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Administrative 
• Homework 2 posted, due September 10 before class 

- Use the “handin” program on the CADE machines   
- Use the following command:  

      “handin cs4961 hw2 <prob1file>” 
• Mailing list set up: cs4961@list.eng.utah.edu 
• Sriram office hours:  

- MEB 3115, Mondays and Wednesdays, 2-3 PM 
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Homework 2 
Problem 1 (#10 in text on p. 111): 
The Red/Blue computation simulates two interactive flows.  

An n x n board is initialized so cells have one of three 
colors: red, white, and blue, where white is empty, red 
moves right, and blue moves down.  Colors wrap around on 
the opposite side when reaching the edge.   

In the first half step of an iteration, any red color can 
move right one cell if the cell to the right is unoccupied 
(white).  On the second half step, any blue color can move 
down one cell if the cell below it is unoccupied. The case 
where red vacates a cell (first half) and blue moves into it 
(second half) is okay.  

Viewing the board as overlaid with t x t tiles (where t 
divides n evenly), the computation terminates if any tile’s 
colored squares are more than c% one color.  Use Peril-L 
to write a solution to the Red/Blue computation. 
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Homework 2, cont. 
Problem 2: 
For the following task graphs, 
determine the following: 

(1)  Maximum degree of 
concurrency. 
(2)  Critical path length. 
(3)  Maximum achievable 
speedup over one process 
assuming an arbitrarily large 
number of processes is 
available. 
(4)  The minimum number of 
processes needed to obtain 
the maximum possible 
speedup. 
(5)  The maximum achievable 
speedup if the number of 
processes is limited to (a) 2 
and (b) 8. 
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Today’s Lecture 
• Parallel Scan and Peril-L 
• Task Dependence Graphs 
• Task Parallel Algorithm Models 
• Introduction to SIMD for multimedia extensions 

(SSE-3 and Altivec) 
• Sources for this lecture: 

-  Larry Snyder, 
http://www.cs.washington.edu/education/courses/524/08wi/ 

-  Grama et al., Introduction to Parallel Computing,  
 http://www.cs.umn.edu/~karypis/parbook 

-  JaewookShin        
http://www-unix.mcs.anl.gov/~jaewook/slides/vectorization- 
uchicago.ppt  

-  Some of the above from “Exploiting Superword Level Parallelism 
with Multimedia Instruction Sets”, Larsen and Amarasinghe (PLDI 
2000). 
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Definitions of Data and Task Parallelism 
• Data parallel computation: 

- Perform the same operation to different items of 
data at the same time; the parallelism grows with 
the size of the data. 

• Task parallel computation: 
- Perform distinct computations -- or tasks -- at 

the same time; with the number of tasks fixed, 
the parallelism is not scalable.  

• Summary 
- Mostly we will study data parallelism in this class 
- Data parallelism facilitates very high speedups; 

and scaling to supercomputers. 
- Hybrid (mixing of the two) is increasingly common 
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Connecting Global and Local Memory 
• CTA model does not have a “global memory”.  
Instead, global data is distributed across local 
memories 

• But #1 thing to learn is importance of locality.  
Want to be able to place data current thread 
will use in local memory 

• Construct for data partitioning/placement 
  localize(); 
• Meaning 

- Return a reference to portion of global data 
structure allocated locally (not a copy) 

- Thereafter, modifications to local portion using 
local name do not incur λ penalty 
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Reductions (and Scans) in Peril-L 

• Aggregate operations use APL syntax 
- Reduce: <op>/<operand> for <op> in {+, *, &&, ||, 

max, min}; as in +/priv_sum  
- Scan: <op>\<operand> for <op> in {+, *, &&, ||, max, 

min}; as in +\local_finds  

• To be portable, use reduce & scan rather than 
programming them    

exclusive {count += priv_count; } WRONG    
count = +/priv_count;             RIGHT  

Reduce/Scan Imply Synchronization  
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Scalable Parallel Solution using Localize 
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Completeness: Scan Operation 

Prefix Sum 
Compute: Yi = Σj=0,i Xj  
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Two phases: 
Compute sum reduction at 

intermediate nodes in tree 
Propagate prefix downward  

Task Dependence Graph (or Task Graph) 
• We need an abstraction for understanding the parallelism 

in a computation. 
• Construct a directed graph 

-  nodes correspond to tasks 
-  edges indicating that the result of one task is required for 

processing the next.  

• With this graph, we can reason about the available 
parallelism in the computation.  

-  For example, ensure that work is equally spread across all 
processes at any point (minimum idling and optimal load balance). 

• Properties of tasks 
- Usually weighted, as tasks may not have the same execution time.   
-  Execution time may be unknown. 
-  In full generality, may be created dynamically at run time. 
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Example: Database Query 
• Consider processing the query  
   MODEL = ‘‘CIVIC’’ AND YEAR = 2001 AND  
   (COLOR = ‘‘GREEN’’ OR COLOR = ‘‘WHITE)  

on the following database:  
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Database Query Task Dependence Graph 
• Each task can be thought of as generating an intermediate 

table of entries that satisfy a particular clause. 
• Edges in this graph: output of one task is needed to 

accomplish the next task. 

09/08/2009
 CS4961
 13


Database Query Task Dependence Graph 2 
• Another decomposition of tasks 

- Many different decompositions are possible with different 
performance properties. 
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Task Granularity 
• Granularity is the amount of work associated with 

parallel tasks between synchronization/
communication points. 

• From Lecture 1, finding the appropriate granularity is 
one of the key challenges in efficient parallel code 

- The appropriate level of granularity varies by architecture. 
- Too coarse grained: load imbalance, high memory latency, 

idle processors 
- Too fine grained: overhead dominates execution time 
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Degree of Concurrency (of a Decomposition) 
• Definition: The number of tasks that can be executed 

in parallel.  
• Maximum degree of concurrency: The maximum 

number of tasks that can be executed in parallel at 
any point during execution. 

- Maximum degree of concurrency of the database query 
examples?  

• Average degree of concurrency: The average number 
of tasks that can be processed in parallel over the 
execution of the program.  

- Average degree of concurrency of database queries? 

• The degree of concurrency varies with the 
granularity of the decomposition. 
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Critical Path Length   
• A directed path in the task dependence graph 

represents a sequence of tasks that must be 
processed in order to preserve meaning.  

• The length of the longest path in a task dependency 
graph is called the critical path length. 

• The longest such path determines the minimum 
execution time given sufficient available processes. 

• The average concurrency is the ratio of total work to 
critical path length (in units of work).  This 
corresponds to the maximum speedup (ignoring 
locality effects).   
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Database Query Examples  
• Calculate: 

- Maximum concurrency (4) 
-  Critical path length (27&34) 
- Average concurrency (2.33 & 

1.88) 
- Minimum execution time (cpl) 
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- Maximum speedup (ac) 
- # processors for max 

speedup (mc) 
- Speedup with 2 

processors (1.7, 1.68) 

Task Parallel Example Algorithm Models 
Structuring a parallel algorithm by selecting a 

decomposition and mapping  
• Task Graph Model:  

-  Partition a task dependence graph, usually statically. 

• Master-Worker Model:  
- One or more processes generate work and allocate it to 

worker processes. This allocation may be static or dynamic.  

• Pipeline / Producer-Consumer Model:  
- A stream of data is passed through a succession of 

processes, each of which perform some task on it. 
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Review: Predominant Parallel Control Mechanisms 
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SIMD and MIMD Architectures: 
What’s the Difference? 
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Slide source: Grama et al., Introduction to Parallel Computing,  
 http://www.users.cs.umn.edu/~karypis/parbook 

Overview of SIMD Programming 
• Vector architectures  
• Early examples of SIMD supercomputers  
• TODAY Mostly  

- Multimedia extensions such as SSE and AltiVec  
- Graphics and games processors 
- Accelerators (e.g., ClearSpeed)  

• Is there a dominant SIMD programming model 
- Unfortunately, NO!!!  

• Why not? 
- Vector architectures were programmed by scientists 
- Multimedia extension architectures are programmed by 

systems programmers (almost assembly language!)  
- GPUs are programmed by games developers (domain- 

specific libraries) 
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Scalar vs. SIMD in Multimedia Extensions 
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Multimedia Extension Architectures 
• At the core of multimedia extensions  

- SIMD parallelism  
- Variable-sized data fields:  
- Vector length = register width / type size  
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Why SIMD 
+More parallelism  
 +When parallelism is abundant  
 +SIMD in addition to ILP  

+Simple design  
 +Replicated functional units  

+Small die area  
 +No heavily ported register files  
 +Die area: +MAX-2(HP): 0.1% +VIS(Sun): 3.0%  

-Must be explicitly exposed to the hardware  
-By the compiler or by the programmer 
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Programming Multimedia Extensions 
• Language extension 

-   Programming interface similar to function call  
-  C: built-in functions, Fortran: intrinsics  
- Most native compilers support their own multimedia 

extensions  
- GCC: -faltivec, -msse2  
- AltiVec: dst= vec_add(src1, src2);  
- SSE2: dst= _mm_add_ps(src1, src2);  
- BG/L: dst= __fpadd(src1, src2);  
- No Standard !  

• Need automatic compilation 
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Programming Complexity Issues 
• High level: Use compiler  

- may not always be successful  

• Low level: Use intrinsics or inline assembly tedious 
and error prone  

• Data must be aligned,and adjacent in memory 
- Unaligned data may produce incorrect results  
- May need to copy to get adjacency (overhead)  

• Control flow introduces complexity and inefficiency  
• Exceptions may be masked 
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Summary of Lecture 
• Peril-L and parallel scan 
• Task Parallelism 

- Task dependence graph, critical path, etc. 
- Task-Parallel Algorithm Models 

• Introduction to SIMD for multimedia extensions 

• Next Time: 
- SIMD for Multimedia Extensions 
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