
Text Analysis with NLTK Cheatsheet

>>> import nltk
>>> nltk.download()
>>> from nltk.book import *

This step will bring up a window in which you can download ‘All Corpora’

Basics
tokens >>> text1[0:100] - first 101 tokens

>>> text2[5] - fifth token
concordance >>> text3.concordance(‘begat’) - basic keyword-in-context

>>> text1.concordance(‘sea’, lines=100) - show other than default 25 lines
>>> text1.concordance(‘sea’, lines=all) - show all results
>>> text1.concordance(‘sea’, 10, lines=all) - change left and right context width to
10 characters and show all results

similar >>> text3.similar(‘silence’) - finds all words that share a common context
common_contexts >>>text1.common_contexts([‘sea’,’ocean’])

Counting
Count a string
Count a list of tokens
Make and count a list of
unique tokens

>>>len(‘this is a string of text’) – number of characters
>>>len(text1) –number of tokens
>>>len(set(text1)) – notice that set return a list of unique tokens

Count occurrences
Frequency

>>> text1.count(‘heaven’) – how many times does a word occur?
>>>fd = nltk.FreqDist(text1) – creates a new data object that contains information
about word frequency
>>>fd[‘the’] – how many occurences of the word ‘the’
>>>fd.keys() – show the keys in the data object
>>>fd.values() – show the values in the data object
>>>fd.items() – show everything
>>>fd.keys()[0:50] – just show a portion of the info.

Frequency plots >>>fd.plot(50,cumulative=False) – generate a chart of the 50 most frequent words
Other FreqDist functions >>>fd.hapaxes()

>>>fd.freq(‘the’)
Get word lengths
And do FreqDist

>>>lengths = [len(w) for w in text1]
>>> fd = nltk.FreqDist(lengths)

FreqDist as a table >>>fd.tabulate()

Normalizing
De-punctuate
De-uppercaseify (?)

>>>[w for w in text1 if w.isalpha()] – not so much getting rid of punctuation, but
keeping alphabetic characters
>>>[w.lower() for w in text] – make each word in the tokenized list lowercase
>>>[w.lower() for w in text if w.isalpha()] – all in one go

Sort >>>sorted(text1) – careful with this!
Unique words >>>set(text1) – set is oddly named, but very powerful. Leaves you with a list of

only one of each word.
Exclude stopwords Make your own list of word to be excluded:

>>>stopwords = [‘the’,’it’,’she’,’he’]
>>>mynewtext = [w for w in text1 if w not in stopwords]
Or you can also use predefined stopword lists from NLTK:
>>>from nltk.corpus import stopwords
>>>stopwords = stopwords.words(‘english’)
>>> mynewtext = [w for w in text1 if w not in stopwords]

Searching

Dispersion plot >>>text4.dispersion_plot([‘American’,’Liberty’,’Government’])
Find word that end with…
Find words that start with…
Find words that contain…
Combine them together:

>>>[w for w in text4 if w.endswith(‘ness’)]
>>>[w for w in text4 if w.startsswith(‘ness’)]
>>>[w for w in text4 if ‘ee’ in w]
>>>[w for w in text4 if ‘ee’ in w and w.endswith(‘ing’)]

Regular expressions ‘Regular expressions’ is a syntax for describing sequences of characters usually
used to construct search queries. The Python ‘re’ module must first be imported:
>>>import re
>>>[w for w in text1 if re.search('^ab',w)] – ‘Regular expressions’ is too big of a
topic to cover here. Google it!

Chunking

 Collocations are good for getting a quick glimpse of what a text is about
Collocations >>> text4.collocations() - multi-word expressions that commonly co-occur. Notice

that is not necessarily related to the frequency of the words.
>>>text4.collocations(num=100) – alter the number of phrases returned

 Bigrams, Trigrams, and n-grams are useful for comparing texts, particularly for
plagiarism detection and collation

Bi-grams
Tri-grams
n-grams

>>>nltk.bigrams(text4) – returns every string of two words
>>>nltk.trigrams(text4) – return every string of three words
>>>nltk.ngrams(text4, 5)

Tagging

part-of-speech tagging >>>mytext = nltk.word_tokenize(“This is my sentence”)
>>> nltk.pos_tag(mytext)

Working with your own texts:
Open a file for reading

Read the file
Tokenize the text
Convert to NLTK Text object

>>>file = open(‘myfile.txt’) – make sure you are in the correct directory before
starting Python
>>>t = file.read();
>>>tokens = nltk.word_tokenize(t)
>>>text = nltk.Text(tokens)

Quitting Python
Quit >>>quit()

Part-of-Speech Codes

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating
conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass

NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to

UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present
participle
VBN Verb, past participle
VBP Verb, non-3rd person singular
present
VBZ Verb, 3rd person singular
present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Resources

Python for Humanists 1: Why Learn Python?
http://www.rogerwhitson.net/?p=1260

‘Natural Language Processing with Python’ book online
http://www.nltk.org/book/

Commands for altering lists – useful in
creating stopword lists

list.append(x) - Add an item to the end of the list
list.insert(i, x) - Insert an item, i, at position, x.
list.remove(x) - Remove item whose value is x.
list.pop(x) - Remove item numer x from the list.

http://www.rogerwhitson.net/?p=1260
http://www.nltk.org/book/

