
Welcome to Issue 124 of Phaser World

Web Version Unsubscribe

https://madmimi.com/p/9b529c?fe=1&pact=0-0-0-864282bb90492c26bd775b6a23655313fd13d23d
https://go.madmimi.com/opt_out?fe=1&pact=0-0-0-864282bb90492c26bd775b6a23655313fd13d23d&amx=0

Greetings everyone! It's been another awesome week of updates and releases.
There's a huge Dev Log this issue talking all about the new renderer updates in
Phaser 3. Plus some superb games to play too. I literally lost several hours to the
insane Road of Fury while preparing this issue. I really ought to give 'Staff Picks'
for the tutorials, and not just the games, because if I did then the absolutely
incredible Modular Game Worlds tutorial featured this issue would win one! It's a
complete masterclass in how a great tutorial should be written and illustrated, so
please give it a read :)

Until the next issue keep on coding. Drop me a line if you've got any news you'd
like featured by simply replying to this email, messaging me on Slack, Discord or
Twitter.

Emanuele Feronato is easily the most prolific author of
Phaser tutorials on the planet. He has published over
250 of them in the past few years and started writing
Phaser 3 tutorials before most others. As the
framework has evolved, his tutorials have kept pace.
So it's great to see that he's been busy writing a book
and it's now available.

It's 155 pages long, with 28 source code examples,
taking you through the process of creating a full cross
platform game. What's more, buying a copy actively
contributes towards funding my work on Phaser too!

The Latest Games

http://phaser.io/community/slack
http://phaser.io/community/discord
https://twitter.com/phaser_
https://gumroad.com/a/494711923
https://gumroad.com/a/494711923

Game of the Week
Road of Fury - Desert Strike
Take the wheel and unleash hell in this Mad Max inspired shooter. Screens full of
missiles, rockets, drones, bikers and mayhem is a sight to behold.

Staff Pick
Super Starkiller 3000
Welcome to the Glorious Fleet. You are currently entering enemy space. We
recommend you engage combat systems immediately.

Staff Pick
Balloons Path Swipe
Draw lines through the colored balloons to pop them and see if you can complete
the levels in the number of moves allowed.

Disturbance in Sector C
Your ship has been taken over by a virus. It is killing everyone on board. You
must survive.

Tap Tap Golf
Tap Tap Golf is an intuitive, challenging, Arcade Physics Golf game.

http://phaser.io/news/2018/07/road-of-fury-desert-strike
http://phaser.io/news/2018/07/super-starkiller-3000
http://phaser.io/news/2018/07/balloons-path-swipe
http://phaser.io/news/2018/07/disturbance-in-sector-c
http://phaser.io/news/2018/07/tap-tap-golf

What's New?

Modern Phaser 3 Web Dev Tutorial
A comprehensive guide on setting up a Modern Web Development environment
for Phaser 3.

Modular Game Worlds in Phaser 3
An extremely comprehensive, well written and illustrated tutorial on tilemaps in
Phaser 3, written by the developer who built the tilemap API.

Koreez Games Nine Patch Plugin
This Nine Patch plugin easily adds 9-slice scaling support to Phaser 3.

http://phaser.io/news/2018/07/modern-phaser-3-web-dev-tutorial
http://phaser.io/news/2018/07/modular-game-worlds-in-phaser-3
http://phaser.io/news/2018/07/koreez-games-nine-patch-plugin

Free Phaser 2 Course
Free Udemy Course: Making Games With Phaser 2. Learn the fundamentals of
JavaScript and Phaser!

Brand new Phaser 3 Book
The first book on the creation of HTML5 cross platform games using Phaser 3
and other free software.

Phaser 3 Game Development Course
A complete Phaser 3 and JavaScript Game Development package. 9 courses,
119 lessons and over 15 hours of video content. Learn to code and create a huge
portfolio of cross platform games.

Thank you to these awesome Phaser Patrons who joined us recently:

KC Chan
Melissa Sorrells
Ricardo Trindade

http://phaser.io/news/2018/07/free-phaser-2-course
http://phaser.io/news/2018/07/brand-new-phaser-3-book
http://phaser.io/news/2018/06/phaser-3-game-development-course
https://www.patreon.com/photonstorm

Richard Lovejoy

also, thank you EDease for the PayPal donation.

Patreon is a way to contribute towards the Phaser project on a monthly basis.
This money is used entirely to fund development costs and is the only reason
we're able to invest so much time into our work. You can also donate via PayPal.

Backers get forum badges, discounts on plugins and books, and are entitled to
free monthly coding support via Slack or Skype.

Dev Log #124
Welcome to Dev Log 124. This covers all of last weeks Phaser development.
Let's dive right in.

Phaser 3 uses different internal batches for WebGL rendering based on the type
of Game Object you're using. The main one of those is the Texture Tint Pipeline
(TTP) which, as the name implies, is responsible for all Game Objects that use
textures: Sprites, TileSprites, Text objects and so on. It was this pipeline that I
overhauled for the 3.11 release, which you can read about in Dev Log X.

The Flat Tint Pipeline (FTP) is another pipeline, responsible primarily for the
Graphics game object. The name comes from its focus on drawing flat tinted
objects, i.e. single color objects with no texture. The pipeline is full of methods
such as `batchFilledRectangle` and `batchStrokePath`. It's also used by the
Camera system. If a Camera has a background color set, or has a Flash or Fade
effect running on it, then it uses the Flat Tint Pipeline to draw those rectangles to
the viewport.

There are two other pipelines. The Forward Diffuse Light Pipeline (FDLP) is used
whenever a Game Object has light effects enabled on it and renders using a
normal map bound with the objects texture. The final pipeline is the Bitmap Mask
Pipeline (BMP). This pipeline is used specifically for dealing with Bitmap Masks.

http://phaser.io/community/donate

When the Game Objects are being iterated by the renderer if it finds one with a
mask set it will call the `beginMask` method, which in turn sets everything to be
rendered to the mask framebuffer.

There are other steps these two pipelines take that I won't cover in this Dev Log.
Suffice to say that invoking any pipeline causes the WebGL renderer to do two
important things. First, if a pipeline changes, then the old pipeline is flushed out.
Then, once flushed, the new pipeline activates its shaders and gets ready to use
them. Both of these actions are expensive in terms of adding to the total number
of GPU operations being performed and the number of draw calls.

The term 'flush' means to dump all of the data that has been batched to the GPU
and cause a draw call. If you've got say 100 Sprites all using the same texture,
and then the display list has a Graphics object on it, it will 'flush' those 100 Sprites
out. This means all of their data that has built-up in the batch is sent to the GPU
and a draw call is requested.

Imagine a typical RPG game scene with a group of monsters. Each monster is a
textured animated Sprite with a health bar above its head and a name below.
Your first thought would rightly be "Let's use the Graphics Game Object to draw
the health bars!" - after all, it's full of methods like `fillRect` so seems perfect for
the task. You happily proceed to drop in Graphics based health bars but as the
monster count increases, the frame rate takes a dive and the amount of GPU
calls increases exponentially.

The reason is likely obvious to some of you already. As the renderer works its
way through the display list it encounters a monster. First, it finds the Sprite, so it
uses the Texture Tint Pipeline. Then it finds the health bar, so it has to swap to
the Flat Tint Pipeline, causing the Texture Tint Pipeline to flush and the Flat Tint
Pipeline shaders to bind. The moment a pipeline flushes it resets its batch back
to zero. All the benefits of building up the data in the batch are gone. Then it finds
the monsters name as a Bitmap Text object, so it swaps back to the Texture Tint
Pipeline, flushing the Flat Tint one and rebinding its shader. This ping-pong
process happens for every single monster in the Scene.

With very little effort on your part, all the benefits of batching are destroyed and
WebGL will start struggling (sooner on lower-powered devices than others.) The
thing is, you've done nothing wrong. There was no reason you should suspect
that using Graphics objects would cause this, yet cause it, it does.

Or at least, it used to.

After I refactored the Texture Tint Pipeline in 3.11 I knew that I would work on the

Flat Tint Pipeline next. It exhibited lots of the same problems as the TTP did;
namely hundreds of lines of duplicate and sometimes inconsistent code.
Originally, I thought I was going to do the same thing as I did with the TTP, which
was to just tidy-up the internals, consolidate the most common functions and
take advantage of the work I'd done on the Transform Matrix class in 3.11. I
started out by doing exactly this. The pipeline became smaller and more unified,
relying on a core set of internal methods.

Then I took a look at the shader it was using. It was virtually identical to the
shader the Texture Tint Pipeline used. Naturally, I started to think: What if the
same shader could be used for them both? If that was possible then it would
avoid the whole "pipeline swapping, batch flushing, shader binding" issues that
were happening. A few hours of coding later and I had my answer: It worked and
it worked great!

Buoyed by this progress I carried on consolidating the methods in the Flat Tint
Pipeline. It soon became obvious that there were only really a handful of common
methods needed, and one of those was identical to a method already in the
Texture Tint Pipeline. The more I tidied things up, the more I realized we didn't
need the Flat Tint Pipeline at all. So I merged the few remaining methods into the
Texture Tint Pipeline, made one small tweak to the shader and the work was
complete.

The net result was well worth the few days development it took. I removed the
Flat Tint Pipeline entirely. This is over 1000 lines of code gone and a saving of 42
KB. Obviously, some of that code moved to the Texture Tint Pipeline, but only
300 lines of it, yet all of the previous functionality remains intact. File savings
aside, the most important benefit is that mixing textured Game Objects and
Graphics objects on the display list no longer causes any problems. They're all
adding data to the same batch, they're all using the same shader, so it means the
number of WebGL operations and draw calls significantly dropped. Let's have a
look at a demo to see the impact of this change.

If you watch the above demo for a while you'll see the two bands of elves try to
decimate each other. It's simple stuff, only 8 animated sprites, a backdrop, and a
health bar each. Let's profile this running under the current version of Phaser
(3.11):

http://labs.phaser.io/view.html?src=src\game objects\graphics\health bars demo.js&v=124

It's a little tricky to make out if you're looking at the image embeddd in the
newsletter - but the important part is that this simple scene is using no less than
19 draw calls and a staggering 218 WebGL operations.

After all the work I did on the Flat Tint Pipeline, let's reprofile the exact same
scene under Phaser 3.12 Beta 1:

Again, it might be hard to tell from the size of the screen shot, but you should
immediately see there are far less draws going on (the thumbnails along the
bottom) and the list of gl ops is massively smaller:

218 calls down to just 9. 19 draws down to just 3. That's quite some
improvement! You can profile the demo yourself, just use Firefox and it's Canvas
Profiling tool and swap between testing the 3.11 build against the dev build. Try it
on your own games too. It'd be great to see what impact it has there.

Textured Graphics

Nothing in life is truly 'free' though - so what the cost of making this change to the
pipelines? The main one is that the Texture Tint Pipeline had two extra attributes
and a uniform bound to its shader that the Flat Tint one didn't have. So, for
example, when drawing a filled rectangle it's now sending a little more data to the
GPU than before. The benefits of not flushing the batch or swapping shaders far
outweigh this data cost. When I realised this it did make me think "What if we
used that texture though?", and the `Graphics.setTexture` method was born.

You can now set a fill texture that will be used when filling shapes in the Graphics
object. For example, look at the following code:

And this is what it looks like when rendered:

Pretty neat, huh? :) You have control over how the texture and the fill style of the
Graphics object are used. The default is to mix the fill color with the texture, as
seen in the swirly looking triangles in the picture above. You can also choose to
have the color solidly fill in all non-transparent areas of the texture, or have just
the texture applied and no color at all (the triangle in the bottom left). As well as
using textures you can now also set a gradient fill. It works in the same way as
setting a per-vertex tint on a Game Object, with the exact same method
arguments. You can see it in the two triangles on the right of the image.

There are limitations to how the texturing and gradients work. Firstly, this a
WebGL only feature. Secondly, the texture is not a 'fill pattern'. There is no control
over how the texture repeats and it fills the shapes in per triangle or quad. The
downside of both the texture and gradient fills becomes apparent if you've got a
complex path, or try using it on an arc. WebGL works using triangles, so shapes
like circles are actually triangulated during runtime and turned into a series of
triangles. This is handled internally using the library Earcut. Each one of these
triangles is then textured, or filled, on its own. They're not textured as a collective
group, which means you'll get some weird looking results like this:

http://labs.phaser.io/view.html?src=src\game objects\graphics\primitives\triangle fill types.js&v=124

^ probably not what you were expecting, right? I'm happy with this as a limitation
for now. Textures and gradients work really well for triangles and rectangles and
other paths depending on the result you want. It was a relatively free feature to
add as it is part of the shader code anyway, so it made sense to expose it. I'd
rather you had the choice to use it or not, rather than lock it down. After all, I'm
sure you'll come up with some creative ways to use it and it's entirely optional:
You can happily just carry on using normal solid color fills like before.

Shape Game Objects

I've lost count of the number of times people have asked me, or posted to the
forum, about how it doesn't work when they add a geometry object such as a
Rectangle to the display list. I've always been a bit bemused by this. The
Geometry objects clearly live in their own name space and have none of the
properties any of the other Game Objects do, so there's no way they would work
on the display list.

Yet, if you think about it, it makes sense to be able to do this. I had considered
adding a `Shape` Game Object for a while. A combination of a Geometry object
with all the aspects a normal Game Object needs in order to live on the display
list. I had ruled this out because of the way the Flat Tint Pipeline previously
worked. As you've read above though, this pipeline is now fully integrated into the
main one, meaning I can proceed and create a Shape Game Object.

I've not yet decided if this will be in 3.12 or the 3.13 release, but I have sketched
out the details of it, and essentially it'll be any of the Geometry objects already
supported by Phaser combined with a transform, so you can blast it around the
display list like you would any other object. It's a nice side-effect of all the work
I've been doing in the renderer this past month that I can now offer features like
this and know they won't adversely impact the rendering.

Facebook Instant Games Plugin

If you've been keeping an eye on the repo then you'll notice I have started
pushing up all of the Facebook Instant Games plugin code too. At the moment it's
hanging directly off the main Game object, exposed in every Scene, but that is
purely during development. When I'm finished it'll move to its own global plugin
and there will be a new 'Phaser + Instant Games' build available and published,
which will be updated with every release of Phaser.

I'm very pleased with development of the plugin so far. The Instant Games API is
relatively easy to use as is, but there are definitely areas where it could be made
more Phaser friendly, which is exactly what I've been doing.

For example, you can call the method loadPlayerPhoto, provide it with a key,
and it'll automatically go and grab the player photo for you and store it within the
Phaser Texture Manager under the given key, so you can treat it just like any
other asset in your game.

I've also built the Data Manager plugin in, so you can create data values directly
and modify them, and they'll be instantly synced with your Facebook app. You
just have to use the values like normal and the plugin will take care of ensuring
they're saved via the API. The same goes for game stats and session data too.

I also added in really easy-to-use commands like openShare. This will take the
key of an image in the Texture Manager along with some text, and will
automatically open up a Facebook sharing window, pre-populated with your text
and image.

There's lots more coming as well, including really easy ways to handle in-game
purchases, video ads and the display of leaderboards. Facebook have been
excellent to work with on this project and the finished plugin will be available in the
3.12 release. Of course, if you don't want to use it, it won't add anything to your
build size. It's entirely optional. But if you've been thinking about trying out making
a Facebook Instant Game, 3.12 will make it easier than any other framework out
there.

GameHut present this Sega Genesis Megademo style video showcasing lots of
groundbreaking fx used in their 16-bit games.

The Modern Web Podcast is a really neat podcast to listen to. In this slightly older
episode, they talk to the V8 team.

Beyond Skyrim is Skyrim's most ambitious mod ever.

Phaser Releases
Phaser 3.11.0 released July 13th 2018.
Phaser CE 2.11.0 released June 26th 2018.

Please help support Phaser development

Have some news you'd like published? Email support@phaser.io or tweet us.

https://www.youtube.com/watch?v=zEBDwP9DRds
https://www.youtube.com/watch?v=FEbGj6ZrQfg
https://www.youtube.com/watch?v=wB0Xw1LzEYM
https://github.com/photonstorm/phaser/
https://github.com/photonstorm/phaser-ce
https://github.com/photonstorm/phaser#support
mailto:support@phaser.io
https://twitter.com/phaser_

Missed an issue? Check out the Back Issues page.

©2018 Photon Storm Ltd | Unit 4 Old Fleece Chambers, Lydney, GL15 5RA, UK

Preferences Forward

http://phaser.io/community/backissues
mailto:support@phaser.io
https://github.com/photonstorm
http://twitter.com/photonstorm
https://go.madmimi.com/subscription/edit?fe=1&pact=0-0-0-864282bb90492c26bd775b6a23655313fd13d23d&amx=0
https://go.madmimi.com/forward/0-0-0-864282bb90492c26bd775b6a23655313fd13d23d?fe=1&pact=0-0-0-864282bb90492c26bd775b6a23655313fd13d23d&amx=0
https://madmimi.com/?

	The Latest Games
	What's New?
	Dev Log #124
	Textured Graphics
	Shape Game Objects
	Facebook Instant Games Plugin
	Phaser Releases

