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Abstract

NetApp®WAFL®is a transactional file system that uses
the copy-on-write mechanism to support fast write per-
formance and efficient snapshot creation. However,
copy-on-write increases the demand on the file system
to find free blocks quickly; failure to do so may impede
allocations for incoming writes. Efficiency is also im-
portant, because the task may consume CPU and other
resources. In this paper, we describe the evolution (over
more than a decade) of WAFL’s algorithms and data
structures for reclaiming space with minimal impact on
the overall storage appliance performance.

1 Introduction

A file system controls the storage and retrieval of data
and metadata. It typically carves up its persistent stor-
age into addressable blocks and then allocates and frees
these blocks to process client requests. Efficient free
space management is a crucial element of file system per-
formance. Enterprise-class file systems demand consis-
tently high performance for reads and writes. NetApp,
Inc. is a storage and data management company that of-
fers software, systems, and services to manage and store
data, including its proprietary Data ONTAP® operating
system [12]. Data ONTAP implements a proprietary
file system called Write Anywhere File Layout (WAFL)
[11]. WAFL is a transaction-based file system that em-
ploys copy-on-write (COW) mechanisms to achieve fast
write performance and efficient snapshot creation.

Like other modern file systems such as FFS [16], XFS
[22], ZFS [17], ext3, ext4 [15], and brtfs [19], WAFL
tracks allocated and free space for two basic reasons: to
enable the file system to find and allocate free blocks to
accommodate new writes; and to report space usage to
the system administrator to guide purchasing and provi-
sioning decisions. Unlike ext3 and ext4, which write data
in place, WAFL, ZFS, and btrfs never overwrite a block
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containing active data or metadata in place; instead, a
free block is allocated and the modified data or metadata
is written to it. Because the old data is preserved dur-
ing a transaction, the process of creating a snapshot is
simplified. However, each overwrite also obsoletes the
older block (if that block does not belong to any snap-
shot). Such file systems have to track and reclaim these
unneeded blocks at pretty much the same rate as the rate
of incoming writes to ensure sufficient availability of free
space for new allocations.

The metadata that tracks free space can either be per-
sistent or maintained in memory. Storing this metadata
only in memory has the downside that it needs to be re-
built whenever the machine reboots or the file system
is brought online. Therefore, most file systems choose
to persist this metadata. Traditional file systems keep
their free space metadata up to date. Alternatively, a
file system can choose to let its free space metadata go
stale, and periodically scan the entire file system to re-
compute it. Although there is an up-front performance
cost to keeping the metadata up to date, this choice pro-
vides a convenient pay-as-you-go model for free space
reclamation work. An asynchronous recomputation of
free space can avoid the up-front performance cost, but
file system designs need to cope with potentially stale
free space metadata, including how that stale informa-
tion is reported to the administrator. Additionally, scan-
ning the entire file system to recompute free space only
gets more expensive as file system size and activity in-
creases. WAFL has always chosen to keep its free space
metadata up to date, except when it comes to snapshots.
This requires a free space reclamation infrastructure that
can keep up with performance requirements without tak-
ing significant CPU and storage I/O away from servicing
client operations.

In this paper, we present that infrastructure and show
how it satisfies high performance requirements. We de-
scribe how it has evolved to keep up with the increase
in the file system size while accommodating storage effi-
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ciency features like snapshots, clones, deduplication, and
compression. We also explain the exception case; that
is, how free space is reclaimed asynchronously and ef-
ficiently after snapshots are deleted. We do not discuss
how free space is reported to the administrator.

We first present the challenges of free space reclamation
for a modern enterprise file system with diverse require-
ments. We then explore the problems and their corre-
sponding solutions as well as their evolution. We ana-
lyze these solutions by using performance experiments.
Rather than writing a consolidated evaluation section, we
chose to include the relevant evaluation in each section;
we believe that this approach improves the readability
of the paper. Along the way, we present some lessons
learned from building and maintaining a feature-rich file
system that runs on hundreds of thousands of systems
that service a wide range of applications.

2 Background & Motivation

This section presents the challenges of tracking and re-
claiming free space to enterprise-quality file systems,
which are multi-TiB in size and can process gibibytes
per second (GiB/s) worth of operations.

2.1 How Do Blocks Get Freed?

Copy-on-write (COW) file systems never modify data or
metadata in-place. Instead, they write out the the new
version to a free location, leaving the previous version
intact. When combined with a transactional model for
writing out a collection of modifications, the file sys-
tem on the persistent media remains consistent even af-
ter a power loss. A COW model means that an over-
write almost always makes the previous version of the
block unnecessary unless it belongs to a snapshot. Thus,
a 1 GiB/s overwrite workload generates 1 GiB/s worth
of potentially free blocks. This means that a COW file
system has to (1) find and allocate 1 GiB/s worth of free
space for new writes, and (2) modify metadata to record
1 GiB/s worth of freed blocks to keep the file system up
to date. The updates to the metadata also generate new
allocations and potential frees.

When a file is deleted the file system needs to eventu-
ally reclaim all of its blocks. Certain applications create
and delete files in bursts. Reclaiming that space in a pre-
dictable fashion is a significant challenge.

The ability to create and retain snapshots of a file system
is crucial to the life cycle of data management; snapshots
are used for data protection, replication, recovery, and so
on. When snapshots are deleted, all blocks that uniquely
belong to them need to be reclaimed by the file system.

Storage efficiency features like compression and dedu-
plication often run in the background to reduce space
consumption and free blocks.

A file system must choose a rate for reclaiming free
blocks generated from the above activities that satisfies
the customer’s need for accurate reporting (for provision-
ing and purchasing decisions) while minimizing perfor-
mance impact to client operations.

2.2 Lazy Reclamation of Free Space

Traditionally, file systems keep their free space metadata
up to date. For instance, if objects in the file system refer-
ence block b, and if all of these references are dropped in
a transaction to the file system, then the free space meta-
data that is written out by that transaction would indicate
that b is free. In other words, the metadata persisted by a
transaction accurately tracks all the deleted references to
blocks. Thus, the update cost increases directly with the
number of deletes. This provides a pay-as-you-go model
for free space reclamation work.

Alternatively, file systems can choose a consistency
model in which the free space metadata can become stale
but in a conservative fashion. In this model, dropping a
reference becomes very simple; at the end of the transac-
tion from the previous example, the file system metadata
indicates that b is still allocated even though no objects
refer to it. In the background, a periodic scan walks ev-
ery object in the file system to rebuild a map of blocks
referenced by all its objects. This idea has been explored
in a research setting [9] and commercially [24]. Using
standard hard disks with a typical user workload, scan-
ning these metadata blocks can take 2 to 4 seconds per
GiB of user data [9]. Under these assumptions, it would
take more than a day to scan a 50 TiB collection of user
data before any free space could be reclaimed. Modern
storage efficiency techniques like compression, dedupli-
cation, cloning, etc., pack more user data into usable stor-
age, and allow user data blocks to be pointed to by differ-
ent metadata blocks or files. This results in more meta-
data for the same amount of used storage. Thus, even
when hard disks are replaced by faster media like SSDs,
the reclamation scan of a multi-TiB file system would
still take hours to complete. While this may be accept-
able with relatively static datasets, it quickly becomes
untenable under heavy write workloads and with increas-
ing file system sizes. The file system would need to hold
aside a large reserve of free space to hedge against un-
predictable reclamation times. For example, a workload
with an overwrite rate of 200 MiB/s would produce more
than 17.2 TiB of writes over the course of a day. A
file system with 50 TiB of user data would need to keep
around 34% free space just to ensure that overwrites suc-

2 15th USENIX Conference on File and Storage Technologies

USENIX Association



ceed, even if the background scanner is running as fast
as possible.

Therefore, WAFL chooses to pay the continual cost of
keeping its metadata up to date in all cases, except for
snapshots. Section 5 describes how space is reclaimed
after snapshot deletion.

2.3 Cost Of Freeing Blocks In WAFL

This section is a brief introduction to WAFL. The Write
Anywhere File Layout (WAFL) is a UNIX style file sys-
tem with a collection of inodes that represent its files
[11, 8]. The file system is written out as a tree of
blocks rooted at a superblock. Every file system object
in WAFL, including metadata, is a file. A file in WAFL is
a symmetric n-ary tree of 4 KiB blocks, where the level
of the tree is [log, L ZI‘;‘;Ze]. The leaf node (L) holds file
data, the next level node (L;) is an indirect block that
refers to Lys, and so on. WAFL is a COW file system,
where every modified block of a file is written to a new
location on storage. Only the file system superblock is
ever written in place. One advantage of this method is
that new allocations can be collected together and writ-
ten out efficiently.

As buffers and inodes are modified (or dirtied) by client
operations, they are batched together for performance
and crash consistency. Every mutable client operation
is also recorded to a log in nonvolatile memory before it
is acknowledged; the operations in the log are replayed
to recover data in the event of a crash. WAFL collects
the resultant dirty buffers and inodes from hundreds of
thousands of logged operations, and uses a checkpoint
mechanism called a consistency point (CP) to flush them
to persistent media as one single and very large trans-
action. Each CP is an atomic transaction that succeeds
only if all of its state is successfully written to persistent
storage. Updates to in-memory data structures are iso-
lated and targeted for a specific CP to ensure that each
CP represents a consistent and complete state of the file
system. Blocks that are allocated and freed for a CP are
also captured as modifications to the allocation metadata
files that are written out in that same CP. Once the entire
set of new blocks that belong to a CP is persisted to stor-
age, a new file system superblock is atomically written
in-place that references this new file system tree [8, 11].

File systems use different data structures like linked-lists,
bitmaps, B(+) trees, etc., to track free space information,
and incorporate the cost of maintaining such structures
in their designs. Their block allocators either use these
structures directly or build secondary structures to help
find space efficiently. WAFL uses bitmap files as the pri-
mary data structure to track the allocated or free state of
a block. For example, the i block of the file system is

free if the i bit in the activemap file is 0; the block is
allocated if the bit is 1. WAFL uses a 4 KiB block size,
and therefore, a 1 GiB WAFL file system needs a 32 KiB
activemap file, a 1 TiB WAFL file system needs a 32 MiB
one, and so on. Clearly, the metadata for multi-TiB sized
file systems is too large to fit in memory - the WAFL
buffer cache [7] - and needs to be read on-demand from
persistent media. WAFL uses auxiliary structures based
on the bitmaps to speed up block allocation, but that is
outside the scope of this paper.

WAFL allocates blocks that are colocated in the block
number space, which minimize updates to the activemap.
However, frees may be distributed randomly over the
number space, and all such updates to the activemap
have to be written out in the same transaction. The more
random the updates, the larger the number of dirty ac-
tivemap buffers for that CP to process. This prolongs the
transaction, which negatively affects the write through-
put of the file system.

In the rest of this paper, we discuss the techniques that let
WAFL handle the nondeterministic nature of block free
processing in a way that ensures smooth and determinis-
tic system performance.

2.4 Free Space Defragmentation

Reclaiming free space is not necessarily the same as gen-
erating contiguous free space. As a file system ages, the
free space in that file system gets fragmented as random
blocks are freed while others stay allocated or trapped
in snapshots. Contiguous free space is important for
write performance and subsequent sequential read per-
formance.

Various ways exist to defragment free space. File sys-
tems like LFS [20] use techniques like segment cleaning
to reclaim contiguous free space. Some file systems put
aside a large reserve of free space or recommend hold-
ing the space usage below a certain percentage in or-
der to provide acceptable levels of free space contigu-
ity and performance. Some file systems provide tools to
defragment free space. WAFL implements both back-
ground and inline free space defragmentation. However,
techniques for free space defragmentation are outside the
scope of this paper.

3 Free Space: The Basics

Let us first define the consistency model of the ac-
tivemap. As explained in earlier sections, the superblock
points to a self-consistent tree of blocks that define a
WAFL file system. This means that the metadata in the
tree accurately describes the allocated blocks of the tree.
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Definition 1. Every tree of blocks contains an activemap
of bits; its " bit (referred to as a;) is set iff the i block
b; of the file system is in use by that tree.

3.1 Reuse of Freed Blocks

Lemma 1. In a COW file system, a block freed during
transaction CP, can only be allocated for use in a subse-
quent transaction. In other words, it cannot be allocated
to a new block written out by transaction CP,.

Proof. Transaction CP, gets persisted only when its new
superblock is written in-place; a disruption discards all
intermediate state. Recovery is accomplished by start-
ing with the last persistent state, CP,_1, and reapply-
ing changes computed by replaying the operations in the
nonvolatile log. Therefore, CP,_| must remain intact un-
til the CP, is complete. Any free and reuse of a block by
CP, violates this invariant. ||

Thus, when bit g; is cleared in CP,,, the WAFL block allo-
cator cannot use b; until the superblock of CP, has been
written out. This is implemented quite simply by creat-
ing a second copy of the corresponding activemap 4 KiB
buffer when the first bit in it is cleared. The two copies
are called safe and current; the block allocator consults
the former and bits are cleared only in the latter. The
block allocator sets bits in both copies when recording
allocations. The current copy is eventually written out by
the CP and the safe copy is discarded when the CP com-
pletes. Therefore, any activemap buffer dirtied due to a
block free needs twice the memory, and this gets expen-
sive if a large number of random blocks get freed in one
CP. Although this state could be maintained in a more
memory-efficient manner, it would result in longer code-
paths for consulting the activemap. Section 4 describes a
more elegant solution to the random update problem.

3.2 A Cyclic Dependency

The activemap file is a flat self-referential file. Like all
files, it is composed of blocks and those blocks are by
definition also tracked by the activemap. An activemap
block written to b; covers activemap block b; if bit a;
resides in b;.

Definition 2. An activemap chain that starts with a spe-
cific activemap block is defined as the longest list of ac-
tivemap blocks where the (i+ 1) block in the list covers
the i block.

By definition, each activemap block can belong to only
one unique activemap chain. Thus, assuming that no
snapshots are present, when an activemap buffer is dirt-
ied and the subsequent CP (allocates a new block and)

frees the old block corresponding to that activemap
block, it must dirty the next element in the chain. If that
buffer is not yet dirty, this step is repeated. This contin-
ues until a previously dirty activemap buffer is encoun-
tered. Thus, when any block is freed and its activemap bit
is cleared, the entire chain for that activemap block gets
updated. In theory, all blocks of the activemap could be-
long to a single chain; in the worst case, a CP might dirty
and write out the entire activemap file! As mentioned
earlier, the activemap of a multi-TiB file system might
not fit into main memory.

It should be noted that long chains are not easily formed
because WAFL often allocates blocks that are colocated
in the activemap; they are only formed by very unlikely
sequences of allocations and frees. Three solutions have
been built in WAFL to solve this problem.

1. Prefetch the entire chain. WAFL prefetches the en-
tire chain when an activemap buffer is dirtied. Ideally,
the prefetches complete by the time the CP starts allocat-
ing new blocks for the activemap file of the file system;
the CP processes metadata towards its end, so this works
in the right circumstances.

2. Preemptively break chains. A background task pre-
emptively finds each moderately long chain and dirties
its first block; the subsequent CP breaks that chain.

3. Postpone the free of the old block. When a CP pro-
cesses a dirty activemap buffer, it simply moves the ref-
erence to the old block to a new metafile called the over-
flow file. The Lis of the overflow file serve as an append-
log for free activemap blocks, and the CP avoids dirtying
the next element of the chain. Once the CP completes,
the blocks in the overflow file are now really freed; their
corresponding activemap bits are cleared. Thus, an ac-
tivemap chain of n elements gets broken down com-
pletely in at most n consecutive CPs. This ensures con-
sistent CP length without violating Definition 1.

Section 3.4 discusses the evolution of these solutions in
WAFL.

3.3 Processing File Deletion

To process a file deletion operation, WAFL moves the
file from the directory namespace into a hidden names-
pace. However, the space used by the hidden file is not
reclaimed; this does not violate Definition 1. Then, po-
tentially across several CPs, the file gradually shrinks as
WAFL frees the blocks of this file incrementally. Even-
tually, the entire tree of blocks is freed and the inode for
the hidden file reclaimed. The updates to the activemap
are more random if the file has been randomly overwrit-
ten, because its tree will refer to random blocks; we call
these aged files.
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3.4 Evaluation and Some History

It should be clear by now that if a very large number of
random blocks are freed in a single CP it will need to
process a lot of dirty activemap buffers. Long activemap
chains can make a bad situation worse.

WAFL was originally designed in 1994 for file sharing
and user directory workloads over NFS [21] and CIFS
[10], which is characterized by the sequential read and
write of many small files. The maximum file system size
was 28 GiB at the time; the activemaps for these file sys-
tems spanned approximately 200 blocks. The problems
described in this section were not applicable for these
particular workloads with such small quantities of meta-
data.

More than two decades later, WAFL hosts a very wide
range of applications, from file-intensive applications to
virtual machine images and databases over both file-
based protocols like NFS/CIFS and block-based SCSI
protocols [18], which do random I/O to fewer large files.
During this timespan, the sizes of individual disks (hard
drive and solid state) and file systems have exploded. The
maximum file system size supported by WAFL has in-
creased from 28 GiB in 1994 to 16 TiB in 2004, and to
400 TiB in 2014. Today, the activemaps for the largest
WAFL file systems span millions of blocks.

As a result, the problem of random updates to metadata
became acute. Larger and larger fractions of the available
CPU cycles and I/O resources were being consumed for
processing frees. Some applications, like the ones used
for electronic design automation, needed to delete large
numbers of files in bursts without compromising the per-
formance of other workloads on the system. Clearly, this
was not ideal. Section 4 describes the solutions to this
problem.

In 2000, WAFL used two mechanisms in tandem —
prefetching the activemap chain and preemptively break-
ing activemap chains — to avoid the cyclic dependency
problem. By 2010, WAFL supported file systems that
were 100 TiB in size. So, these mechanisms were re-
placed by the overflow file, which works well for file
systems of any size. The overflow file mechanism pro-
vided an interesting technique for postponing deletion
without changing the consistency semantics of the ac-
tivemap. Section 4 presents designs that use this tech-
nique to convert many random updates to the activemap
into fewer and predictable bunched updates.

4 Batching Updates to Metadata

As explained earlier, when a large number of random
blocks are freed in a CP, they can generate many meta-

Tree Loq File Layout
<--- Tree Log L1 Space --->»

T

BN;
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[
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Figure 1: Structure of the TLog.

data updates. If these updates can be accumulated, they
can be sorted into more efficient metadata updates. And,
if this work can be done over the course of multiple CPs,
the cost can be spread out over time in a predictable fash-
ion.

Much like the overflow file, the two structures described
in this section postpone the freeing of blocks by taking
ownership of them; the blocks are referenced by the L;s
of these files, which preserves Definition 1. We call this
delete logging. File system consistency checking treats
these structures like regular files. Sorting occurs by (par-
tially) ordering the references by block number across
the L;s of these files. Once they have been sufficiently
sorted, the references to the blocks are punched out from
the Lis, and the corresponding activemap bits cleared in
a batched fashion.

4.1 The Tree Log

The first manifestation of a delete logging mechanism in
WAFL was the Tree Log (or TLog). As Figure 1 shows,
the Ls (which reference the blocks that the TLog owns)
of the TLog form the nodes of a binary tree, where each
node contains block references lying in a fixed range of
the block number space. A left child covers the left half
of its parent’s range, and a right child covers the right
half.

A delete-logged block is inserted into the root node. If
the root node fills up, its contents are pushed to the chil-
dren nodes based on the range they cover. If either child
fills up, the process cascades down the tree. If a leaf
node of the tree fills up, all the blocks in it are punched
out and the activemap is updated. The size of the TLog
determines the range covered by a leaf node. For ex-
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ample, if a file system has n blocks and each activemap
block covers 32K blocks, a TLog sized to have n/32K
leaf nodes ensures that each leaf node covers a single ac-
tivemap block. In typical deployments, a TLog sized to
approximately 1.5% of the file system size provides sig-
nificant performance improvement; each leaf node cov-
ers 4 to 6 activemap blocks.

The TLog structure had one significant problem: there
was no easy way to tell how many nodes would be up-
dated due to an insertion. That was a function of which
part of the binary tree was affected by an insertion and
the fullness of the nodes in that part of the tree. In ex-
treme cases, a small number of insertions would sud-
denly cause a large number of nodes to be updated,
which would result in the CP needing to process many
more dirty TLog buffers than if the frees had not been
delete-logged. To alleviate these worst-case events, the
infrastructure would prefetch the activemap buffers (as it
would if delete logging were off), and when it detected
one of these bad situations it would stop delete-logging
and free directly instead. In practice, this situation was
very rare and not reliably created in our testing. How-
ever, after it was seen in the field we decided to gradually
move away from the TLog structure to a new Batched
Free Log (or BFLog) solution.

4.2 The Batched Free Log

Instead of embedding a sorting data structure in its L;s,
the BFLog adopts a different approach. It accumulates
delete-logged blocks and, after some threshold, it sorts
and frees them.

This can be achieved in several ways. In WAFL, it is
accomplished by using three files: (a) the active log, (b)
the inactive log, and (c) the sorted log. A block is delete-
logged by appending to an L; of the active log. Once
the active log fills to a certain threshold, it becomes the
inactive log and it is replaced by an empty active log.
The delete-logged blocks in the inactive log are sorted
across all of its L;s. This is accomplished in two steps:
sorting the blocks within a fixed number of L;s at a time,
followed by a merge-sort, which also moves the blocks to
the sorted log. Once the sorted log is ready, its blocks are
punched out and the activemap is updated in a bunched
fashion. It should be noted that all processing of BFLog
data structures is localized or sequential in nature, which
is important for its performance.

Once the BFLog reaches steady-state, it becomes possi-
ble to pace its operations such that, on the average, each
append of a new block results in one block being sorted
and/or one block being merge-sorted and/or one block
being punched out of the sorted log. This is in stark
contrast to the unpredictability of the TLog, where the

sorting was strictly controlled by the contents of the bi-
nary tree. Rigorous experimentation showed that sizing
the BFLog (all three files together) to 0.5% of the file
system provided sufficient performance boost.

4.3 Logging in a Reference Counted File
System

Several storage efficiency features of WAFL depend on
the property that a block can be shared by multiple files
or within the same file. The extra references to a block
are tracked by a refcount file, which is a flat file of inte-
gers, one per block. When a multiply referenced block
is freed, the refcount file is updated, and because the file
is several times less dense than the activemap, the prob-
lem caused by random frees of blocks increases mani-
fold. The now ubiquitous deduplication feature results
in highly reference counted file systems, which makes
delete-logging even more critical. The delete-logging of
a multiply referenced block is no different from that of a
regular block; when punching out the block the refcount
file is updated for all but the last reference.

4.4 Evaluation

Although we have anecdotal data from a few customer
systems that show the unpredictable behavior of the
TLog, we do not have reproducible experiments to
demonstrate it. Because the TLog has now been replaced
by the BFLog, we present BFLog data only to show the
merits of delete-logging.

We first studied the benefits to random overwrite work-
loads. A set of LUNs [23] was configured and several
clients were used to generate heavy random 8 KiB over-
write traffic to the LUNs; this simulates database/OLTP
writes. Although the benefit of the BFLog was a bit
muted on high-end platforms (we observed a roughly 5%
to 10% improvement in throughput), they were higher on
mid-range platforms. Figure 2 shows results on a mid-
range system with 12 cores (Intel Westmere) and 98 GiB
of DRAM.

Without delete logging, our throughput plateaued at ap-
proximately 60k IOPs, whereas with delete logging we
were able to continue to about 70k IOPs; this repre-
sents approximately a 17% improvement in throughput.
In addition to a throughput improvement, we also ob-
served anywhere from a 34% to 48% improvement in la-
tency across most load points. These improvements were
achieved via a 65% reduction in our metadata overhead,
because the BFLog was able to batch and coalesce a large
number of updates to metadata blocks.

The SPEC SFS [4] is not capable of generating the sort
of file deletion load that some of our customers do. We
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fashioned a custom benchmark that measures file dele-
tion throughput as the rate at which an otherwise idle
system reclaims space after a number of large files to-
talling 1 TiB get deleted in short order.

Figure 3 shows the results of the delete throughput test
with and without BFLog on an all-SSD high-end system
with 20 cores (Intel Ivy Bridge) and 128 GiB of DRAM.
This was repeated with files that had been significantly
aged by randomly overwriting them for two hours. The
blocks freed from an aged file are more randomly dis-
tributed over the number space. The baseline runs (with-
out the BFLog) show that 2 hours of aging results in a
40% drop in delete throughput.

Although the BFLog improved delete throughput by a
modest 6% in the unaged data set, it improved delete
throughput by over 60% in the aged one. It shrunk the
difference between the aged and unaged results from
40% to 6%, which shows that it offset the randomness
in the blocks caused by aging. It should be noted that
using solid state undersells the improvement. The ben-
efits are much higher on a system with hard drives, be-
cause random IOs to load the activemap blocks result in
a much bigger difference without delete-logging. Addi-

tionally, if this were a highly deduplicated dataset (which
it wasn’t) the improvement would have been much larger
because the BFLog would batch the updates to the less
dense refcount file. This result shows the primary benefit
of delete logging, i.e., reordering random metadata found
in aged file systems so that it appears to be sequential, as
found in unaged file systems.

Without delete-logging, increasing delete throughput re-
quires forcing deletes to run faster, which in turn results
in more random reads of activemap blocks and more
work for the CP to write them out. This takes valu-
able I/O and CPU resources away from client workloads.
Delete-logging allows us to increase delete throughtput
without hurting client workloads.

S Snapshots and Free Space

Snapshots are a crucial building block for many data
management features. A file system snapshot is a point-
in-time version of the entire file system. In WAFL, it
is created quite simply by storing an extra copy of a
CP’s superblock. None of the blocks in the snapshot can
be freed until the snapshot is deleted. This section ex-
plains how free space reclamation protects and reclaims
the blocks held in snapshots.

We introduce a new term, volume, which includes the
current file system and all of its snapshots. The current
file system is the active part of the volume that services
all client operations whose modifications are being writ-
ten out by the CP mechanism. Snapshots are denoted by
S;, and we use Sy to denote the current file system.

Clearly, the activemap in Sy cannot really tell us which
blocks are trapped in a given snapshot. Initially the ac-
tivemap of Sy is literally the same tree of blocks as the
activemap of a new snapshot, S, but it quickly diverges
due to changes in Sp. The blocks of S; are already
recorded in its activemap (called snapmap), which re-
mains unchanged due to the COW nature of the file sys-
tem. Therefore, a block used by S can get freed in Sy,
and then be marked as free in the activemap.

Lemma 2. The set of blocks pointed to by a volume can
be represented by the bit-OR of its activemap together
with the snapmaps of all its snapshots.

Proof. Since a snapshot is simply a tree of blocks
pointed to by a CP’s superblock, based on Definition 1,
each snapmap accurately captures the set of blocks
pointed to by that tree. Therefore, the bit-OR of the ac-
tivemap with all the snapmaps accurately represents the
set of blocks pointed to by the volume. |
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5.1 The Summary Map

A block in the volume is free iff it is free in the activemap
and in all the snapmaps. The latter condition needs more
IO and CPU to ascertain. There are several options for
solving this problem: a file that stores a bitmask per
block with one bit per snapshot, a B+tree that captures
free/allocated blocks in each snapshot in some search-
able but condensed fashion, etc. WAFL uses a bitmap
file called the summary map, which is a bit-OR of the
snapmaps of all snapshots in the volume. This simple
choice allows for inexpensive space tracking.

Space reclamation after a snapshot deletion happens
lazily but, as this section shows, efficiently. When a
snapshot is deleted, some bits in the summary need to
be cleared, and doing that atomically (as part of a single
CP) is impractical. There are other reasons for the sum-
mary to become instantaneously stale, but in a conserva-
tive way. WAFL supports a feature called volume snapre-
store, in which a volume can jump backwards in time to
an older snapshot, say ;. This is accomplished rather
trivially by taking the superblock of S; and writing it out
as the volume’s superblock in the next CP. The summary
map at the time of S;’s creation had been frozen, and after
the snaprestore, it becomes the summary of So. However,
this summary can include blocks that belong to snapshots
older than §; that have since been deleted.

5.2 Snapshot Creation

When a snapshot is created, the summary map has not
yet been updated with the new snapshot’s blocks. A
background snap create scan now walks and bit-ORs the
snapmap into the summary. It should be noted that this
scan is idempotent, and so it can safely restart from the
beginning after a reboot.

Theorem 1. Assuming no deleted snapshots, the set of
blocks pointed to by a volume is always guaranteed to be
equal to the bit-OR of the activemap and summary even
while the snap create scan is in progress.

Proof. Although the summary does not necessarily in-
clude the blocks of a newly created snapshot, S, this
does not violate Lemma 2, because all blocks that belong
to S are also recorded in the activemap at the instant of
S1’s creation. To maintain the invariant, if a block is to
be freed in the activemap and if it is also shared by S, it
must be recorded in the summary. In other words, if the
snap create scan hasn’t gotten to that summary bit yet, it
is done on demand. This stops once the snap create scan
has completed its task. |

There are few more interesting cases here. The newly
created snapshot S| could get deleted before the scan is

done, but let us delay that discussion till Section 5.4. A
new snapshot S, could get created before S;’s scan is
complete. In that case, the scan restarts but switches to
bit-OR’ing S»’s snapmap into the summary. There is no
longer a need to process S1’s snapmap because all blocks
that belong to S; either belong to S, or were freed before
S> was created. Section 5.5 shows how this consultation
as well as the entire snap create scan can be eliminated!

5.3 Another Cyclic Dependency

Another cyclic dependency comes into play while the
snap create scan is in progress. Suppose that snapshot
S gets created and so the activemap is identical to S;’s
snapmap. Now, b; gets freed and so g; is cleared and
the i bit in the summary is set by the snap create on-
demand work. This results in a dirty summary buffer,
which means that the old version of that summary block
bj has to be freed. So a; gets cleared, which in turn sets
the j’h summary bit, and so on. Thus, although unlikely,
long activemap-summary chains can get created, which
is twice as bad as the activemap chain problem. One cus-
tomer system hit this problem on an aged volume of size
80 TiB. The CP uses the overflow file to postpone the free
of the old summary block and thereby avoids dirtying the
next activemap in the chain.

5.4 Snapshot Deletion

When a snapshot is removed from the namespace its
blocks may or may not be reflected in the summary map.
A background snap delete scan walks the summary to
remove blocks that belong exclusively to that snapshot.
This scan is also idempotent and can be safely restarted
at any time.

Theorem 2. Independent of the status of the snap create
and delete scans, the set of blocks pointed to by a vol-
ume is always equal to or a subset of the bit-OR of the
activemap and summary map.

Proof. Theorem 1 proved that the bit-OR is equal to the
set of blocks pointed to by a volume independent of the
status of the create scan. While the snap delete scan is
in progress, the summary is guaranteed to include all the
bits that are set in the deleting snapshot’s snapmap unless
the snapshot got deleted before its corresponding snap
create scan was able to completely bit-OR its snapmap
into the summary. Then, either the block still lives in Sp,
in which case its activemap bit would be set, or it has
since been freed, in which case, there’s no need for the
summary to protect it if it was uniquely owned by the
deleted snapshot. ]
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Lemma 3. Let all snapshots in a volume (including Sy)
be sorted in temporal order of creation. For any block
b; in the volume, the bit string created by concatenating
the i'" bit of all the snapmaps — in the case of So, the
activemap — in that temporal order will yield a 0*1*0*
pattern. This is called the 010 snapshot property.

Proof. Once allocated in Sy, a block can belong to sub-
sequent snapshots until it gets freed in Syp. Once freed
in Sp, it is unavailable for allocation until the activemap
and all snapmaps say it is free. So, it cannot belong to
subsequent snapshots until all snapshots that it belongs
to have been deleted. Hence, the bit pattern. ||

There are two ways for the delete scan to update the sum-
mary, one of which uses the 010 property.

1. Deletion by Subtraction (or dbys). This scan uses
the 010 property to process the deletion of S;. If a block is
used by S; but not by either of its temporal neighbor snap-
shots, then it exclusively belongs to S;. In other words,
the scan clears a summary bit if the bit in S;’s snapmap is
set but the bits in the neighbor snapshots’ snapmaps are
not. The youngest snapshot has no younger neighbor and
the oldest snapshot has no older neighbor in this scheme.
Suppose that a second snapshot S; is deleted while the
dbys scan is in progress. A separate scan can process that
S, and because the result is idempotent, both scans can
work independently as long as they never concurrently
update the same bit. If S; happens to be §;’s neighbor,
then the same scan replaces S; with the next neighbor
and continues onwards. Now the scan is updating the
summary on behalf of both deletions. When the scan hits
the last bit it completes S;’s deletion, but it wraps around
and continues processing S;’s deletion until it gets back
to where it was when S; was deleted.

2. Deletion by Addition (or dbya). This scan rebuilds
the summary by simply bit-OR’ing the snapmaps of all
remaining snapshots. If a second snapshot gets deleted
while the scan is in progress, the scan can be restarted
for the remaining snapshots. In practice, it is better for
the scan to continue down the bitmap space to leverage
the readaheads of the snapmaps and summary that have
already been issued. When the scan gets to the last bit in
the summary, it then wraps around and continues until it
gets back to where the second deletion occurred.

As mentioned earlier, both modes of the delete scan can
restart after a reboot without affecting correctness. Sec-
tion 5.2 mentioned one interesting case. What happens if
the youngest snapshot S is deleted before its snap create
scan is complete? Suppose that S, is the next youngest
snapshot. It is possible that S; got created while the cre-
ate scan for S, was still in progress, in which case, the

scan had switched to using S;’s snapmap. Therefore, af-
ter the deletion of S, the create scan needs to redo S».

5.5 Evaluation

The CPU and I/O requirement for all these scans is some-
what straightforward; they need to load the necessary
snapmap and summary blocks, and bit manipulation is
not too expensive. Since the scans walk the block num-
ber space linearly, the necessary blocks can be easily
prefetched in time. In theory, a given scan can be par-
allelized at any granularity because each bit of the sum-
mary is independent of the other. In practice, our MP
programming model [6] allows for ranges of the sum-
mary to be updated concurrently. In most cases, the
delete scans can be throttled to run at slow speeds so
they don’t interfere with client traffic; even on loaded
systems, a scan of a 1 TiB sized volume (with 8K bitmap
blocks) usually completes in a few minutes. In rare cases,
snapshots are deleted to create space in the volume, and
the scans need to run fast. We do not present the infras-
tructure for pacing and throttling scans; that is a larger
topic.

5.5.1 Snapshot Creation

This scan can be completely eliminated thanks to The-
orem 1. As explained earlier, a snapmap block of the
youngest snapshot S is the same exact block as the ac-
tivemap block until the activemap diverges from it; and
that happens when it first gets dirtied after the CP in
which S| was created. Section 5.2 describes how the
scan’s work is done on-demand if an activemap bit is
cleared before the scan gets to it. If this work is done
instead on the first modification of the activemap block
after S is created, then the scan is unnecessary. This re-
quires a last-modify timestamp on each activemap block
that can be compared with S;’s creation time. WAFL in-
crements a CP count and stores it in the superblock, and
also stores it as a last-modify timestamp in the header in-
formation of each metadata block. This CP count serves
as the timestamp needed to eliminate the scan.

It should be noted that the on-demand create scan work
cannot be paced or throttled. It is a function of when
and how bits getting cleared in the activemap. Section 4
describes how the BFLog paces the clearing of bits in
the activemap in a batched manner, which indirectly also
paces the on-demand create scan work.

5.5.2 Snapshot Deletion

The performance trade-off between dbys and dbya
modes of snapshot deletion is obvious. The dbys scan
loads and processes blocks from three snapmaps and the
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summary for a deletion. When multiple snapshots are
deleted, their number and temporal pattern defines the
number of neighbor snapmaps loaded by the scan. On
the other hand, the dbya scan loads the snapmaps of all
remaining snapshots. The more efficient mode can be
chosen based on the number of snapmaps needed by the
scan. If more snapshots are deleted while the dbys scan
is in progress, it can be aborted and a dbya scan can be
kicked off. This switch is safe because the scans are
idempotent. It is not possible to switch from dbya to
dbys mode for reasons explained below.

The dbys mode clearly needs the deleted snapshot to be
preserved (in a hidden namespace) to the extent that its
snapmap can be loaded and consulted until the scan is
complete. In constrast, the dbya mode does not need the
deleted snapshots. Usually, a block is considered free if it
is marked free in the activemap and summary. However,
this invariant is violated by the dbys mode. Suppose that
Sy is deleted and the dbys scan clears the i’ bit of the
summary block. It is possible that the block b; in the vol-
ume happens to be a snapmap block of Sy, or an ancestor
of a snapmap block in S;’s tree of blocks. If the block
allocator assumes b; to be free and writes new content
to it, then the dbys scan may be rendered infeasible, or
worse, corrupt the summary map. Unless the file system
has some convenient way to tell whether any given block
of §1 is needed for the dbys scan, it is easier to protect all
of S;’s blocks until the scan is done. This leads to:

Theorem 3. While a dbys scan is in progress to delete
one or more snapshots, if the i'" bit of both the activemap
and summary is 0, then block b; is free iff the i'"* bit in the
snapmap of those snapshots is also 0.

This also means that the computation for available space
in the volume has to incorporate blocks that belong to
deleting snapshots while the dbys scan is in progress.
This additional complexity requires more persistent data
structures to solve. Therefore, dbya is chosen sometimes
even when the dbys mode looks attractive from the stand
point of performance. One such situation is when the
volume is running low on space. Another is when the
010 snapshot property is not true; for example, WAFL al-
lows for a file (and its blocks) to be directly restored into
So from a not-so-recent snapshot. This is done by sim-
ply pointing the file directly to the blocks in the snapshot
instead of copying them, which violates the 010 prop-
erty. Such events are timestamped so that the system can
deduce when the property is restored.

6 FlexVol Virtualization Layer

WAFL uses a virtualization technique that allows hosting
hundreds or more volumes (NetApp FlexVol®) within the

same collection of physical storage media called an ag-
gregate. This has been key to providing several new ca-
pabilities such as Flex Vol cloning, replication, thin provi-
sioning, etc. Section 3 of [8] explains this layering: Each
aggregate is a WAFL volume with blocks called physi-
cal volume block numbers (or pvbns) that map directly to
blocks on persistent storage, and each FlexVol is a WAFL
volume with blocks called virtual volume block numbers
(or vvbns) that are actually just blocks in a file in the ag-
gregate WAFL volume; the file is called the container
file for the FlexVol. In other words, the vvbn of a block
in a FlexVol is the same as its block offset in the corre-
sponding container file. The interested reader is strongly
encouraged to read [8] for diagrams and details.

Each layer maintains bitmaps to track its free blocks and
each layer supports snapshots. In other words, a Flex Vol
uses its activemap, summary map, BFLog, etc., to track
allocated and free vvbns, and an aggregate uses another
set of this metadata to track pvbns. After a vvbn is com-
pletely freed in the FlexVol, it is necessary to effectively
punch out the physical block at the appropriate L; off-
set of the container file before the corresponding pvbn
can be marked free in the aggregate’s activemap. It is
crucial to do this soon after the vvbn gets freed, so that
all FlexVols can share the available free space in the ag-
gregate without restriction. However, this means that
freeing a random vvbn requires loading and updating a
random container file L;; this operation is expensive be-
cause the L is several times less dense than a bitmap.
This motivated an important performance optimization
in WAFL even before the structures in Section 4 were
implemented. WAFL delays the free from the container
in order to batch them. WAFL maintains a count of the
number of delayed-free blocks in a container file per 32K
consecutive vvbns, which is written to a per FlexVol file
in the aggregate.

There are soft limits on the total number of delayed frees
so that the file system can absorb large bursts of de-
layed frees getting created. Deletion of snapshots that
exclusively own many blocks, a volume snaprestore (de-
scribed in Section 5.1), or other events can generate such
bursts of delayed-frees. When these limits are exceeded,
the system tries to process that backlog with some ur-
gency. Because the BFLog batches frees in the ac-
tivemap, it can choose to do the “container-punch” work
if there are sufficient delayed-frees in that range.

6.1 Evaluation

We first show the importance of the delayed-free op-
timization. A benchmark was built in house with the
read/write mix that models the query and update oper-
ations of an OLTP/benchmark application. It was built

10 15th USENIX Conference on File and Storage Technologies

USENIX Association



132 45
:g 130 __,—7 40
£ 128 == 35 §
] -
2 - e £
512 I / .................... 30
< 124 - 25 £
= .- 2
= / - g
122 ——= 20 3
= 120 /_ - -+ df off tput 158
ﬂJ . - [
3 - ——df on tput 2
£ 118 102
5 == df off latency
< 116 = df on latency 5
114 0

120 122 124 126 128 130
Requested IOPs (in thousands)

Figure 4: Benefit of delaying container frees: IOPs (left side
y-axis) and latency (right side y-axis) versus input load with
and without delayed frees (df) using an OLTP/database work-
load on a high-end all-SSD system with 20 cores and 128 GiB
DRAM.

to be very similar to the Storage Performance Council-1
(SPC-1) benchmark [5]. The benchmark was run on a
high-end all-SSD system with 20 Intel Ivy Bridge cores
and 128 GiB of DRAM, with and without the delayed-
free optimization. Figure 4 shows the achieved IOPS (on
the left y-axis) and latency (on the right y-axis). Only
a small range of the input load is shown near the data
points where the achieved load hits saturation and flat-
tens out on the system without the optimization. The
corresponding normalized latencies are 60% lower with
delayed-frees. This shows that random container L;
reads and updates hurt performance even on a high-end
system with SSDs.

The primary source of benefit in the latencies we ob-
served came from the greater than 60% reduction of
metadata overhead with delayed-frees enabled. As a re-
sult, the CPs were able to give up more CPU cycles that
could be used to service user requests at a higher rate.

Next, we study the aforementioned BFLog optimiza-
tion. When the BFLog frees vvbns in the activemap,
it consults the delayed-free count for that range. These
delayed-frees could have accumulated from previously
run BFLog or snap delete scan activity. If the total
count is higher than an empirically derived threshold, the
BFLog does the “container-punch” work, and appends
the corresponding pvbns in the aggregate’s BFLog ac-
tive log. This is an incremental cost to the BFLog since
it already had the FlexVol bitmaps loaded for freeing
vvbns. Without the optimization, a separate background
task searches for and processes these delayed-frees by
loading all the FlexVol and container metadata, and that
is more expensive and intrusive to client workloads.

To measure this, we ran test that randomly overwrote the
data set with 32 KiB sized I/Os while FlexVol snapshots
that exclusively owned a large number of blocks were

[N] w » u

Write IOPs (thousands)

-

container blocs punched (millions)

o
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# |OPs w reg #cont blks punched  Opt #cont blks punched
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Figure 5: Benefit of the BFLog punching out the container
blocks based on delayed-free counts on a low-end system.

deleted. This was done on a low-end system with 4 Intel
Wolfdale cores and 20 GiB DRAM, which is more sus-
ceptible to this problem. Figure 5 shows the results. The
client write load saw a 26% increase in throughput be-
cause, as the right-hand bar graphs show, the BFLog was
able to perform the “container-punch” work much more
efficiently; about 84% of it was done in the optimized
mode.

7 Related Work

Originally FFS [16] started by using a linked list to main-
tain free blocks in the file system, which simplified the
process of freeing blocks. The allocator picked up en-
tries from this free list for allocation. However, once
multiple files were created and removed, this unsorted
free list grew in size, which led to random blocks being
allocated by the allocator. This resulted in slower se-
quential reads. The designers then replaced the free list
with a bitmap that identifies free blocks in a group, which
resulted in better allocation but increased the cost of up-
dating bitmaps for processing random frees. Similarly
ext4 [3] also uses bitmaps for tracking free space. To
make the allocation faster, it builds an in-memory buddy
cache that maintains the status of clusters of 2" blocks as
free or allocated. Thus, ext4 also suffers from the prob-
lem of random frees like FFS.

The XFS [22] file system tracks free space by using two
B+ trees. One B+ tree tracks space by block number
and the second one by the size of the free space block.
This scheme allows XFS to quickly find free space near a
given block and therefore an extent of free blocks. When
searching large regions of free space, a B+ tree performs
better than a linear scan of a bitmap, and the second B+
tree can readily provide that information. Unfortunately,
B+ trees are expensive to maintain in the face of random
frees. Moreover, an insert or delete into a B+ tree can end
up in a split or merge operation, which increases the cost
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of a free operation. Btrfs [19] also maintains a B-tree
in the form of an extent allocation tree to track allocated
and free extents that serves as a persistent free space map
for allocation. This looks similar to what XFS does for
free space management and thus it also suffers when per-
forming random sub-extent sized frees.

ZFS [2] tries to handle the problem of random frees by
maintaining a log of allocations and frees per metaslab
called a Space Map. As the random frees are appended
to the log, it becomes extremely efficient because it is
not necessary to load random portions of the bitmaps for
updates. For allocation, the Space Map is loaded and the
log entries are replayed to build an AVL tree of free space
sorted by offset. ZFS compacts the persistent Space Map
as needed by looking at the in-memory AVL tree. On
a fairly aged file system with very little free space, the
allocator has to load a lot of Space Map metadata to build
this AVL tree. ZFS tries to amortize the cost of frees by
logging them, but this forces the allocator to pay the cost
of constructing the AVL tree.

There is clearly a trade-off that a file system can make in
terms of when and how it processes a free that has been
logged. Additionally, for the purposes of speeding up
block allocation, file systems can choose to build com-
plex data structures for tracking free space. However,
that comes with the cost of maintaining those structures
when blocks are freed, especially when they are random
in their number space. Production-level file systems are
usually built with specific goals in terms of workloads
and features, and design principles are chosen to further
those goals. They typically use a mix of persistent and in-
memory free space tracking data structures that facilitate
fast allocation assuming a certain buffer of free space,
which lets the free space reclamation infrastructure play
catch-up while the allocator looks for free blocks.

The WAFL block reclamation infrastructure stands apart
because it maintains high and consistent performance
while still supporting the various features of WAFL :
snapshots, compression, deduplication (inline and back-
ground), Flex Vol cloning, thin provisioning, file cloning,
volume snaprestore, replication, single file restore, sin-
gle file move on demand, etc. Unfortunately, the free
space infrastructure interactions with many of these fea-
tures are too lengthy to be presented here. WAFL has
built-in data integrity mechanisms that protect memory-
resident file system structures against scribbles and logic
bugs [14]. The batching efficiency of the BFLog plays an
important role in ensuring that these mechanisms work
with negligible performance overhead.

The ability to absorb a high rate of reference count in-
crements is critical to features like inline deduplication
and rapid file cloning. One approach to batching ref-

count updates is an increment-decrement log; instead of
just batching refcount decrements due to deletes, this log
also collects increments created by new block sharing.
This approach is especially useful in hierarchically ref-
erence counted file systems [19] since a single overwrite
can generate hundreds or thousands of reference count
updates [9]. This approach was explored in WAFL to
support instantaneous cloning. In a hierarchically refer-
ence counted file system, where reference count updates
are batched by an increment-decrement log, both the cre-
ation of and writes to cloned files can be performed effi-
ciently [13]. By batching these updates, the decrements
to block reference counts from writes can be canceled
out by the increments of a clone create in the increment-
decrement log without ever updating the persistent ref-
count file. However, there is also a need to query the
log for pending increments or decrements to a particular
block. Two implementations of B-trees that satisfy fast
insertions and queries are presented in [1]. The queries
can be satisfied in logarithmic time, and the insertions
can be accomplished with guaranteed amortized updates
to the B-trees.

8 Conclusion

The WAFL file system has evolved over more than
two decades as technology trends have resulted in big-
ger and faster hardware, and larger file systems. It
has also transformed from handling user directory style
NFS/CIFS workloads to servicing a very wide range
of SAN and NAS applications. It has been deployed
to run in different configurations: purpose built plat-
forms with all combinations of hard and solid state disks,
software-defined solutions, and even NetApp Cloud On-
tap®instances on AWS. The free space reclamation in-
frastructure has evolved to work well across all these
permutations, providing a rich set of data management
features and consistently high performance. Even though
the pattern and rate of frees can be very random, we show
that the proposed techniques allow the free space recla-
mation to keep up and behave deterministically without
impacting the rest of the system. We describe elegant and
efficient methods to track the space allocated to snap-
shots. Finally, we show how the infrastructure works
across the extra layer of Flex Vol virtualization.
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