galois group is Gal(L∞/K∞), and every finite Galois

extension of NK is of this kind so that the absolute Galois group of NK is naturally

isomorphic to HK .

On the other hand, one can prove that NK is a local field of characteristic p isomorphic

to EK ≃ kF ′((πK)). More precisely, by ramification theory, the map NKn/Kn−1 is “close”

to the p-th power map and there is therefore a well-defined ring homomorphism from NK

to Ẽ given by sending (x(n)) ∈ NK to (y(n)) ∈ Ẽ where y(n) = limm→+∞(x(n+m))pm

. This

map then realizes an isomorphism between NK and EK , so that the two Galois groups

HK and GEK
are naturally isomorphic.

For the theory of the field of norms in a much more general setting, see Fontaine

and Wintenberger’s [FW79] and Wintenberger’s [Win83]. For the construction of the

isomorphism NK → EK and its relation to Coleman series, see Fontaine’s appendix to

[Per94] and Cherbonnier-Colmez’s [CC99].

III.2.2. (ϕ,Γ)-modules. — By combining the construction of III.1.1 and the theory of

the field of norms, we see that we have an equivalence of categories:

{p-adic representations of HK} ←→ {étale ϕ-modules}.

We immediately deduce from this the equivalence of categories we were looking for:

{p-adic representations of GK} ←→ {étale (ϕ,ΓK)-modules}.

One associates to V the étale ϕ-module D(V ) = (B⊗Qp
V )HK , which is an étale ϕ-module

endowed with the residual action of ΓK : it is a (ϕ,ΓK)-module. The inverse functor is

then given by D 7→ (B⊗BK
D)ϕ=1.

In general, it is rather hard to write down the (ϕ,Γ)-module associated to a represen-

tation V . We can therefore only give a few trivial examples, such as D(Qp(r)) = BF (r).

See also the examples in IV.5.4.

The original theory of (ϕ,Γ)-modules is the subject of Fontaine’s [Fon91]. It has

been modified a bit by Cherbonnier and Colmez in [CC99], whose constructions we have

followed. For explicit families of (ϕ,Γ)-modules, see [BLZ03].

III.2.3. Computation of Galois cohomology. — Since the category of étale (i.e. slope 0)

(ϕ,Γ)-modules is equivalent to that of p-adic representations, it should be possible to
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recover all properties of p-adic representations in terms of (ϕ,Γ)-modules. For example,

Herr showed in his thesis how one could compute the Galois cohomology of V from D(V ).

Let H i(K, V ) denote the groups of continuous cohomology of V . Herr’s main result is

that one can recover the H i(K, V )’s from D(V ).

Let ∆K be the torsion subgroup of ΓK ; since ΓK is an open subgroup of Z∗
p, ∆K is a

finite subgroup whose order divides p−1 (or 2 if p=2). Let p∆ be the idempotent defined

by p∆ = 1
|∆K |

∑
δ∈∆K

δ so that if M is a Zp[[ΓK ]]-module, then p∆ is a projection map

from M to M∆K (at least if p 6= 2). Let γ be a topological generator of ΓK/∆K .

Let D′(V ) = D(V )∆K . If α is a map α : D′(V ) → D′(V ) which commutes with ΓK ,

let Cα,γ(K, V ) be the following complex :

0→ D′(V )
f
→ D′(V )⊕D′(V )

g
→ D′(V )→ 0

where f(x) = ((α− 1)x, (γ − 1)x) and g(x, y) = (γ − 1)x− (α− 1)y.

The cohomology of the complex Cϕ,γ(K, V ) is then naturally isomorphic to the Galois

cohomology of V . For example, we see immediately that H i(K, V ) = 0 if i ≥ 3.

This was proved by Herr in [Her98]. For various applications, see Herr’s [Her98,

Her01, Her00], Benois’ [Ben00], [Ber01, chap VI] and [Ber03a, Ber03c], Cherbonnier-

Colmez’s [CC99], and Colmez’s [Col99].

III.3. Overconvergent (ϕ,Γ)-modules

Since the theory of (ϕ,Γ)-modules is so good at dealing with p-adic representations,

we would like to be able to recover from D(V ) the invariants associated to V by p-adic

Hodge theory. This is the subject of the next chapter, on reciprocity formulas, but in this

paragraph we will introduce the main technical tool, the ring of overconvergent elements.

By construction, the field B is a subfield of

B̃ = W (Ẽ)[1/p] = {
∑

k≫−∞

pk[xk], xk ∈ Ẽ}.

Let B†,r be the subring of B defined as follows:

B†,r = {x ∈ B, x =
∑

k≫−∞

pk[xk], k +
p− 1

pr
vE(xk)→ +∞}.

If rn = pn−1(p − 1) for some n ≥ 0, then the definition of B†,rn boils down to re-

quiring that
∑

k≫−∞ pkx
(n)
k converge in C, which in turn is equivalent to requiring that∑

k≫−∞ pk[xp−n

k ] converge in B+
dR. If eK denotes the ramification index of K∞/F∞, and

F ′ is the maximal unramified extension of F contained in K∞, then one can show that

if πK ∈ AK is the “variable” introduced previously, (see the end of III.1.1) and r ≫ 0,
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then the invariants of B†,r under the action of HK are given by

(B†,r)HK = B
†,r
K = {

+∞∑

k=−∞

akπ
k
K , where ak ∈ F

′ and

+∞∑

k=−∞

akX
k

is convergent and bounded on p−1/eKr ≤ |X| < 1}.

If K = F (so that eK = 1), then one can take πF = π, and the above description is valid

for all r ≥ p− 1.

A p-adic representation is said to be overconvergent if, for some r ≫ 0, D(V ) has a

basis consisting of elements of D†,r(V ) = (B†,r⊗Qp
V )HK . This is equivalent to requiring

that there exist a basis of D(V ) in which Mat(ϕ) ∈ M(d,B†,r
K ) for some r ≫ 0.

The main result on the (ϕ,Γ)-modules of p-adic representations (or, equivalently, on

étale (ϕ,Γ)-modules) is a theorem of Colmez and Cherbonnier which shows that every

p-adic representation of GK (equivalently, every étale (ϕ,Γ)-module) is overconvergent.

It is not true that every étale ϕ-module is overconvergent, and their proof uses the action

of ΓK in a crucial way. For instance, there is no such result in the characteristic p theory.

The above result is the main theorem of Cherbonnier-Colmez’s [CC98]. Most ap-

plications of (ϕ,Γ)-modules to p-adic Hodge theory make use of it. If V is absolutely

crystalline, then one can say more about the periods of D(V ), see Colmez’s [Col99],

[Ber02, 3.3] and [Ber03b]. See also the next chapter.

IV. Reciprocity formulas for p-adic representations

IV.1. Overview

IV.1.1. Reciprocity laws in class field theory. — The aim of this chapter is to give con-

structions relating the theory of (ϕ,Γ)-modules to p-adic Hodge theory. The first thing

we’ll do is explain why we (and others) have chosen to call such constructions reciprocity

formulas. Recall that, in its simplest form, the aim of class field theory is to provide a

description of Gal(Kab/K), where K is a field. For example, if K is a local field, then one

has for every finite extension L/K the norm residue symbol (·, L/K) : K∗ → Gal(L/K)ab,

which is a surjective map whose kernel is NL/K(L∗). This is a form of the local reciprocity

law, and the aim of explicit reciprocity laws is to describe (explicitly!) the map (·, L/K)

(more precisely, the Hilbert symbol). For example, a theorem of Dwork shows that if ζ

is a pn-th root of unity, then one has (u−1,Qp(ζ)/Qp) · ζ = ζu.

Let V = Qp(1), which is the Tate module of the multiplicative group Gm. The clas-

sical reciprocity map relates the tangent space DdR(V ) of Gm to the Galois cohomology

H1(GK , V ). This is why we call a reciprocity map those maps which relate Galois co-

homology and p-adic Hodge theory. Since the Galois cohomology of V naturally occurs
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in (ϕ,Γ)-modules, it is natural to call “reciprocity map” those maps which relate (ϕ,Γ)-

modules and p-adic Hodge theory.

This is the aim of this chapter: we will show how to recover Dcris(V ) or Dst(V ) from

D(V ) and how to characterize de Rham representations. As an application, we will

explain the proof of Fontaine’s monodromy conjecture.

The first important constructions relating (ϕ,Γ)-modules and p-adic Hodge theory

were carried out in Cherbonnier-Colmez’s [CC99], and are closely related to Perrin-

Riou’s exponential, as in her [Per94] and Colmez’s [Col98a]. See also [Ber03a] for

“explicit formulas” for Bloch-Kato’s maps.

IV.2. A differential operator on (ϕ,Γ)-modules

In order to further relate the theory of (ϕ,Γ)-modules to p-adic Hodge theory, we will

need to look at the action of the Lie algebra of ΓK on D†(V ). On B
†
K it acts through a

differential operator ∇, given by ∇ = log(γ)/ logp(χ(γ)), and one can easily show that

∇(f(π)) = log(1 + π)(1 + π)df/dπ. We see in particular that ∇(f(π)) /∈ B
†
K , and so it is

necessary to extend the scalars to

B
†,r
rig,K = {f(πK) =

+∞∑

k=−∞

akπ
k
K , where ak ∈ F

′ and f(X) is convergent on p−1/eKr ≤ |X| < 1}.

The definition is almost the same as that of B†,r
K , but we have dropped the boundedness

condition. A typical element of B
†,r
rig,K is t = log(1 + π). We see that B

†,r
rig,K is a Fréchet

space, with all the norms given by the sup norms on “closed” annuli, and that it contains

B
†,r
K as a dense subspace. The union B

†
rig,K = ∪r≫0B

†,r
rig,K is the Robba ring RK of p-adic

differential equations, and E†K = B
†
K is the subring of RK consisting of those functions

which are bounded. The p-adic completion of E†K = B
†
K is EK = BK .

This being done, we see that the formula ∇V = log(γ)/ logp(χ(γ)) (this operator is

defined in the same way as in paragraph II.1.2) gives the action of Lie(ΓK) on D
†
rig(V ) =

B
†
rig,K⊗B

†
K
D†(V ). Unfortunately, the action of Lie(ΓK) on B

†
rig,K is not very nice, because

∇(f(π)) = log(1+π)(1+π)df/dπ and this operator has zeroes at all the ζ−1 with ζ ∈ µp∞.

In particular, it is not a basis of Ω1
B

†
rig,K

and it is not the kind of differential operator that

fits in the framework of p-adic differential equations. The “right” differential operator is

∂V = 1
log(1+π)

∇V , but this operator acting on D
†
rig(V ) has poles at all the ζ − 1. In the

following paragraphs, we will see that one can “remove” these poles exactly when V is

de Rham.

See [Ber01, Ber02] or for detailed constructions and the basic properties of those

rings and operators.
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IV.3. Crystalline and semi-stable representations

IV.3.1. Construction of Dcris(V ) and of Dst(V ). — We will start by studying the action

of ΓK on D
†
rig(V ), and our main result is that Dcris(V ) = (D†

rig(V )[1/t])ΓK , in a sense

which will be made precise below. In addition, one can define B
†
log = B

†
rig[log(π)] with

the obvious actions of ϕ and ΓK , and we shall also see that Dst(V ) = (D†
log(V )[1/t])ΓK .

If the Hodge-Tate weights of V are negative (if V is positive), then Dcris(V ) = D
†
rig(V )ΓK

and Dst(V ) = D
†
log(V )ΓK .

Recall that Bst is a subring of BdR equipped with a Frobenius. The periods of V

are the elements of Bst which “occur” in the coefficients of Dst(V ), they form a finite

dimensional F -vector subspace of Bst, stable by Frobenius. Therefore, these periods live

in ∩+∞
n=0ϕ

n(B+
st)[1/t].

The main strategy for comparing the theory of (ϕ,Γ)-modules and p-adic Hodge theory

is to construct a rather large ring B̃
†
rig, which contains B†, B

†
rig,K and ∩+∞

n=0ϕ
n(B+

cris) so

that B
†
rig,K ⊗B

†
K

D†(V ) ⊂ B̃
†
rig⊗Qp

V and Dcris(V ) ⊂ (B̃†
rig⊗Qp

V )GK . The result alluded

to above, for positive crystalline representations, is that the two F -vector subspaces of

B̃
†
rig ⊗Qp

V , Dcris(V ) and D
†
rig(V )ΓK , actually coincide. This means that if V is crys-

talline, then the Frobenius ϕ on D†(V ) has a rather special form. We’ll give an informal

justification for the above result in the next paragraph.

IV.3.2. Rings of periods and limits of algebraic functions. — First of all, one should think

of most rings of periods as rings of “limits of algebraic functions” on certain subsets of

C. For example, the formula B = B̂unr
F tells us that B is the ring of limits of (separable)

algebraic functions on the boundary of the open unit disk. The ring B̃ is then the ring

of all limits of algebraic functions on the boundary of the open unit disk.

Heuristically, one should view other rings in the same fashion: the ring B+
cris “is” the

ring of limits of algebraic functions on the disk D(0, |ε(1) − 1|p), and B+
max “is” the ring

of limits of algebraic functions on a slightly smaller disk D(0, r). One should therefore

think of ϕn(B+
cris) as the ring of limits of algebraic functions on the disk D(0, |ε(n)− 1|p),

and finally B̃+
rig “is” the ring of limits of algebraic functions on the open unit disk D(0, 1).

Similarly, B̃
†,r
rig “is” the ring of limits of algebraic functions on an annulus C[s, 1[, where

s depends on r, and ϕ−n(B̃†,r
rig) “is” the ring of limits of algebraic functions on an annulus

C[sn, 1[, where sn → 0, so that ∩+∞
n=0ϕ

−n(B̃†,r
rig) “is” the ring of limits of algebraic functions

on the open unit disk D(0, 1) minus the origin; furthermore, if an element of that ring

satisfies some simple growth properties near the origin, then it “extends” to the origin

(remember that in complex analysis, a holomorphic function on D(0, 1−)− {0} which is

bounded near 0 extends to a holomorphic function on D(0, 1−)).
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As for the ring B+
dR, it behaves like a ring of local functions around a circle (in particular,

there is no Frobenius map defined on it). Via the map ϕ−n : B
†,rn

rig → B+
dR, we have for

n ≥ 1 a filtration on B
†,rn

rig , which corresponds to the order of vanishing at ε(n) − 1. For

instance, we can now give a short solution to the exercise in paragraph II.3.4: given a

sequence rn of integers, let q = ϕ(π)/π and set xr = πr0
∏+∞

n=1 ϕ
n−1(q/p)rn. This infinite

product converges to a “function” whose order of vanishing at ε(n) − 1 is exactly rn.

IV.3.3. Regularization and decompletion. — We shall now justify the above results on

Dcris(V ). The analogous results on Dst(V ) follow by adding log(π) everywhere. We’ve

already seen that the periods of positive crystalline representations live in B̃+
rig (if we

don’t assume that V is positive, then they live in B̃+
rig[1/t]).

The elements of (B̃†
rig ⊗Qp

V )GK form a finite dimensional F -vector space, so that

there is an r such that (B̃†
rig ⊗Qp

V )GK = (B̃†,r
rig ⊗Qp

V )GK , and furthermore this F -

vector space is stable by Frobenius, so that the periods of V (in this setting) not only

live in B̃
†,r
rig but actually in ∩+∞

n=0ϕ
−n(B̃†,r

rig) and they also satisfy some simple growth

conditions (depending, say, on the size of det(ϕ)), which ensure that they too can be

seen as limits of algebraic functions on the open unit disk D(0, 1−), that is as elements

of B̃+
rig. In particular, we have (B̃†

rig ⊗Qp
V )GK = (B̃+

rig ⊗Qp
V )GK . This is what we get

by regularization (of the periods).

It’s easy to show that (B̃†
rig ⊗Qp

V )HK = B̃
†
rig,K ⊗B

†
rig,K

D
†
rig(V ), and the last step is to

show that (B̃†
rig,K⊗B

†
rig,K

D
†
rig(V ))GK = D

†
rig(V )GK . This is akin to a decompletion process,

going from B̃
†
rig,K to B

†
rig,K . The ring extension B̃

†
rig,K/B

†
rig,K looks very much like K̂∞/K,

so that by using Colmez’s decompletion maps, which are analogous to Tate’s prKn
maps

from paragraph II.1.1, one can finally show that in fact, Dcris(V ) = (B†
rig,K⊗B

†
K
D†(V ))GK .

In particular, V is crystalline if and only if (B†
rig,K ⊗B

†
K

D†(V ))GK is a d-dimensional F -

vector space.

See [Ber01, Ber02]. For decompletion maps and the “Tate-Sen” conditions, see

[BC03] and Colmez’ Bourbaki talk [Col01].

IV.4. De Rham representations

In the previous paragraph, we have shown how to recognize crystalline and semi-stable

representations in terms of their (ϕ,Γ)-modules. We shall now do the same for de Rham

representations, and show that a representation V is positive de Rham if and only if

there exists a free B
†
rig,K-submodule of rank d of D

†
rig(V ), called NdR(V ), which is stable

by the operator ∂V (when V is not positive, then NdR(V ) ⊂ D
†
rig(V )[1/t]). Of course,

when V is crystalline or semi-stable, one can simply take NdR(V ) = B
†
rig,K ⊗F Dcris(V )

or NdR(V ) = (B†
log,K ⊗F Dst(V ))N=0.
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IV.4.1. Construction of NdR(V ). — In general, let us give an idea of how one can con-

struct NdR(V ). In the paragraph II.2.4, we recalled Fontaine’s construction of “Sen’s

theory for B+
dR”. The map ϕ−n sends D

†,rn

rig (V ) into (B+
dR ⊗Qp

V )HK , which should be

thought of as “localizing at ε(n)−1” in geometrical terms. The module D+
dif(V ) of Fontaine

is then equal to K∞[[t]]⊗ϕ−n(B†,rn
rig,K

) ϕ
−n(D†,rn

rig (V )). Recall that Fontaine has shown that

a positive V is de Rham and if and only if the connection ∇V has a full set of sections on

D+
dif(V ) (in which case the kernel of the connection is K∞ ⊗K DdR(V )). In geometrical

terms, this means that if V is positive and de Rham, then ∇V has some “local” solutions

around the ε(n) − 1. In that case, one can glue all of those solutions together to obtain

NdR(V ). More precisely, there exists n0 ≫ 0 and r ≫ 0 such that we have NdR(V ) =

B
†
rig,K ⊗B

†,r
rig,K

Nr(V ) where Nr(V ) is the set of x ∈ D
†,r
rig(V ) such that for every n ≥ n0,

one has ϕ−n(x) ∈ Kn[[t]] ⊗K DdR(V ). It’s easy to see that Nr(V )[1/t] = D
†,r
rig(V )[1/t]

and that Nr(V ) is a closed (for the Fréchet topology) B
†,r
rig,K-submodule of D

†,r
rig(V ). The

fact that Nr(V ) is free of rank d then follows form the following fact: if M ⊂ (B†,r
rig,K)d

is a closed submodule, such that FracB
†,r
rig,K ⊗B

†,r
rig,K

M = (FracB
†,r
rig,K)d, then M is free of

rank d.

One can then show that NdR(V ) is uniquely determined by the requirement that it be

free of rank d and stable by ∂V , so that in particular ϕ∗NdR(V ) = NdR(V ).

We therefore have the following theorem: if V is a de Rham representation, then there

exists NdR(V ) ⊂ D
†
rig(V )[1/t], a B

†
rig,K-module free of rank d, stable by ∂V and ϕ, such

that ϕ∗NdR(V ) = NdR(V ). Such an object is by definition a p-adic differential equation

with Frobenius structure (see IV.5.2 below).

Using this theorem, one can construct a faithful and essentially surjective exact ⊗-

functor from the category of de Rham representations to the category of p-adic differential

equations with a Frobenius structure.

The above theorem is the main result of [Ber02]. For applications, see [Ber02,

Ber03c]. The result on closed submodules of (B†,r
rig,K)d is proved in [Ber02, 4.2], see

also [For67].

IV.4.2. Example: C-admissible representations. — Let us give an example for which it

is easy to characterize NdR(V ). We’ve already seen that when V is crystalline or semi-

stable, one can take NdR(V ) = B
†
rig,K ⊗F Dcris(V ) or NdR(V ) = (B†

log,K ⊗F Dst(V ))N=0.

Another easy case is when V is C-admissible. This was one of the examples in I.2.3

where we mentioned Sen’s result: a representation V is C-admissible if and only if it

is potentially unramified. We’ll give a proof of that result which relies on a theorem of

Tsuzuki on differential equations.
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Let V be a C-admissible representation. This means that C⊗Qp
V = C⊗K(C⊗Qp

V )GK ,

so that V is Hodge-Tate and all its weights are 0. In particular, Sen’s map ΘV is zero.

Since we recovered Sen’s map from ∇V by localizing at ε(n) − 1, this implies that the

coefficients of a matrix of ∇V are holomorphic functions which are 0 at ε(n) − 1 for

all n ≫ 0. These functions are therefore multiples of t = log(1 + π) in B
†
rig,K and so

∇V (D†
rig(V )) ⊂ log(1 + π)D†

rig(V ) so that we have NdR(V ) = D
†
rig(V ).

The RK-module NdR(V ) is then endowed with a differential operator ∂V and a unit-

root Frobenius map ϕ which is overconvergent. One can show that if ϕ is overconvergent,

then so is ∂V (because ϕ regularizes functions). The module NdR(V ) is therefore an

overconvergent unit-root isocrystal, and Tsuzuki proved that these are potentially trivial

(that is, they become trivial after extending the scalars to RL/RK for a finite extension

L/K). This implies easily enough that the restriction of V to IK is potentially trivial.

See [Ber02, 5.6]. For Tsuzuki’s theorem, see his [Tsk99] and Christol’s [Chr01].

Sen’s theorem was first proved in Sen’s [Sen73].

IV.5. The monodromy theorem

IV.5.1. ℓ-adic monodromy and p-adic monodromy. — As was pointed out in the intro-

duction, ℓ-adic representations are forced to be well-behaved, while the group GK has

far too many p-adic representations. Over the years it became apparent that the only

representations related to arithmetic geometry were the de Rham representations (see

II.5.1).

In particular it was conjectured (and later proved) that all representations coming

from geometry were de Rham. Among these, some are more pleasant, they are the semi-

stable ones, which are the analogue of the ℓ-adic unipotent representations. Grothendieck

has shown that all ℓ-adic representations are quasi-unipotent, and after looking at many

examples, Fontaine was led to conjecture the following p-adic analogue of Grothendieck’s

ℓ-adic monodromy theorem: every de Rham representation is potentially semi-stable. We

shall now explain the proof of that statement.

An excellent reference throughout this section is Colmez’ Bourbaki talk [Col01].

IV.5.2. p-adic differential equations. — A p-adic differential equation is a module M ,

free of finite rank over the Robba ring RK , equipped with a connection ∂M : M → M .

We say that M has a Frobenius structure if there is a semi-linear Frobenius ϕM : M →M

which commutes with ∂M .

A p-adic differential equation is said to be quasi-unipotent if there exists a finite ex-

tension L/K such that ∂M has a full set of solutions on RL[log(π)] ⊗RK
M . Chris-

tol and Mebkhout extensively studied p-adic differential equations. Crew and Tsuzuki
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conjectured that every p-adic differential equation with a Frobenius structure is quasi-

unipotent. Three independent proofs were given in the summer of 2001. One by André,

using Christol-Mebkhout’s results and a Tannakian argument. One by Kedlaya, who

proved a “Dieudonné-Manin” theorem for ϕ-modules over RK . And one by Mebkhout,

relying on Christol-Mebkhout’s results.

We refer the reader to Christol and Mebkhout’s surveys [CM00, CM02] and Colmez’s

Bourbaki talk [Col01] for enlightening discussions of p-adic differential equations. The

above theorem is proved independently in André’s [And02b], Mebkhout’s [Meb02] and

Kedlaya’s [Ked00]. See also André’s [And02a] for a beautiful discussion of a special

case.

IV.5.3. The monodromy theorem. — Using the previous results, one can give a proof

of Fontaine’s monodromy conjecture. Let V be a de Rham representation, then one can

associate to V a p-adic differential equation NdR(V ). By André, Kedlaya, and Mebkhout’s

theorem, this differential equation is quasi-unipotent. Therefore, there exists a finite

extension L/K such that (RL[log(π)]⊗RK
NdR(V ))GL is an F -vector space of dimension

d and by the results of paragraph IV.3.3, V is potentially semi-stable.

See [Ber02, 5.5] for further discussion of the above result.

IV.5.4. Example: Tate’s elliptic curve. — To finish this chapter, we will sketch this for

Tate’s elliptic curve (or indeed for all ordinary elliptic curves). For simplicity, assume

that k is algebraically closed. If q = q0 is the parameter associated to Eq, then there

exists qn ∈ Fn = F (ε(n)) such that NFn+1/Fn
(qn+1) = qn (this is the only place where we

use the fact that k is algebraically closed), and by a result of Coleman, there is a power

series Colq(π) such that qn = Col
σ−n

F
q (ε(n) − 1). If Fq(π) = (1 + π) dlog Colq(π), then

Fq(π) ∈ π−1OF [[π]] and one can show that there is a basis (a, b) of the (ϕ,Γ)-module

D(V ) associated to V such that the action of ΓF = 〈γ〉 is given by:

Mat(η) =


χ(η) 1−η

1−γ
Fq(π)

0 1




Let ∇ be the differential operator giving the action of the Lie algebra of ΓF on power

series, so that we have (∇f)(π) = (1 + π) log(1 + π)f ′(π) (recall that t = log(1 + π)).

The Lie algebra of ΓF then acts on D
†
rig(V ) by an operator ∇V given by

Mat(∇V ) =


1 ∇

1−γ
Fq(π)

0 0




One then sees that ∂V (t−1a) = 0 and that ∂V (b) belongs to B
†
rig,F (t−1a), so that the p-adic

differential equation 〈t−1a, b〉 is unipotent. This shows that V is indeed semi-stable.
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The extensions of Qp by Qp(1) are important and also a source of explicit exam-

ples. They are related to Kummer theory as in paragraph II.4.4, and Coleman series as

above, among other topics. Some interesting computations can be found in Cherbonnier-

Colmez’s [CC99, V].

V. Appendix

V.1. Diagram of the rings of periods

The following diagram summarizes the relationships between the different rings of

periods. The arrows ending with // // are surjective, the dotted arrow //

is an inductive limit of maps defined on subrings (ιn : B̃
†,rn

log → B+
dR), and all the other

ones are injective.

B+
dR

θ

rrrr

B̃
†
log

33

B̃+
log

//oo B+
st

OO

B̃
†
rig

OO

B̃+
rig

OO

oo // B+
max

OO

B̃ B̃†oo

OO

B̃+oo

OO

θ // // C

Ã

OO

����

Ã†oo

OO

Ã+oo

OO

����

θ // // OC

OO

����

Ẽ Ẽ+oo θ // // OC/p

All the rings with tildes ( ˜ ) also have versions without a tilde: one goes from the latter

to the former by making Frobenius invertible and completing. For example, Ẽ is the

completion of the perfection of E.

The three rings in the leftmost column (at least their tilde-free versions) are related

to the theory of (ϕ,ΓK)-modules. The three rings in the rightmost column are related

to p-adic Hodge theory. To go from one theory to the other, one goes from one side

to the other through all the intermediate rings. The best case is when one can work in

the middle column. For example, from top to bottom: semi-stable, crystalline, or finite

height representations. The ring that binds them all is B̃
†
log.
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V.2. List of the rings of power series

Let us review the different rings of power series which occur in this article; let C[r; 1[

be the annulus{z ∈ C, p−1/r ≤ |z|p < 1}. We then have:

E+
F k[[T ]]

A+
F OF [[T ]]

B+
F F ⊗OF

OF [[T ]]

EF k((T ))

AF
̂OF [[T ]][T−1]

BF F ⊗OF
̂OF [[T ]][T−1]

A
†,r
F Laurent series f(T ), convergent on C[r; 1[, and bounded by 1

B
†,r
F Laurent series f(T ), convergent on C[r; 1[, and bounded

B
†,r
rig,F Laurent series f(T ), convergent on C[r; 1[

B
†,r
log,F B

†,r
rig,F [log(T )]

B+
rig,F f(T ) ∈ F [[T ]], f(T ) converges on the open unit disk D[0; 1[

B+
log,F B+

rig,F [log(T )]
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(2002) 81–124.

[CC98] Cherbonnier F., Colmez P.: Représentations p-adiques surconvergentes. Invent. Math.
133 (1998), 581–611.
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locaux; applications. Ann. Sci. École Norm. Sup. 16 (1983), 59–89.
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