
9/8/09

1

09/08/2009
 CS4961

CS4961 Parallel Programming 

Lecture 5:  
Data and Task Parallelism, cont. 

Mary Hall 
September 8, 2009  

1

Administrative
• Homework 2 posted, due September 10 before class

- Use the “handin” program on the CADE machines
- Use the following command:

 “handin cs4961 hw2 <prob1file>”
• Mailing list set up: cs4961@list.eng.utah.edu
• Sriram office hours:

- MEB 3115, Mondays and Wednesdays, 2-3 PM

09/08/2009
 CS4961
 2

Homework 2
Problem 1 (#10 in text on p. 111):
The Red/Blue computation simulates two interactive flows.

An n x n board is initialized so cells have one of three
colors: red, white, and blue, where white is empty, red
moves right, and blue moves down. Colors wrap around on
the opposite side when reaching the edge.

In the first half step of an iteration, any red color can
move right one cell if the cell to the right is unoccupied
(white). On the second half step, any blue color can move
down one cell if the cell below it is unoccupied. The case
where red vacates a cell (first half) and blue moves into it
(second half) is okay.

Viewing the board as overlaid with t x t tiles (where t
divides n evenly), the computation terminates if any tile’s
colored squares are more than c% one color. Use Peril-L
to write a solution to the Red/Blue computation.

09/08/2009
 CS4961
 3

Homework 2, cont.
Problem 2:
For the following task graphs,
determine the following:

(1)  Maximum degree of
concurrency.
(2)  Critical path length.
(3)  Maximum achievable
speedup over one process
assuming an arbitrarily large
number of processes is
available.
(4)  The minimum number of
processes needed to obtain
the maximum possible
speedup.
(5)  The maximum achievable
speedup if the number of
processes is limited to (a) 2
and (b) 8.

09/08/2009
 CS4961
 4

9/8/09

2

Today’s Lecture
• Parallel Scan and Peril-L
• Task Dependence Graphs
• Task Parallel Algorithm Models
• Introduction to SIMD for multimedia extensions

(SSE-3 and Altivec)
• Sources for this lecture:

-  Larry Snyder,
http://www.cs.washington.edu/education/courses/524/08wi/

-  Grama et al., Introduction to Parallel Computing,
 http://www.cs.umn.edu/~karypis/parbook

-  JaewookShin
http://www-unix.mcs.anl.gov/~jaewook/slides/vectorization-
uchicago.ppt

-  Some of the above from “Exploiting Superword Level Parallelism
with Multimedia Instruction Sets”, Larsen and Amarasinghe (PLDI
2000).

09/08/2009
 CS4961
 5

Definitions of Data and Task Parallelism
• Data parallel computation:

- Perform the same operation to different items of
data at the same time; the parallelism grows with
the size of the data.

• Task parallel computation:
- Perform distinct computations -- or tasks -- at

the same time; with the number of tasks fixed,
the parallelism is not scalable.

• Summary
- Mostly we will study data parallelism in this class
- Data parallelism facilitates very high speedups;

and scaling to supercomputers.
- Hybrid (mixing of the two) is increasingly common

09/08/2009
 CS4961
 6

Connecting Global and Local Memory
• CTA model does not have a “global memory”.
Instead, global data is distributed across local
memories

• But #1 thing to learn is importance of locality.
Want to be able to place data current thread
will use in local memory

• Construct for data partitioning/placement
 localize();
• Meaning

- Return a reference to portion of global data
structure allocated locally (not a copy)

- Thereafter, modifications to local portion using
local name do not incur λ penalty

09/08/2009
 CS4961
 7

Reductions (and Scans) in Peril-L

• Aggregate operations use APL syntax
- Reduce: <op>/<operand> for <op> in {+, *, &&, ||,

max, min}; as in +/priv_sum
- Scan: <op>\<operand> for <op> in {+, *, &&, ||, max,

min}; as in +\local_finds

• To be portable, use reduce & scan rather than
programming them

exclusive {count += priv_count; } WRONG
count = +/priv_count; RIGHT

Reduce/Scan Imply Synchronization
09/08/2009
 CS4961
 8

9/8/09

3

Scalable Parallel Solution using Localize

09/03/2009
 CS4961
 9

Completeness: Scan Operation

Prefix Sum
Compute: Yi = Σj=0,i Xj

09/08/2009
 CS4961
 10

Two phases:
Compute sum reduction at

intermediate nodes in tree
Propagate prefix downward

Task Dependence Graph (or Task Graph)
• We need an abstraction for understanding the parallelism

in a computation.
• Construct a directed graph

-  nodes correspond to tasks
-  edges indicating that the result of one task is required for

processing the next.

• With this graph, we can reason about the available
parallelism in the computation.

-  For example, ensure that work is equally spread across all
processes at any point (minimum idling and optimal load balance).

• Properties of tasks
- Usually weighted, as tasks may not have the same execution time.
-  Execution time may be unknown.
-  In full generality, may be created dynamically at run time.

09/08/2009
 CS4961
 11

Example: Database Query
• Consider processing the query
 MODEL = ‘‘CIVIC’’ AND YEAR = 2001 AND
 (COLOR = ‘‘GREEN’’ OR COLOR = ‘‘WHITE)

on the following database:

09/08/2009
 CS4961
 12

9/8/09

4

Database Query Task Dependence Graph
• Each task can be thought of as generating an intermediate

table of entries that satisfy a particular clause.
• Edges in this graph: output of one task is needed to

accomplish the next task.

09/08/2009
 CS4961
 13

Database Query Task Dependence Graph 2
• Another decomposition of tasks

- Many different decompositions are possible with different
performance properties.

09/08/2009
 CS4961
 14

Task Granularity
• Granularity is the amount of work associated with

parallel tasks between synchronization/
communication points.

• From Lecture 1, finding the appropriate granularity is
one of the key challenges in efficient parallel code

- The appropriate level of granularity varies by architecture.
- Too coarse grained: load imbalance, high memory latency,

idle processors
- Too fine grained: overhead dominates execution time

09/08/2009
 CS4961
 15

Degree of Concurrency (of a Decomposition)
• Definition: The number of tasks that can be executed

in parallel.
• Maximum degree of concurrency: The maximum

number of tasks that can be executed in parallel at
any point during execution.

- Maximum degree of concurrency of the database query
examples?

• Average degree of concurrency: The average number
of tasks that can be processed in parallel over the
execution of the program.

- Average degree of concurrency of database queries?

• The degree of concurrency varies with the
granularity of the decomposition.

09/08/2009
 CS4961
 16

9/8/09

5

Critical Path Length
• A directed path in the task dependence graph

represents a sequence of tasks that must be
processed in order to preserve meaning.

• The length of the longest path in a task dependency
graph is called the critical path length.

• The longest such path determines the minimum
execution time given sufficient available processes.

• The average concurrency is the ratio of total work to
critical path length (in units of work). This
corresponds to the maximum speedup (ignoring
locality effects).

09/08/2009
 CS4961
 17

Database Query Examples
• Calculate:

- Maximum concurrency (4)
-  Critical path length (27&34)
- Average concurrency (2.33 &

1.88)
- Minimum execution time (cpl)

09/08/2009
 CS4961
 18

- Maximum speedup (ac)
- # processors for max

speedup (mc)
- Speedup with 2

processors (1.7, 1.68)

Task Parallel Example Algorithm Models
Structuring a parallel algorithm by selecting a

decomposition and mapping
• Task Graph Model:

-  Partition a task dependence graph, usually statically.

• Master-Worker Model:
- One or more processes generate work and allocate it to

worker processes. This allocation may be static or dynamic.

• Pipeline / Producer-Consumer Model:
- A stream of data is passed through a succession of

processes, each of which perform some task on it.

09/08/2009
 CS4961
 19

Review: Predominant Parallel Control Mechanisms

09/01/2009
 CS4961
 20

9/8/09

6

SIMD and MIMD Architectures:
What’s the Difference?

09/01/2009
 CS4961
 21

Slide source: Grama et al., Introduction to Parallel Computing,
 http://www.users.cs.umn.edu/~karypis/parbook

Overview of SIMD Programming
• Vector architectures
• Early examples of SIMD supercomputers
• TODAY Mostly

- Multimedia extensions such as SSE and AltiVec
- Graphics and games processors
- Accelerators (e.g., ClearSpeed)

• Is there a dominant SIMD programming model
- Unfortunately, NO!!!

• Why not?
- Vector architectures were programmed by scientists
- Multimedia extension architectures are programmed by

systems programmers (almost assembly language!)
- GPUs are programmed by games developers (domain-

specific libraries)
09/08/2009
 CS4961
 22

Scalar vs. SIMD in Multimedia Extensions

09/08/2009
 CS4961
 23

Multimedia Extension Architectures
• At the core of multimedia extensions

- SIMD parallelism
- Variable-sized data fields:
- Vector length = register width / type size

09/08/2009
 CS4961
 24

9/8/09

7

Why SIMD
+More parallelism
 +When parallelism is abundant
 +SIMD in addition to ILP

+Simple design
 +Replicated functional units

+Small die area
 +No heavily ported register files
 +Die area: +MAX-2(HP): 0.1% +VIS(Sun): 3.0%

-Must be explicitly exposed to the hardware
-By the compiler or by the programmer

09/08/2009
 CS4961
 25

Programming Multimedia Extensions
• Language extension

-  Programming interface similar to function call
-  C: built-in functions, Fortran: intrinsics
- Most native compilers support their own multimedia

extensions
- GCC: -faltivec, -msse2
- AltiVec: dst= vec_add(src1, src2);
- SSE2: dst= _mm_add_ps(src1, src2);
- BG/L: dst= __fpadd(src1, src2);
- No Standard !

• Need automatic compilation

09/08/2009
 CS4961
 26

Programming Complexity Issues
• High level: Use compiler

- may not always be successful

• Low level: Use intrinsics or inline assembly tedious
and error prone

• Data must be aligned,and adjacent in memory
- Unaligned data may produce incorrect results
- May need to copy to get adjacency (overhead)

• Control flow introduces complexity and inefficiency
• Exceptions may be masked

09/08/2009
 CS4961
 27
 09/08/2009
 CS4961

Summary of Lecture
• Peril-L and parallel scan
• Task Parallelism

- Task dependence graph, critical path, etc.
- Task-Parallel Algorithm Models

• Introduction to SIMD for multimedia extensions

• Next Time:
- SIMD for Multimedia Extensions

28

