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ABSTRACT 

Extract-Transform-Load (ETL) tools have provided organizations with the ability to build 

and maintain workflows (consisting of graphs of data transformation tasks) that can process the 

flood of digital data.  Currently, however, the specification of ETL workflows is largely manual, 

human time intensive, and error prone.  As these workflows become increasingly complex, the 

users that build and maintain them must retain an increasing amount of knowledge specific to 

how to produce solutions to business objectives using their domain’s ETL workflow system.  A 

program that can reduce the human time and expertise required to define such workflows, 

producing accurate ETL solutions with fewer errors would therefore be valuable.  This 

dissertation presents a means to automate the specification of ETL workflows using a domain-

specific modeling language. 

To provide such a solution, the knowledge relevant to the construction of ETL workflows 

for the operations and objectives of a given domain is identified and captured.  The approach 

provides a rich model of ETL workflow capable of representing such knowledge.  This 

knowledge representation is leveraged by a domain-specific modeling language which maps 

declarative statements into workflow requirements.  Users are then provided with the ability to 

assertionally express the “intents” that describe a desired ETL solution at a high-level of 

abstraction, from which procedural workflows satisfying the intent specification are 

automatically generated using a planner. 
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1. INTRODUCTION 

1.1 Problem 

In both scientific and industrial communities and organizations, there is an ongoing need 

to employ sophisticated data processing techniques in order to manage and leverage the torrent 

of data created by modern information age technology [1].  This need has become so pervasive 

that the technical community has identified “big data” as a critical technical problem [2], [3], [4].  

Scientists generate massive data sets from experiments and sensor feeds; retail stores track high 

volumes of customer sales and orders to vendors; and businesses record and maintain huge tables 

full of customer data. 

Beyond simply retaining this data, organizations want to extract patterns or answers to 

queries to mine actionable information from the data.  As illustrated in the system depicted in 

Figure 1, existing techniques for attaining such objectives often aggregate data from many 

heterogeneous data sources: databases, flat files, hierarchical files, and sensor feeds.  These data 

sources are often large (e.g. billions of records).  Commonly, their schemas change over time. 

The data sources may also be distributed: not stored in just one database management system or 

controlled by a single organization.  Ultimately, the set of data processing tasks applied to the 

data from these diverse data sources is based on an organization’s specific objectives. 
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Figure 1: Depiction of a system for data processing (courtesy of Acxiom). 

A widely adopted methodology for designing and executing such data processing tasks as 

reusable batch jobs is known as Extract-Transform-Load (ETL).  In the ETL methodology, a 

solution is represented as a workflow wherein data sets flow from one node to another within a 

large directed graph of operations, starting with one or more data sources and ending with one or 

more data targets.  An ETL workflow consists of the following elements: 

 Operators – Reusable constructs that encapsulate the available data operations. 

 Data fields – Individual data values that are extracted from data sources, flow in and 

out of operators, and are loaded into data targets. 

Using these constructs, the workflow defines the data flow and the manner in which the 

data is processed.  Given the properly constructed workflow graphs, commercial ETL workflow 

systems are able to produce solutions to data processing goals, which in turn provide solutions to 

business objectives.  Several commercial ETL workflow systems (known as ETL Tools) are 

available today, including IBM InfoSphere DataStage [5], Microsoft SQL Server Integration 

Service [6], and Oracle Data Integrator [7]. 
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The problem this dissertation addresses involves the construction of the input workflow 

graph.  Currently, the specification of an ETL workflow is a manual process, involving a series 

of sequential phases that are conceptually similar to the Waterfall development model [8] (see 

Figure 2). 

 

Figure 2: Phases of the Waterfall development model. 

 Analysis – Define requirement specifications for the workflow to be developed, such as 

necessary behavior and imposed constraints.  The requirements are typically gathered 

from the stake holders (aka non-expert users) who may only be able to convey the 

intended purpose in a high-level manner.  In such cases, the technical requirements must 

be derived from the high-level business objectives in a manner appropriate within the 

context of the given domain. 

 Design – Determine a workflow design that fulfills the requirement specifications.  This 

must take into consideration the data sources available, the characteristics of this data, 

and the available operations in order to ascertain a plan for the solution based on the 

capabilities of the workflow system. 

 Construction – Define the workflow’s composition: the operators used, their sequence, 

the mapping of data fields between these operators.  Today, construction is performed 
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directly through XML specification or ETL tools.  XML specification of an ETL 

workflow involves encoding the operator calls and data field mappings into a XML-

formatted file manually with a text editor (see Figure 3).  Alternatively, ETL tools may 

be used, providing users with a visual editor that abstracts the underlying XML 

specifications.  In these tools, workflow solutions are represented like flowcharts (see 

Figure 4).  Operations are specified by dragging and dropping a desired operation’s visual 

object into the solution’s sandbox area.  Data flow is mapped by individually connecting 

the appropriate data fields between the nodes of the workflow. 

 Verification – Methodically test using sample data sets to ensure the workflow behaves 

according to the specified requirements.  Verify absence of operator failures at run time 

due to improper mappings. 

 Maintenance – Modifications to an existing workflow to include additional requirements. 
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Figure 3: A partial XML specification for an operator call in a workflow. 
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Figure 4: Using flowchart tools to specify a workflow. 

As mentioned, ETL workflow specification is performed manually.  While this may be 

sustainable for domains that deal with small, easily manageable data sets, it can become 

overwhelming for ETL domains that involve managing massive, distributed data sets, producing 

workflows that contain thousands of data fields that must all be mapped to flow properly through 

workflow that may require hundreds of operators.  As the scale increases, there are so many 

considerations (e.g. which operators to include/exclude, what sequence of operators, which fields 

to map where) that the reliance on a human user becomes increasingly problematic.  For 

workflows that involve many operators and data fields, a user performing XML specification can 

be required to type thousands of lines for a single solution attempt; an onerous task for a human.  

Even with today’s drag-and-drop ETL workflow visualization and construction tools, the user is 



 

7 

 

responsible for selecting the proper set and ordering of operators, mapping each operator’s and 

data source’s/sink’s parameters, and ensuring that each applicable requirement is considered.  

While feasible for simple workflows, performing such tasks manually for workflows with dozens 

of operators and hundreds parameters is time consuming and can take days or weeks. 

In response, some approaches may hard code domain knowledge into macros or standard 

workflow templates.  Similar to subroutines, macros and standard workflow templates may be 

defined and then later called, creating an invocation instance (particular call that binds a 

particular set of inputs, parameters, and outputs).  In this way, commonly used sequences of 

operators can be mapped together and bundled as a reusable package.  However, such solutions 

suffer from poor extensibility and must be continuously reconfigured. 

Another aspect of the problem is the latent significance of domain knowledge in each 

phase of the specification process.  ETL workflow specification often relies on the human user to 

retain virtually all of the knowledge necessary to produce a solution.  For instance, to extract 

technical requirements from the business objectives described by stake holders, the user must be 

a domain expert:  a user with a complete understanding of a given domain’s workflow system 

and the solutions it is used to develop.  Such expertise can also be required for the construction 

of ETL workflows; operators may have pre/post requisites or constraints that invalidate the 

workflow (cause runtime failures or fail to produce the expected result) if violated.  However, it 

takes a considerable amount of time to train a domain expert.  This domain knowledge is a 

challenge to identify and capture; much of it has been gained through experience, manifesting as 

intuition during workflow specification, thus making it difficult to impart the knowledge to 

others. 
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A final problem with the existing process is that specification of complex ETL solutions 

is error prone, requiring iterative approaches at a solution until all of the requirements are met.  

Integrating critical knowledge only from memory, human fallibility often results in erroneous 

workflows that fail to fully satisfy the requirements.  Data processing goals may have numerous 

interpretations, making the requirements ambiguous.  Consequently, manually composed 

workflow solutions must often undergo multiple iterations of modifications until a valid solution 

can be generated.  When utilizing manual approaches, refactoring a workflow can become as 

lengthy as the construction of the original workflow.  As a result, building and maintaining ETL 

workflow solutions can be a heavy investment of resources in terms of human time to specify 

workflows and processing time to process billions of records through a graph of complex 

transformations. 

The problem that is the focus of this dissertation is how to automate the process of ETL 

workflow specification. No automated solution that can flexibly represent and enforce the 

necessary knowledge currently exists.  Therefore, a program that can flexibly integrate domain 

knowledge to automatically generate domain-specific ETL workflow solutions from a set of 

processing goals would be provide significant benefits to the scientific and industrial workflow 

communities. 

Before proceeding, it is important to note that the term domain (within this paper) is used 

to express a means of constraining the set of considerations.  One notion is that a domain an 

industry, like retail, insurance, or finance.  Another notion is a language restricted in 

functionality that handles just formatting or just matrix operations or just logic programming or 

just database queries. 
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1.2 Thesis Statement 

This dissertation provides a solution to the ETL workflow specification problem by 

developing an extensible approach for creating domain-specific modeling languages that 

automate the generation of ETL workflows from business intents. 

The thesis of this paper is as follows: 

ETL workflow specification can be automated in an extensible manner by translating 

high-level statements of intent into a set of ETL workflow requirements and generating 

ETL workflow solutions that accomplish these specifications. 

1.3 Approach 

Given the limitations of existing ETL workflow specification solutions, the approach 

described herein seeks to automatically generate valid workflow solutions from high-level intent 

statements, providing: 

 Better solution accuracy 

 Lower required level of expertise 

 Faster turn around 

 Fewer errors 

One key component of this approach is the model.  As mentioned, ETL domain 

knowledge is critical to generate valid workflow solutions in the ETL workflow specification 

problem.  For this reason, the proposed solution uses a model-based approach to capture this 

knowledge in a model.  The constructs that implement this model provide a computational 

representation of ETL domain knowledge, enabling tasks that require this knowledge to be 

handled programmatically rather than manually.  This permits the other key component, a 
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workflow engine, to leverage the model to automate workflow construction.  The workflow 

engine is an implementation of an AI planner, which uses the model to generate valid workflow 

solutions from a given set of requirements represented as high-level intents. 

This approach also places an emphasis on extensibility.  The data sources, operations, and 

knowledge involved in ETL workflow specification can vary widely between domains:  some 

may enhance address data, others may audit billing data, and yet others may analyze 

experimental results.  These domains can also evolve, adding/modifying/removing operators and 

data sources in order to accommodate ever-changing processing goals.  For these reasons, 

extensibility is considered important for the approach to adapt to current and future needs of ETL 

domains. 

1.4 Organization 

Chapter 1 defined the problem, objective, and approach of this dissertation.  Chapter 2 

provides background and key concepts associated with workflow, ETL, domain-specific 

languages, and models, as well as existing work in related disciplines, such as the areas of 

artificial intelligence planning and database SQL parsers.  Chapter 3 outlines the conceptual 

design of the approach taken by this work to solve the ETL workflow specification problem.  

Chapter 4 describes implementation details of a prototype of the suggested approach.  Chapter 5 

covers the testing methodology, experimental results obtained from the prototype, and analysis 

of these results.  Chapter 6 summarizes the conclusions, describes the contributions of this 

dissertation, and introduces areas of future research on the topic of ETL workflow specification.  

Finally, the appendices provide the operator and intent specifications used during testing, the 

expected workflow solutions for the test scenarios, and the workflow solutions generated by the 

prototype. 
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2. BACKGROUND AND RELATED WORK 

This chapter provides background and related work on concepts relevant to the approach 

taken in this work.  Section 2.1 describes the central concept workflow, focusing on extract-

transform-load workflows.  Sections 2.2 through 2.4 provide background from related areas: 

general purpose and domain-specific programming languages, relational databases, and artificial 

intelligence planning systems.  Section 2.5 provides a literature survey on related work on 

automating workflow and plan generation. 

2.1 Workflow and ETL 

This section introduces the concept of workflow and describes the role workflow plays in 

delivering ETL solutions. 

2.1.1 Workflow 

Workflow is a concept that extends beyond the context of this problem domain, having a 

variety of specialized interpretations in differing contexts.  Workflows are commonly used in a 

number of areas, including: employee procedures, AI planners, query optimization, web service 

composition, scientific data processing, business processes, and ETL.  To generalize Aalst and 

Hee [9], a workflow is a conceptual model of a process.  At a very high level, this model is used 

to describe the work that must be performed to achieve a particular result.  Though abstract, 

work can be conceptualized as taking place as a series of changes, which in turn can be 

represented by a sequence of tasks and states.  From this, a workflow can be described as a set of 

tasks connected in a specific sequence that may be represented in a sequential or parallel graph 

of tasks. 
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As an example, consider the work performed by a person traveling from their home to the 

airport.  A person would need to prepare to leave their house and then drive to the airport.  A 

workflow for this activity then could consist of a task for preparing to leave the house followed 

by a task for driving to the airport. 

Often, the sequence in which tasks are performed in a workflow may be critical.  For 

instance, a person cannot drive to the airport until after they have prepared to leave their house.  

Thus, any concrete model of a workflow may have to preserve this directional dependence.  For 

this reason, the composition of a workflow is represented as a directed graph (digraph).  A 

directed graph G is a pair (V, E), where V is a set of vertices and E is a set of ordered pairs of 

vertices that denote directed edges connecting vertex pairs.  A directed edge ei from vertex vj to 

vk would be denoted as ei = vj → vk.  With respect to depicting a workflow, the vertices denote 

the tasks and the edges represent the sequence in which they are performed.  In this way, a 

directed graph can capture the relationships between each task of a workflow from start to 

completion.  To illustrate this, consider the previous example workflow for a person traveling 

from their home to the airport.  The graph of this workflow would consist of two vertices, v1 and 

v2 and one edge e1.  Assuming that v1 represents the task of preparing to leave the house and v2 

represents the task of driving to the airport, e1 would be defined as e1=v1 → v2 and the resultant 

digraph would have a single path from start to completion (shown in Figure 5). 

 

Figure 5: A simple workflow. 

The composition of workflows can vary from simple to complex.  This is due not only to 

the complexity of the process being modeled, but also the level of abstraction used to represent 
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the process.  The work performed by a workflow may be represented at a high level of 

abstraction or a lower level of abstraction.  In such a way, a workflow may be simplified to 

enhance comprehension by using more abstraction or it may be made more complex to improve 

accuracy by using less abstraction.  This concept is comparable to the levels of abstraction 

present in programming languages.    High-level programming languages, such as C#, are easier 

to comprehend as their instructions directly describe higher-level behavior.  However, this at the 

cost of reduced control and understanding of what low-level actions these instructions produce.  

In contrast, low-level programming languages, such as assembly language, are able to describe a 

computing process in high detail as the instructions represent very basic computing actions.  

Consequently, programs written in assembly language are harder to comprehend as they can 

require many more instructions to specify higher-level behavior.  In workflows, tasks are used to 

specify work behavior.  High-level tasks may imply that how they are performed is unimportant 

or assume that knowledge on how they are performed is known.  However, such tasks may be an 

over simplification of the work involved.  Conversely, to provide the details necessary to 

reproduce a particular result, a workflow may instead be modeled using sequences of more basic 

tasks.  Consider again the airport example.  The tasks of this workflow can be considered non-

specific, generalizing the steps a person follows to travel to the airport.  Several actions and 

decisions a person must perform when preparing to leave their house can be abstracted by this 

single task, including: getting dressed, eating, finding the car keys, moving to the door, opening 

the door, etc.  Thus, the workflow for a person traveling from their home to the airport could 

instead be considerably more complex, such as the example in Figure 6. 
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Figure 6: A second look at preparing to leave the house. 

Workflows are commonly used to analyze existing processes and design new processes.  

These processes can range from human activities, such as the daily routine of an employee, to 

computing jobs, such as migrating data into a data warehouse.  Yet, while a digraph can 

represent the composition of a workflow, this basic representation obscures some subtle details 

of a workflow’s behavior conducive to analysis and design.  Specifically, a digraph can depict 

what sequence of tasks to perform, but it fails to capture why the tasks must occur in this 

sequence.  To study such behavior, a key observation is that the result accomplished by a 

workflow can be represented as a state: a specific set of conditions.  From this, a workflow 

involves a sequence of state changes to attain the desired set of conditions (goal state).  These 

changes to state are imposed by the tasks, where each task changes specific conditions in the 

workflow and may require specific conditions to be true before it can be performed.  Using this 

state-based approach, workflows can be employed to advance the understanding of the processes 

being modeled. 

This stateful representation of workflow can be depicted with a specialized form of a 

digraph, known as a state diagram.  Formally, a state diagram S is a directed graph defined as: S 

= (Q, ∑, δ, q0, F), where Q is a collection of states, ∑ is a collection of valid input symbols 

(known as an alphabet), and δ is a collection of mappings between an ordered pair of states and 

an input symbol that denote a state transition between the paired states caused by the input.  A 
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state transition δi for the input symbol ∑t from state Qj to Qk would be denoted as δi : ∑t × Qj → 

Qk.  In this definition, q0 is the start state and F is the set of accepting states, where both q0ϵQ 

and F⊆Q.  Each state qi is represented by a vertex of the graph and each state transition δi is 

represented by an edge of the graph connecting the two states for which there exists a transition.  

Applied to workflow, vertices represent the distinct states of the workflow and edges represent 

the transitions between states that available tasks, where each task ti ϵ ∑, can impose on the 

process. 

To illustrate this, again consider the simple workflow from Figure 5.  Here, it will be 

assumed that the person is starting at home, while the goal at the completion of this workflow is 

for the person to end up at the airport.  Therefore, to achieve this goal the workflow must 

perform a sequence of tasks that moves the person from the state “At Home” to the state “At the 

Airport”.  Starting from at home, the available actions are to prepare to leave the house or drive 

to the airport.  As a person cannot drive unless they are in the car, the first task performed must 

be to prepare to leave the house, after which the current state changes to “In the Car”.  However, 

since being in the car is not the goal state, another task must be performed.  Now, the person 

cannot prepare to leave the house as they are no longer at home, but since they are in the car they 

can drive to the airport.  The resultant state after this task is the goal state “At the Airport” and so 

the workflow is finished.  As a state diagram, the set of distinct states Q = {Q1, Q2, Q3}, where 

Q1=“At Home”, Q2=“In the Car”, and Q3=“At the Airport”, the set of available tasks ∑ = {t1, t2}, 

where t1=“Prepare to Leave the House” and t2=“Drive to the Airport”, the set of state transitions 

δ = {δ1, δ2}, where δ1=Q1→Q2 and δ2=Q2→Q3, the start state q0= Q1, and the set accepting states 

F={Q3} (refer to Figure 7). 
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Figure 7: A state diagram for a person traveling to the airport. 

2.1.2 Extract-Transform-Load Workflows 

Many organizations must frequently extract data from one collection of data sources, 

transform the data through a complex collection of transformations (sometimes hundreds of 

transformations), and then load the data into target data sinks.  Consider businesses that regularly 

move data from highly abstracted data models used in daily operations into business intelligence 

tables that are customized for reporting or analysis.  To accomplish this, the desired data 

attributes must be selected and mapped to the proper columns in the target repository, including 

any necessary alterations.  The core focus of another subset of such organizations involves 

building and maintaining knowledge-based models on customers from both internal and external 

data, requiring raw data to be pulled from diverse and commonly unreliable sources, transformed 

into useful customer knowledge, and persisted in a data warehouse.  Extract-Transform-Load 

(ETL) refers to a category of data processing solutions that provide such organizations the ability 

to filter, clean, and persist diverse data sets.  These solutions, characterized by sequences of 

extract, transform, and load operations, are assumed to be a sufficient and complete 

representation of the data processing operations necessary to direct and manipulate data from a 

collection of data sources to a collection of target repositories. 
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ETL solutions initially perform data extraction which entails pulling data from available 

data resources, such as databases and/or files.  In particular, the data extraction phase is 

responsible for bringing data sets from diverse, possibly numerous resources together into a form 

of intermediate storage.  From this representation, later data processing phases are provided a 

homogenous format in which all of the data may be accessed.  Once data sets have been made 

available by data extraction processes, the data is transformed via some sequence of data 

transformation operations that alter all or a subset of the data using generic or domain-specific 

data processing logic.  Generic transformations generally include: sorting, splitting, merging, 

translating, filtering, cleaning, validation, and enhancement.  An example of a domain-specific 

operation is to transform a street address by adding its zip code.  Using data transformations, data 

of heterogeneous quality levels is able to be brought to a particular standard and combined, while 

erroneous, unusable data is able to be pruned out.  Hundreds of data transformations may be 

required.  Once the data is in a required state, the final phase of ETL is to load the data into a 

target repository, which may include a file, database, data warehouse, or other form of data 

persistence, allowing any post-ETL processes to utilize the resultant data for a variety of 

applications. 

ETL solutions are designed and implemented as workflows.  ETL workflows consist of a 

sequence of tasks to denote the work that must be performed to achieve a particular result.  In 

ETL, these tasks are known as operators.  These operators are functional constructs that represent 

the specific processes used to extract data from sources, transform the data to meet operational 

needs, and load the data into repositories.  These processes operate on data that is organized into 

a collection of logical partitions, known as data sets.  These data sets consist of an unordered 

collection of structured data items known as data records.  The structure of each data record is 
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defined by the data field schema of the containing data set.  That is, each data record in a data set 

consists of the same collection of data fields, each with a data type and unique name.
1
  Individual 

data values are thereby accessed by addressing the name of the containing data field for a given 

data record within the specified data set.  From this, the directed edges of the graph of an ETL 

workflow represent the directional flow of data through the sequence of operators.
2
  To illustrate 

this representation, consider a workflow that must pull raw name and address data from a 

customer file, clean it up, enhance it, and then load the useful data records into a data warehouse 

while capturing any pruned records in an output field, as depicted by the example in Figure 8. 

 

Figure 8: A complex workflow for data integration 

Concerning the representation of operators, each operator is defined in executable 

modules to abstract the procedural logic and environmental details (client, server, grid, etc.) 

                                                 
1
 Conceptually, a data set containing records containing fields is strongly analogous to a relation 

in a relational DBMS that contains tuples that contain fields.  Field names equate to attribute 

names.  Values come from a domain. 

2
 It is important to note that the graphs of ETL workflows are acyclic.  For this reason, ETL 

workflows are more accurately described as directed-acyclic graphs (DAGs), where starting from 

any vertex v in a graph of an ETL workflow, there exists no path that ends up back at v after 

following any sequence of directed edges.  This constrained structure ensures that operators are 

only performed a definite, pre-defined number of times during workflow execution, allowing 

ETL workflows to be run as reusable batch jobs instead of indefinitely persistent processes. 
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required to perform its prescribed data processing operation.  For example, a common family of 

operators utilizes domain-generic logic to perform relational algebra-like transformations, 

splitting data into different sets based on user criteria (like SELECT), merging data sets on 

shared attributes (like JOIN), or performing sorting and aggregation (like ORDER BY, COUNT, 

etc.).  Other operators may integrate domain-specific logic to influence operations such as 

cleaning, filtering, enhancing, and validating data based on the particular needs of the domain.  

Once defined, operators are independent, reusable modules that are not invoked until called 

during workflow execution, similar to a method or web service call, allowing operators to be 

used repeatedly.  This enables organizations to create libraries of operators that encapsulate their 

standard data processing operations. 

In addition to this underlying logic, each operator includes a collection of input fields and 

options, taken as input prior to workflow execution, and a collection of output fields are returned 

post-execution.  Input fields are used to map which data fields from each data record in a data set 

that an operator should use when performing its data processing operations.  These are specified 

through a mapping of a data field to an input field with a like data type.  Options, on the other 

hand, govern the exact behavior of an operator, altering, for example, the value of an internal 

case statement in such a way that output of an operator is modified.
3
  Once invoked, operators 

perform their defined data processing operations on the specified subset of data and return a 

collection of output fields.  These return values denote data fields that were generated or altered 

as a result of operator execution.  To illustrate, an example operator that performs the parsing of 

name data depicted in Figure 9. 

                                                 
3
 An option value may be part of a predefined set of values or it may be a variable such as a file 

name. 
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Figure 9: A depiction of a simple operator 

In practice, ETL workflows are built by a process of interconnecting operators known as 

workflow specification.  This process exists because there is no one universal workflow solution 

for all purposes.  Instead, workflow specification is performed to find a way to build the 

sequence of operators for a given domain to meet their particular needs.  Thus, the end result of 

workflow specification is to produce a workflow that maps (dirty, unenhanced) fields from data 

sources to (clean, enhanced) target repositories. 

2.1.3 Lifecycle Phases of Workflow Specification 

As mentioned in Chapter 1, workflow specification begins with an analysis phase.  

Adding more detail, during this phase, the desired behavior of the workflow to be developed is 

determined.  These specifications would be gathered from stakeholders and would map to all of 

the technical requirements needed to build a workflow, indicating: 

 data sources to include 
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 fields to extract from these sources 

 operators to include or exclude 

 field mappings, option mappings, and sequence of the included operators 

 what fields to persist 

 where to load the data for persistence 

The people performing ETL workflow specification are typically those with extensive 

domain knowledge, known as domain experts.  These domain experts are familiar with pertinent 

details such as the operators of the organization and the data of the particular domain.  A 

stakeholder, which is a person or organization that has a vested interest in the outcome of the 

workflow solution, can be an external client or a business user that understands the business 

objectives and can describe (in a high-level manner) the intended purpose of the workflow, but 

lacks the technical expertise necessary to supply all of the necessary requirement specifications.  

The technical requirements must therefore be derived from this high-level description, prompting 

the stakeholder for additional information to resolve any ambiguous goals. 

Also handled during this first phase of workflow specification is analysis of the 

characteristics of data sources.  The data characteristics (e.g. layout, format, and quality) may be 

known and homogenous when pulled from trusted sources, but when pulled from a new or 

unreliable source (such as a file or other data source provided by the client), such characteristics 

are typically unknown.  These data characteristics are considered requirement specifications as 

they influence the composition of the workflow.  Selecting the appropriate operator to use to 

extract fields from a particular data source requires that the format of the data source is known 

(hierarchical file, flat file, relational table); reading the appropriate fields from a data source into 

a workflow requires that the layout of a data source is known; and determining what 
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transformations need to be performed on the fields to produce the desired result requires that 

initial quality is known (to a point). 

The next phase of workflow specification is design.  Consider that there can be many 

ways to build a workflow that fulfills the requirement specifications gathered during the analysis 

phase.  Some may be difficult to distinguish, differing only by slight differences in field / option 

mappings or operator sequence.  Others may include extraneous operations that exceed what is 

necessary to satisfy the requirements.  The aim of the design phase is to produce a high level 

plan for a workflow based on the capabilities of the workflow system: which operators must be 

included and which can be excluded; which options require a specific setting and which can be 

ignored or defaulted.  This reduces excess considerations during construction, which in turn is 

conducive to producing an accurate solution. 

Next is the construction phase, during which the full definition of the workflow is 

specified.  The decisions involved in the construction of an ETL workflow can rely heavily upon 

domain knowledge.  There may be several operators available that perform similar operations or 

the requirements may necessitate that a custom operator is defined.  Some operators may need to 

be performed in a specific order, while others can be performed at any time throughout the 

workflow.  Further, there can be several ways to sequence the operators each of which may 

produce a different result.  There may also be numerous fields in the data set that match the 

available input fields, where some come from the outputs of previous operators while others may 

come from the original data sources.  A single change to the mapping of a single operator’s input 

fields, however, can affect the result of the workflow.  Similarly, the options of operators can be 

set in a multitude of permutations, each of which can affect the result of the workflow.  Finally, 

selecting the appropriate sequence of transform operators and properly mapping each of its 
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parameters (parameters referring to the input fields and options) can be constrained by 

operational consideration, including: 

 Operator logic constraints – The programmatic logic that implements ETL operators can 

constrain their usage.  Specifically, this underlying logic can be based on assumptions 

about the data mapped into the operator’s parameters.  Failure to conform to these 

assumptions can cause the operator to error off or produce invalid results.  There are 

numerous ways for such constraints to be embodied.  As one example, consider an 

operator designed to parse name data expects a field with name data as input.  If a field 

with zip code or phone number data is mapped, however, the expected result (a parsed 

name) cannot be guaranteed after execution.  The logic can similarly restrict the data 

quality or format of input fields, such as an operator that performs geocoding assuming 

that the address data of input fields is spelled correctly.  These constraints on operator 

parameters can also be conditional.  Though ETL operators commonly have multiple 

parameters, and thus have numerous possible permutations of parameter mappings, only 

a fraction of these mappings may be valid.  For example, from among multiple available 

input fields, it may only be valid to map only certain combinations of these input fields.  

This can be further influenced by the settings of options. 

  Workflow standards – “Rules of thumb” that are the accepted practices for a domain in 

order to ensure consistent workflow solutions.  These standards provide guidelines for the 

many decisions required when designing or altering an ETL workflow, including operator 

usage, workflow content, and field selection.  Standards for operator usage may include 

pre/post requisite operators, such as always following operator A with operator B.  

Standards for workflow content may include the insertion of common operators, such as 
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an auditing/debugging operator at the end of the workflow.  Finally, standards for field 

selection may be based on customer preferences or default to always choosing the “most 

recent” (in the context of the workflow) fields. 

 Business rules – Constraints on workflow composition that are imposed from outside the 

domain.  Business rules ensure that a domain's workflow solutions are in compliance 

with pertinent organizational, local, national, and even global guidelines.  For example, 

legally imposed rules, such as contracts and laws, can restrict how data is used and 

distributed, both physically and digitally.  Therefore, workflow design must be adjusted 

to identify and handle the subsets of restricted data in accordance with such constraints. 

 

The final phase of workflow specification before a workflow can be considered 

“deliverable” (ready for production use) is verification.  During this phase, the constructed 

workflow is tested on sample data sets.  These sample data sets should be representative of the 

actual data the workflow is expected to process in order to verify that the workflow will behave 

according to the specified requirements when in production use.  After analyzing the results 

produced from execution of the workflow on a sample data set, it may be discovered that there 

are missing specifications, ambiguous or contradictory goals, or operator failures at run time due 

to improper mappings.  Depending on these results, the workflow may have to go back into 

construction to resolve mapping errors or even go all the way back to analysis if requirements 

have to be renegotiated with stakeholders. 

2.2  General Purpose and Domain-Specific Languages 

From heritage of programming languages, general purpose languages and domain-

specific languages are relevant.  General purpose languages are covered briefly in order establish 



 

25 

 

contrast with domain-specific languages, which is the approach taken in this dissertation as these 

languages allow users familiar with a given domain to express statements at the same level of 

abstraction as the problem domain. 

2.2.1 General Purpose Programming Languages 

General purpose programming languages include C, Java, C++, and Visual Basic.  These 

languages have a specific syntax for specifying a collection of statements that can be executed by 

a computer.  A set of these instructions would then be a program that can implement an 

algorithm.  The power of a general purpose language is that they allow a person familiar with the 

language to solve a wide variety of problems; any problem with an algorithmic solution can be 

specified by the language.  However, this generality comes at the cost of time.  This is because 

these languages are broken down into low-level commands, to allow greater generalization.  

Many of these commands must be strung together into sub-routines to solve a problem at a 

higher-level of abstraction.  The higher level the problem is the more complex the solution 

becomes. 

2.2.2 Domain-Specific Languages 

Domain-specific languages take an opposite approach to problem solving compared to 

general purpose languages.  Rather than providing low-level commands to allow for a high 

degree of customization and to accommodate as many solutions as possible, domain-specific 

languages raise the level of abstraction to hide low-level details.  This is accomplished by 

limiting the problem space to a specific, well-defined domain [10].  Given a well-defined 

domain, a domain-specific language should be less comprehensive, more expressive, and less 

redundant than a general purpose language.  A domain-specific language is less comprehensive 



 

26 

 

because only concepts within its subject matter domain should be covered.  The language should 

have excellent coverage of those concepts in the domain.  Being more expressive refers to the 

language allowing users to express solutions for the given domain in terms of that domain.  This 

allows users to understand what the intended purpose of a statement in a domain-specific 

language is.  Lastly, less redundancy refers to the ability of the language to allow for a change in 

requirements with as little editing as possible.  The smaller the redundancy, the less likely it is 

that errors can be introduced when changes are implemented. 

Where most general-purpose languages are imperative languages, a domain-specific 

language can be declarative.  “Declarative” refers to the ability of a language to express what is 

to be done rather than how to do it.  SQL and Prolog are examples of declarative languages, 

allowing users to express what needs to be done, instead of specifying sequences of relational 

operations.  For instance, the domain of SQL is that of relational databases and has clear, 

expressive statements.  Those familiar with this domain can make statements in SQL without 

needing knowledge of computer systems. 

2.3 Relational Database Management Systems 

Relational database management systems (RDBMS) are relevant to this work because 

domain-specific modeling language for generating ETL workflows can borrow ideas from 

RDBMS queries, query optimization, integrity constraints, and database views.  For instance, 

constraints on workflow composition are analogous to the concepts of integrity constraints in 

RDBMS and database views are also relevant to developing a high-level language that provides 

users with a restricted set of capabilities. 
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2.3.1 Relational Databases 

ID FirstName LastName Age       

1 John Anderson 35       

2 Amy White 22       

3 Charlie Brown 37       

4 Karen Kent 30       

5 Edward Jones 44       

6 Jenny Smith 26       

          

Table 1: A relational database table containing personal data. 

Relational database management systems provide a domain-specific language for data 

storage, query, and manipulation.  RDBMS systems represent collections of data according to a 

perspective on the relational model, using the constructs of relations, tuples, and attributes to 

persist the structure and values of the data contents.  Conceptually, the relational model assumes 

all data may be broken into atomic values that can be organized into a collection of domains 

(sets) that have relationships with one another that may be captured and represented.  

Mathematically, a relation is defined as a subset of Cartesian product over n domains of values.  

Each relation then is composed of a collection of elements known as a tuples that are each 

related by a shared set of ordered pairs known as attributes.  Each tuple then is a function that 

maps an attribute to a data value.  In relational databases, this mathematical model is refined to 

define relations more concretely as an unordered collection of like-structured data items, which 

are tuples.  This shared tuple structure, known as a relation’s schema, is based off of the 

attributes, metadata that define the unique name and data type of each element in a tuple.  
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Implementations of relational databases typically utilize a visual representation of a relation 

known as a table, which consists of columns and rows to represent sets of data elements (refer to 

Table 1).  These basic relational database concepts are enhanced by or used to define additional 

concepts including derived relations, constructs to enforce data integrity, and a declarative means 

for data manipulation and retrieval.  For more on relational databases, see [11]. 

2.3.2 SQL and Relational Algebra 

Structured Query Language (SQL) is a database query language designed for retrieving 

and maintaining the data stored in relational databases [12].  Like other programming languages, 

statements in SQL can be given manually on the command-line or they can be embedded into a 

program that submits them at run time or during execution.  SQL differs from a typical 

programming language, however, in that it is declarative instead of procedural.  A SQL user 

specifies the properties of the data to be retrieved instead of the algorithm required to retrieve the 

data.  Therefore, SQL abstracts the algorithms necessary to compute the desired data, allowing 

users to make simple queries even after only a brief introduction to the language.  It is such 

declarative characteristics that are desirable in a DSML for generating ETL workflows. 

Statements in SQL are made up of entities known as operators, which include select, 

project, union, join, etc.  SQL operators perform a task involving one or more relations, 

producing another relation as a result.  Take the basic operator select as an example.  The select 

operator is given a reference to a specific table along with a condition, which can be in the form 

of a logical expression.  Select then returns the subset of the table that satisfies the condition, 

meaning it can return a fraction of the table, none of the table, or the entire table.  SQL 

statements can also utilize what are known as subqueries, where one or more SQL statements are 
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nested inside an outer statement.  Subqueries introduce more complexity to SQL statements, but 

also allow the statements to be more expressive. 

Once a SQL statement is submitted, a parser is used to verify the syntax and break the 

statement down by keywords into separate clauses.  Each clause, upon execution, produces a 

table, which is then input into the next clause so it may be executed.  The order in which clauses 

are executed, however, is not predetermined.  There can be many ways to evaluate the same SQL 

statement.  Therefore, each SQL statement is translated into an expression of an intermediate 

procedural language known as relational algebra.  The query optimizer can then convert 

relational algebra expressions into equivalent expressions to try and find the fastest executing 

expression.  This process, known as query optimization, is discussed in more detail in the next 

subsection.  As noted by Thompson [13], however, it is interesting that when SQL is parsed and 

translated from the high level statements into procedural specifications, this intermediate form 

(called the query plan) is a kind of workflow.  Similar to ETL workflows, in the relational query 

plan operators can be generic (relational algebra operations) or custom (user-defined functions) 

and the operands of these operators can be concrete relational tables (data sources) or virtual 

relational tables (outputs from earlier operations). 

2.3.3 Query Optimization 

After a SQL query is translated into a relational algebra expression, it goes through a 

process known as query optimization.  Query optimization, performed by the aptly named query 

optimizer, is a process of generating query execution plans and performing cost-based analysis to 

determine a single plan that can evaluate the relational expression as efficiently as possible.  A 

query execution plan, which contains concrete evaluation methods for each occurrence of an 

operator in the associated relational expression, is simply the set of steps necessary to perform 
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the query [11].  Optimization must be performed on a query because, as mentioned previously, 

there are typically a large number of ways to execute a query and each way has varying 

performance.  It is the job of the query optimizer to determine the most efficient way to execute 

the query.    The optimizer, however, does not look at every plan, but just a subset.  Therefore, 

the choice may not be the overall best, but will at least be reasonably efficient based on the 

sample that was examined.  Then after the plan is chosen, it can be passed to the query plan 

interpreter, which executes the query based on the plan. 

To perform query optimization, each relational expression is first represented as a tree.  

The inner nodes of the tree encapsulate a single relational operator and the leaf nodes represent 

relations.  The optimizer then applies heuristics and decides how to evaluate commutative and 

associative operators in order to generate a tree corresponding to an equivalent relational 

expression.  The heuristics used take advantage of algebraic equivalences and are based on 

simple observations, such as “joining smaller relations is better than joining large relations”.  For 

example, utilizing the heuristic just mentioned, selections and projections can be pushed through 

joins and Cartesian products because this will create the smallest intermediate results, reducing 

I/O, and thereby hopefully reducing the cost of the resultant plan.  Furthermore, the optimizer 

may introduce pipelining by interleaving two operational phases, in order to eliminate excess 

I/O.  Then, the actual query execution plan is formed by augmenting the trees with specific 

methods for computing each operation.  At this point, the DBMS then utilizes statistics and a 

mathematical model of query execution costs to assign weights to the tree, making it possible to 

estimate the cost of the plan.  With the cost of each plan, a final decision on a query execution 

plan can be determined. 
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While possibly beyond the scope of this work, optimization of a workflow could be an 

important issue.  Optimization could be performed on runtime, space, or even final quality of 

data (based on some metric).  The plan generator, however, is of definite interest as once 

workflow specifications are gathered, the actual workflow must be built.  

2.3.4 Integrity Constraints 

During the design of a relational database, certain assumptions are made about both the 

structural properties of the data and the behavior of transactions in order to properly model the 

data of the application domain.  Yet in typical database applications, users are continually 

committing transactions, relying upon the integrity of the data when they retrieve or report on it, 

but may be unaware of such guidelines.  Therefore, to ensure changes made to the database do 

not incur a loss in data integrity, relational databases employ mechanisms known as integrity 

constraints.  Integrity constraints are, in essence, rules that govern the usage of a database in 

order to uphold the integrity of the data.  To illustrate, think about the state of a database as it 

relates to data integrity.  An instance of a database can be considered in a legal state only if it 

satisfies all of its integrity constraints, meaning the integrity of the data is intact.  It therefore 

follows that any change to the data that violates an integrity constraint would take the database to 

an illegal state if allowed to commit.  Integrity constraints, thereby, can be considered to define 

the set of legal instances (i.e. states) of the data within the data model.  Relational database 

management systems define integrity constraints as assertions (predicates), denoting the 

condition(s) that must be true for an integrity constraint to be satisfied.  From this, any 

transaction that violates an integrity constraint should be rejected by the RDBMS in order to 

maintain data integrity. 
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From this concept, there are several kinds of integrity constraints that are commonly 

employed by relational databases to uphold the structural attributes inherent to a data model.  

One type is the entity constraint.
4
  The purpose of this constraint is to enforce a relation’s entity 

integrity by ensuring that each row can be uniquely identified.  To achieve entity integrity in a 

database, each table is required to have primary key.  This primary key is a set of columns that 

provides a unique (non-null) identity for each row.  Thus, each “entity” (tuple) would be unique.  

Consequently, a database with entity integrity can have no rows with duplicate values for the 

primary key in a given table.  As an example of this concept, assume that the “ID” column in 

Table 1 is the primary key.  Attempting to insert a new row with any “ID” value between 1 

through 6 would be rejected as (if allowed) it and the row sharing it’s ID value could no longer 

be uniquely identified, thus violating entity integrity.  However, if the primary key was a 

composite key of the “ID” column and the “FirstName” column, a new row with an “ID” value 

between 1 and 6 could be valid as long as the row with the shared “ID” value does not also share 

the “FirstName” value. 

Another type of integrity constraint is the referential constraint.
5
  This constraint is based 

on the concept of inter-table relationships, where columns of a given table may reference 

columns of other tables to represent an established relationship between their rows.  To ensure 

referential integrity, the referential constraint requires that any value an element of a given 

column references from another table must exist as an element of the associated column in the 

referenced table.  In relational databases, referential constraints are implemented as foreign keys, 

where a referenced column must be the key of the referenced table.  Thus, to maintain the 

relationship between tables, a given row’s foreign key cannot contain a value that does not exist 

                                                 
4
 The entity constraint is also known as the key constraint. 

5
 The referential constraint is also known as the foreign-key constraint. 
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as the key of a row in the referenced table.  To illustrate, consider Table 2, a relational table that 

contains payroll data for the individuals identified in Table 1.  Referential integrity states that 

each value in the foreign key, “EmployeeID”, must exist as a value in the key column, “ID”, of a 

row from Table 1.  Currently, the tables have referential integrity as both of Table 2’s referenced 

values, 5 and 1, have associated rows in Table 1.  However, if either row, 1 or 5, were deleted 

from Table 1, or a row with an “EmployeeID” of 7 or greater were inserted into Table 2, 

referential integrity would be violated.  Thus, referential constraints ensure such transactions will 

be rejected. 

ID Division Salary EmployeeID       

1 Sales 20,000 5       

2 IS 45,000 1       

          

Table 2: A relational database table with a foreign key. 

A third type of integrity constraint is the domain constraint.  Domain constraints define 

the legal values that may appear in the data items of a database in order to ensure domain 

integrity.  To this end, each column must specify a data domain, a set of values that each element 

in the given column can contain, where all values in a given data domain must be of the same 

data type.  This prevents a data row from being inserted into a table if any data elements are not 

congruent with the defined domain.  For example, drawing again on the data from Table 1, the 

“Age” column represents an attribute of the data entity (in this case a person) that is a 

measurable quantity.  As such, it makes sense when defining the table to declare the data type of 

this column as an integer, specifying that only whole numbers are acceptable values for this 

column.  Then, if any transaction attempts to insert or update a row with any value other than a 
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whole number in the “Age” column, the value would be identified as invalid and the transaction 

would thereby fail. 

Beyond enforcing the consistency of data’s structure, integrity constraints may also be 

used to integrate conventions or business rules derived from the application domain.  In this 

form, these integrity constraints are known as semantic constraints.  To illustrate, consider the 

“Age” column from Table 1.  As mentioned, this attribute represents the age of a person.  

Though the data type was defined as an integer in a previous example, an age can never be less 

than zero.  Based on this logic, it can make sense to further refine the domain constraint on the 

“Age” column, asserting that the value must not only be of an integer data type, but must also 

always be greater than or equal to zero.  In this way, values that don’t make sense in the 

application domain will be omitted.  Semantic constraints may also be used to control the 

progression of the data.  That is, considering the current instance of a data element, restrict the 

next legal instances of the data element.  For example, an application-specific assertion could be 

that an employee’s salary, such as in Table 2, may not change more than 5% at a time. 

2.3.5 Database Views 

Where a query can be used to define a new relation from existing tables, a view is a 

named query that essentially defines a new virtual table.  Views differ from relations in that 

views do not physically exist in the database.   While relations are part of the physical schema, 

views are instead part of the external schema.  Views are derived dynamically from the data 

stored in the database, and made accessible in a virtual table.  Any changes to the underlying 

relations, such as transaction updates, are still reflected in the view.  Views also still operate as a 

normal table, in that they allow queries and modifications, but provide the organizational benefit 

of only displaying/representing a subset of the actual data.  Essentially, views provide abstraction 
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for a database, hiding the actual complexity of the data by simplifying multiple tables, 

partitioning data, or including extra data such as aggregation. 

The concept of database views is of interest to the topic domain-specific modeling 

languages in the case of sub-setting the language.  For instance, it may be necessary or desirable 

to restrict part of the language.  Thus, the concept of database views may be extended to 

dynamically generate a domain-specific modeling language on a slightly smaller subset domain. 

2.4 Search and Planning from Artificial Intelligence 

Artificial intelligence provides a general approach for automating problem solving, using 

search and planning.  These topics are all related to the automatic generation of workflow. As 

mentioned in section 2.1.1, a workflow can be thought of as a state diagram, thus the concept of 

search spaces may be extended to workflow.  Furthermore, building a workflow is a matter of 

constraint satisfaction (business rules, pre/post conditions, pre/post requisites, etc).  Finally, with 

the constraints specified, the concept of a planner can be used to search for a solution to the 

constraints and construct a workflow. 

2.4.1 Search Spaces and Search Algorithms 

Search in artificial intelligence requires two steps.   First, a problem is represented as a 

search space.  A search space is a term that refers to the set of all possible solutions to a problem.  

According to Coppin [14] “a search space is a representation of the set of possible choices in a 

given problem, one or more of which are the solution to the problem.”  Specifically, each choice 

in a given a problem can be represented as a state in a state-space diagram.  Included in these 

states spaces would be an initial state where the problem starts, and a final state(s) which 

represents the goal(s).  A solution to the problem would then be represented by one or more 
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paths through the diagram from the initial state to the goal state(s).  Making a choice would be 

represented by a state transition in the state-space diagram, meaning that the result of an action 

that was taken changed the state from one state to another state.  An action, however, is an 

abstraction of some underlying process in the problem.  Generally, there is a set of actions that 

can be performed while in a given state.  The process of planning is used to determine which of 

these actions should be performed to make an appropriate state transition, bringing the current 

state closer to the goal. 

The second step is to employ a search algorithm to evaluate the search space for a 

solution.  The search space representation is used because searching is computationally feasible.  

However, there are various methods that can be used, each of which is more effective in certain 

cases. 

Search methodologies are categorized based on their control strategy (the order in which 

they expand nodes in a search space.  One family of search methodologies is known as 

exhaustive search.  Exhaustive searches are also known as blind or brute-force methods because 

they do not take the specific nature of the problem into account, and thus blindly make decisions, 

trying every possibility until a solution is found.  Examples of commonly known exhaustive 

search methods are the depth-first, breadth-first, and best-cost first search algorithms.  While 

incorporating no knowledge abstracts the solution so it may be applied to wider range of 

problems, exhaustive searches tend to have a much larger search space, and thus have low 

asymptotic runtime efficiency.  Conversely, informed search methods employ heuristics to 

incorporate knowledge of the problem, reducing the size of the search space.  A heuristic allows 

the search method to make assumptions about paths that have not yet been explored to determine 



 

37 

 

which action should be taken next.  This allows informed search methods to reduce the amount 

of time searching, but does make the method applicable to a smaller range of problems. 

For both blind and informed searches, the method can be further classified as data-driven 

or goal-driven.  Data-driven searches start from an initial state and take actions to move forward 

in the search space until the goal is reached.  This process is also known as forward chaining.  

Goal-driven searches, on the other hand, use backward chaining, where the search starts at the 

goal state and work backwards towards the initial state. 

2.4.3 Constraint Satisfaction 

Constraint satisfaction problems are a sphere of problems where the goal state must be 

reached satisfying some set of constraints.  Specifically, if certain characteristics of the state can 

be represented as variables, then the constraints enumerate the possible values these variables 

may take.  Therefore, a solution must assign a value to each variable that satisfies each 

constraint. 

A typical method used to solve constraint satisfaction problems is a search.  However, 

basic methods such as an exhaustive search to find a path through the search space would be too 

inefficient in this case, because the constraints can be evaluated in any order.  Instead methods 

such as backtracking are employed.  The backtracking method is a recursive algorithm that 

incrementally assigns values to the variables as long as the problem remains solvable, but 

backtracks by unassigning one or more variables if the problem becomes unsolvable based on the 

constraints.  If all of the variables get assigned and no backtracking occurs, meaning that each 

constraint is still satisfied, then a valid solution has been reached. 
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2.4.4 STRIPS 

One example of an AI planner is STRIPS [15], which used an automated planning 

approach that uses a means-end analysis strategy to determine the differences between the 

current state and the goal state to select the appropriate action to move closer to the goal state.  

This strategy was designed as a problem solver for robots, to autonomously plan the sequence of 

actions a robot should take for navigation or to rearrange objects.  The actions that can be taken 

are represented by a set of operators, that each have preconditions and postconditions associated 

with them.  A precondition is a constraint that must be satisfied before the action can be 

performed.  A postcondition is the “effect” of performing the action; what becomes true after 

performing the action and what becomes no longer true.  For more on preconditions, 

postconditions, and predicate logic, see [16]. 

A STRIPS instance starts off in some initial state that is described by a set of true 

conditions.  The instance is also passed the set of conditions used to describe the world for this 

instance, the set of available operators, and a set of true and false conditions to describe the goal 

state.  To develop a plan, the STRIPS program would then first compare the current world model 

to the conditions of the goal state.  If these conditions matched then the problem would be 

solved.  Otherwise the program would select an operator to lessen the differences between the 

current state and the goal state.  Once an acceptable plan was developed, the robot could execute 

the plan and should satisfy the goal conditions.  However, if an unexpected effect occurred 

during execution, a form of exterior interference or something that was not described as an effect 

in the operator conditions, then the plan may not succeed. 
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2.5 Automatic Generation of Workflows 

Relatively little literature ties workflow as developed by the ETL community to artificial 

intelligence planning.  The former community generates workflows manually.  The latter 

automates plans that, in effect, are workflows.  Some communities have considered how the two 

areas can fit together, which is central to this dissertation.  In particular, the relational community 

allows operations involving data stored in relational databases to be expressed through a high-

level, declarative language, SQL.  Statements in SQL are automatically mapped to query plans 

(which are workflows).  However, a query planner is not able to map SQL statements to custom 

operations, only to generic set operations.  Query optimization also does not incorporate domain 

knowledge, relying upon the user specifying a query to be knowledgeable of the data model. 

Sun [17] sought to automatically generate workflows as a solution to the “highly manual 

and cumbersome effort” required to produce a workflow in the existing process.  The approach 

taken employed a domain ontology to incorporate user specified constraints into the workflow 

generation process.  All possible workflows were built from the ontology and a questionnaire 

then allowed users to specify constraints that would filter results until only a single solution was 

remaining.  Beyond the generation of workflows, there is little in common with the approach 

taken by this dissertation.  The research had no methodology for capturing domain knowledge, 

building the ontology, or extending the ontology (the ontology was hard-coded).  Determining a 

solution by generating all possible workflows and iteratively pruning the excess solution through 

a decision tree is also distinctly different from the DSML approach and a hindrance to 

extensibility.  This would be infeasible to apply to domains with complex workflows. 

Zhang et al [18], captured domain knowledge from experts in the form of patterns.  The 

approach was designed to be domain independent by associating these patterns with the task, 
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scenario, and solution.  However, the approach does not fully generate a workflow, but instead 

just makes suggestions, leaving domain experts in the process.  It cannot produce unique 

workflow solutions, but merely regurgitate what it has already seen.  Furthermore, since it only 

gathers patterns, there is no way to extract the knowledge from the system. 

Ambite and Kapoor [19] represents domain knowledge using predicate logic then 

generates a workflow through a planner, using a best-first search to build a workflow solution to 

a given user request.  While based on a domain ontology, there was no methodology for building 

or extending this ontology.  Also, rather than having an intuitive interface for users to specify 

goals, the user specifications are complex and technical, preventing non-experts from using it.  

Finally, the workflows the planner was capable of building were only a simplification of 

workflow, having only a single way to connect and order operators. 

Previous research by Xiao, Thompson, and Li [20, 21, 22] on our own project employed 

a planner, capable of generating all of the possible workflows to transform a given initial set of 

input fields to a specified set of output fields.  Though this research included a knowledge 

representation, it was only able to capture a small portion of the domain knowledge.  Constraints 

on workflow composition due to operator logic, workflow standards, and business rules could 

not be represented in an extensible manner.  Finally, the interface was not high-level, but instead 

technical, expecting specifications in the form of fields rather than statements that express the 

user’s intent. 
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3. APPROACH 

3.1 High Level Design 

The automation of ETL workflow specification should meet several design criteria in 

order to effectively supplant the current manual approach.  These requirements include: 

 Significantly reduce human time required to produce complex ETL workflows. 

 Enable less technically adept people to define such workflows. 

 Improve the correctness of ETL workflow specification. 

 Facilitate the maintenance of ETL solutions over time. 

 Be extensible to new ETL domains. 

 Meet current and evolving requirements. 

To meet these requirements, this dissertation proposes an extensible framework for the 

creation of domain-specific modeling languages that enables users to express the intent of a 

desired ETL solution at a high-level of abstraction and automatically generate workflows 

satisfying such specifications. 

3.2 Scope 

Before proceeding, it is important to note that the design is limited in scope by the 

assumptions outlined in this section.  With respect to data, it is assumed that the data inputs are 

flat files of records (similar to relations in relation database systems) and that the fields of data 

resources have already been properly characterized.  As the problem addressed by this work is 

focused on the construction of ETL workflows, concerns such as field identification and 

interrogation are considered out of scope.  However, the automated determination of the 

characteristics of fields from an arbitrary data source is a problem that that has been automated 
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by a recent dissertation in the related area of layout inferencing [23].  The discovery, selection, 

and accessing of data resources is similarly considered out of scope.  Data sources and sinks are 

assumed to be given, either by an earlier process or predetermined by the domain.  Furthermore, 

while it is acknowledged that a workflow may involve multiple, heterogeneous data sources, for 

ease of presentation it is assumed that there is only a single data source, with homogenous data 

and known state.  This limitation just means that the current ETL workflow automation system 

does not take into account whether data it is operating on is local or remote, in one or many 

repositories, or will suffer from more or less network latency. 

With respect to operators, the discovery or generation of new operators is considered out 

of scope.  Therefore, the collection of available operators is assumed to be given by the domain 

and each has well-defined functionality with a known set of inputs and outputs. 

3.3 Representing ETL Domain Knowledge 

As described in Chapter 2, ETL workflow specification is a process complicated by 

multiple interplaying factors.  Not only are the valid configurations of ELT solutions dependant 

on a number of low level details, such as the collection of available operators, the underlying 

logic of these operators, and the characteristics of the data, but also they are similarly influenced 

by high level concerns, such as adhering to standards and business rules.  For such reasons, to 

ensure that the workflow solutions produced have the correct structure and composition to yield 

the intended results, mapping a language to workflow specifications and automatically 

generating valid workflows necessitates that such knowledge be captured in a formal 

representation. 

In developing such a representation, it must be considered that this influencing 

knowledge is neither uniform across domains nor guaranteed to remain static within a given 
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domain.  Accordingly, a knowledge representation must be based on core concepts shared by 

ETL domains, modeled at a sufficient level of abstraction to facilitate extensibility.  To this end, 

recall from Chapter 2 that ETL workflows are composed of two fundamental elements: fields 

and operators.  This is true despite variations in the knowledge influencing the specification of a 

domain’s ETL solutions.  The direction of the approach therefore is to represent the domain 

knowledge that determines the composition and structure of an ETL workflow as characteristics 

of these elements. 

3.3.1 Fields 

A key assertion of this approach is that the data each field contains can be described at a 

higher level of abstraction.  Currently, the definition of fields is done in a domain-generic 

manner.  Each field is defined with two basic properties: a name and a data type.  The name 

property (e.g. firstName or fieldX) uniquely identifies each field.  The data type property (e.g. 

varchar or int) classifies allowable values of each field.  However, for the purpose of ETL 

workflow specification, fields cannot be differentiated based on such domain-generic properties 

[24].  As the targets and products of the operations in a workflow, though the data of a field is 

being transformed as a result of these operations, the field’s name and data type remain static.  

Neither of these properties can express any knowledge about a field at the level of abstraction of 

the given domain, such as a first name versus a last name or raw address data versus an address 

in a standardized format.  Domain concepts such as these enable the significance of each field to 

be expressed clearly and thereby handled appropriately within the context of the given domain.  

Therefore, it is critical that such granular knowledge of ETL data be captured and represented 

explicitly.  This is accomplished in the approach by modeling a domain’s fields according to the 

characteristics known as content type and state attributes. 
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Content type refers to the classification of fields based on the high-level concepts a 

domain uses to categorize data.  The content type of a field, of which a field may only have one 

at any instance, describes the type of data the field contains using the appropriate domain 

concept, which would be a noun such as “first name”, “phone number”, “zip code”, etc.  Each 

content type abstracts a collection of data properties, as determined by the defining domain 

concept, allowing fields that contain related data to be associated based on content type.  For 

example, the fields UserField0 and Contact in Figure 10 can both be characterized as sharing a 

content type of “Name”.  Similarly, UserField1, UserField2, Address1, and ZipID can all be 

characterized as sharing a content type of “Address”.  This is synonymous with the concept of 

classes from object-oriented analysis and design, where classes are types defined according to 

the problem domain, allowing numerous instances of a class, declared as objects, to share an 

explicit relationship as they share the collection of properties abstracted by the defining class 

[25]. 

UserField0 UserField1 UserField2        

James Love 1 Main St AR        

          

 

Address1 ZipID Contact        

55 North St 37345 Kris Mir        

          

Figure 10: Name and address data records. 

State attributes, on the other hand, refer to distinguishable qualities that data may possess.  

While similar to content type, rather than classifying data into types, state attributes denote 
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known or asserted facts about the state of the data a field contains.  Consider that the state of data 

may not be specified by an atomic quality, but instead be a composite of multiple qualities.  Each 

of these qualities is an abstraction of data properties described by a domain concept, typically 

using an adjective or verb such as validated, filtered, standardized, corrected, etc.  Accordingly, 

the state attributes of a field, of which there may be zero or more, represent the various aspects of 

the state of a field’s data.  To illustrate, refer again to the data fields depicted in Figure 10.  The 

address data in field UserField1 could be known to be in a standard format and thereby can be 

characterized with the “Standardized” state attribute.  After being run through a particular 

operator that geocodes addresses, this field could additionally be characterized with a 

“Geocoded” attribute. 

Incorporating these abstractions, the resulting conceptual model of ETL fields can be 

described as shown in Figure 11, where - in addition to the existing name and data type - each 

field is characterized by a content type and collection of state attributes.  It therefore follows that 

an implementation of this model must define the set of content types and state attributes.  As 

these values are domain-specific, formalizations of concepts a domain uses to describe properties 

of their data, this step is left up to the domain modelers. 
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Figure 11: Attributed field model. 

3.3.2 Operators 

Operators are the elements of ETL that perform work.  Specifically, the data processing 

operations that operators enact when executed are what produce and manipulate the data 

contained within fields.  Yet, to ensure an operator produces a particular result, mapping the 

inputs of operators must be compliant with the properties of each operator.  As operators are 

essentially programs that accept parameters and produce return values, such properties of 

operators constraining their usage and determining the results they produce can be expressed 

using concepts of programming languages: preconditions and postconditions. 

3.3.2.1  Operator Preconditions 

The preconditions of ETL operators are assertions that must be true prior to an operator’s 

execution to guarantee that the operator will perform its defined data processing operations in an 

intended manner.  Assuming operators are independent constructs, the only variables of an 

operator on which to base such assertions are those introduced by their collection of inputs.  

Operator preconditions then must represent each assertion as a requirement that a parameter 
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mapping must satisfy to be considered valid.
6
  For instance, the operator depicted in Figure 12 

could require that the input field “Input 1” is always mapped, while mapping the input field 

“Input 2” is optional and “Input 3” can only be mapped if both of the other input fields are 

mapped.
7
  Such stipulations on how inputs may be utilized conjunctively are just one example to 

illustrate the variability of the constraints that a representation of operator preconditions must 

capture.  Regardless of the origins of such conditions, the case where an argument is mapped 

only to “Input 1” must be recognized as valid, while the case where arguments are mapped to 

just “Input 1” and “Input 3” must be recognized as invalid. 

 

Figure 12: ETL operator with inputs and outputs. 

The representation of operator preconditions is handled using predicate expressions.  As 

predicate expressions, assertions that must all be true to satisfy a particular precondition are 

composed as a logical conjunction.  If there are multiple of these conjunctive groups of 

assertions, denoting more than one distinct precondition for an operator, they are combined as 

                                                 
6
 A parameter mapping, as it applies to an operator, refers to the mapping of fields in the 

workflow’s data set to the input fields of the operator.  As an option is also considered a 

parameter of an operator, a parameter mapping can also refer to specifying the settings of the 

operators options. 

7
 To clarify the usage of the term “mapped”, for an input field of an operator this refers to the 

input field parameter having an argument field from the workflow’s data set specified (i.e. 

mapped).  
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logical disjunctions.  An operator’s precondition may then be evaluated based on the truth of 

these underlying predicates. 

To illustrate, consider again the requirements on input mapping combinations presented 

in the previous example.  The precondition of this operator can be expressed as depicted in 

Figure 13, where the presence of an input’s name indicates the input requires an argument, while 

the absence indicates the use of the input is not allowed.  Given an input mapping that supplies 

an argument only to “Input 1” or one with arguments for both “Input 1” and “Input 3”, this 

expression of the operator’s precondition would correctly evaluate to true and false respectively. 

 

Figure 13: Expression of an operator’s preconditions. 

Building on this basic representation, the precondition of an operator must additionally 

specify the properties a field must possess to be a valid argument for a particular input field.  As 

these candidate arguments are in fact fields, which - from the field model presented earlier – are 

characterized on such properties by means of content type and state attributes, these abstractions 

may similarly be utilized to specify required or disallowed conditions on input fields.  Mapping 

an operator’s input fields can then be evaluated by comparing the content type and state 

attributes of the arguments against those defined in the precondition.  For example, consider 

determining an argument mapping for the operator in Figure 14.  In this simple example, the 

operator has just a single input, the input field named “Input 1”.  The preconditions specified for 

this input indicate assertions that an argument must contain either street address data that is in a 

standardized state or full name data and that is in a corrected state.  Selecting arguments from the 
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fields available in Figure 10, the only content matches would be the fields Address1, UserField1, 

Contact and UserField0.  However, the precondition on field state cannot be satisfied, as both 

street address fields lack a standardized attribute and both full name fields lack a corrected 

attribute.  As a result, it can be easily determined from the given precondition that none of these 

fields are valid arguments. 

 

Figure 14: ETL operator with preconditions. 

The other type of input for ETL operators to be considered is options.  Recall that the 

arguments for options are selected from a predefined set of values.  Accordingly, the cases when 

each of these value settings is a valid argument must be specified as part of an operator’s 

precondition.  An additional consideration, however, is that each option setting may alter an 

operator’s execution behavior.  Such alterations may in turn affect an operator’s precondition, 

introducing additional assertions on the operator’s inputs, both input fields and other options.  

These assertions are therefore represented as preconditions on option settings.  The evaluation of 

an operator’s input mapping would then be the conjunction of the operator’s precondition and the 

preconditions of each option based on its setting.  Using the operator depicted in Figure 15 to 

illustrate, assume that the inputs “Option 1" and “Option 2" can both have a value Y or N.  From 

the operator’s precondition, it can be determined that “Option 1” and “Option 2” cannot both be 

set to Y at the same time.  Furthermore, if “Option 2” is set to Y, an argument for “Input 1” must 
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be in a standardized state to be considered valid.  It can thereby be ensured that not only are an 

operator’s option settings valid, but also that the arguments mapped to an operator’s input fields 

are in compliance with these settings. 

 

Figure 15: ETL operator with an option-level precondition. 

3.3.2.2  Operator Postconditions 

The postconditions of operators are assertions that will be true after an operator executes, 

provided that the preconditions are satisfied.  The dependence upon the satisfaction of the 

preconditions logically follows from the fact that an ETL operator’s execution is undefined 

should the preconditions be violated, and thereby the condition of the results produced cannot be 

guaranteed.  As an understood consequence of the execution of an ETL operator is that in 

carrying out its encoded data processing operations in a valid manner, an operator produces a 

particular result, these results can be persisted in a workflow’s dataset by generating and 

appending new fields - as defined by the collection of output fields - or alternatively can 

overwrite the data of existing fields that were mapped into the operator as arguments.  Such 

knowledge is critical to the process of workflow specification, as the projected condition of the 

data at any point in an ETL workflow must be known to determine which operators should 
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follow or if the goals of the solution have been satisfied.  The role of an operator’s postcondition, 

therefore, is to specify the particular qualities the transformed data has gained, lost, or been 

produced with; in essence, to describe the “effect” of the operator’s execution.   

Complementary to the preconditions of operators, the representation of operator 

postconditions employs the enhanced representation of fields to specify the condition of each 

affected field following operator execution.  Through the specification of the appropriate 

characteristics - an implementation specific consideration to be handled by a domain’s modelers 

- the diverse transformations produced by ETL operators may not only be captured, but also 

described in terms that are compatible with that of preconditions.  First is content type, which 

specifies what category of data is to be written to each field in a postcondition after operator 

execution, providing a domain concept to describe the data produced rather than an ambiguous 

data type.  For example, assuming the effect of the operator depicted in Figure 16 can be 

described as parsing the input into a first name and last name, with an input mapping that 

satisfies the given precondition, the defined result is that “Output 1” will be populated with first 

name data and “Output 2” will be populated with last name data.  This knowledge can therefore 

be encoded by means of the postcondition shown. 
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Figure 16: ETL operator with a postcondition. 

State attributes, on the other hand, are tied to each field in a postcondition to express (via 

domain concepts) the state in which the data values of new fields will be produced or existing 

fields will be transitioned to following operator execution.  The specification of state attributes 

denotes alterations (additions or deprecations) to make to an indicated field’s collection of state 

attributes.  For example, consider an operator that performs an in-place transformation (i.e. 

writes transformed data back to the fields used as arguments), such as the one shown in Figure 

17.  The effect of this operator - assuming an input mapping that satisfies the given precondition 

- can be described as standardizing city, state, and street address data.  To represent this data 

transformation, after valid execution the “Standardized” attribute is appended to the collection of 

state attributes of each transformed field, as specified in the postcondition.  The resultant state of 

an argument for this operator would therefore be a composite of any attributes existing prior to 

the operator’s execution with this “Standardized” attribute. 
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Figure 17: ETL operator with a postcondition that include state attributes. 

A final consideration with the postconditions of operators is that, similar to preconditions, 

there may be multiple distinct cases.  Specifically, different input mappings – for both input 

fields and options – may illicit changes to operator behavior, thereby producing result sets with 

different characteristics.  The operator depicted in Figure 18, for example, has two distinct 

preconditions for its single input field, one accepting full name data while the other accepts street 

address data, each with different requirements on data state.  Assuming the operator’s execution 

is defined for both cases, given an input mapping that satisfies one precondition, the 

postcondition of the operator may be different than if given an input mapping that satisfies the 

other precondition.  It therefore follows that the representation of postconditions must facilitate 

such multiplicity.  To handle this, each postcondition is simply tied directly to the specific 

precondition(s) that it is defined for, such as shown in Figure 18.
8
  This granular precondition to 

                                                 
8
 In this form, the disjunction of operator preconditions is implied. 
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postcondition association thereby formally defines the particular mapping of input fields and 

option settings required to produce a desired result. 

 

Figure 18: ETL operator with multiple preconditions and postconditions. 

3.4 A Domain-Specific Modeling Language for Generating ETL Workflows 

The described model establishes a representation of ETL domain knowledge.  This 

representation captures the knowledge needed to compose operators and fields into valid 

workflows.  From this foundation what remains is designing the framework for a domain-

specific modeling language capable of leveraging this knowledge to automate ETL workflow 

specification.  With the direction being to allow users to specify the desired composition of an 

ETL workflow at a high level of abstraction, consider as a basis how a query statement in SQL 

abstracts the details of the relational algebra used to perform the retrieval of desired data items.  

Each constituent term of a statement maps to lower-level concepts, providing a partial to full 
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specification.  This translated specification is then used by the query optimizer to produce the 

query’s execution plan and return the desired data results.  Similarly, combining an engine 

capable of automating the process of workflow construction with a declarative language that 

allows users to express the desired results (intents) that can be interpreted into technical 

requirements by the engine can allow the appropriate composition of workflows (in terms of 

operators and input mappings) to be inherent from specifications written in this language.  To 

this end, two components have been designed: a workflow engine and an intent language. 

3.4.1 Workflow Engine 

As implied, the workflow engine must be capable of generating workflows absent human 

interaction.  Therefore, applying concepts of AI planning to ETL workflow, this engine maps the 

process of workflow construction as a search space problem.  Recall from Chapter 2 that the 

search space problem requires three basic pieces of information: an initial state, a goal state, and 

the collection of available state transitions.  Mapping these concepts to ETL, the state that data 

processing workflows are concerned with altering is that of the data; taking the given source data 

and producing the specified result.  From this, the initial state is represented by the state of the 

source data being extracted, while the goal state is represented by the specified target state of the 

data.  State transitions then are manifested by the distinct data transformations of operators.  The 

workflow engine may therefore generate ETL workflows autonomously by determining the 

sequence of state transitions (i.e. operators and input mappings) necessary to move from the 

initial state to the goal state. 

The design details of this engine are based on concepts incorporated from the knowledge 

representation.  Data state is represented through the state attributes of the fields.  With the state 

of source data being assumed as known, the initial state of a workflow is well-defined.  As data 
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passes through operators, each operator’s postcondition is applied to the appropriate fields, 

allowing each field to maintain a heritage of its state as it flows through a workflow.  

Postconditions also enable the workflow engine to select only the operators, input fields, and 

option settings necessary to attain the workflow’s goal specifications.  Preconditions then are 

evaluated against the current state of the workflow’s fields, ensuring input mappings are valid.  

Finally, using forward or backward chaining, the workflow engine may arrange the appropriate 

operator’s into the proper sequence to attain the goal state. 

While the concrete planning algorithm employed by the workflow engine is left up to the 

implementation, available strategies include: 

 Depth first – The depth first strategy attempts to reach the goal state from the initial 

state by evaluating as deep as possible upon each available path before backtracking.  

When traversing a step for the first time, all of the next possible steps are determined 

before advancing or backtracking.  If either there are no next steps available, the 

strategy backtracks to the most recent unexplored step.  If the goal state has been 

reached, the algorithm can either exit to return only a single solution or backtrack to 

the most recent unexplored step in order to find all solutions.  Otherwise, if there are 

next steps available, the strategy advances to the first unexplored next step from the 

current step. 

 Breadth first – The breadth first strategy attempts to determine every possible 

solution for reaching the goal state from the initial state.  When traversing a step for 

the first time, all of the next possible steps are determined.  Rather than directly 

advancing to one of these steps, however, each of the next steps is considered in a 

first in, first out (FIFO) manner, giving the evaluation of any neighbors of the current 
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step precedence.  If the goal state has been reached or there are no next steps, the 

breadth first strategy simply continues to evaluate in according to FIFO until there are 

no steps left to evaluate. 

 A* – This best-first strategy is similar to depth first, attempting to reach the goal state 

from the initial state by evaluating as deep as possible upon each available path 

before backtracking.  The difference, however, is that the A* strategy does not simply 

expand the first unexplored next step.  Instead the next step to advance to is 

determined based on cost so far and selecting the unexplored next step with the least 

cost.  Note that the assignment of cost is implementation specific. 

Before moving on to present the final component, it must be noted that it is possible for a 

particular goal state to be attained by multiple, distinct ETL workflows.  Either due to ambiguity 

of the goal state or flexibility of operator constraints, the following cases may result: 

 The same collection of operator’s arranged in different sequences. 

 Multiple operator’s with redundant functionality that are simply substituted for one 

another. 

 Alternative distinct input mappings for the same sequences of operators. 

These resultant workflows may in fact be equivalent – a determination to be handled by 

the governing domain – and thereby returning any of these solutions would be satisfactory.  

However, the converse that one or more are not equivalent may also be possible.  In such cases, a 

domain may need to re-evaluate the domain models or goal specifications in order to pare down 

the set of resultant workflows to only the proper solutions.  This topic of workflow equivalence 

is described further in Chapter 6 but incorporating it in the workflow engine is left to future 

work. 
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3.4.2 Intent Language 

The workflow engine described provides a planner capable of generating ETL 

workflows.  With the initial state assumed known and operators (plus associated domain 

knowledge) defined through the knowledge representation, the remaining dependency is a 

specification of the goal state.  These goal specifications are difficult to understand in their raw, 

computational form; a specific set of fields, each with a specific content type and a specific set of 

state attributes to represent a goal data state.  This computational form is necessary for the 

planning logic of the workflow engine, but such a technical means of goal specification would 

still be cumbersome to expert users and would prove overly complex for casual users.  Reducing 

the complexity of technical specifications through the development of higher level abstractions is 

not uncommon in computing.  As cited by Schmidt [26], there have been several innovations (in 

particular higher level languages) over the past fifty years that capture “design intent”, enabling 

users to express solutions using terms from their domain of interest rather than in computing 

oriented terms.  The purpose of the final component of the approach, the intent language, is to 

serve as such an abstraction, providing an intuitive interface that even users with minimal 

expertise can understand and utilize to specify data processing goals. 

The focus of this language is to allow users to specify (at a high level of abstraction) the 

intent of what is desired; hence the name “intent language”.  Conceptually, the terms that allow 

users to express their intent should be drawn from the subject matter domain, using the 

appropriate domain concepts to describe each (desired) data processing goal of the given domain.  

The value of drawing on domain concepts for the language’s terms is that it provides users with 

familiar terminology and allows users to understand what their specifications are expressing.  

From this conceptual design, the interface of the intent language can take many forms.  The 
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interface can be visual having a dashboard with buttons, check boxes, and/or provide drag drop 

functionality (similar to ETL tools) for user interaction.  The interface can also be command-line 

oriented, accepting typed instructions similar to programming languages.  The languages terms 

and interface, however, are left to be determined by the implementation. 

In order to constructively generate the workflow that satisfies a specified goal, however, 

this language must be capable of being translated from high-level specifications down to 

technical specifications.  The core design of this language therefore involves the definition of 

mappings between high-level and low-level specifications; i.e. intent specifications and goal 

state specifications.  Each term in the language must be mapped to its corresponding 

specifications of goal state, where these specifications of goal state are based upon the 

implementation of the workflow engine.  A statement in this language consisting of one or more 

terms could then be translated into all of the requirements needed by the workflow engine to 

generate the workflows that satisfy the goals this statement represents. 
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4. IMPLEMENTATION 

4.1 Overview 

An implementation of the workflow representation and planning algorithm presented in 

the previous chapter was constructed to provide a functional prototype.  From an architectural 

perspective, the focus was to provide extensibility through the separation of concerns.  

Decoupling the ETL domain knowledge from the logic of the prototype enables the knowledge 

to be updated to reflect changes in a domain (e.g. new operators, content types, and state 

attributes) or to fit new domains without requiring changes to the prototype’s logic.  Use of 

abstraction within the core logic permits components such as the workflow engine to be 

enhanced to accommodate new/custom rules.  To this end, the prototype’s architecture is 

logically structured as multiple layers, as depicted in Figure 19.  At a technical level, the source 

code of this prototype was developed in C#.  The programming techniques used during 

development followed object-oriented design principles in order to keep the source code both 

legible and extensible [27].  As a result, the implementation is divided among a collection of 

modular objects that compose the prototype’s object model, shown in Figure 20.  The remainder 

of this chapter explains the details of this implementation. 
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Figure 19: High-level architecture of the prototype. 
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Figure 20: UML diagram of the prototype’s object model. 
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4.2 Infrastructure 

Before proceeding with the description of the prototype’s implementation, it is necessary 

to first explain some fundamental aspects of the prototype’s infrastructure, which encapsulates 

the persistence of the knowledge representation. 

4.2.1 State 

First is the concept of state and how its various applications were realized in the 

prototype.  State, as it applies to both data fields and workflows, was described in Chapter 3.  For 

data fields, state was represented via the state attributes on attributed fields.  The state of a 

workflow was described as the state of all of the fields in the workflow at a particular instance, 

and was represented accordingly by a collection of attributed fields.  As it applies to goals, 

however, state must be able to be specified in both an inclusive and an exclusive manner; that is, 

data state that should be produced and data state that should not be produced.  For this reason, 

the state specified by goals was represented by postconditions.  This is elaborated on more at the 

end of section 4.2.2. 

4.2.2 Assertion Types 

Next, one design requirement to implement the approach was the definition of concrete 

assertion types.  In the approach chapter, both preconditions and postconditions were described 

as being composed of assertions.  However, the base concept of an assertion is abstract; an 

assertion’s definition changes depending on the criteria it is designed to check.  While this 

abstraction allows the approach to be flexible, concrete definitions are necessary for an 

implementation.  For this reason, two assertion types were designed: field mapping assertions 

and field state assertions. 
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The field mapping assertion was designed to represent constraints on mapping 

combinations of input fields; assertions which are found in preconditions.  Recall from Chapter 2 

that though an operator can have multiple input fields, only specific combinations of these fields 

being mapped in conjunction may be valid.  As part of a precondition to express these valid 

combinations, a given field can be considered required, disallowed, or optional.  When required, 

an argument field must be mapped to the input field for the constraint to be satisfied.  

Conversely, when disallowed, an argument field must not be mapped to the input field to satisfy 

the constraint.  The final case, optional, indicates the absence of a constraint, where it is 

acceptable to either map or not map an argument field to the input field.  For a representation of 

such constraints, the definition of the field mapping assertion consists of a reference to a field 

and a Boolean value (see Figure 20).  The referenced field specifies which input field the 

assertion is for.  The Boolean value modifies the evaluation of the assertion, representing 

whether the assertion should evaluate to true when the specified field is mapped or not mapped. 

To illustrate the use of the field mapping assertion, consider the operator in Figure 21.  

Assume that a field mapping is required for “Input 1”, a field mapping is disallowed for “Input 

2”, and “Input 3” is optional.  These constraints would be expressed in a precondition by 

including a field mapping assertion for “Input 1” with the Boolean value set to true, a field 

mapping assertion for “Input 2” with the Boolean value set to false, and including no field 

mapping assertion for “Input 3”.  This example precondition would then evaluate to true in two 

cases: when an argument field is mapped to “Input 1”, an argument field is not mapped to “Input 

2”, and an argument field is mapped to “Input 3”; or when an argument field is mapped to “Input 

1”, an argument field is not mapped to “Input 2”, and an argument field is not mapped to “Input 

3”.  Note that the optional case is represented implicitly through the absence of an assertion.  An 



 

65 

 

alternative to represent this explicitly could split the single precondition into two preconditions, 

both with the same assertions for “Input 1” and “Input 2”, but one with a field mapping assertion 

for “Input 3” with the Boolean value set to true and the other with a field mapping assertion for 

“Input 3” with the Boolean value set to false. 

  

Figure 21: An example operator with multiple inputs. 

The field state assertion was designed to represent constraints involving the state of a 

field’s data.  The definition of the field state assertion consists of a reference to an attributed field 

and a Boolean value (see Figure 20).  This assertion type, however, was designed to be employed 

differently depending on whether the instance of the assertion is part of a precondition, 

postcondition, or intent. 

For preconditions, a field state assertion is used to represent constraints on the state of a 

field’s data for mapping to an operator’s input field.  As described in Chapter 2, the data mapped 

into an operator’s input fields can be required to exhibit certain characteristics; characteristics 

that, from the model presented in Chapter 3, are represented by content type and state attributes.  

Field state assertions are used as part of a precondition to express the content type required, the 

state attributes required, and the state attributes disallowed for a given input field.  The 

referenced attributed field specifies which input field the assertion is for, which content type is 

required, and which state attributes are either required or disallowed.  Similar to the field 
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mapping assertion, the Boolean value modifies the evaluation of the field state assertion.  When 

the Boolean value is set to true, the assertion only evaluates to true when a field mapped to the 

input field of the assertion has both the same content type specified by the assertion and each of 

the state attributes (or a superset of the state attributes) specified by the assertion.  When the 

Boolean value is set to false, the assertion only evaluates to true when a field mapped to the input 

field of the assertion has none of the state attributes specified by the assertion. 

Using the operator in Figure 21 as an example, assume that “Input 1” requires the content 

type C1 and the state attribute A1, while “Input 2” requires the content type C2 and the state 

attribute A2 but disallows the state attribute A3.  These constraints would be expressed in a 

precondition through three field state assertions: one using an attributed field for “Input 1” with 

the content type C1 and the state attribute A1, with the Boolean value set to true; another using 

an attributed field for “Input 2” with the content type C2 and the state attribute A2, with the 

Boolean value set to true; and a final one using an attributed field for “Input 2” with the content 

type C2 and the state attribute A3, with the Boolean value set to false.  This example 

precondition would then evaluate to true when a field with the content type C1 and having at 

least the state attribute A1 is mapped to “Input 1”, and a field with the content type C2, having at 

least the state attribute A2, but not having the state attribute A3 is mapped to “Input 2”. 

For postconditions, a field state assertion is used to represent the results produced by an 

operator’s execution: the addition of a new field containing data with a specific state or changes 

to the state of an existing field’s data.  To express the addition of a new field as part of a 

postcondition, the referenced attributed field specifies all of the characteristics of this new field: 

the field’s name, data type, content type, and state attributes.  For this case, the Boolean value of 

the field state assertion is not used in the evaluation of the assertion.  Next, to express changes to 
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an existing field as part of a postcondition, the referenced attributed field specifies which field 

the assertion is for, what the content type of this field is changed to, and what changes are made 

to the field’s state attributes.  For this case, the Boolean value of the field state assertion modifies 

the evaluation of the changes made to the field’s state attributes.  When the Boolean value is set 

to true, the specified state attributes are added to the existing field.  This addition of state 

attributes is performed as a merge, where the existing field’s resultant set of state attributes has 

only one of any given state attribute.  When the Boolean value is set to false, the specified state 

attributes are removed from the existing field.  Any state attributes in the assertion not found on 

the existing field are ignored. 

To illustrate the designed use of the field state assertion as part of a postcondition, 

consider the operator in Figure 22.  First, assume that this operator adds the new field “Output 1” 

with the content type C1 and the state attribute A1 and changes the state of “Input 1” to the 

content type C2 and adds the state attribute A2.  These changes would be expressed in a 

postcondition through two field state assertions: one using an attributed field for “Output 1”, 

with the content type C1 and the state attribute A1, with the Boolean value set to true; and 

another using an attributed field for “Input 1”, with the content type C2 and the state attribute 

A2, with the Boolean value set to true.  The evaluation of this postcondition would add the new 

field “Output 1” with the content type C1 and the state attribute A1, and, assuming an argument 

field mapped to “Input 1” with content type C2 and the state attribute A3, the field “Input 1” 

would have content type C2 and the state attributes A2 and A3.  Next, assume that this operator 

changes the state of “Input 1” to the content type C1 and adds the state attribute A1, but removes 

the state attribute A2.  These changes would be expressed in a postcondition through two field 

state assertions: one using an attributed field for “Input 1”, with the content type C1 and the state 
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attribute A1, with the Boolean value set to true; and another using an attributed field for “Input 

1”, with the content type C1 and the state attribute A2, with the Boolean value set to false.  In the 

case of an argument field mapped to “Input 1” with content type C2 and the state attribute A2, 

the evaluation of this postcondition would change the field “Input 1” to have content type C1 and 

only the state attribute A1.  In the case of an argument field mapped to “Input 1” with content 

type C2 and the state attribute A1, the evaluation of this postcondition would leave the field 

“Input 1” the same having the content type C1 and only the state attribute A1. 

  

Figure 22: An example operator with a single input and output. 

Finally, for intents, field state assertions represent conditions in the data of the workflow 

that are required to be present or not present after workflow execution; i.e. the technical 

requirements that must be met by the end state of a workflow to satisfy a given goal.  As stated, 

these conditions can be required to be present (inclusive) or required not to be present 

(exclusive).  However, it is not assumed that the specific names of each field in the end state of a 

workflow that satisfies a given goal are known.  Since the names of fields are specific to the data 

source or operator on which they are defined, that would require that each data source and 

operator needed to produce a given goal were predetermined in the definition of each intent.  

Therefore, these conditions are not asserted on specific fields, but instead on specific content 

types.  Content types are a characteristic that categorize fields based on domain concepts.  This is 
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useful in the specification of goals because it generalizes the specification – for a category of 

fields rather than a specific field – and permit the specifications to be more expressive as they are 

based on domain concepts.  As part of an intent, the referenced attributed field specifies the 

content type the assertion is for and which state attributes are either required to be present or not 

present.  Once again, the Boolean value modifies the evaluation of the field state assertion.  

When the Boolean value is set to true, the specified state attributes must be present in the end 

state of a workflow.  It is not required that the specified state attributes are all on a single field 

with the same content type as the assertion or that only the specified state attributes are present 

on fields with the same content type as the assertion, only that each of the specified state 

attributes is present on any of the fields with the same content type as the assertion.  When the 

Boolean value is set to false, the specified state attributes must not be present in the end state of a 

workflow. None of the specified state attributes can be present on any field with the same 

content type as the assertion. 

As an example of the field state assertion’s designed use as part of an intent, consider a 

field state assertion for the content type C1 and state attribute A1 with the Boolean value set to 

true, a field state assertion for the content type C2 and state attributes A2 and A3 with the 

Boolean value set to true, and a field state assertion for the content type C1 and state attribute A4 

with the Boolean value set to false.  This intent’s assertions would evaluate to true for any 

workflow state that has a field with the content type C2 and state attribute A2, a field (possibly 

the same field as the first) with the content type C2 and state attribute A3, a field with the content 

type C1 and the state attribute A1, and no field with the content type C1 and the state attribute 

A4. 
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4.2.3 Storage 

Another design requirement for the prototype’s infrastructure was a solution for storage 

of ETL domain knowledge.  The storage mechanism employed by the prototype was a relational 

database, SQL Server Enterprise 2008 [28].  The choice of a relational database is discussed as 

part of future work in Chapter 6 to overcome limitations imposed by space complexity.  Using 

this storage mechanism, the physical data model was implemented following a table-per-type 

approach.  Each entity (i.e. type) defined by the conceptual model was implemented as a table in 

the database.  This implementation also employed normalization to keep the representation 

general purpose.  Accordingly, foreign keys and association tables were incorporated to capture 

the one-to-one/one-to-many/many-to-many relationships between the entities.  The table 

definitions are depicted by the diagram in Figure 23. 

To explain this table structure further, consider the AttributedFields table from Figure 23.  

As described by the approach, an attributed field is an enhanced representation of a field.  Where 

the base definition of a field consists of just a name and data type, an attributed field introduces a 

content type and a set of state attributes.  However, while the base definition of a field is 

expected to remain static (at least within a domain) the content type and state attributes of a field 

may vary, such as throughout a workflow.  Accordingly, fields are stored in the Fields table, as 

their definitions are reusable, and the AttributedFields table provides an association of fields to 

content types and state attributes.  Since each attributed field has only one associated field and 

content type, these are represented by foreign key relationships to the Fields and ContentTypes 

tables.  But, since an attributed field can have any number of state attributes, this many-to-many 

relationship is represented using the association table AttributedFieldStateAttributeAssociation.  
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Figure 23: Physical table structure. 
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4.2.4 Data Access 

With the ETL domain knowledge stored in relational tables, an additional requirement 

was to make this data accessible to the rest of the prototype.  As the prototype’s design was 

object-oriented, the objective was to encapsulate the raw relational data using structured objects; 

a computational form that was both extensible and organizationally convenient.  Rather than 

developing custom SQL to query the ETL domain knowledge and logic to convert query results 

to objects, an object-relational mapper (ORM) was used.  An ORM is a framework that abstracts 

the persistence of database entities, handling the retrieval and hydration of these entities into 

objects.  Data access was therefore handled by the chosen ORM, Entity Framework [29]. 

Then, to address the architectural objectives, the repository pattern was employed to 

abstract these data access details from the other components of the prototype.  The repository 

pattern is a design pattern that abstracts the persistence of data, exposing only a collection-like 

interface for access to the objects that encapsulate the desired data [30].  This extra layer of 

abstraction allows the rest of the prototype’s implementation to remain unaware of the database 

integration and even the utilization of an ORM, further enhancing the flexibility of the prototype. 

4.3 Prototype Execution 

Building upon the details of the infrastructure is the implementation of the core 

components of the prototype; the intent language and the workflow engine. 

4.3.1 GUI 

The front end of the prototype was implemented as a GUI application, developed using 

Windows Presentation Foundation (WPF) [31].  As the sole entry point for the prototype, the 

GUI was designed to provide the following functionality: 
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 Specification of data processing goals (i.e. intents). 

 Specification of the initial data state. 

 Invocation of the workflow engine. 

 Display of the generated workflow solutions. 

Using this functionality, the GUI is a visual-based DSML, providing users with a 

graphical interface to compose statements in the intent language and submit them to the 

workflow engine to generate their desired workflow solutions. 

4.3.1.1  Intent Specification 

The interface for intent specification was provided as a dashboard in the GUI (refer to 

Figure 24).  Intents added to this visual component are displayed as rows, where each row 

consists of two columns; one column is configured to display the intent’s name and the other is a 

checkbox.  The check state of each checkbox indicates whether or not the associated intent is 

being specified by the user; checked indicates include, not checked indicates not included. 

Upon startup, the intents defined for the given domain are loaded from the database.  As 

this control is scrollable, the number of intents the GUI displays is not constrained and so can be 

variable.  Users then specify intent statements by scrolling through the list of intents and 

selecting the checkboxes by the intents that describe the data processing goals they want satisfied 

by the resultant workflow solutions.  The resultant goal state specified by the user is then 

determined through the amalgamation of all of the checked intents.  Each assertion from the 

postcondition of each intent is merged to produce a single specification of the goal state.  Note 

that it is currently possible for a user to specify goals that are redundant – the goals of one intent 

are equivalent to or a subset of the goals of another – or conflicting – the goals of one intent 
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cannot be satisfied if the goals of another intent are satisfied.  The identification and subsequent 

handling of these relationships between intents, however, is left to future work. 

 

Figure 24: Intent specification in GUI. 

4.3.1.2  Initial State 

As specified in the approach, the determination of data state from an input file is out of 

the scope of this work, and it is instead assumed that the initial state of the source data is known.  

However, for the purposes of functional testing, it was necessary to provide a means of 

specifying an initial state for use in the invocation of the workflow engine. 

To this end, an interface was provided in the same manner as intent specification; a 

scrollable dashboard that uses checkboxes for specification of the initial state (refer to Figure 

25).  Since what could be specified in the grid had to be representative of different possible data 

fields that were known to be valid for the given domain, all of the domain’s content types and 
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state attributes were used.  The content types were the items in the dashboard and a dialog 

allowed state attributes to be added to any row.  

 

Figure 25: Initial state specification in GUI. 

4.3.1.2  Workflow Engine Invocation 

Invocation of the workflow engine is triggered via the “Solve” button.  Upon clicking the 

“Solve” button, the user’s specifications are validated to ensure both an initial state and a goal 

state has been specified.  If this validation is passed, the domain’s operators are loaded from the 

database and the specified initial state, goal state, and collection of available operators are passed 

to the workflow engine to begin the generation of ETL workflows. 

4.3.2 Workflow Engine 

Upon invocation, the workflow engine begins execution of the process flow shown in 

Figure 26.  Adhering to the aforementioned design standards, the interface to the prototype’s 
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workflow engine was implemented as a service.  Specifically, the service itself is thin, devoid of 

the actual logic that implements each task in the workflow planning process, instead directing the 

appropriate business objects in the domain layer to carry out these tasks.  The advantage to this 

implementation is that the workflow engine’s logic is loosely coupled and so is highly flexible.  

That said, the implementation of the workflow engine’s process flow follows a depth first 

strategy, working to find all workflows (as opposed to just a single workflow) to achieve the 

specified goal state from the specified initial state using the specified collection of operators. 

As the workflow engine executes, a plan is generated to reach the goal state from the 

initial state.  This plan, referred to as the workflow plan, is a collection of steps.  Starting from 

the initial state, there can be multiple operator/mapping choices that transition the workflow 

closer to the goal state from the current step in the workflow plan.  Following the depth first 

strategy described in Chapter 3, the planning algorithm evaluates as deep as possible upon each 

available path, where a path is a series of sequential steps in the workflow plan.  The evaluation 

upon a given path ends when either the goal state has been reached or there are no more next 

steps available.  At this point, the prototype’s workflow planning algorithm backtracks, returning 

to the previous step in the workflow plan to evaluate other unexplored paths.  Once all paths 

have been explored, execution of the workflow engine ends and the workflow plan contains all 

workflows that reach the goal state from the initial state.  While this is a high level description, 

the remainder of this section presents further detail on the implementation of this planning 

algorithm. 
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Figure 26: Process flow in the prototype’s workflow engine. 

4.3.2.1  Planning Tree 

Tracking the workflow plan is an integral part of the prototype’s workflow planning 

algorithm.  When the current step in the plan reaches the goal state or has no unexplored next 

steps available, the workflow engine must be able to backtrack to a previous step in order to 

continue the evaluation for solutions.  Also, once all paths in the workflow plan have been 

explored, the workflow engine must be able to extract each of the distinct paths that reach the 

goal state from the plan, as each of these paths represents a workflow solution.  For these 

reasons, the workflow planning tree was implemented in the prototype to track the workflow 

plan. 

As a tree-based data structure, the workflow planning tree is composed of a collection of 

connected nodes.  Each node represents a step in the workflow plan, with the root being the 
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starting point of the workflow and the leaf nodes being the possible last steps based on the path 

taken through the tree.  To allow the workflow to traverse up and down the tree, each node has a 

reference to a single parent (null for the root) and potentially multiple children.  Furthermore, 

each node maintains details about the step in the workflow plan they represent.  One such detail 

is the operator planned for that specific step in the workflow, as well as the option and input 

mappings planned for this operator to allow the exact workflow to be extracted from the tree.  

Additional details are the end state and remaining goals after the operator is executed, which are 

used by the workflow engine to plan the next possible steps in the workflow. 

When execution of the workflow engine begins, the root of the workflow planning tree is 

initialized using the initial state as the end state and the goal state as the remaining goals.  

Starting with the root as the current node, the workflow engine determines which operators 

should be the next steps in the workflow plan and adds them as the children of the current node.  

The workflow engine then performs the same logic on the children of the current node in a 

recursive manner.  If no next steps can be found for the current node or the current node has 

reached the goal state, recursion backtracks the workflow engine to the parent node and the next 

child is evaluated. 

4.3.2.2  Goal Matching 

As stated, the determination of which operators should be the next steps in the workflow 

plan selects only operators that bring the workflow plan closer to the goal state.  Finding such 

operators is referred to as goal matching.  During goal matching, all of the available operators are 

checked to find postconditions that produce any of the remaining goals of the current step in the 

planning tree.  This is determined by comparing the assertions in each postcondition to each of 

the assertions in the remaining goals. 
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The logic that performs this comparison has multiple criteria to consider.  One criterion is 

that the content types of the assertions (which are field state assertions) must match; if the 

content types differ, then the postcondition’s assertion does not produce the specified goal.  

Another criterion is that no assertions can conflict.  If the postcondition produces a state attribute 

that is disallowed by the specifications of the goal state, then it is not a goal match.  The final 

criterion is also dependent upon the workflow’s current state; i.e. the end state of previous node 

in the planning tree.  If the content type already exists in the workflow’s current state, then the 

postcondition’s assertion must additionally share at least one state attribute with the goal state’s 

assertion.  This serves two purposes.  First, by accepting a goal match if the content type does 

not exist in the workflow’s current state, this allows the workflow engine to handle cases when a 

particular field does not exist at the start of the workflow, but must instead be produced by an 

operator during the workflow.  Second, by disallowing a goal match if the content type does 

already exist in the workflow’s current state but no state attributes are shared, this prevents false 

positives on operator’s that are not actually brining the workflow closer to the goal state. 

4.3.2.3  Input Matching 

Even though an operator is a goal match, it should not be added to a workflow plan if no 

valid input mapping exists.  To determine if an input mapping is valid, the input mapping has to 

satisfy the appropriate precondition of the operator.  Here, a precondition is considered 

“appropriate” only if it produces the postcondition that was determined to be a goal match; 

however, this determination is not the responsibility of precondition validation, but is instead 

handled by a separate step that is discussed later.  Moving on, finding a valid input mapping is 

performed using the fields from the end state of the current step in the planning tree.  First, each 

of the field mapping assertions of the precondition is checked.  If a field cannot be found for a 
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required field mapping assertion, a valid input mapping is not available.  If a field is available for 

each of the required inputs, then the field state assertions are checked.  If all of the conditions are 

satisfied, meaning the required content types match and there are no conflicts with the required 

and disallowed state attributes, then the field is considered a match.  If a match is found for each 

of the required inputs, the operator is determined to have a valid input mapping. 

4.3.2.4  Workflow Planning 

Operators that are found to be both a match to the remaining goals and have a valid input 

mapping are considered candidates for the next step in the workflow plan.  As described, each 

candidate is added to the planning tree as a child of the current node in the tree; growing the 

workflow plan.  Once added to the workflow plan, these new children must have their end states 

and remaining goals evaluated in order to continue with the workflow planning logic. 

First, the end state is determined by applying the postcondition of the planned operator to 

the fields from the input mapping.  Applying a postcondition is performed per assertion.  For a 

given assertion, the input mapping is checked for matching fields.  If no matching fields are 

found, the asserted attributed field is added to the end state.  Otherwise, the state attributes of the 

attributed field from the input mapping are merged with those from the assertion.  The resultant 

end state consists of all of the fields from the previous state with the postcondition of the 

operator applied to the fields in the input mapping. 

After the end state is known, the remaining goals can be determined.  This involves 

taking the difference between the (now known) end state of the child node and the remaining 

goals of the current node.  This logic takes the field state assertions from the postcondition that 

are true, finds the fields in the end state that match (based on content type) and takes the 

difference of the assertion with the matched fields.  The result is a new assertion has all of the 
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state attributes that were in the old assertion except those that are present in the attributed field.  

If there are no state attributes left in the assertion, it is dropped from the result.  Otherwise, it is 

added to the resultant postcondition.  If no matching fields are found, the existing assertion is 

added to the resultant postcondition, as none of its asserted goals have been satisfied.  What is 

left is a postcondition containing all of the assertions that have not yet been satisfied by the 

current state of the workflow. 

4.3.2.5  End Conditions 

Though the workflow engine attempts to plan the next steps of the workflow plan 

recursively, each recursive invocation checks to see if the goal state has been reached.  This end 

condition is checked by evaluating the remaining goals of the current step in the workflow 

planning tree.  One case indicative of the goal state being reached is when there are no remaining 

goals.  The other case is when the only remaining goals are exclusive goals; having all inclusive 

goals satisfied and no exclusive goals violated indicates the goal state has been reached. 

4.3.2.6  Operator Decomposition 

A characteristic of ETL operators noted in previous chapters was that an operator can 

produce more than one distinct result depending on the inputs.  That is, a single operator can 

have multiple preconditions, each of which can produce a different postcondition.  To determine 

which operators will transition the workflow closer to the goal state, as is performed by the 

prototype, the workflow engine must know the distinct postconditions of each operator.  

Similarly, to know the input mapping required to produce a desired postcondition, the workflow 

engine must know the distinct preconditions of each operator.  While these values can be 

determined on demand during the workflow planning process, the computational overhead 

associated with computing the distinct preconditions and postconditions of every operator each 
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iteration through the workflow planning logic becomes excessive.  Therefore, an optimization 

introduced by the prototype that is performed before workflow planning begins is a process 

referred to as operator decomposition. 

Operator decomposition is a process that breaks up a single, complex operator into many 

atomic operators; atomic referring to the construct having only a single precondition and 

postcondition.  To decompose an ETL operator into atomic operators, the canonical form of all 

of the operator’s preconditions, including the options, must first be determined.  Canonical form 

refers to the standard form of presentation [32].  In the prototype, each precondition is a 

conjunctive expression and therefore a collection of preconditions tied to an operator or option 

setting is already in canonical form.  What is required is to merge the operator’s preconditions 

with the preconditions of the options.  Note that during this merging, preconditions from two 

different option settings for the same option are not merged, because an option can only have a 

single setting mapped at a time.  From the merged canonical form, the maxterms are the 

operator’s discrete preconditions. 

To demonstrate, consider an operator with the preconditions: (P1&&P2) || (P1&&P3).  If 

the operator has only single option with two settings, one with no precondition and the other with 

the precondition P4, the merged canonical form would be: (P1&&P2) || (P1&&P3) || 

(P1&&P2&&P4) || (P1&&P3&&P4); four maxterms, meaning four discrete preconditions.  If 

there were a second option, similarly with two settings, one with no precondition and the other 

with the precondition P5, the merged canonical would be: (P1&&P2) || (P1&&P3) || 

(P1&&P2&&P4) || (P1&&P3&&P4) || (P1&&P2&&P5) || (P1&&P3&&P5) || 

(P1&&P2&&P4&&P5) || (P1&&P3&&P4&&P5); eight maxterms, meaning eight discrete 

preconditions. 
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Of course, merging preconditions involves merging the underlying assertions.  Assertions 

of the same type for the same field should be merged into a single assertion.  For example, a 

precondition containing field mapping assertion for field F1 that is true being merged to a 

precondition also with a field mapping assertion for field F1 that is true should produce a single 

field mapping assertion for field F1 that is true in the resultant, merged precondition.  Similarly, 

a precondition containing field state assertion for field F1 with state attribute A1 that is true 

being merged to a precondition also with a field state assertion for field F1 with state attribute 

A2 that is true should produce a single field state assertion for field F1 with both state attributes 

A1 and A2 that is true in the resultant, merged precondition.  However, if two assertions are 

conflicting, such as asserting that a field both can and cannot be mapped or that a state attribute 

is both required and disallowed, it indicates that that both preconditions cannot be satisfied in 

conjunction.  Such preconditions are excluded from the result. 

 

Figure 27: Workflow results in GUI. 
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4.3.3 Results 

When execution of the workflow engine has finished, the workflow plan is returned to 

the GUI.  The GUI then traverses the workflow planning tree to extract the solutions generated 

by the workflow engine, finding all paths that start at the root and end in a leaf node.  Workflows 

that satisfied all the goals are given the status “Success”, while those that failed to satisfy all the 

goals are given the status “Failure”.  A summary and the status of each workflow is displayed in 

the workflow results area (see Figure 27).  Clicking the “View” button on a workflow displays a 

dialog window that presents the user with the details of the workflow (see Figure 28).  The user 

may also click the “Export” button to save a specific workflow or all of the workflows to file.  

An example of an exported workflow can be viewed in Appendix C.1. 

 

Figure 28: Workflow details in GUI. 
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5. VERIFICATION AND VALIDATION 

5.1 Overview 

Preliminary verification of the prototype was performed concurrently with the 

prototype’s development through unit testing.  The aim of unit testing is to isolate the smallest 

testable components of an application (i.e. units) in order to verify the behavior of these 

components individually [33].  While infeasible to define unit tests that cover all possible cases, 

unit testing helped ensure that functionality such as operator decomposition, goal matching,  

input mapping, determining remaining goals, and applying postconditions satisfied their design 

specifications (described in Chapter 4) before beginning system testing. 

Once the components of the prototype were verified, testing focused primarily on 

validation: confirming that the software fulfilled its intended use [34].  System testing of the 

prototype was scenario-based, modeling a target domain and defining test scenarios.  These test 

scenarios were then executed and their output was analyzed to demonstrate the validity of the 

prototype.  The remainder of this chapter describes the target domain, details of modeling this 

domain, test scenarios selected, results obtained from these scenarios, and analysis of these 

results. 

5.2 Target Domain 

In order to have realistic scenarios to draw on for validation of the approach, an industrial 

partner was selected as the target domain.  The services of this domain focus on improving the 

quality of their clients’ data.  Their clients are typically businesses that collect and store large 

amounts of customer relationship management (CRM) data, such as names and addresses of 

individuals and/or businesses.  For various reasons, this data is often incomplete (names without 
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a mailing address), redundant (multiple entries for the same individual or business), or incorrect 

(the wrong mailing address associated with a customer’s name).  Given such deficiencies in data 

quality, the data processing goals of clients are typically related to business productivity.  For 

example, a client that mails promotions to their customers may seek to correct erroneous 

addresses, update addresses for customers who have moved, or merely filter the customer data to 

remove redundancy. 

Over the years, this domain has developed a large library of custom operators targeted at 

servicing their clients’ goals.  Many of these operators have a sizeable number of input fields, 

options, and output fields, and each is capable of producing a variety of transformations 

depending on the mapping of inputs.  Due to the complexity of both the operators and targeted 

goals, the workflows that are produced to transform a client’s raw customer data into the desired 

form can involve up to hundreds of these operators and thousands of data fields (e.g. source 

fields, input fields, output fields).  Furthermore, construction of these workflows is performed 

manually and is constrained by a number of workflow standards and business rules that are only 

fully known and understood by domain experts.  Consequently, these expert users must apply 

their knowledge of the operators and constraints to determine which operators to use, how their 

options should be set, and what sequence they should be composed in to attain the client’s 

desired goals.  Then an appropriate field must be selected from all of the available fields in the 

workflow and mapped to each input field of each of the operators.  Finally, the workflows must 

be tested and refactored a number of times until it is verified that all of the operator mappings are 

valid and the workflow produces the result. 

To populate the prototype’s model for testing, an in depth study was performed on the 

target domain’s workflow system.  This study involved learning operator definitions and 
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business cases, then leveraging the domain experts to capture the various facets of associated 

domain knowledge.  From this study, select operators and intents were modeled specifically for 

validation testing.  In order to better understand the results obtained from testing, the following 

subsections describe these operators and intents that were modeled. 

5.3 Operators 

5.3.1  Catalog of Operators 

From the target domain, eight operators were selected for use in testing.  Note that the 

actual operators are more complex than those presented in this dissertation.  However, details 

were left out so that this work can remain valuable without being overwhelming.  Brief 

descriptions of these operators are as follows: 

 AddressEditCheck – This operator interrogates address fields to determine if the contents 

are blank or invalid.  Accordingly, the accepted inputs are name and address fields.  By 

default, no inputs are required; instead, input requirements are dependent on the options. 

 AddressEnhance – This complex operator provides a range of functionality that includes: 

address standardization and hygiene, delivery point validation, delivery sequencing, 

appending geocoding data, and updated data based on changes of address.  Much of this 

functionality is enabled or disabled through options.  Parsed address fields are required as 

inputs, where the setting of each option may further constrain the inputs. 

 AddressSelect – This select operator has a well-defined criterion for selection: selecting 

the field with the most current address data from the inputs.  Though the inputs are not 

specified by default, workflow standards provide an adequate definition for modeling. 
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 ContactLink – This operator cross references a knowledge base to find contact data that is 

determined to be related to a given record.  Though not required by the operator, domain 

knowledge dictates that the address input fields have passed through AddressSelect first. 

 IndustryCode – This operator determines an industry-based demographic code for an 

individual.  To perform this determination, the operator requires only the professional 

title as input.  A business name can also be included as an optional input to enhance the 

accuracy of the operator.  The determined codes are appended to the data record as part 

of the operator’s output. 

 NameEditCheck – Using encoded rules, this operator determines if name fields contain 

data errors or invalid data.  Either parsed or unparsed name data (but not both) is 

accepted as inputs.  The operation is performed in place on the input fields, so no new 

fields are created as outputs. 

 Parser – The primary function of this operator is to parse name and address data, 

accepting combinations of parsed and unparsed name and address fields as inputs.  After 

execution, the operator outputs a new set of parsed name and address fields.  A secondary 

function, which is controlled by an option, is filtering out any profane words from the 

output fields. 

 PremiumAddress – This is an example of an operator with overlapping functionality of 

another operator, AddressEnhance.  PremiumAddress performs address hygiene, as well 

as finding current addresses based on change of address.  Transformations are only 

performed based on the options, but require address data that has been through 

ContactLink first. 
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5.3.2 Example Operator Model 

This section describes the detailed specifications of the AddressEnhance operator, which 

are shown in Appendix A.2.  The specification starts with the basic information about the 

operator.  The names of each of the input fields and output fields were taken directly from the 

target domain’s operator definition.  All fields were defaulted to the “string” data type, but since 

data types were inconsequential in the prototype, these details were left out of the field 

specifications. 

The next part of the specification is the preconditions.  There were two preconditions 

defined at the operator level.  Both involve only basic, parsed address fields.  In both, the 

PrimaryAddressLine field is required, specified by the field mapping assertion.  The expected 

content of this field was determined to be primary address data, accordingly specified by the 

content type Address.Primary in the field state assertion.  In addition to the PrimaryAddressLine, 

one precondition requires the City and State inputs fields, the former expecting the field content 

to be city data, defined as Address.City, and the latter expecting state data, defined as 

Address.State.  The other operator level precondition requires only the Zip input field in addition 

to the PrimaryAddressLine.  As specified in the field state assertion, the expected content of the 

Zip input field is zip code data, represented by the content type Address.Zip.  Note that neither of 

the preconditions requires any state attributes. 

As an aside, note the naming convention of content types.  The name of a content type is 

a hierarchy of categories of data content.  A content type starts with a general category, such as 

“Name” or “Address”, then is followed by a more specific subcategory of this general category, 

such as “First” or “Primary”.  The reason for using this convention is to enhance readability. 



 

90 

 

Following each precondition is the specification of the associated postcondition.  Both 

preconditions share the same postcondition, consisting of two collections of parsed address 

fields.  These are fields added to each data record as the result of the operator’s execution.  Each 

of these fields has been standardized and cleaned according to USPS guidelines, represented by 

the UspsStandardized state attribute.  Each, except for the address flags, has also had the address 

checked as a valid point of delivery, represented by the DeliverabilityValidated state attribute. 

Next in the specification are the options.  The first option, Perform Delivery Sequencing, 

has two settings: Y or N.  When set to Y, the operator will enhance the address data with 

delivery sequences; this is specified by the DeliverySequenced state attribute.  The next option, 

Perform Change of Address, similarly has Y and N settings.  Setting this option to Y enables the 

operator to find updated addresses based on change of address data.  These updated address 

fields are populated only in the output fields specified in the postcondition.  Additionally, this is 

represented by the AddressChange state attribute.  Finally, the PerformGeocoding option enables 

geocoding of the address data, specified in the postcondition through the Geocoded state 

attribute. 

5.4 Intents 

While operators were known constructs, determining which intents should be modeled 

was more involved.  The methodology devised for the elicitation of intents started by using the 

base content types defined for the domain from the operators; “name” and “address”.  Next, 

high-level descriptions of the ways in which a field’s data can be modified or enhanced by the 

available operators were determined (e.g. “cleaned”, “standardized”, and “corrected”).  Finally, 

the intents were mapped back to the technical requirements (operators and options) that produce 

the given transformations. 
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5.4.1  Catalog of Intents 

Using the methodology described above, the data processing goals selected for testing 

were drawn only from those achievable using the chosen operators.  As they are defined, intents 

can map to 1 or more operators.  The descriptions of the intents are as follows: 

 Address hygiene – Standardizes and corrects address data.  This can entail applying 

substitutions, such as standardizing “123 Main Street” with “123 Main St.”, or fixing 

errors, such as correcting “12 3 Main” with “123 Main St.”. 

 Premium address hygiene – Standardizes and advanced correction of address data.  

Premium address hygiene can handle more extreme errors than the non-premium version 

(and is therefore more costly to use), such as correcting “Main S” to “123 Main Street”. 

 Change of address – Use change of address data to find current addresses.  This data is 

pulled from USPS change of address databases.  For example, by referencing the USPS 

database, it can be determined that “John Doe” who lived at “123 Main St.” now lives at 

“1 Walnut Ave.”. 

 Premium change of address – Uses proprietary change of address data to find current 

addresses, finding matches for older address data that the USPS database can’t match. 

 Filter profanity – Expunges profane words from name and address fields. 

 Validate names – Flags name fields that contain data that is not a valid name.  For 

example, a name field that is blank or contains “12345” would be flagged so that the data 

is not used to mail a contact. 

 Determine industry demographic – Appends a code indicating the industry-based 

demographic of an individual.  This could indicate the contact is a director of marketing, 
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executive vice president of sales, or another indicator useful in targeting the mailing 

campaign. 

 Validate addresses – Checks the components of address data for common errors.  

Flagging addresses that are blank or that have invalid postal codes (e.g. less than 5 

numbers or containing letters) avoids improper addressing of mail. 

 Delivery sequencing – Appends sequence codes for mailing routes.  Sequencing 

addresses for mailing routes saves money for mailing campaigns. 

 Geocode addresses – Adds latitude and longitude coordinates for addresses. 

 Link contact – Associates contact data to related records in the knowledge base.  Though 

this, it can be discovered that “Jim Doe” who lived at “123 Main St.” is actually the same 

person as “John Doe” that now lives at “1 Walnut Ave.”. 

5.4.2  Example Intent Model 

This section describes the process of defining the intent “Change of Address”.  First, the 

purpose of this new intent was determined.  The purpose was described as using change of 

address data to find current addresses.  This description was reduced in order to be succinct 

while still capturing the domain concept, resulting in the intent’s name “Change of Address”.  

Next, the technical specifications required to accomplish this intent in the target domain’s 

workflow system were gathered.  From interviewing the domain experts it was determined that 

change of address data is used to find current addresses when the “Perform Change of Address” 

option is set to “Y” on the AddressEnhance operator.  The postcondition of this option setting 

was analyzed, finding that the AddressChange state attribute indicates that a given attributed 
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field has had change of address logic applied to it.  The AddressChange state attribute was 

therefore needed as part of mapping the intent. 

An additional requirement was introduced from workflow standards.  Whenever the 

change of address logic is run in the AddressEnhance operator, it is standard practice in the 

target domain to follow up with the AddressSelect operator.  This standard is to ensure the most 

current address (between the before and after change of address logic) is captured.  Capturing the 

most current address is indicated by the CurrentAddressSelected state attribute, which is 

appended by the postcondition of the AddressSelect operator.  The CurrentAddressSelected state 

attribute was therefore also needed as part of mapping the intent. 

Finally, the content types of the fields each of these state attributes should be present on 

at the end of the workflow were determined.  These content types were a subset of the address 

content types and included “Address.Primary”, “Address.City”, and “Address.Zip”.  These 

requirements were combined to produce the definition of the “Change of Address” intent (shown 

in Appendix B.3).  Translating this intent to workflow requirements specifies that the address 

data should pass through AddressEnhance with the Perform Change of Address option enabled 

and through AddressSelect. 

Before moving on, note that “Change of Address” is distinct from “Premium Change of 

Address” in that they are not considered interchangeable by the target domain.  In fact, it is 

common to have a single workflow constructed to satisfy both intents. 

5.5 Test Scenarios 

Actual business cases from the target domain were analyzed to choose scenarios 

appropriate for testing.  As part of this analysis, the business cases considered were limited to 

those that fit within the scope of this paper, involving no generic operators and no repetition of 
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the same operator.  That said, the business cases selected originate from a client planning to 

perform a mailing campaign.  To improve the productivity of this campaign, the client seeks to 

enhance their customer’s contact data.  Such improvements include: 

 Hygiene on address data for accurate mailing addresses. 

 Enhancing the contact data with delivery sequencing to receive mailing discounts. 

 Classification of customers through industry demographics, allowing the campaign to be 

targeted accurately. 

 Checking for changes of address to update data that is out of date. 

 Cross-referencing a knowledge base to identify duplicate contacts. 

 Identifying and flagging records with invalid name and/or address data. 

5.5.1  Test Scenario 1 

The first scenario is a basic mailing enhancement package.  The initial state consisted of 

unparsed data; full name, unparsed primary address, and unparsed city state zip.  The selected 

intents were “Determine industry demographic”, “Address hygiene”, and “Validate names”.  A 

workflow generated for this scenario is shown in Appendix C.1.2.  The expected workflow, 

which was produced by the target domain, is the following sequence: 

 Parser => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck 

5.5.2  Test Scenario 2 

The second scenario is an advanced mailing enhancement package.  As before, the initial 

state consisted of unparsed data; full name, unparsed primary address, and unparsed city state 

zip.  The selected intents were “Determine industry demographic”, “Address hygiene”, “Link 

contacts”, “Validate addresses”, and “Validate names”.  Due to the length of the results for this 
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scenario, these results were not included in the dissertation.  However, the expected workflow 

was once again produced by the target domain and is the following sequence. 

 Parser => IndustryCode => AddressEnhance => AddressSelect => ContactLink => 

NameEditCheck => AddressEditCheck 

5.6 Analysis 

In both scenarios, the solutions generated were 100% accurate for the specified goals.  

All of the workflows generated had a composition of operators matching the expected result and 

all of the workflows generated also successfully achieved the specified intents.  The number of 

workflows generated was 384 for the first scenario and 7680 for the second scenario.  Initially, 

this appears to be an overwhelming number of solutions.  To better analyze these solutions, 

however, an enhancement was made to the GUI to consolidate the results based on the end state 

of the last step in each workflow for a given scenario.  Workflows with the same set of attributed 

fields (same fields with the same content types and the same state attributes) were consolidated.  

After consolidation, only 16 distinct workflows were left for each scenario.  The difference 

between these 16 workflows (in both scenarios) were the following options; “Perform Change of  

Address”, “Perform Delivery Sequencing” and “Perform Geocoding” on the AddressEnhance 

operator and “Filter Profanity” on the Parser operator.  Compared to the expected result, 

however, all of these workflows were valid.  In the expected workflows, these options are set to a 

default, which can be changed if the client desires.  While the user did not specify these goals, 

they also did not exclude them either.  Since the intents were under-constrained, this lead to the 

overflow of workflows. 

For another comparison, the distinct operator sequences were also determined.  There 

were 12 distinct operator sequences for the first scenarios, shown in Appendix C.1.1, and 120 
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distinct operator sequences for the second scenario, shown in Appendix C.2.1.  All contained the 

same operators (for the given scenario) and each sequence was valid as they all produce the same 

output state.  The initial step of each workflow was to parse the unparsed data.  This is due to the 

preconditions of all of the later operators requiring parsed name and address data.  After this 

step, the sequence of operators differed only by the placement of a couple operators.  Under 

closer scrutiny, this is because the operators’ preconditions were satisfied early in the workflow 

and the goal state was not affected by the placement of the operator; therefore, there were 

multiple, equivalent placements.  For example, the position of NameEditCheck was 

inconsequential as, after parsing, no operators would affect the name data. 

For ease of use, ignoring the specification of the initial state (since it is actually assumed 

known), three intents were all that was needed to generate all 384 workflows and 5 to generate 

7680 workflows.  Each workflow for the first scenario involved 5 operators, 8 options, 84 input 

fields that had to be mapped, and 90 output fields.  Each workflow for the first scenario involved 

7 operators, 9 options, 116 input fields that had to be mapped, and 91 output fields.  As a user, it 

was not required to have to select each of these operators, sequence them (note that order was 

important on some operators), or handle any field or option mappings.  Due to the consolidation 

enhancement to the GUI (mentioned at the start of this section), the number of workflows for a 

user to consider was reduced.  However, it was also determined that ease of use could be 

improved further by providing users with a means of distinguishing between the workflows 

generated.  An enhancement was made to the GUI to rank the workflows based on distance from 

the user’s specified goal state.  All of the workflows satisfied the goals, but some performed 

more transformations than others, resulting in the differences in the end states of the workflows.  

The distance enhancement quantified these differences by calculating the number of distinct 
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content types and state attributes that appear in a given workflow’s end state but are not in the 

user’s specified goal state.  The workflow with the minimum calculated distance is the solution 

that most tightly bounds the user’s goal specifications. 

Similar to ease of use, the prototype demonstrated reduced time to produce workflows.  

Solutions were generated in less than one minute for both scenarios.  Also, having to select only 

three or five intents (depending on the scenario) and click “Solve” was able to produce all of the 

solutions.  As opposed to the manual process, which (for 384 workflows) would require 32,256 

input fields and 3,072 options to map by hand (either in an ETL tool or in XML); for 7680 

workflows, this would require 890,880 input fields and 69,120 option to map by hand (a large 

increase). 

The workflow engine’s design prevents it from constructing workflows that violate 

known constraints.  There can always be cases when a constraint was neglected (as part of 

modeling) but once identified and defined, such errors will be avoided.  In contrast to the manual 

process, there is no chance of errors (once again this assumes proper modeling).  To validate this, 

the workflows generated were inspected to find the presence of any known composition errors, 

but none were found (as expected from the unit testing verification). 

The prototype was able to capture all of the necessary domain knowledge.  It was flexible 

enough to handle the known constraints of the target domain.  The architecture of the prototype 

is the best evidence of the extensibility.  However, this could be reinforced by future work to 

apply this approach to a different domain. 
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6. CONCLUSIONS 

6.1 Summary 

ETL workflow specification is the process of composing operators and fields into a 

workflow that satisfies a particular set of requirements.  When these requirements are specified 

at a high-level of abstraction, domain knowledge becomes critical to perform this process as such 

knowledge drives the translation of high-level specifications into lower-level technical 

requirements needed to build the workflow.  Field and option mappings, operators to include or 

exclude, and operator sequence are all characteristics of an ETL workflow that affect the result a 

workflow produces and so must be determined to build a workflow that satisfies the given 

requirements. 

This dissertation has presented a novel approach (compared to the existing solutions 

surveyed in Chapter 2) for automating ETL workflow specification consisting of a generic model 

to abstract and capture ETL domain knowledge, a declarative language to allow users to express 

requirements at a higher level of abstraction, and a planner to automatically generate workflows 

that produce a specified goal state.  Based on the framework defined by this approach, a 

functional prototype was implemented to demonstrate that the proposed approach conforms to 

the objectives of the thesis. 

Testing the prototype on a real-world domain provided a demonstration that both the 

human time and expertise needed to produce an ETL solution were reduced through use of the 

DSML, having only to click a few buttons to generate the solutions for a given test scenario.  The 

results obtained from testing were then analyzed to demonstrate that, according to the specified 

intents, the solutions produced were both accurate and error free. 
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Finally, extensibility was exhibited by the architecture of the prototype, in the decoupling 

of ETL domain knowledge from the workflow generation and intent translation logic, and the 

implementation of the physical data model, kept normalized to allow the knowledge 

representation to allow for enhancements. 

In summary, this dissertation has demonstrated its objective that:  

ETL workflow specification can be automated in an extensible manner by translating 

high-level statements of intent into a set of ETL workflow requirements and generating 

ETL workflow solutions that accomplish these specifications. 

6.2 Contributions 

The contributions of this dissertation include a model that captures ETL domain 

knowledge, a planning strategy that incorporates this knowledge for the automatic generation of 

workflows, and a language that maps workflow requirements to higher-level abstractions called 

“intents.” 

To capture ETL domain knowledge and how data is transformed as a result of workflow 

execution, the proposed model has extended the usual representation of fields to include field 

attributes to encode the content type semantics and state of data, expressing knowledge that was 

previously obfuscated to all but domain experts and implicit in workflow execution.  Using the 

extended field representation and propositional logic, operators were enhanced with 

preconditions and postconditions, providing a computational representation of the input 

requirements of operators, the distinct results produced by their execution, and how options 

impact their behavior. 

The modeling framework transforms ETL workflow specification to an intent declaration 

and treats workflow planning as a search space problem to automatically generate the 
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corresponding workflows.  The proposed workflow planning algorithm provides an informed 

search strategy, incorporating domain knowledge to reduce the search space to only operators 

that transition the workflow closer to the goal state and have a valid input mapping from the 

available workflow fields.  To optimize this execution of this planning strategy, a way to 

normalize a compound operator into a collection of simpler operators was also developed. 

This work has also established a mapping between technical and higher-level 

specifications of data processing goals.  This mapping enables the definition of domain-specific 

languages that can be used to express an ETL solution using high-level terms that translate to 

workflow specifications. 

Finally, as a demonstration of the feasibility of the modeling framework, the approach 

has been implemented in a prototype and used successfully to model a real industrial customer 

data integration domain. 

6.3 Future Work 

This section provides directions for further research on the topic of automating ETL 

workflow specification.  Some topics are straightforward extensions in scope that could build 

upon the approach presented in this paper, while others fall far enough outside of the scope of 

this dissertation that significant enhancements would be necessary. 

6.3.1 Operator Verification 

The model of ETL domain knowledge defined in the approach is not limited to being 

used solely for workflow generation.  This model includes the preconditions and postconditions 

of ETL operators; knowledge necessary to verify the usage of these operators in a workflow.  A 

possible application for future work would be to use this model to store the operator 
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specifications of an ETL domain and apply this knowledge (whether as an overlay for an existing 

workflow tool or built into a new workflow tool) to verify that a workflow is syntactically well-

formed, either during or after workflow construction.  The benefit of such an application would 

be comparable to compile-time type safety in programming languages [35].  Users could be 

assured that the ETL workflow solutions they have constructed are structurally sound, avoiding 

errors that would not arise until runtime if any operator mapping was invalid.  This could also 

help with the maintenance of ETL workflows, identifying errors with operator usage as a 

domain’s workflow system matures and changes over time. 

6.3.2 Correctness 

Consider that even after an ETL workflow has been decided upon (whether as part of a 

manual or automated process) it is difficult to prove that the workflow is “correct”.  Here, the 

term correct is used in the sense of verification that a workflow satisfies each of its originating 

business intents.  This use is comparable to proving the correctness of programs [36], [37].  The 

difficulty in proving the correctness of traditional, manually-specified ETL workflow arises from 

the dissociation between the business intents and the workflow specifications: business intents 

are high level (and often not specified explicitly) while workflow specifications are low level.  

With today’s manual workflows, verification is informal, relying upon the experience of domain 

experts and/or iterative testing to accept a workflow as a fit solution.  However, this provides no 

guarantee of correctness.  The knowledge of a domain expert is not absolute and testing cannot 

feasibly have complete coverage.  To guarantee correctness, a formal verification is needed.  

While an attempt can be made utilizing statistics of the workflow’s performance on the actual 

data and relating that back to the intents, this would provide only a shallow affirmation and could 

not be considered a proof in the strict sense.  A contribution of this dissertation, however, was 
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the definition of formal specifications for operators and intents; preconditions and 

postconditions.  Given such formal specifications, future work could research using formal 

verification techniques to derive a proof of workflow correctness for a given workflow intent. 

6.3.3 Equivalence 

As was noted in Chapter 3, it is possible for a particular goal state to be attained by 

multiple, structurally distinct ETL workflows.  Possible cases included: 

 The same collection of operators arranged in different sequences. 

 Multiple operators with redundant functionality that are simply substituted for one 

another. 

 Numerous distinct input mappings for the same sequences of operators. 

 Extraneous option settings for the same sequences of operators. 

Of particular interest for further research was the observation that one or more such 

workflows may be considered equivalent; being structurally different but producing equivalent 

results.  Determination of workflow equivalence would enable such seemingly distinct ETL 

workflows to be consolidated, alleviating unnecessary computational overhead in the planner and 

refining the result set for the user by pruning the excess choices.  This concept of equivalence is 

considered analogous to its application in query optimization.  As surveyed in Chapter 2, a query 

optimizer uses identity statements to recognize and reduce equivalent query plans or substitute 

operations in a plan to produce the same result at a cheaper cost.  Research into discovering such 

identities for ETL workflow could allow for the determination of workflow equivalence. 
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6.3.3 Optimization 

Complex ETL workflows can contain hundreds of operations.  The more complicated a 

domain’s ETL workflow system becomes, the more difficult workflow construction becomes.  

Another concern for such domains, however, is the increasing difficulty of workflow 

optimization.  Optimization of a workflow refers to seeking to improve the workflow in some 

sense, such as: 

 Reducing the financial cost to the client. 

 Reducing the cost to the business in employee hours. 

 Reducing the cost to the business in operations performed. 

 Minimizing workflow runtime. 

While optimization provides several potential benefits, it becomes infeasible even for a 

domain expert to manually optimize complex workflows.  Workflow optimization is therefore 

considered an interesting future topic to explore. 

Optimization would require equivalence relations for workflow operations similar to 

algebraic transformations like the commutative, associative, and distributive rules.  These could 

be used to transform workflows from one form to another, similar to the way relational database 

query plans are optimized.  An additional need would be to enhance the approach presented in 

this work with a cost model.  Domain users could then assign more or less cost to particular 

aspects of ETL workflows.  Using this cost model, a simple use case would be for the workflow 

solutions produced to include ranking in terms of these configurable costs.  A more complex use 

case would be to incorporate the cost-based optimization directly into the workflow engine, 

affecting the operators selected, option mappings, and input field mappings based on the cost 

configuration. 
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6.3.4 Data Heritage 

An additional aspect of dealing with complex ETL workflows is that it is difficult to track 

the heritage of the data.  As the data fields pass through various operators of a given workflow, 

the values may or may not be transformed.  Statistics in the form of percentage changed can be 

gathered, but it is more difficult to track the exact effect of each operator on each data field.  

Still, traceability of data heritage can be beneficial towards accurate pricing of solutions, 

licensing, and even just internal debugging.  Accordingly, data heritage is another area for future 

research. 

As an extension of the concepts described in this dissertation, one approach could be to 

use attributed fields during workflow execution to determine the heritage of data fields through 

an ETL workflow.  Specifically, instead of only utilizing attributed fields during the planning of 

ETL workflow, extend the functionality of the operators to append meta-data in the form of state 

attributes to each data field according to the actual transformations that were performed to the 

value of each data field during execution of a workflow.  The post-execution output of the 

workflow could then be used to trace the exact path each data field took through the operators of 

an ETL workflow. 

6.3.6 Generic Set Operators 

In defining the scope of this dissertation, it was asserted that operators must have well-

defined functionality with a known set of inputs and outputs.  Consequently, generic set 

operators, such as SELECT and UNION, fell outside this scope as they could accept variable 

inputs and would return variable outputs based on variable criteria.  For example, address data 

could be mapped into a select operation configured to only return addresses that are in the US in 
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one instance, while in another instance name data could be mapped into a select operation 

configured to only return female names.  However, such operations can be needed to support the 

control of data flow in an ETL workflow. 

Adding support for such operators, while challenging, may be similar to relational 

database query planning and optimization.  This area is well understood by the database 

community.  The ETL operators in this dissertation can be viewed as domain-specific mappings 

that could augment relational operators.  Our ETL operators can be viewed as variants of a 

generic MAP operator that sequences through the tuples in a set and applies a user-defined or 

domain-specific function (which may be parameterized with options) to input fields to produce 

output fields. 

Adding support for such operators may also be similar to the application of generics in 

programming languages.  With generics, the actual content type of inputs would not need to be 

specified in the assertions, but would instead be inferred from the input mapping.  The target of 

the operation’s criteria would then similarly be inferred from the input mapping.  For example, if 

address data is mapped to the input, then the operation’s criteria would have to be on this address 

data.  This leaves the actual specification of the criteria, which would have to in the form of state 

attributes to hold significance to the workflow engine, or would require enhancements to both 

the model and workflow engine. 

6.3.7 Intermediate Goals 

During execution of its planning algorithm, the workflow engine evaluates available 

operators against the remaining goals to select candidates for the next steps in the workflow plan.  

These candidates are restricted to operators with postconditions that intersect the assertions of 

the remaining goals.  Other operators are excluded to ensure that the workflow plan is composed 
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only of candidates that bring the workflow progressively closer to the goal state.  A consequence 

of this focused planning criteria is that the workflow engine cannot accommodate intermediate 

data processing goals; requirements that are not covered by the goal state but may need to be 

fulfilled in order to satisfy the preconditions of operators that transition the workflow closer to 

the goal state. 

In an attempt to expand the possible solutions the workflow engine can produce, the 

planning algorithm could be enhanced to use an approach such as backtracking.  At a high level, 

the backtracking logic could initiate when the workflow engine reaches a “dead end” in 

planning.  The preconditions of the operators that are needed to transition closer to the goal state 

would then be set as an intermediate goal state and the workflow engine would return to solving 

the original goal state once the intermediate goal state is achieved.  Further, this logic could be 

performed recursively to accommodate scenarios that may require multiple intermediate goal 

states. 

Of course, a drawback of backtracking would be the increased complexity for the 

workflow engine.  But a challenge to consider if exploring any such enhancement would be how 

to limit the evaluation of intermediate goals; allowing the workflow engine to attempt to 

accommodate such scenarios, while preventing it from doing so infinitely.  One possibility to 

explore is to give such goals higher cost and favor best cost expansions for plan generation. 

6.3.8 Input Mappings 

A limitation of the prototype workflow engine is that it only attempts to find a single, 

valid input mapping when adding an operator to the workflow plan.  While sufficient for the 

purposes of this dissertation, future data processing goals could necessitate that the set of input 

mappings being considered be broadened.  One extreme would be to consider all valid input 
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mappings of a particular operator as next possible steps in the workflow plan.  Potential 

drawbacks, however, would include an overflow of workflow solutions being returned from the 

workflow engine for the user to choose from, as well as increased computational complexity.  A 

satisfactory solution would therefore have to discern which input mappings are considered 

“meaningful” with respect to the given domain and data processing goals, in order to achieve a 

balance between the potential drawbacks and benefits. 

6.3.9 Goal Indexing 

When considering ETL workflow generation for domains with complex workflow 

systems, a concern is performance.  With respect to this concern, a potential area for 

performance improvement in the prototype would be in the logic that searches for operators that 

will transition the workflow closer to the goal state.  As explained, the prototype evaluates the 

remaining goals against every postcondition of every available operator.  The performance of 

evaluating in such a manner, however, can degrade significantly as the number of goal 

specifications and possible postconditions increase.  Research into a more efficient and more 

scalable means of finding operators that (partially) satisfy a goal state could therefore be 

beneficial. 

One possible approach to providing this enhancement would be a means of indexing the 

postconditions of the available operators for faster lookup.  For example, if each postcondition 

was indexed by content type and state attributes, finding goal matches would require far fewer 

lookups.  The performance gain of such an approach could then be evaluated against the cost of 

building and storing the index. 
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6.3.10 Caching 

Besides degradation of runtime performance, another cost that is of increasing concern as 

ETL workflow systems become more complex is memory consumption.  As the complexity of a 

domain’s workflow system increases, the size of the data utilized by the workflow engine’s 

planning algorithm (e.g. data fields, operators, and planning tree) increases.  In the prototype’s 

current implementation, this data is kept in main memory.  Consequently, the workflow 

complexity that the prototype can handle is limited by the size of main memory. 

A potential strategy to remove this memory limitation is to leverage the prototype’s 

integration with a relational database.  While only domain knowledge is currently stored in the 

database, additional tables could be added to provide a caching mechanism for the workflow 

engine.  Candidate data for caching could include the details of the workflow plan and even the 

specifications of the decomposed operators.  Such an approach would allow the prototype to 

solve problems even for more workflow systems, with the tradeoff being performance for 

retrieval and persistence of this data.  

6.3.11 Nested Intent Statements 

The primary function of the intent language was abstraction of low level data processing 

goals using high level terms/statements to allow even casual users to understand and employ the 

language to generate ETL workflows.  Though this level of functionality was sufficient for the 

scope of this work, continued research focused on the intent language could identify additional 

opportunities to expand its functionality and improve its ease of use. 

One candidate functionality enhancement is for the language to support nested intent 

statements.  Nesting of intent statements refers to the ability to combine intents in a hierarchical 
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form, consisting of inner and outer intents that form a comprehensive intent statement.  This can 

be formally defined according to the following grammar: 

 The set of terminal symbols ∑ = { I, (, ) } 

 The set of non-terminal symbols N = { S } 

 S is the start symbol 

 The set of production rules P: 

1. S => I 

2. S => I ( S ) 

In this formal grammar, the terminal symbol I represents an intent statement and the 

parentheses establish the inner/outer nested hierarchy of intent statements. 

The purpose of this enhancement is to allow users to compose more precise statements of 

their intent.  One example of the need for such elevated precision is the statement “run edit 

checks after geocoding addresses”.  In this example, the user is specifying a directive on the 

order of operation, that geocoding addresses before running edit checks would not attain their 

data processing goals.  Another example is the statement “only geocode addresses that are in the 

US”.  This example specifies a directive on data flow, requiring data records to be subdivided 

(based on some criteria) to produce the intended result. 

Research on this topic can leverage existing work that allows similar directives to be 

specified based on statement composition.  SQL supports nesting in the form of sub-queries, 

where the outer query can utilize the results of the inner query.  Also, Menu-based Natural 

Languages enables users to form statements by chaining commands together [38]. 
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6.3.12 Intent Relationships 

Another enhancement to the intent language involves discerning relationships among 

intents.  Recall that a single intent may encapsulate a set of workflow requirements.  Among all 

of the intents defined for a domain, one or more intents may be related based on the workflow 

requirements they are mapped to.  These relationships can include: 

 Implicit – The workflow requirements of one intent are a sub-set of another; therefore, 

one intent is implicitly specified whenever the other intent is. 

 Conflict – Both intents cannot be satisfied by the same workflow.  For example, one 

intent asserts that the goal state has a particular state attribute, while the other asserts that 

the goal state cannot have that state attribute. 

Recognition of such relationships among intents can provide a more powerful, easier to 

use language.  Applied to the GUI of the prototype, when an intent is selected that has conflicts 

with other available intents, these conflicting intents could be disabled to prevent the user from 

choosing an unattainable goal state.  Similarly, implicit intents can be visually indicated 

whenever an intent that encompasses their workflow requirements is selected to both prevent 

redundancy and provide clarity for the user. 

6.3.13 Result Filtering 

A noted problem of ETL workflow specification was that requirements can be 

ambiguous, requiring a domain expert to iteratively refactor an ETL workflow until a satisfactory 

solution is agreed upon.  While such manual refactoring is addressed by the approach of this 

paper, intent statements that are ambiguous can similarly produce a larger number of possible 

solutions than desired by the user.  It therefore follows that a beneficial future enhancement 
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would be a means of discerning the differences between workflow solutions, allowing users to 

filter the results generated by the workflow engine. 

Towards such an enhancement, consider an approach using the goal state specified by the 

user as a baseline for comparison.  Comparing this planned goal state against the actual goal state 

of the workflow engine’s results, each workflow solution will likely satisfy additional goals that 

were not part of the planned goal state.  These excess goals then provide the means to 

differentiate and prune workflows from the result set.  Incorporating this idea into the prototype, 

a resolution screen could be added to the GUI that allows a user to refine the result set by 

selecting from the additional goals to use as a filter. 
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APPENDIX A:  MAILING ENHANCEMENT OPERATOR SPECIFICATIONS  

A.1 AddressEditCheck 

AddressEditCheck 

{ 

 

    INPUT FIELDS 

    { 

        FIRSTNAME 

        MIDDLENAME 

        LASTNAME 

        BUSINESSNAME 

        PRIMARYADDRESS 

        SECONDARYADDRESS 

        CITYNAME 

        STATEABBREV 

        ZIPCODE 

        ADDRESSFLAGS 

    } 

 

    OUTPUT FIELDS 

    { 

    } 

 

    PRECONDITIONS 

    { 

    } 

 

    OPTIONS 

    { 

 

        EditCheckAddresses 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 
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                        { 

                            [PRIMARYADDRESS].REQUIRED 

                            & [PRIMARYADDRESS :: Address.Primary ] 

                            & [CITYNAME].REQUIRED 

                            & [CITYNAME :: Address.City ] 

                            & [STATEABBREV].REQUIRED 

                            & [STATEABBREV :: Address.State ] 

                            & [ZIPCODE].REQUIRED 

                            & [ZIPCODE :: Address.Zip ] 

 

                            POSTCONDITION 

                            { 

                                [PRIMARYADDRESS :: Address.Primary +AddressEditChecked] 

                                [CITYNAME :: Address.City +AddressEditChecked] 

                                [STATEABBREV :: Address.State +AddressEditChecked] 

                                [ZIPCODE :: Address.Zip +AddressEditChecked] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 

}  
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A.2 AddressEnhance 

AddressEnhance 

{ 

 

    INPUT FIELDS 

    { 

        PRIMARYADDRESSLINE 

        SECONDARYADDRESSLINE 

        BUSINESSNAME 

        CITY 

        STATE 

        ZIP 

        URBANIZATIONNAME 

        FIRSTNAME 

        MIDDLENAME 

        LASTNAME 

        LASTNAMESUFFIX 

        TITLECODE 

        GENDERCODE 

    } 

 

    OUTPUT FIELDS 

    { 

        AAPRINUMBERBEFORECOA 

        AAPREDIR1BEFORECOA 

        AAPRINAMEBEFORECOA 

        AASUFFIX1BEFORECOA 

        AAPOSTDIR1BEFORECOA 

        AASECUNITDESBEFORECOA 

        AASECNUMBERBEFORECOA 

        AAOUTPRURBBEFORECOA 

        AAOUTBUSADDRESSBEFORECOA 

        AACITYNAMEBEFORECOA 

        AASTATEABREVBEFORECOA 

        AAZIPCODEBEFORECOA 

        AAADDONCODEBEFORECOA 

        AAOUTPRIMADDRESSBEFORECOA 

        AAOUTSECADDRESSBEFORECOA 

        AAADDRESSFLAGSBEFORECOA 

        AAPRINUMBERAFTERCOA 

        AAPREDIR1AFTERCOA 

        AAPRINAMEAFTERCOA 

        AASUFFIX1AFTERCOA 

        AAPOSTDIR1AFTERCOA 

        AASECUNITDESAFTERCOA 

        AASECNUMBERAFTERCOA 

        AAOUTPRURBAFTERCOA 

        AAOUTBUSADDRESSAFTERCOA 

        AACITYNAMEAFTERCOA 

        AASTATEABREVAFTERCOA 

        AAZIPCODEAFTERCOA 

        AAADDONCODEAFTERCOA 

        AAOUTPRIMADDRESSAFTERCOA 

        AAOUTSECADDRESSAFTERCOA 
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        AAADDRESSFLAGSAFTERCOA 

        COANEWZIPCODECHAR 

        COANEWADDONCODECHAR 

        COANEWHOUSENUMBER 

        COANEWSTREETPREDIR 

        COANEWSTREETNAME 

        COANEWSTREETSUFFIX 

        COANEWSTREETPOSTDIR 

        COANEWUNITDESIGNATOR 

        COANEWSECONDARYNUM 

        COANEWCITY 

        COANEWSTATE 

        COANEWURBANIZATIONNAME 

    } 

 

    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            [PRIMARYADDRESSLINE].REQUIRED 

            & [PRIMARYADDRESSLINE :: Address.Primary ] 

            & [CITY].REQUIRED 

            & [CITY :: Address.City ] 

            & [STATE].REQUIRED 

            & [STATE :: Address.State ] 

 

            POSTCONDITION 

            { 

                [AAPRINUMBERBEFORECOA :: Address.PrimaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAPREDIR1BEFORECOA :: Address.PreDirectional +UspsStandardized+DeliverabilityValidated] 

                [AAPRINAMEBEFORECOA :: Address.PrimaryName +UspsStandardized+DeliverabilityValidated] 

                [AASUFFIX1BEFORECOA :: Address.Suffix +UspsStandardized+DeliverabilityValidated] 

                [AAPOSTDIR1BEFORECOA :: Address.PostDirectional +UspsStandardized+DeliverabilityValidated] 

                [AASECUNITDESBEFORECOA :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated] 

                [AASECNUMBERBEFORECOA :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRURBBEFORECOA :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTBUSADDRESSBEFORECOA :: Address.Business +UspsStandardized+DeliverabilityValidated] 

                [AACITYNAMEBEFORECOA :: Address.City +UspsStandardized+DeliverabilityValidated] 

                [AASTATEABREVBEFORECOA :: Address.State +UspsStandardized+DeliverabilityValidated] 

                [AAZIPCODEBEFORECOA :: Address.Zip +UspsStandardized+DeliverabilityValidated] 

                [AAADDONCODEBEFORECOA :: Address.Zip4 +UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRIMADDRESSBEFORECOA :: Address.Primary 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTSECADDRESSBEFORECOA :: Address.Secondary 

+UspsStandardized+DeliverabilityValidated] 

                [AAADDRESSFLAGSBEFORECOA :: Address.Flags +UspsStandardized] 

                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +UspsStandardized+DeliverabilityValidated] 

                [AAPREDIR1AFTERCOA :: Address.PreDirectional +UspsStandardized+DeliverabilityValidated] 

                [AAPRINAMEAFTERCOA :: Address.PrimaryName +UspsStandardized+DeliverabilityValidated] 

                [AASUFFIX1AFTERCOA :: Address.Suffix +UspsStandardized+DeliverabilityValidated] 

                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +UspsStandardized+DeliverabilityValidated] 
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                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated] 

                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +UspsStandardized+DeliverabilityValidated] 

                [AACITYNAMEAFTERCOA :: Address.City +UspsStandardized+DeliverabilityValidated] 

                [AASTATEABREVAFTERCOA :: Address.State +UspsStandardized+DeliverabilityValidated] 

                [AAZIPCODEAFTERCOA :: Address.Zip +UspsStandardized+DeliverabilityValidated] 

                [AAADDONCODEAFTERCOA :: Address.Zip4 +UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +UspsStandardized+DeliverabilityValidated] 

                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +UspsStandardized+DeliverabilityValidated] 

                [AAADDRESSFLAGSAFTERCOA :: Address.Flags +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [PRIMARYADDRESSLINE].REQUIRED 

            & [PRIMARYADDRESSLINE :: Address.Primary ] 

            & [ZIP].REQUIRED 

            & [ZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [AAPRINUMBERBEFORECOA :: Address.PrimaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAPREDIR1BEFORECOA :: Address.PreDirectional +UspsStandardized+DeliverabilityValidated] 

                [AAPRINAMEBEFORECOA :: Address.PrimaryName +UspsStandardized+DeliverabilityValidated] 

                [AASUFFIX1BEFORECOA :: Address.Suffix +UspsStandardized+DeliverabilityValidated] 

                [AAPOSTDIR1BEFORECOA :: Address.PostDirectional +UspsStandardized+DeliverabilityValidated] 

                [AASECUNITDESBEFORECOA :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated] 

                [AASECNUMBERBEFORECOA :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRURBBEFORECOA :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTBUSADDRESSBEFORECOA :: Address.Business +UspsStandardized+DeliverabilityValidated] 

                [AACITYNAMEBEFORECOA :: Address.City +UspsStandardized+DeliverabilityValidated] 

                [AASTATEABREVBEFORECOA :: Address.State +UspsStandardized+DeliverabilityValidated] 

                [AAZIPCODEBEFORECOA :: Address.Zip +UspsStandardized+DeliverabilityValidated] 

                [AAADDONCODEBEFORECOA :: Address.Zip4 +UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRIMADDRESSBEFORECOA :: Address.Primary 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTSECADDRESSBEFORECOA :: Address.Secondary 

+UspsStandardized+DeliverabilityValidated] 

                [AAADDRESSFLAGSBEFORECOA :: Address.Flags +UspsStandardized] 

                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +UspsStandardized+DeliverabilityValidated] 

                [AAPREDIR1AFTERCOA :: Address.PreDirectional +UspsStandardized+DeliverabilityValidated] 

                [AAPRINAMEAFTERCOA :: Address.PrimaryName +UspsStandardized+DeliverabilityValidated] 

                [AASUFFIX1AFTERCOA :: Address.Suffix +UspsStandardized+DeliverabilityValidated] 

                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +UspsStandardized+DeliverabilityValidated] 

                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated] 
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                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated] 

                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +UspsStandardized+DeliverabilityValidated] 

                [AACITYNAMEAFTERCOA :: Address.City +UspsStandardized+DeliverabilityValidated] 

                [AASTATEABREVAFTERCOA :: Address.State +UspsStandardized+DeliverabilityValidated] 

                [AAZIPCODEAFTERCOA :: Address.Zip +UspsStandardized+DeliverabilityValidated] 

                [AAADDONCODEAFTERCOA :: Address.Zip4 +UspsStandardized+DeliverabilityValidated] 

                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +UspsStandardized+DeliverabilityValidated] 

                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +UspsStandardized+DeliverabilityValidated] 

                [AAADDRESSFLAGSAFTERCOA :: Address.Flags +UspsStandardized] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

 

        PerformDeliverySequencing 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                                [AAPRINUMBERBEFORECOA :: Address.PrimaryNumber +DeliverySequenced] 

                                [AAPREDIR1BEFORECOA :: Address.PreDirectional +DeliverySequenced] 

                                [AAPRINAMEBEFORECOA :: Address.PrimaryName +DeliverySequenced] 

                                [AASUFFIX1BEFORECOA :: Address.Suffix +DeliverySequenced] 

                                [AAPOSTDIR1BEFORECOA :: Address.PostDirectional +DeliverySequenced] 

                                [AASECUNITDESBEFORECOA :: Address.SecondaryUnitDesignator +DeliverySequenced] 

                                [AASECNUMBERBEFORECOA :: Address.SecondaryNumber +DeliverySequenced] 

                                [AAOUTPRURBBEFORECOA :: Address.UrbanizationName +DeliverySequenced] 

                                [AAOUTBUSADDRESSBEFORECOA :: Address.Business +DeliverySequenced] 

                                [AACITYNAMEBEFORECOA :: Address.City +DeliverySequenced] 

                                [AASTATEABREVBEFORECOA :: Address.State +DeliverySequenced] 
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                                [AAZIPCODEBEFORECOA :: Address.Zip +DeliverySequenced] 

                                [AAADDONCODEBEFORECOA :: Address.Zip4 +DeliverySequenced] 

                                [AAOUTPRIMADDRESSBEFORECOA :: Address.Primary +DeliverySequenced] 

                                [AAOUTSECADDRESSBEFORECOA :: Address.Secondary +DeliverySequenced] 

                                [AAADDRESSFLAGSBEFORECOA :: Address.Flags +DeliverySequenced] 

                                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +DeliverySequenced] 

                                [AAPREDIR1AFTERCOA :: Address.PreDirectional +DeliverySequenced] 

                                [AAPRINAMEAFTERCOA :: Address.PrimaryName +DeliverySequenced] 

                                [AASUFFIX1AFTERCOA :: Address.Suffix +DeliverySequenced] 

                                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +DeliverySequenced] 

                                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +DeliverySequenced] 

                                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +DeliverySequenced] 

                                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +DeliverySequenced] 

                                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +DeliverySequenced] 

                                [AACITYNAMEAFTERCOA :: Address.City +DeliverySequenced] 

                                [AASTATEABREVAFTERCOA :: Address.State +DeliverySequenced] 

                                [AAZIPCODEAFTERCOA :: Address.Zip +DeliverySequenced] 

                                [AAADDONCODEAFTERCOA :: Address.Zip4 +DeliverySequenced] 

                                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +DeliverySequenced] 

                                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +DeliverySequenced] 

                                [AAADDRESSFLAGSAFTERCOA :: Address.Flags +DeliverySequenced] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        PerformChangeOfAddress 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            [FIRSTNAME].REQUIRED 

                            & [FIRSTNAME :: Name.First ] 

                            & [LASTNAME].REQUIRED 

                            & [LASTNAME :: Name.Last ] 

 

                            POSTCONDITION 
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                            { 

                                [COANEWZIPCODECHAR :: Address.Zip +AddressChange] 

                                [COANEWADDONCODECHAR :: Address.Zip4 +AddressChange] 

                                [COANEWHOUSENUMBER :: Address.PrimaryNumber +AddressChange] 

                                [COANEWSTREETPREDIR :: Address.PreDirectional +AddressChange] 

                                [COANEWSTREETNAME :: Address.PrimaryName +AddressChange] 

                                [COANEWSTREETSUFFIX :: Address.Suffix +AddressChange] 

                                [COANEWSTREETPOSTDIR :: Address.PostDirectional +AddressChange] 

                                [COANEWUNITDESIGNATOR :: Address.SecondaryUnitDesignator +AddressChange] 

                                [COANEWSECONDARYNUM :: Address.SecondaryNumber +AddressChange] 

                                [COANEWCITY :: Address.City +AddressChange] 

                                [COANEWSTATE :: Address.State +AddressChange] 

                                [COANEWURBANIZATIONNAME :: Address.UrbanizationName +AddressChange] 

                                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +AddressChange] 

                                [AAPREDIR1AFTERCOA :: Address.PreDirectional +AddressChange] 

                                [AAPRINAMEAFTERCOA :: Address.PrimaryName +AddressChange] 

                                [AASUFFIX1AFTERCOA :: Address.Suffix +AddressChange] 

                                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +AddressChange] 

                                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +AddressChange] 

                                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +AddressChange] 

                                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +AddressChange] 

                                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +AddressChange] 

                                [AACITYNAMEAFTERCOA :: Address.City +AddressChange] 

                                [AASTATEABREVAFTERCOA :: Address.State +AddressChange] 

                                [AAZIPCODEAFTERCOA :: Address.Zip +AddressChange] 

                                [AAADDONCODEAFTERCOA :: Address.Zip4 +AddressChange] 

                                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +AddressChange] 

                                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +AddressChange] 

                                [AAADDRESSFLAGSAFTERCOA :: Address.Flags +AddressChange] 

                            } 

                        } 

 

                        PRECONDITION 

                        { 

                            [BUSINESSNAME].REQUIRED 

                            & [BUSINESSNAME :: Name.Business ] 

 

                            POSTCONDITION 

                            { 

                                [COANEWZIPCODECHAR :: Address.Zip +AddressChange] 

                                [COANEWADDONCODECHAR :: Address.Zip4 +AddressChange] 

                                [COANEWHOUSENUMBER :: Address.PrimaryNumber +AddressChange] 

                                [COANEWSTREETPREDIR :: Address.PreDirectional +AddressChange] 

                                [COANEWSTREETNAME :: Address.PrimaryName +AddressChange] 

                                [COANEWSTREETSUFFIX :: Address.Suffix +AddressChange] 

                                [COANEWSTREETPOSTDIR :: Address.PostDirectional +AddressChange] 

                                [COANEWUNITDESIGNATOR :: Address.SecondaryUnitDesignator +AddressChange] 

                                [COANEWSECONDARYNUM :: Address.SecondaryNumber +AddressChange] 

                                [COANEWCITY :: Address.City +AddressChange] 

                                [COANEWSTATE :: Address.State +AddressChange] 

                                [COANEWURBANIZATIONNAME :: Address.UrbanizationName +AddressChange] 

                                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +AddressChange] 

                                [AAPREDIR1AFTERCOA :: Address.PreDirectional +AddressChange] 

                                [AAPRINAMEAFTERCOA :: Address.PrimaryName +AddressChange] 

                                [AASUFFIX1AFTERCOA :: Address.Suffix +AddressChange] 

                                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +AddressChange] 
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                                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +AddressChange] 

                                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +AddressChange] 

                                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +AddressChange] 

                                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +AddressChange] 

                                [AACITYNAMEAFTERCOA :: Address.City +AddressChange] 

                                [AASTATEABREVAFTERCOA :: Address.State +AddressChange] 

                                [AAZIPCODEAFTERCOA :: Address.Zip +AddressChange] 

                                [AAADDONCODEAFTERCOA :: Address.Zip4 +AddressChange] 

                                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +AddressChange] 

                                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +AddressChange] 

                                [AAADDRESSFLAGSAFTERCOA :: Address.Flags +AddressChange] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        PerformGeocoding 

        { 

 

            OPTION SETTINGS 

            { 

 

                None 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                ZipCode 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                                [AAPRINUMBERBEFORECOA :: Address.PrimaryNumber +Geocoded] 

                                [AAPREDIR1BEFORECOA :: Address.PreDirectional +Geocoded] 

                                [AAPRINAMEBEFORECOA :: Address.PrimaryName +Geocoded] 

                                [AASUFFIX1BEFORECOA :: Address.Suffix +Geocoded] 

                                [AAPOSTDIR1BEFORECOA :: Address.PostDirectional +Geocoded] 

                                [AASECUNITDESBEFORECOA :: Address.SecondaryUnitDesignator +Geocoded] 

                                [AASECNUMBERBEFORECOA :: Address.SecondaryNumber +Geocoded] 

                                [AAOUTPRURBBEFORECOA :: Address.UrbanizationName +Geocoded] 

                                [AAOUTBUSADDRESSBEFORECOA :: Address.Business +Geocoded] 

                                [AACITYNAMEBEFORECOA :: Address.City +Geocoded] 

                                [AASTATEABREVBEFORECOA :: Address.State +Geocoded] 

                                [AAZIPCODEBEFORECOA :: Address.Zip +Geocoded] 
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                                [AAADDONCODEBEFORECOA :: Address.Zip4 +Geocoded] 

                                [AAOUTPRIMADDRESSBEFORECOA :: Address.Primary +Geocoded] 

                                [AAOUTSECADDRESSBEFORECOA :: Address.Secondary +Geocoded] 

                                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +Geocoded] 

                                [AAPREDIR1AFTERCOA :: Address.PreDirectional +Geocoded] 

                                [AAPRINAMEAFTERCOA :: Address.PrimaryName +Geocoded] 

                                [AASUFFIX1AFTERCOA :: Address.Suffix +Geocoded] 

                                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +Geocoded] 

                                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +Geocoded] 

                                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +Geocoded] 

                                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +Geocoded] 

                                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +Geocoded] 

                                [AACITYNAMEAFTERCOA :: Address.City +Geocoded] 

                                [AASTATEABREVAFTERCOA :: Address.State +Geocoded] 

                                [AAZIPCODEAFTERCOA :: Address.Zip +Geocoded] 

                                [AAADDONCODEAFTERCOA :: Address.Zip4 +Geocoded] 

                                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +Geocoded] 

                                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +Geocoded] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 

}  
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A.3 AddressSelect 

AddressSelect 

{ 

 

    INPUT FIELDS 

    { 

        oprBUSADDRESS 

        oprPRINUMBER 

        oprPREDIR 

        oprPRINAME 

        oprSUFFIX 

        oprPOSTDIR 

        oprSECUNITDES 

        oprSECNUMBER 

        oprCITY 

        oprSTATE 

        oprZIP 

        oprZIP4 

        oprPRIADDRESS 

        oprSECADDRESS 

        oprURBNAME 

        oprADDRESSFLAGS 

        NCOABUSADDRESS 

        NCOAPRINUMBER 

        NCOAPREDIR 

        NCOAPRINAME 

        NCOASUFFIX 

        NCOAPOSTDIR 

        NCOASECUNITDES 

        NCOASECNUMBER 

        NCOACITY 

        NCOASTATE 

        NCOAZIP 

        NCOAZIP4 

        NCOAPRIADDRESS 

        NCOASECADDRESS 

        NCOAURBNAME 

        NCOAADDRESSFLAGS 

        CHANGEPLUSBUSADDRESS 

        CHANGEPLUSPRINUMBER 

        CHANGEPLUSPREDIR 

        CHANGEPLUSPRINAME 

        CHANGEPLUSSUFFIX 

        CHANGEPLUSPOSTDIR 

        CHANGEPLUSSECUNITDES 

        CHANGEPLUSSECNUMBER 

        CHANGEPLUSCITY 

        CHANGEPLUSSTATE 

        CHANGEPLUSZIP 

        CHANGEPLUSZIP4 

        CHANGEPLUSPRIADDRESS 

        CHANGEPLUSSECADDRESS 

        CHANGEPLUSURBNAME 

    } 
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    OUTPUT FIELDS 

    { 

        PASBUSADDRESS 

        PASPRINUMBER 

        PASPREDIR 

        PASPRINAME 

        PASSUFFIX 

        PASPOSTDIR 

        PASSECUNITDES 

        PASSECNUMBER 

        PASCITYNAME 

        PASSTATEABREV 

        PASZIPCODE 

        PASADDONCODE 

        PASPRIADDRESS 

        PASSECADDRESS 

        PASPRURBANIZATION 

        PASADDRESSFLAGS 

    } 

 

    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            [oprBUSADDRESS].REQUIRED 

            & [oprBUSADDRESS :: Address.Business +UspsStandardized] 

            & [oprBUSADDRESS :: Address.Business -AddressChange-PremiumAddressChange] 

            & [oprPRINUMBER].REQUIRED 

            & [oprPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

            & [oprPRINUMBER :: Address.PrimaryNumber -AddressChange-PremiumAddressChange] 

            & [oprPREDIR].REQUIRED 

            & [oprPREDIR :: Address.PreDirectional +UspsStandardized] 

            & [oprPREDIR :: Address.PreDirectional -AddressChange-PremiumAddressChange] 

            & [oprPRINAME].REQUIRED 

            & [oprPRINAME :: Address.PrimaryName +UspsStandardized] 

            & [oprPRINAME :: Address.PrimaryName -AddressChange-PremiumAddressChange] 

            & [oprSUFFIX].REQUIRED 

            & [oprSUFFIX :: Address.Suffix +UspsStandardized] 

            & [oprSUFFIX :: Address.Suffix -AddressChange-PremiumAddressChange] 

            & [oprPOSTDIR].REQUIRED 

            & [oprPOSTDIR :: Address.PostDirectional +UspsStandardized] 

            & [oprPOSTDIR :: Address.PostDirectional -AddressChange-PremiumAddressChange] 

            & [oprSECUNITDES].REQUIRED 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator -AddressChange-PremiumAddressChange] 

            & [oprSECNUMBER].REQUIRED 

            & [oprSECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

            & [oprSECNUMBER :: Address.SecondaryNumber -AddressChange-PremiumAddressChange] 

            & [oprCITY].REQUIRED 

            & [oprCITY :: Address.City +UspsStandardized] 

            & [oprCITY :: Address.City -AddressChange-PremiumAddressChange] 

            & [oprSTATE].REQUIRED 

            & [oprSTATE :: Address.State +UspsStandardized] 

            & [oprSTATE :: Address.State -AddressChange-PremiumAddressChange] 
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            & [oprZIP].REQUIRED 

            & [oprZIP :: Address.Zip +UspsStandardized] 

            & [oprZIP :: Address.Zip -AddressChange-PremiumAddressChange] 

            & [oprZIP4].REQUIRED 

            & [oprZIP4 :: Address.Zip4 +UspsStandardized] 

            & [oprZIP4 :: Address.Zip4 -AddressChange-PremiumAddressChange] 

            & [oprPRIADDRESS].REQUIRED 

            & [oprPRIADDRESS :: Address.Primary +UspsStandardized] 

            & [oprPRIADDRESS :: Address.Primary -AddressChange-PremiumAddressChange] 

            & [oprSECADDRESS].REQUIRED 

            & [oprSECADDRESS :: Address.Secondary +UspsStandardized] 

            & [oprSECADDRESS :: Address.Secondary -AddressChange-PremiumAddressChange] 

            & [oprURBNAME].REQUIRED 

            & [oprURBNAME :: Address.UrbanizationName +UspsStandardized] 

            & [oprURBNAME :: Address.UrbanizationName -AddressChange-PremiumAddressChange] 

            & [oprADDRESSFLAGS].REQUIRED 

            & [oprADDRESSFLAGS :: Address.Flags +UspsStandardized] 

            & [oprADDRESSFLAGS :: Address.Flags -AddressChange-PremiumAddressChange] 

            & [NCOABUSADDRESS].NA 

            & [NCOAPRINUMBER].NA 

            & [NCOAPREDIR].NA 

            & [NCOAPRINAME].NA 

            & [NCOASUFFIX].NA 

            & [NCOAPOSTDIR].NA 

            & [NCOASECUNITDES].NA 

            & [NCOASECNUMBER].NA 

            & [NCOACITY].NA 

            & [NCOASTATE].NA 

            & [NCOAZIP].NA 

            & [NCOAZIP4].NA 

            & [NCOAPRIADDRESS].NA 

            & [NCOASECADDRESS].NA 

            & [NCOAURBNAME].NA 

            & [NCOAADDRESSFLAGS].NA 

            & [CHANGEPLUSBUSADDRESS].NA 

            & [CHANGEPLUSPRINUMBER].NA 

            & [CHANGEPLUSPREDIR].NA 

            & [CHANGEPLUSPRINAME].NA 

            & [CHANGEPLUSSUFFIX].NA 

            & [CHANGEPLUSPOSTDIR].NA 

            & [CHANGEPLUSSECUNITDES].NA 

            & [CHANGEPLUSSECNUMBER].NA 

            & [CHANGEPLUSCITY].NA 

            & [CHANGEPLUSSTATE].NA 

            & [CHANGEPLUSZIP].NA 

            & [CHANGEPLUSZIP4].NA 

            & [CHANGEPLUSPRIADDRESS].NA 

            & [CHANGEPLUSSECADDRESS].NA 

            & [CHANGEPLUSURBNAME].NA 

 

            POSTCONDITION 

            { 

                [PASBUSADDRESS :: Address.Business +CurrentAddressSelected] 

                [PASPRINUMBER :: Address.PrimaryNumber +CurrentAddressSelected] 

                [PASPREDIR :: Address.PreDirectional +CurrentAddressSelected] 

                [PASPRINAME :: Address.PrimaryName +CurrentAddressSelected] 
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                [PASSUFFIX :: Address.Suffix +CurrentAddressSelected] 

                [PASPOSTDIR :: Address.PostDirectional +CurrentAddressSelected] 

                [PASSECUNITDES :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [PASSECNUMBER :: Address.SecondaryNumber +CurrentAddressSelected] 

                [PASCITYNAME :: Address.City +CurrentAddressSelected] 

                [PASSTATEABREV :: Address.State +CurrentAddressSelected] 

                [PASZIPCODE :: Address.Zip +CurrentAddressSelected] 

                [PASADDONCODE :: Address.Zip4 +CurrentAddressSelected] 

                [PASPRIADDRESS :: Address.Primary +CurrentAddressSelected] 

                [PASSECADDRESS :: Address.Secondary +CurrentAddressSelected] 

                [PASPRURBANIZATION :: Address.UrbanizationName +CurrentAddressSelected] 

                [PASADDRESSFLAGS :: Address.Flags +CurrentAddressSelected] 

            } 

        } 

 

        PRECONDITION 

        { 

            [oprBUSADDRESS].REQUIRED 

            & [oprBUSADDRESS :: Address.Business +UspsStandardized] 

            & [oprBUSADDRESS :: Address.Business -AddressChange-PremiumAddressChange] 

            & [oprPRINUMBER].REQUIRED 

            & [oprPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

            & [oprPRINUMBER :: Address.PrimaryNumber -AddressChange-PremiumAddressChange] 

            & [oprPREDIR].REQUIRED 

            & [oprPREDIR :: Address.PreDirectional +UspsStandardized] 

            & [oprPREDIR :: Address.PreDirectional -AddressChange-PremiumAddressChange] 

            & [oprPRINAME].REQUIRED 

            & [oprPRINAME :: Address.PrimaryName +UspsStandardized] 

            & [oprPRINAME :: Address.PrimaryName -AddressChange-PremiumAddressChange] 

            & [oprSUFFIX].REQUIRED 

            & [oprSUFFIX :: Address.Suffix +UspsStandardized] 

            & [oprSUFFIX :: Address.Suffix -AddressChange-PremiumAddressChange] 

            & [oprPOSTDIR].REQUIRED 

            & [oprPOSTDIR :: Address.PostDirectional +UspsStandardized] 

            & [oprPOSTDIR :: Address.PostDirectional -AddressChange-PremiumAddressChange] 

            & [oprSECUNITDES].REQUIRED 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator -AddressChange-PremiumAddressChange] 

            & [oprSECNUMBER].REQUIRED 

            & [oprSECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

            & [oprSECNUMBER :: Address.SecondaryNumber -AddressChange-PremiumAddressChange] 

            & [oprCITY].REQUIRED 

            & [oprCITY :: Address.City +UspsStandardized] 

            & [oprCITY :: Address.City -AddressChange-PremiumAddressChange] 

            & [oprSTATE].REQUIRED 

            & [oprSTATE :: Address.State +UspsStandardized] 

            & [oprSTATE :: Address.State -AddressChange-PremiumAddressChange] 

            & [oprZIP].REQUIRED 

            & [oprZIP :: Address.Zip +UspsStandardized] 

            & [oprZIP :: Address.Zip -AddressChange-PremiumAddressChange] 

            & [oprZIP4].REQUIRED 

            & [oprZIP4 :: Address.Zip4 +UspsStandardized] 

            & [oprZIP4 :: Address.Zip4 -AddressChange-PremiumAddressChange] 

            & [oprPRIADDRESS].REQUIRED 

            & [oprPRIADDRESS :: Address.Primary +UspsStandardized] 

            & [oprPRIADDRESS :: Address.Primary -AddressChange-PremiumAddressChange] 
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            & [oprSECADDRESS].REQUIRED 

            & [oprSECADDRESS :: Address.Secondary +UspsStandardized] 

            & [oprSECADDRESS :: Address.Secondary -AddressChange-PremiumAddressChange] 

            & [oprURBNAME].REQUIRED 

            & [oprURBNAME :: Address.UrbanizationName +UspsStandardized] 

            & [oprURBNAME :: Address.UrbanizationName -AddressChange-PremiumAddressChange] 

            & [oprADDRESSFLAGS].REQUIRED 

            & [oprADDRESSFLAGS :: Address.Flags +UspsStandardized] 

            & [oprADDRESSFLAGS :: Address.Flags -AddressChange-PremiumAddressChange] 

            & [NCOABUSADDRESS].REQUIRED 

            & [NCOABUSADDRESS :: Address.Business +AddressChange] 

            & [NCOAPRINUMBER].REQUIRED 

            & [NCOAPRINUMBER :: Address.PrimaryNumber +AddressChange] 

            & [NCOAPREDIR].REQUIRED 

            & [NCOAPREDIR :: Address.PreDirectional +AddressChange] 

            & [NCOAPRINAME].REQUIRED 

            & [NCOAPRINAME :: Address.PrimaryName +AddressChange] 

            & [NCOASUFFIX].REQUIRED 

            & [NCOASUFFIX :: Address.Suffix +AddressChange] 

            & [NCOAPOSTDIR].REQUIRED 

            & [NCOAPOSTDIR :: Address.PostDirectional +AddressChange] 

            & [NCOASECUNITDES].REQUIRED 

            & [NCOASECUNITDES :: Address.SecondaryUnitDesignator +AddressChange] 

            & [NCOASECNUMBER].REQUIRED 

            & [NCOASECNUMBER :: Address.SecondaryNumber +AddressChange] 

            & [NCOACITY].REQUIRED 

            & [NCOACITY :: Address.City +AddressChange] 

            & [NCOASTATE].REQUIRED 

            & [NCOASTATE :: Address.State +AddressChange] 

            & [NCOAZIP].REQUIRED 

            & [NCOAZIP :: Address.Zip +AddressChange] 

            & [NCOAZIP4].REQUIRED 

            & [NCOAZIP4 :: Address.Zip4 +AddressChange] 

            & [NCOAPRIADDRESS].REQUIRED 

            & [NCOAPRIADDRESS :: Address.Primary +AddressChange] 

            & [NCOASECADDRESS].REQUIRED 

            & [NCOASECADDRESS :: Address.Secondary +AddressChange] 

            & [NCOAURBNAME].REQUIRED 

            & [NCOAURBNAME :: Address.UrbanizationName +AddressChange] 

            & [NCOAADDRESSFLAGS].REQUIRED 

            & [NCOAADDRESSFLAGS :: Address.Flags +AddressChange] 

            & [CHANGEPLUSBUSADDRESS].NA 

            & [CHANGEPLUSPRINUMBER].NA 

            & [CHANGEPLUSPREDIR].NA 

            & [CHANGEPLUSPRINAME].NA 

            & [CHANGEPLUSSUFFIX].NA 

            & [CHANGEPLUSPOSTDIR].NA 

            & [CHANGEPLUSSECUNITDES].NA 

            & [CHANGEPLUSSECNUMBER].NA 

            & [CHANGEPLUSCITY].NA 

            & [CHANGEPLUSSTATE].NA 

            & [CHANGEPLUSZIP].NA 

            & [CHANGEPLUSZIP4].NA 

            & [CHANGEPLUSPRIADDRESS].NA 

            & [CHANGEPLUSSECADDRESS].NA 

            & [CHANGEPLUSURBNAME].NA 
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            POSTCONDITION 

            { 

                [PASBUSADDRESS :: Address.Business +CurrentAddressSelected] 

                [PASPRINUMBER :: Address.PrimaryNumber +CurrentAddressSelected] 

                [PASPREDIR :: Address.PreDirectional +CurrentAddressSelected] 

                [PASPRINAME :: Address.PrimaryName +CurrentAddressSelected] 

                [PASSUFFIX :: Address.Suffix +CurrentAddressSelected] 

                [PASPOSTDIR :: Address.PostDirectional +CurrentAddressSelected] 

                [PASSECUNITDES :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [PASSECNUMBER :: Address.SecondaryNumber +CurrentAddressSelected] 

                [PASCITYNAME :: Address.City +CurrentAddressSelected] 

                [PASSTATEABREV :: Address.State +CurrentAddressSelected] 

                [PASZIPCODE :: Address.Zip +CurrentAddressSelected] 

                [PASADDONCODE :: Address.Zip4 +CurrentAddressSelected] 

                [PASPRIADDRESS :: Address.Primary +CurrentAddressSelected] 

                [PASSECADDRESS :: Address.Secondary +CurrentAddressSelected] 

                [PASPRURBANIZATION :: Address.UrbanizationName +CurrentAddressSelected] 

                [PASADDRESSFLAGS :: Address.Flags +CurrentAddressSelected] 

            } 

        } 

 

        PRECONDITION 

        { 

            [oprBUSADDRESS].REQUIRED 

            & [oprBUSADDRESS :: Address.Business +UspsStandardized] 

            & [oprBUSADDRESS :: Address.Business -AddressChange-PremiumAddressChange] 

            & [oprPRINUMBER].REQUIRED 

            & [oprPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

            & [oprPRINUMBER :: Address.PrimaryNumber -AddressChange-PremiumAddressChange] 

            & [oprPREDIR].REQUIRED 

            & [oprPREDIR :: Address.PreDirectional +UspsStandardized] 

            & [oprPREDIR :: Address.PreDirectional -AddressChange-PremiumAddressChange] 

            & [oprPRINAME].REQUIRED 

            & [oprPRINAME :: Address.PrimaryName +UspsStandardized] 

            & [oprPRINAME :: Address.PrimaryName -AddressChange-PremiumAddressChange] 

            & [oprSUFFIX].REQUIRED 

            & [oprSUFFIX :: Address.Suffix +UspsStandardized] 

            & [oprSUFFIX :: Address.Suffix -AddressChange-PremiumAddressChange] 

            & [oprPOSTDIR].REQUIRED 

            & [oprPOSTDIR :: Address.PostDirectional +UspsStandardized] 

            & [oprPOSTDIR :: Address.PostDirectional -AddressChange-PremiumAddressChange] 

            & [oprSECUNITDES].REQUIRED 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

            & [oprSECUNITDES :: Address.SecondaryUnitDesignator -AddressChange-PremiumAddressChange] 

            & [oprSECNUMBER].REQUIRED 

            & [oprSECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

            & [oprSECNUMBER :: Address.SecondaryNumber -AddressChange-PremiumAddressChange] 

            & [oprCITY].REQUIRED 

            & [oprCITY :: Address.City +UspsStandardized] 

            & [oprCITY :: Address.City -AddressChange-PremiumAddressChange] 

            & [oprSTATE].REQUIRED 

            & [oprSTATE :: Address.State +UspsStandardized] 

            & [oprSTATE :: Address.State -AddressChange-PremiumAddressChange] 

            & [oprZIP].REQUIRED 

            & [oprZIP :: Address.Zip +UspsStandardized] 
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            & [oprZIP :: Address.Zip -AddressChange-PremiumAddressChange] 

            & [oprZIP4].REQUIRED 

            & [oprZIP4 :: Address.Zip4 +UspsStandardized] 

            & [oprZIP4 :: Address.Zip4 -AddressChange-PremiumAddressChange] 

            & [oprPRIADDRESS].REQUIRED 

            & [oprPRIADDRESS :: Address.Primary +UspsStandardized] 

            & [oprPRIADDRESS :: Address.Primary -AddressChange-PremiumAddressChange] 

            & [oprSECADDRESS].REQUIRED 

            & [oprSECADDRESS :: Address.Secondary +UspsStandardized] 

            & [oprSECADDRESS :: Address.Secondary -AddressChange-PremiumAddressChange] 

            & [oprURBNAME].REQUIRED 

            & [oprURBNAME :: Address.UrbanizationName +UspsStandardized] 

            & [oprURBNAME :: Address.UrbanizationName -AddressChange-PremiumAddressChange] 

            & [oprADDRESSFLAGS].REQUIRED 

            & [oprADDRESSFLAGS :: Address.Flags +UspsStandardized] 

            & [oprADDRESSFLAGS :: Address.Flags -AddressChange-PremiumAddressChange] 

            & [NCOABUSADDRESS].REQUIRED 

            & [NCOABUSADDRESS :: Address.Business +AddressChange] 

            & [NCOAPRINUMBER].REQUIRED 

            & [NCOAPRINUMBER :: Address.PrimaryNumber +AddressChange] 

            & [NCOAPREDIR].REQUIRED 

            & [NCOAPREDIR :: Address.PreDirectional +AddressChange] 

            & [NCOAPRINAME].REQUIRED 

            & [NCOAPRINAME :: Address.PrimaryName +AddressChange] 

            & [NCOASUFFIX].REQUIRED 

            & [NCOASUFFIX :: Address.Suffix +AddressChange] 

            & [NCOAPOSTDIR].REQUIRED 

            & [NCOAPOSTDIR :: Address.PostDirectional +AddressChange] 

            & [NCOASECUNITDES].REQUIRED 

            & [NCOASECUNITDES :: Address.SecondaryUnitDesignator +AddressChange] 

            & [NCOASECNUMBER].REQUIRED 

            & [NCOASECNUMBER :: Address.SecondaryNumber +AddressChange] 

            & [NCOACITY].REQUIRED 

            & [NCOACITY :: Address.City +AddressChange] 

            & [NCOASTATE].REQUIRED 

            & [NCOASTATE :: Address.State +AddressChange] 

            & [NCOAZIP].REQUIRED 

            & [NCOAZIP :: Address.Zip +AddressChange] 

            & [NCOAZIP4].REQUIRED 

            & [NCOAZIP4 :: Address.Zip4 +AddressChange] 

            & [NCOAPRIADDRESS].REQUIRED 

            & [NCOAPRIADDRESS :: Address.Primary +AddressChange] 

            & [NCOASECADDRESS].REQUIRED 

            & [NCOASECADDRESS :: Address.Secondary +AddressChange] 

            & [NCOAURBNAME].REQUIRED 

            & [NCOAURBNAME :: Address.UrbanizationName +AddressChange] 

            & [NCOAADDRESSFLAGS].REQUIRED 

            & [NCOAADDRESSFLAGS :: Address.Flags +AddressChange] 

            & [CHANGEPLUSBUSADDRESS].REQUIRED 

            & [CHANGEPLUSBUSADDRESS :: Address.Business +PremiumAddressChange] 

            & [CHANGEPLUSPRINUMBER].REQUIRED 

            & [CHANGEPLUSPRINUMBER :: Address.PrimaryNumber +PremiumAddressChange] 

            & [CHANGEPLUSPREDIR].REQUIRED 

            & [CHANGEPLUSPREDIR :: Address.PreDirectional +PremiumAddressChange] 

            & [CHANGEPLUSPRINAME].REQUIRED 

            & [CHANGEPLUSPRINAME :: Address.PrimaryName +PremiumAddressChange] 
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            & [CHANGEPLUSSUFFIX].REQUIRED 

            & [CHANGEPLUSSUFFIX :: Address.Suffix +PremiumAddressChange] 

            & [CHANGEPLUSPOSTDIR].REQUIRED 

            & [CHANGEPLUSPOSTDIR :: Address.PostDirectional +PremiumAddressChange] 

            & [CHANGEPLUSSECUNITDES].REQUIRED 

            & [CHANGEPLUSSECUNITDES :: Address.SecondaryUnitDesignator +PremiumAddressChange] 

            & [CHANGEPLUSSECNUMBER].REQUIRED 

            & [CHANGEPLUSSECNUMBER :: Address.SecondaryNumber +PremiumAddressChange] 

            & [CHANGEPLUSCITY].REQUIRED 

            & [CHANGEPLUSCITY :: Address.City +PremiumAddressChange] 

            & [CHANGEPLUSSTATE].REQUIRED 

            & [CHANGEPLUSSTATE :: Address.State +PremiumAddressChange] 

            & [CHANGEPLUSZIP].REQUIRED 

            & [CHANGEPLUSZIP :: Address.Zip +PremiumAddressChange] 

            & [CHANGEPLUSZIP4].REQUIRED 

            & [CHANGEPLUSZIP4 :: Address.Zip4 +PremiumAddressChange] 

            & [CHANGEPLUSPRIADDRESS].REQUIRED 

            & [CHANGEPLUSPRIADDRESS :: Address.Primary +PremiumAddressChange] 

            & [CHANGEPLUSSECADDRESS].REQUIRED 

            & [CHANGEPLUSSECADDRESS :: Address.Secondary +PremiumAddressChange] 

            & [CHANGEPLUSURBNAME].REQUIRED 

            & [CHANGEPLUSURBNAME :: Address.UrbanizationName +PremiumAddressChange] 

 

            POSTCONDITION 

            { 

                [PASBUSADDRESS :: Address.Business +CurrentAddressSelected] 

                [PASPRINUMBER :: Address.PrimaryNumber +CurrentAddressSelected] 

                [PASPREDIR :: Address.PreDirectional +CurrentAddressSelected] 

                [PASPRINAME :: Address.PrimaryName +CurrentAddressSelected] 

                [PASSUFFIX :: Address.Suffix +CurrentAddressSelected] 

                [PASPOSTDIR :: Address.PostDirectional +CurrentAddressSelected] 

                [PASSECUNITDES :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [PASSECNUMBER :: Address.SecondaryNumber +CurrentAddressSelected] 

                [PASCITYNAME :: Address.City +CurrentAddressSelected] 

                [PASSTATEABREV :: Address.State +CurrentAddressSelected] 

                [PASZIPCODE :: Address.Zip +CurrentAddressSelected] 

                [PASADDONCODE :: Address.Zip4 +CurrentAddressSelected] 

                [PASPRIADDRESS :: Address.Primary +CurrentAddressSelected] 

                [PASSECADDRESS :: Address.Secondary +CurrentAddressSelected] 

                [PASPRURBANIZATION :: Address.UrbanizationName +CurrentAddressSelected] 

                [PASADDRESSFLAGS :: Address.Flags +CurrentAddressSelected] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

    } 

}  
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A.4 ContactLink 

ContactLink 

{ 

 

    INPUT FIELDS 

    { 

        FIRSTNAME 

        MIDDLEINITIAL 

        LASTNAME 

        CONSBUSINDICATOR 

        YEAROFBIRTH 

        SUMOFSSN4 

        BUSADDRESS 

        PRINUMBER 

        PREDIR 

        PRINAME 

        SUFFIX 

        POSTDIR 

        SECUNITDES 

        SECNUMBER 

        CITY 

        STATE 

        ZIP 

        ZIP4 

        PRIADDRESS 

        SECADDRESS 

        URBNAME 

    } 

 

    OUTPUT FIELDS 

    { 

        ADDRESSLINK 

    } 

 

    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            [BUSADDRESS].REQUIRED 

            & [BUSADDRESS :: Address.Business +CurrentAddressSelected] 

            & [PRINUMBER].REQUIRED 

            & [PRINUMBER :: Address.PrimaryNumber +CurrentAddressSelected] 

            & [PREDIR].REQUIRED 

            & [PREDIR :: Address.PreDirectional +CurrentAddressSelected] 

            & [PRINAME].REQUIRED 

            & [PRINAME :: Address.PrimaryName +CurrentAddressSelected] 

            & [SUFFIX].REQUIRED 

            & [SUFFIX :: Address.Suffix +CurrentAddressSelected] 

            & [POSTDIR].REQUIRED 

            & [POSTDIR :: Address.PostDirectional +CurrentAddressSelected] 

            & [SECUNITDES].REQUIRED 

            & [SECUNITDES :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

            & [SECNUMBER].REQUIRED 
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            & [SECNUMBER :: Address.SecondaryNumber +CurrentAddressSelected] 

            & [CITY].REQUIRED 

            & [CITY :: Address.City +CurrentAddressSelected] 

            & [STATE].REQUIRED 

            & [STATE :: Address.State +CurrentAddressSelected] 

            & [ZIP].REQUIRED 

            & [ZIP :: Address.Zip +CurrentAddressSelected] 

            & [ZIP4].REQUIRED 

            & [ZIP4 :: Address.Zip4 +CurrentAddressSelected] 

            & [PRIADDRESS].REQUIRED 

            & [PRIADDRESS :: Address.Primary +CurrentAddressSelected] 

            & [SECADDRESS].REQUIRED 

            & [SECADDRESS :: Address.Secondary +CurrentAddressSelected] 

            & [URBNAME].REQUIRED 

            & [URBNAME :: Address.UrbanizationName +CurrentAddressSelected] 

 

            POSTCONDITION 

            { 

                [ADDRESSLINK :: Link.Address +AddressContactLinked] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

 

        AppendConsumerContactLinks 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                                [BUSADDRESS :: Address.Business +ConsumerContactLinked+AddressContactLinked] 

                                [PRINUMBER :: Address.PrimaryNumber +ConsumerContactLinked+AddressContactLinked] 

                                [PREDIR :: Address.PreDirectional +ConsumerContactLinked+AddressContactLinked] 

                                [PRINAME :: Address.PrimaryName +ConsumerContactLinked+AddressContactLinked] 
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                                [SUFFIX :: Address.Suffix +ConsumerContactLinked+AddressContactLinked] 

                                [POSTDIR :: Address.PostDirectional +ConsumerContactLinked+AddressContactLinked] 

                                [SECUNITDES :: Address.SecondaryUnitDesignator 

+ConsumerContactLinked+AddressContactLinked] 

                                [SECNUMBER :: Address.SecondaryNumber 

+ConsumerContactLinked+AddressContactLinked] 

                                [CITY :: Address.City +ConsumerContactLinked+AddressContactLinked] 

                                [STATE :: Address.State +ConsumerContactLinked+AddressContactLinked] 

                                [ZIP :: Address.Zip +ConsumerContactLinked+AddressContactLinked] 

                                [ZIP4 :: Address.Zip4 +ConsumerContactLinked+AddressContactLinked] 

                                [PRIADDRESS :: Address.Primary +ConsumerContactLinked+AddressContactLinked] 

                                [SECADDRESS :: Address.Secondary +ConsumerContactLinked+AddressContactLinked] 

                                [URBNAME :: Address.UrbanizationName +ConsumerContactLinked+AddressContactLinked] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        AppendConsumerContactLinks 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                                [BUSADDRESS :: Address.Business +BusinessContactLinked+AddressContactLinked] 

                                [PRINUMBER :: Address.PrimaryNumber +BusinessContactLinked+AddressContactLinked] 

                                [PREDIR :: Address.PreDirectional +BusinessContactLinked+AddressContactLinked] 

                                [PRINAME :: Address.PrimaryName +BusinessContactLinked+AddressContactLinked] 

                                [SUFFIX :: Address.Suffix +BusinessContactLinked+AddressContactLinked] 

                                [POSTDIR :: Address.PostDirectional +BusinessContactLinked+AddressContactLinked] 

                                [SECUNITDES :: Address.SecondaryUnitDesignator 

+BusinessContactLinked+AddressContactLinked] 

                                [SECNUMBER :: Address.SecondaryNumber 

+BusinessContactLinked+AddressContactLinked] 
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                                [CITY :: Address.City +BusinessContactLinked+AddressContactLinked] 

                                [STATE :: Address.State +BusinessContactLinked+AddressContactLinked] 

                                [ZIP :: Address.Zip +BusinessContactLinked+AddressContactLinked] 

                                [ZIP4 :: Address.Zip4 +BusinessContactLinked+AddressContactLinked] 

                                [PRIADDRESS :: Address.Primary +BusinessContactLinked+AddressContactLinked] 

                                [SECADDRESS :: Address.Secondary +BusinessContactLinked+AddressContactLinked] 

                                [URBNAME :: Address.UrbanizationName +BusinessContactLinked+AddressContactLinked] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 

}  
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A.5 IndustryCode 

IndustryCode 

{ 

 

    INPUT FIELDS 

    { 

        PROFESSIONAL_TITLE 

        LAST_NAME_SUFFIX 

        BUSINESS_NAME 

        EXISTING_SIM_TITLE_CODE 

        EXISTING_SIM_FUNCTION1_CODE 

    } 

 

    OUTPUT FIELDS 

    { 

        SIMNEWTITLE 

        SIMTITLECODE 

        SIMFUNCTION1CODE 

    } 

 

    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            [PROFESSIONAL_TITLE].REQUIRED 

            & [PROFESSIONAL_TITLE :: Name.ProfessionalTitle ] 

 

            POSTCONDITION 

            { 

                [SIMNEWTITLE :: Name.IndustryTitle ] 

                [SIMTITLECODE :: Name.IndustryTitleCode ] 

                [SIMFUNCTION1CODE :: Name.IndustryFunctionCode ] 

                [PROFESSIONAL_TITLE :: Name.ProfessionalTitle +IndustryCoded] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

 

        SUFFIX TITLE 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 
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                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            [LAST_NAME_SUFFIX].REQUIRED 

                            & [LAST_NAME_SUFFIX :: Name.Suffix ] 

 

                            POSTCONDITION 

                            { 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        BUSINESS NAME 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            [BUSINESS_NAME].REQUIRED 

                            & [BUSINESS_NAME :: Name.Business ] 

 

                            POSTCONDITION 

                            { 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 

}   
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A.6 NameEditCheck 

NameEditCheck 

{ 

 

    INPUT FIELDS 

    { 

        GX_FNAME 

        GX_MNAME 

        GX_LNAME 

        GX_FULLNAME 

    } 

 

    OUTPUT FIELDS 

    { 

        GX_SUGFNAME 

        GX_SUGMNAME 

        GX_SUGLNAME 

        GX_SUGFULLNAME 

    } 

 

    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            [GX_FNAME].REQUIRED 

            & [GX_FNAME :: Name.First ] 

            & [GX_LNAME].REQUIRED 

            & [GX_LNAME :: Name.Last ] 

            & [GX_MNAME].NA 

            & [GX_FULLNAME].NA 

 

            POSTCONDITION 

            { 

                [GX_SUGFNAME :: Name.First +NameEditChecked] 

                [GX_SUGLNAME :: Name.Last +NameEditChecked] 

            } 

        } 

 

        PRECONDITION 

        { 

            [GX_FNAME].REQUIRED 

            & [GX_FNAME :: Name.First ] 

            & [GX_LNAME].REQUIRED 

            & [GX_LNAME :: Name.Last ] 

            & [GX_MNAME].REQUIRED 

            & [GX_MNAME :: Name.Middle ] 

            & [GX_FULLNAME].NA 

 

            POSTCONDITION 

            { 

                [GX_SUGFNAME :: Name.First +NameEditChecked] 

                [GX_SUGMNAME :: Name.Middle +NameEditChecked] 

                [GX_SUGLNAME :: Name.Last +NameEditChecked] 
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            } 

        } 

 

        PRECONDITION 

        { 

            [GX_FNAME].NA 

            & [GX_LNAME].NA 

            & [GX_MNAME].NA 

            & [GX_FULLNAME].REQUIRED 

            & [GX_FULLNAME :: Name.Full ] 

 

            POSTCONDITION 

            { 

                [GX_SUGFULLNAME :: Name.Full +NameEditChecked] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

    } 

}  
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A.7 Parser 

Parser 

{ 

 

    INPUT FIELDS 

    { 

        UNPARSEDNAME 

        PARSEDFIRSTNAME 

        PARSEDMIDDLENAME 

        PARSEDLASTNAME 

        PARSEDLASTNAMESUFFIX 

        PROFESSIONALTITLE 

        PRIMARYBUSINESSNAME 

        SECONDARYBUSINESSNAME 

        ADDRESSLINE1 

        ADDRESSLINE2 

        UNPARSEDCITYSTATEZIP 

        PARSEDCITY 

        PARSEDSTATE 

        PARSEDZIP 

        PARSEDZIP4 

        PARSEDURBNAME 

    } 

 

    OUTPUT FIELDS 

    { 

        CVFIRSTNAME1 

        CVMIDDLENAME1 

        CVLASTNAME1 

        CVPROFTITLE1 

        CVGENDERCODE1 

        CVPRIMARYBUSINESS 

        CVSECONDARYBUSINESS 

        CVADDRESSTYPE 

        CVPRIMARYADDRESS 

        CVSECONDARYADDRESS 

        CVAAPRINUMBER 

        CVAAPREDIR1 

        CVAAPRINAME 

        CVAASUFFIX1 

        CVAAPOSTDIR 

        CVAASECUNITDES 

        CVAASECNUMBER 

        CVAABUSNAME 

        CVAAOUTPRURB 

        CVAACITYNAME 

        CVAASTATEABBREV 

        CVAAZIPCODE 

        CVAAADDONCODE 

    } 

 

    PRECONDITIONS 

    { 
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        PRECONDITION 

        { 

            [UNPARSEDNAME].REQUIRED 

            & [UNPARSEDNAME :: Name.Full ] 

            & [PARSEDFIRSTNAME].NA 

            & [PARSEDMIDDLENAME].NA 

            & [PARSEDLASTNAME].NA 

            & [PARSEDLASTNAMESUFFIX].NA 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].REQUIRED 

            & [UNPARSEDNAME :: Name.Full ] 

            & [PARSEDFIRSTNAME].NA 

            & [PARSEDMIDDLENAME].NA 

            & [PARSEDLASTNAME].NA 

            & [PARSEDLASTNAMESUFFIX].NA 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 



 

144 

 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 
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            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 
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                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 
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                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 
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            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].NA 
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            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 
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            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].REQUIRED 

            & [UNPARSEDCITYSTATEZIP :: Address.CityStateZip ] 

            & [PARSEDCITY].NA 

            & [PARSEDSTATE].NA 

            & [PARSEDZIP].NA 

            & [PARSEDZIP4].NA 

            & [PARSEDURBNAME].NA 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 
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                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 
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                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

            } 



 

153 

 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 



 

154 

 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].NA 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 
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            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].NA 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 
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                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].NA 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 
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                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

 

        PRECONDITION 

        { 

            [UNPARSEDNAME].NA 

            & [PARSEDFIRSTNAME].REQUIRED 

            & [PARSEDFIRSTNAME :: Name.First ] 

            & [PARSEDLASTNAME].REQUIRED 

            & [PARSEDLASTNAME :: Name.Last ] 

            & [ADDRESSLINE1].REQUIRED 

            & [ADDRESSLINE1 :: Address.Primary ] 

            & [PROFESSIONALTITLE].REQUIRED 

            & [PROFESSIONALTITLE :: Name.ProfessionalTitle ] 

            & [PRIMARYBUSINESSNAME].REQUIRED 

            & [PRIMARYBUSINESSNAME :: Name.Business ] 

            & [SECONDARYBUSINESSNAME].REQUIRED 

            & [SECONDARYBUSINESSNAME :: Name.Business ] 

            & [UNPARSEDCITYSTATEZIP].NA 

            & [PARSEDCITY].REQUIRED 

            & [PARSEDCITY :: Address.City ] 

            & [PARSEDSTATE].REQUIRED 

            & [PARSEDSTATE :: Address.State ] 

            & [PARSEDZIP].REQUIRED 

            & [PARSEDZIP :: Address.Zip ] 

 

            POSTCONDITION 

            { 

                [CVFIRSTNAME1 :: Name.First ] 

                [CVMIDDLENAME1 :: Name.Middle ] 

                [CVLASTNAME1 :: Name.Last ] 

                [CVGENDERCODE1 :: Name.Gender ] 

                [CVADDRESSTYPE :: Address.Type ] 

                [CVPRIMARYADDRESS :: Address.Primary ] 

                [CVSECONDARYADDRESS :: Address.Secondary ] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +UspsStandardized] 

                [CVAAPREDIR1 :: Address.PreDirectional +UspsStandardized] 

                [CVAAPRINAME :: Address.PrimaryName +UspsStandardized] 

                [CVAASUFFIX1 :: Address.Suffix +UspsStandardized] 

                [CVAAPOSTDIR :: Address.PostDirectional +UspsStandardized] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +UspsStandardized] 

                [CVAASECNUMBER :: Address.SecondaryNumber +UspsStandardized] 



 

158 

 

                [CVAAOUTPRURB :: Address.UrbanizationName +UspsStandardized] 

                [CVAACITYNAME :: Address.City +UspsStandardized] 

                [CVAASTATEABBREV :: Address.State +UspsStandardized] 

                [CVAAZIPCODE :: Address.Zip +UspsStandardized] 

                [CVAAADDONCODE :: Address.Zip4 +UspsStandardized] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle ] 

                [CVPRIMARYBUSINESS :: Name.Business ] 

                [CVSECONDARYBUSINESS :: Name.Business ] 

                [CVAABUSNAME :: Name.Business +UspsStandardized] 

            } 

        } 

    } 

 

    OPTIONS 

    { 

 

        FilterProfanity 

        { 

 

            OPTION SETTINGS 

            { 

 

                FilterWords 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                                [CVFIRSTNAME1 :: Name.First +ProfanityFiltered] 

                                [CVMIDDLENAME1 :: Name.Middle +ProfanityFiltered] 

                                [CVLASTNAME1 :: Name.Last +ProfanityFiltered] 

                                [CVPROFTITLE1 :: Name.ProfessionalTitle +ProfanityFiltered] 

                                [CVPRIMARYBUSINESS :: Name.Business +ProfanityFiltered] 

                                [CVSECONDARYBUSINESS :: Name.Business +ProfanityFiltered] 

                                [CVPRIMARYADDRESS :: Address.Primary +ProfanityFiltered] 

                                [CVSECONDARYADDRESS :: Address.Secondary +ProfanityFiltered] 

                                [CVAAPRINUMBER :: Address.PrimaryNumber +ProfanityFiltered] 

                                [CVAAPREDIR1 :: Address.PreDirectional +ProfanityFiltered] 

                                [CVAAPRINAME :: Address.PrimaryName +ProfanityFiltered] 

                                [CVAASUFFIX1 :: Address.Suffix +ProfanityFiltered] 

                                [CVAAPOSTDIR :: Address.PostDirectional +ProfanityFiltered] 

                                [CVAASECUNITDES :: Address.SecondaryUnitDesignator +ProfanityFiltered] 

                                [CVAASECNUMBER :: Address.SecondaryNumber +ProfanityFiltered] 

                                [CVAABUSNAME :: Name.Business +ProfanityFiltered] 

                                [CVAAOUTPRURB :: Address.UrbanizationName +ProfanityFiltered] 

                                [CVAACITYNAME :: Address.City +ProfanityFiltered] 

                                [CVAASTATEABBREV :: Address.State +ProfanityFiltered] 

                                [CVAAZIPCODE :: Address.Zip +ProfanityFiltered] 

                                [CVAAADDONCODE :: Address.Zip4 +ProfanityFiltered] 

                            } 
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                        } 

                    } 

                } 

 

                DoNotFilterWords 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            NONE 

 

                            POSTCONDITION 

                            { 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 

}   
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A.8 PremiumAddress 

PremiumAddress 

{ 

 

    INPUT FIELDS 

    { 

        ADDRESSLINK 

        CONSUMERLINK 

        COARECORDMATCHCODE 

        PRIMARYNUMBER 

        PREDIRECTIONAL 

        STREETNAME 

        STREETSUFFIX 

        POSTDIRECTIONAL 

        UNITDESIGNATOR 

        SECONDARYNUMBER 

        CITYNAME 

        STATEABBREV 

        ZIP 

        ZIP4 

    } 

 

    OUTPUT FIELDS 

    { 

        IBBA_PRIMARY_NUMBER 

        IBBA_PRE_DIRECTIONAL 

        IBBA_STREET_NAME 

        IBBA_STREET_SUFFIX 

        IBBA_POST_DIRECTIONAL 

        IBBA_UNIT_DESIGNATOR 

        IBBA_SECONDARY_NUMBER 

        IBBA_CITY 

        IBBA_STATE 

        IBBA_ZIP_CODE 

        IBBA_ZIP_4_CODE 

        IBBA_PRIMARY_ADDRESS 

        IBBA_ECP_PRIMARY_NUMBER 

        IBBA_ECP_PRE_DIRECTIONAL 

        IBBA_ECP_STREET_NAME 

        IBBA_ECP_STREET_SUFFIX 

        IBBA_ECP_POST_DIRECTIONAL 

        IBBA_ECP_UNIT_DESIGNATOR 

        IBBA_ECP_SECONDARY_NUMBER 

        IBBA_ECP_CITY 

        IBBA_ECP_STATE 

        IBBA_ECP_ZIP_CODE 

        IBBA_ECP_ZIP_4_CODE 

        IBBA_ECP_PRIMARY_ADDRESS 

        IBBA_DPD_PRIMARY_ADDRESS 

        IBBA_DPD_CITY 

        IBBA_DPD_STATE 

        IBBA_DPD_ZIP_CODE 

    } 
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    PRECONDITIONS 

    { 

 

        PRECONDITION 

        { 

            NONE 

 

            POSTCONDITION 

            { 

            } 

        } 

    } 

 

    OPTIONS 

    { 

 

        PerformHygiene 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            [ADDRESSLINK].REQUIRED 

                            & [ADDRESSLINK :: Link.Address ] 

 

                            POSTCONDITION 

                            { 

                                [IBBA_PRIMARY_NUMBER :: Address.PrimaryNumber +PremiumStandardized] 

                                [IBBA_PRE_DIRECTIONAL :: Address.PreDirectional +PremiumStandardized] 

                                [IBBA_STREET_NAME :: Address.PrimaryName +PremiumStandardized] 

                                [IBBA_STREET_SUFFIX :: Address.Suffix +PremiumStandardized] 

                                [IBBA_POST_DIRECTIONAL :: Address.PostDirectional +PremiumStandardized] 

                                [IBBA_UNIT_DESIGNATOR :: Address.SecondaryUnitDesignator +PremiumStandardized] 

                                [IBBA_SECONDARY_NUMBER :: Address.SecondaryNumber +PremiumStandardized] 

                                [IBBA_CITY :: Address.City +PremiumStandardized] 

                                [IBBA_STATE :: Address.State +PremiumStandardized] 

                                [IBBA_ZIP_CODE :: Address.Zip +PremiumStandardized] 

                                [IBBA_ZIP_4_CODE :: Address.Zip4 +PremiumStandardized] 

                                [IBBA_PRIMARY_ADDRESS :: Address.Primary +PremiumStandardized] 

                            } 
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                        } 

                    } 

                } 

            } 

        } 

 

        PerformEnhancedChangeOfAddress 

        { 

 

            OPTION SETTINGS 

            { 

 

                N 

                { 

 

                    PRECONDITIONS 

                    { 

                    } 

                } 

 

                Y 

                { 

 

                    PRECONDITIONS 

                    { 

 

                        PRECONDITION 

                        { 

                            [ADDRESSLINK].REQUIRED 

                            & [ADDRESSLINK :: Link.Address ] 

                            & [CONSUMERLINK].REQUIRED 

                            & [CONSUMERLINK :: Link.Consumer ] 

 

                            POSTCONDITION 

                            { 

                                [IBBA_ECP_PRIMARY_NUMBER :: Address.PrimaryNumber +PremiumAddressChange] 

                                [IBBA_ECP_PRE_DIRECTIONAL :: Address.PreDirectional +PremiumAddressChange] 

                                [IBBA_ECP_STREET_NAME :: Address.PrimaryName +PremiumAddressChange] 

                                [IBBA_ECP_STREET_SUFFIX :: Address.Suffix +PremiumAddressChange] 

                                [IBBA_ECP_POST_DIRECTIONAL :: Address.PostDirectional +PremiumAddressChange] 

                                [IBBA_ECP_UNIT_DESIGNATOR :: Address.SecondaryUnitDesignator 

+PremiumAddressChange] 

                                [IBBA_ECP_SECONDARY_NUMBER :: Address.SecondaryNumber 

+PremiumAddressChange] 

                                [IBBA_ECP_CITY :: Address.City +PremiumAddressChange] 

                                [IBBA_ECP_STATE :: Address.State +PremiumAddressChange] 

                                [IBBA_ECP_ZIP_CODE :: Address.Zip +PremiumAddressChange] 

                                [IBBA_ECP_ZIP_4_CODE :: Address.Zip4 +PremiumAddressChange] 

                                [IBBA_ECP_PRIMARY_ADDRESS :: Address.Primary +PremiumAddressChange] 

                            } 

                        } 

                    } 

                } 

            } 

        } 

    } 
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} 
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APPENDIX B:  INTENTS 

B.1 Address hygiene 

Address Hygiene 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [SECONDARYADDRESS :: Address.Secondary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [PRIMARYNUMBER :: Address.PrimaryNumber 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [PREDIRECTIONAL :: Address.PreDirectional 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [PRINAME :: Address.PrimaryName 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [SUFFIX :: Address.Suffix +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [POSTDIRECTIONAL :: Address.PostDirectional 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [SECUNITDES :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [SECNUMBER :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [CITYNAME :: Address.City +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [STATE :: Address.State +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [ZIPCODE :: Address.Zip +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [ZIP4 :: Address.Zip4 +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [URBNAME :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

    } 

}   
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B.2 Premium address hygiene 

Premium Address Hygiene 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +PremiumStandardized+CurrentAddressSelected] 

                [SECONDARYADDRESS :: Address.Secondary +PremiumStandardized+CurrentAddressSelected] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +PremiumStandardized+CurrentAddressSelected] 

                [PREDIRECTIONAL :: Address.PreDirectional +PremiumStandardized+CurrentAddressSelected] 

                [PRINAME :: Address.PrimaryName +PremiumStandardized+CurrentAddressSelected] 

                [SUFFIX :: Address.Suffix +PremiumStandardized+CurrentAddressSelected] 

                [POSTDIRECTIONAL :: Address.PostDirectional +PremiumStandardized+CurrentAddressSelected] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +PremiumStandardized+CurrentAddressSelected] 

                [SECNUMBER :: Address.SecondaryNumber +PremiumStandardized+CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business +PremiumStandardized+CurrentAddressSelected] 

                [CITYNAME :: Address.City +PremiumStandardized+CurrentAddressSelected] 

                [STATE :: Address.State +PremiumStandardized+CurrentAddressSelected] 

                [ZIPCODE :: Address.Zip +PremiumStandardized+CurrentAddressSelected] 

                [ZIP4 :: Address.Zip4 +PremiumStandardized+CurrentAddressSelected] 

                [URBNAME :: Address.UrbanizationName +PremiumStandardized+CurrentAddressSelected] 

    } 

}  
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B.3 Change of address 

Change Of Address 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +AddressChange+CurrentAddressSelected] 

                [SECONDARYADDRESS :: Address.Secondary +AddressChange+CurrentAddressSelected] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +AddressChange+CurrentAddressSelected] 

                [PREDIRECTIONAL :: Address.PreDirectional +AddressChange+CurrentAddressSelected] 

                [PRINAME :: Address.PrimaryName +AddressChange+CurrentAddressSelected] 

                [SUFFIX :: Address.Suffix +AddressChange+CurrentAddressSelected] 

                [POSTDIRECTIONAL :: Address.PostDirectional +AddressChange+CurrentAddressSelected] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +AddressChange+CurrentAddressSelected] 

                [SECNUMBER :: Address.SecondaryNumber +AddressChange+CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business +AddressChange+CurrentAddressSelected] 

                [CITYNAME :: Address.City +AddressChange+CurrentAddressSelected] 

                [STATE :: Address.State +AddressChange+CurrentAddressSelected] 

                [ZIPCODE :: Address.Zip +AddressChange+CurrentAddressSelected] 

                [ZIP4 :: Address.Zip4 +AddressChange+CurrentAddressSelected] 

                [URBNAME :: Address.UrbanizationName +AddressChange+CurrentAddressSelected] 

                [ADDRESSFLAGS :: Address.Flags +AddressChange+CurrentAddressSelected] 

    } 

}  



 

167 

 

B.4 Premium change of address 

Premium Change Of Address 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +PremiumAddressChange+CurrentAddressSelected] 

                [SECONDARYADDRESS :: Address.Secondary +PremiumAddressChange+CurrentAddressSelected] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +PremiumAddressChange+CurrentAddressSelected] 

                [PREDIRECTIONAL :: Address.PreDirectional +PremiumAddressChange+CurrentAddressSelected] 

                [PRINAME :: Address.PrimaryName +PremiumAddressChange+CurrentAddressSelected] 

                [SUFFIX :: Address.Suffix +PremiumAddressChange+CurrentAddressSelected] 

                [POSTDIRECTIONAL :: Address.PostDirectional +PremiumAddressChange+CurrentAddressSelected] 

                [SECUNITDES :: Address.SecondaryUnitDesignator 

+PremiumAddressChange+CurrentAddressSelected] 

                [SECNUMBER :: Address.SecondaryNumber +PremiumAddressChange+CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business +PremiumAddressChange+CurrentAddressSelected] 

                [CITYNAME :: Address.City +PremiumAddressChange+CurrentAddressSelected] 

                [STATE :: Address.State +PremiumAddressChange+CurrentAddressSelected] 

                [ZIPCODE :: Address.Zip +PremiumAddressChange+CurrentAddressSelected] 

                [ZIP4 :: Address.Zip4 +PremiumAddressChange+CurrentAddressSelected] 

                [URBNAME :: Address.UrbanizationName +PremiumAddressChange+CurrentAddressSelected] 

    } 

}  
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B.5 Filter profanity 

Filter Profanity 

{ 

 

    POSTCONDITIONS 

    { 

                [FIRSTNAME :: Name.First +ProfanityFiltered] 

                [LASTNAME :: Name.Last +ProfanityFiltered] 

                [PRIMARYADDRESS :: Address.Primary +ProfanityFiltered] 

                [SECONDARYADDRESS :: Address.Secondary +ProfanityFiltered] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +ProfanityFiltered] 

                [PREDIRECTIONAL :: Address.PreDirectional +ProfanityFiltered] 

                [PRINAME :: Address.PrimaryName +ProfanityFiltered] 

                [SUFFIX :: Address.Suffix +ProfanityFiltered] 

                [POSTDIRECTIONAL :: Address.PostDirectional +ProfanityFiltered] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +ProfanityFiltered] 

                [SECNUMBER :: Address.SecondaryNumber +ProfanityFiltered] 

                [CITYNAME :: Address.City +ProfanityFiltered] 

                [STATE :: Address.State +ProfanityFiltered] 

                [ZIPCODE :: Address.Zip +ProfanityFiltered] 

                [ZIP4 :: Address.Zip4 +ProfanityFiltered] 

                [URBNAME :: Address.UrbanizationName +ProfanityFiltered] 

    } 

}  
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B.6 Validate names 

Validate Names 

{ 

 

    POSTCONDITIONS 

    { 

                [FIRSTNAME :: Name.First +NameEditChecked] 

                [LASTNAME :: Name.Last +NameEditChecked] 

    } 

}  
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B.7 Determine industry demographic 

Determine Industry Demographic 

{ 

 

    POSTCONDITIONS 

    { 

                [PROFESSIONALTITLE :: Name.ProfessionalTitle +IndustryCoded] 

    } 

}   
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B.8 Validate addresses 

Validate Addresses 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +AddressEditChecked] 

    } 

}   
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B.9 Delivery sequencing 

Delivery Sequencing 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +DeliverySequenced] 

                [SECONDARYADDRESS :: Address.Secondary +DeliverySequenced] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +DeliverySequenced] 

                [PREDIRECTIONAL :: Address.PreDirectional +DeliverySequenced] 

                [PRINAME :: Address.PrimaryName +DeliverySequenced] 

                [SUFFIX :: Address.Suffix +DeliverySequenced] 

                [POSTDIRECTIONAL :: Address.PostDirectional +DeliverySequenced] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +DeliverySequenced] 

                [SECNUMBER :: Address.SecondaryNumber +DeliverySequenced] 

                [BUSADDRESS :: Address.Business +DeliverySequenced] 

                [CITYNAME :: Address.City +DeliverySequenced] 

                [STATE :: Address.State +DeliverySequenced] 

                [ZIPCODE :: Address.Zip +DeliverySequenced] 

                [ZIP4 :: Address.Zip4 +DeliverySequenced] 

                [URBNAME :: Address.UrbanizationName +DeliverySequenced] 

    } 

}   
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B.10 Geocode addresses 

Geocode Addresses 

{ 

 

    POSTCONDITIONS 

    { 

                [PRIMARYADDRESS :: Address.Primary +Geocoded] 

                [SECONDARYADDRESS :: Address.Secondary +Geocoded] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +Geocoded] 

                [PREDIRECTIONAL :: Address.PreDirectional +Geocoded] 

                [PRINAME :: Address.PrimaryName +Geocoded] 

                [SUFFIX :: Address.Suffix +Geocoded] 

                [POSTDIRECTIONAL :: Address.PostDirectional +Geocoded] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +Geocoded] 

                [SECNUMBER :: Address.SecondaryNumber +Geocoded] 

                [BUSADDRESS :: Address.Business +Geocoded] 

                [CITYNAME :: Address.City +Geocoded] 

                [STATE :: Address.State +Geocoded] 

                [ZIPCODE :: Address.Zip +Geocoded] 

                [ZIP4 :: Address.Zip4 +Geocoded] 

                [URBNAME :: Address.UrbanizationName +Geocoded] 

    } 

}   
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B.11 Link contacts 

Link Contacts 

{ 

 

    POSTCONDITIONS 

    { 

                [ADDRESSLINK :: Link.Address +AddressContactLinked] 

                [PRIMARYADDRESS :: Address.Primary +CurrentAddressSelected] 

                [SECONDARYADDRESS :: Address.Secondary +CurrentAddressSelected] 

                [PRIMARYNUMBER :: Address.PrimaryNumber +CurrentAddressSelected] 

                [PREDIRECTIONAL :: Address.PreDirectional +CurrentAddressSelected] 

                [PRINAME :: Address.PrimaryName +CurrentAddressSelected] 

                [SUFFIX :: Address.Suffix +CurrentAddressSelected] 

                [POSTDIRECTIONAL :: Address.PostDirectional +CurrentAddressSelected] 

                [SECUNITDES :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [SECNUMBER :: Address.SecondaryNumber +CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business +CurrentAddressSelected] 

                [CITYNAME :: Address.City +CurrentAddressSelected] 

                [STATE :: Address.State +CurrentAddressSelected] 

                [ZIPCODE :: Address.Zip +CurrentAddressSelected] 

                [ZIP4 :: Address.Zip4 +CurrentAddressSelected] 

                [URBNAME :: Address.UrbanizationName +CurrentAddressSelected] 

                [ADDRESSFLAGS :: Address.Flags +CurrentAddressSelected] 

    } 

} 
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APPENDIX C:  GENERATED WORKFLOWS 

C.1 Testing Scenario 1 

C.1.1 Distinct Sequences 

1. Parser => AddressEnhance => NameEditCheck => AddressSelect => IndustryCode 

2. Parser => AddressEnhance => NameEditCheck => IndustryCode => AddressSelect 

3. Parser => AddressEnhance => AddressSelect => NameEditCheck => IndustryCode 

4. Parser => AddressEnhance => AddressSelect => IndustryCode => NameEditCheck 

5. Parser => AddressEnhance => IndustryCode => NameEditCheck => AddressSelect 

6. Parser => AddressEnhance => IndustryCode => AddressSelect => NameEditCheck 

7. Parser => NameEditCheck => AddressEnhance => AddressSelect => IndustryCode 

8. Parser => NameEditCheck => AddressEnhance => IndustryCode => AddressSelect 

9. Parser => NameEditCheck => IndustryCode => AddressEnhance => AddressSelect 

10. Parser => IndustryCode => AddressEnhance => NameEditCheck => AddressSelect 

11. Parser => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck 

12. Parser => IndustryCode => NameEditCheck => AddressEnhance => AddressSelect 

C.1.2 Detailed Result 

WORKFLOW 

{ 

 

    INITIAL STATE 

    { 

        Address.Primary::Address.Primary 

        Name.Full::Name.Full 

        Address.CityStateZip::Address.CityStateZip 

    } 

 

    GOAL STATE 

    { 

        [PRIMARYADDRESS :: Address.Primary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [SECONDARYADDRESS :: Address.Secondary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [PRIMARYNUMBER :: Address.PrimaryNumber 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [PREDIRECTIONAL :: Address.PreDirectional 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [PRINAME :: Address.PrimaryName +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [SUFFIX :: Address.Suffix +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [POSTDIRECTIONAL :: Address.PostDirectional 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [SECUNITDES :: Address.SecondaryUnitDesignator 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [SECNUMBER :: Address.SecondaryNumber 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [BUSADDRESS :: Address.Business +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 
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        [CITYNAME :: Address.City +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [STATE :: Address.State +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [ZIPCODE :: Address.Zip +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [ZIP4 :: Address.Zip4 +UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [URBNAME :: Address.UrbanizationName 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

        [FIRSTNAME :: Name.First +NameEditChecked] 

        [LASTNAME :: Name.Last +NameEditChecked] 

        [PROFESSIONALTITLE :: Name.ProfessionalTitle +IndustryCoded] 

    } 

 

    WORKFLOW STEPS 

    { 

 

        Parser 

        { 

 

            INPUT MAPPINGS 

            { 

                UNPARSEDNAME <= [Name.Full::Name.Full] 

                ADDRESSLINE1 <= [Address.Primary::Address.Primary] 

                UNPARSEDCITYSTATEZIP <= [Address.CityStateZip::Address.CityStateZip] 

            } 

 

            OPTION MAPPINGS 

            { 

                FilterProfanity <= (DoNotFilterWords) 

            } 

 

            END STATE 

            { 

                Address.Primary::Address.Primary 

                Name.Full::Name.Full 

                Address.CityStateZip::Address.CityStateZip 

                CVFIRSTNAME1::Name.First 

                CVMIDDLENAME1::Name.Middle 

                CVLASTNAME1::Name.Last 

                CVGENDERCODE1::Name.Gender 

                CVADDRESSTYPE::Address.Type 

                CVPRIMARYADDRESS::Address.Primary 

                CVSECONDARYADDRESS::Address.Secondary 

                CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized 

                CVAAPREDIR1::Address.PreDirectional +UspsStandardized 

                CVAAPRINAME::Address.PrimaryName +UspsStandardized 

                CVAASUFFIX1::Address.Suffix +UspsStandardized 

                CVAAPOSTDIR::Address.PostDirectional +UspsStandardized 

                CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized 

                CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized 

                CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized 

                CVAACITYNAME::Address.City +UspsStandardized 

                CVAASTATEABBREV::Address.State +UspsStandardized 

                CVAAZIPCODE::Address.Zip +UspsStandardized 

                CVAAADDONCODE::Address.Zip4 +UspsStandardized 

                CVPROFTITLE1::Name.ProfessionalTitle 

                CVPRIMARYBUSINESS::Name.Business 

                CVSECONDARYBUSINESS::Name.Business 
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                CVAABUSNAME::Name.Business +UspsStandardized 

            } 

 

            REMAINING GOALS 

            { 

                [CVPRIMARYADDRESS :: Address.Primary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [CVSECONDARYADDRESS :: Address.Secondary 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAPRINUMBER :: Address.PrimaryNumber +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAPREDIR1 :: Address.PreDirectional +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAPRINAME :: Address.PrimaryName +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAASUFFIX1 :: Address.Suffix +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAPOSTDIR :: Address.PostDirectional +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAASECUNITDES :: Address.SecondaryUnitDesignator 

+DeliverabilityValidated+CurrentAddressSelected] 

                [CVAASECNUMBER :: Address.SecondaryNumber +DeliverabilityValidated+CurrentAddressSelected] 

                [BUSADDRESS :: Address.Business 

+UspsStandardized+DeliverabilityValidated+CurrentAddressSelected] 

                [CVAACITYNAME :: Address.City +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAASTATEABBREV :: Address.State +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAZIPCODE :: Address.Zip +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAADDONCODE :: Address.Zip4 +DeliverabilityValidated+CurrentAddressSelected] 

                [CVAAOUTPRURB :: Address.UrbanizationName +DeliverabilityValidated+CurrentAddressSelected] 

                [CVFIRSTNAME1 :: Name.First +NameEditChecked] 

                [CVLASTNAME1 :: Name.Last +NameEditChecked] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle +IndustryCoded] 

            } 

        } 

 

        AddressEnhance 

        { 

 

            INPUT MAPPINGS 

            { 

                PRIMARYADDRESSLINE <= [Address.Primary::Address.Primary] 

                CITY <= [CVAACITYNAME::Address.City +UspsStandardized] 

                STATE <= [CVAASTATEABBREV::Address.State +UspsStandardized] 

            } 

 

            OPTION MAPPINGS 

            { 

                PerformDeliverySequencing <= (N) 

                PerformChangeOfAddress <= (N) 

                PerformGeocoding <= (None) 

            } 

 

            END STATE 

            { 

                Address.Primary::Address.Primary 

                Name.Full::Name.Full 

                Address.CityStateZip::Address.CityStateZip 

                CVFIRSTNAME1::Name.First 

                CVMIDDLENAME1::Name.Middle 

                CVLASTNAME1::Name.Last 

                CVGENDERCODE1::Name.Gender 
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                CVADDRESSTYPE::Address.Type 

                CVPRIMARYADDRESS::Address.Primary 

                CVSECONDARYADDRESS::Address.Secondary 

                CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized 

                CVAAPREDIR1::Address.PreDirectional +UspsStandardized 

                CVAAPRINAME::Address.PrimaryName +UspsStandardized 

                CVAASUFFIX1::Address.Suffix +UspsStandardized 

                CVAAPOSTDIR::Address.PostDirectional +UspsStandardized 

                CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized 

                CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized 

                CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized 

                CVAACITYNAME::Address.City +UspsStandardized 

                CVAASTATEABBREV::Address.State +UspsStandardized 

                CVAAZIPCODE::Address.Zip +UspsStandardized 

                CVAAADDONCODE::Address.Zip4 +UspsStandardized 

                CVPROFTITLE1::Name.ProfessionalTitle 

                CVPRIMARYBUSINESS::Name.Business 

                CVSECONDARYBUSINESS::Name.Business 

                CVAABUSNAME::Name.Business +UspsStandardized 

                AAPRINUMBERBEFORECOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1BEFORECOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEBEFORECOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1BEFORECOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1BEFORECOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESBEFORECOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERBEFORECOA::Address.SecondaryNumber +UspsStandardized 

+DeliverabilityValidated 

                AAOUTPRURBBEFORECOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSBEFORECOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEBEFORECOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVBEFORECOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEBEFORECOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEBEFORECOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSBEFORECOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSBEFORECOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSBEFORECOA::Address.Flags +UspsStandardized 

                AAPRINUMBERAFTERCOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1AFTERCOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEAFTERCOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1AFTERCOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1AFTERCOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESAFTERCOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERAFTERCOA::Address.SecondaryNumber +UspsStandardized +DeliverabilityValidated 

                AAOUTPRURBAFTERCOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSAFTERCOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEAFTERCOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVAFTERCOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEAFTERCOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEAFTERCOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSAFTERCOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSAFTERCOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSAFTERCOA::Address.Flags +UspsStandardized 

            } 
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            REMAINING GOALS 

            { 

                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +CurrentAddressSelected] 

                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +CurrentAddressSelected] 

                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +CurrentAddressSelected] 

                [AAPREDIR1AFTERCOA :: Address.PreDirectional +CurrentAddressSelected] 

                [AAPRINAMEAFTERCOA :: Address.PrimaryName +CurrentAddressSelected] 

                [AASUFFIX1AFTERCOA :: Address.Suffix +CurrentAddressSelected] 

                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +CurrentAddressSelected] 

                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +CurrentAddressSelected] 

                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +CurrentAddressSelected] 

                [AACITYNAMEAFTERCOA :: Address.City +CurrentAddressSelected] 

                [AASTATEABREVAFTERCOA :: Address.State +CurrentAddressSelected] 

                [AAZIPCODEAFTERCOA :: Address.Zip +CurrentAddressSelected] 

                [AAADDONCODEAFTERCOA :: Address.Zip4 +CurrentAddressSelected] 

                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +CurrentAddressSelected] 

                [CVFIRSTNAME1 :: Name.First +NameEditChecked] 

                [CVLASTNAME1 :: Name.Last +NameEditChecked] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle +IndustryCoded] 

            } 

        } 

 

        NameEditCheck 

        { 

 

            INPUT MAPPINGS 

            { 

                GX_FNAME <= [CVFIRSTNAME1::Name.First] 

                GX_LNAME <= [CVLASTNAME1::Name.Last] 

            } 

 

            OPTION MAPPINGS 

            { 

            } 

 

            END STATE 

            { 

                Address.Primary::Address.Primary 

                Name.Full::Name.Full 

                Address.CityStateZip::Address.CityStateZip 

                CVFIRSTNAME1::Name.First 

                CVMIDDLENAME1::Name.Middle 

                CVLASTNAME1::Name.Last 

                CVGENDERCODE1::Name.Gender 

                CVADDRESSTYPE::Address.Type 

                CVPRIMARYADDRESS::Address.Primary 

                CVSECONDARYADDRESS::Address.Secondary 

                CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized 

                CVAAPREDIR1::Address.PreDirectional +UspsStandardized 

                CVAAPRINAME::Address.PrimaryName +UspsStandardized 

                CVAASUFFIX1::Address.Suffix +UspsStandardized 

                CVAAPOSTDIR::Address.PostDirectional +UspsStandardized 

                CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized 

                CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized 

                CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized 
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                CVAACITYNAME::Address.City +UspsStandardized 

                CVAASTATEABBREV::Address.State +UspsStandardized 

                CVAAZIPCODE::Address.Zip +UspsStandardized 

                CVAAADDONCODE::Address.Zip4 +UspsStandardized 

                CVPROFTITLE1::Name.ProfessionalTitle 

                CVPRIMARYBUSINESS::Name.Business 

                CVSECONDARYBUSINESS::Name.Business 

                CVAABUSNAME::Name.Business +UspsStandardized 

                AAPRINUMBERBEFORECOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1BEFORECOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEBEFORECOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1BEFORECOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1BEFORECOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESBEFORECOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERBEFORECOA::Address.SecondaryNumber +UspsStandardized 

+DeliverabilityValidated 

                AAOUTPRURBBEFORECOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSBEFORECOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEBEFORECOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVBEFORECOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEBEFORECOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEBEFORECOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSBEFORECOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSBEFORECOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSBEFORECOA::Address.Flags +UspsStandardized 

                AAPRINUMBERAFTERCOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1AFTERCOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEAFTERCOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1AFTERCOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1AFTERCOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESAFTERCOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERAFTERCOA::Address.SecondaryNumber +UspsStandardized +DeliverabilityValidated 

                AAOUTPRURBAFTERCOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSAFTERCOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEAFTERCOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVAFTERCOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEAFTERCOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEAFTERCOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSAFTERCOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSAFTERCOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSAFTERCOA::Address.Flags +UspsStandardized 

                GX_SUGFNAME::Name.First +NameEditChecked 

                GX_SUGLNAME::Name.Last +NameEditChecked 

            } 

 

            REMAINING GOALS 

            { 

                [AAOUTPRIMADDRESSAFTERCOA :: Address.Primary +CurrentAddressSelected] 

                [AAOUTSECADDRESSAFTERCOA :: Address.Secondary +CurrentAddressSelected] 

                [AAPRINUMBERAFTERCOA :: Address.PrimaryNumber +CurrentAddressSelected] 

                [AAPREDIR1AFTERCOA :: Address.PreDirectional +CurrentAddressSelected] 

                [AAPRINAMEAFTERCOA :: Address.PrimaryName +CurrentAddressSelected] 

                [AASUFFIX1AFTERCOA :: Address.Suffix +CurrentAddressSelected] 

                [AAPOSTDIR1AFTERCOA :: Address.PostDirectional +CurrentAddressSelected] 
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                [AASECUNITDESAFTERCOA :: Address.SecondaryUnitDesignator +CurrentAddressSelected] 

                [AASECNUMBERAFTERCOA :: Address.SecondaryNumber +CurrentAddressSelected] 

                [AAOUTBUSADDRESSAFTERCOA :: Address.Business +CurrentAddressSelected] 

                [AACITYNAMEAFTERCOA :: Address.City +CurrentAddressSelected] 

                [AASTATEABREVAFTERCOA :: Address.State +CurrentAddressSelected] 

                [AAZIPCODEAFTERCOA :: Address.Zip +CurrentAddressSelected] 

                [AAADDONCODEAFTERCOA :: Address.Zip4 +CurrentAddressSelected] 

                [AAOUTPRURBAFTERCOA :: Address.UrbanizationName +CurrentAddressSelected] 

                [CVPROFTITLE1 :: Name.ProfessionalTitle +IndustryCoded] 

            } 

        } 

 

        AddressSelect 

        { 

 

            INPUT MAPPINGS 

            { 

                oprBUSADDRESS <= [AAOUTBUSADDRESSBEFORECOA::Address.Business +UspsStandardized 

+DeliverabilityValidated] 

                oprPRINUMBER <= [CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized] 

                oprPREDIR <= [CVAAPREDIR1::Address.PreDirectional +UspsStandardized] 

                oprPRINAME <= [CVAAPRINAME::Address.PrimaryName +UspsStandardized] 

                oprSUFFIX <= [CVAASUFFIX1::Address.Suffix +UspsStandardized] 

                oprPOSTDIR <= [CVAAPOSTDIR::Address.PostDirectional +UspsStandardized] 

                oprSECUNITDES <= [CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized] 

                oprSECNUMBER <= [CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized] 

                oprCITY <= [CVAACITYNAME::Address.City +UspsStandardized] 

                oprSTATE <= [CVAASTATEABBREV::Address.State +UspsStandardized] 

                oprZIP <= [CVAAZIPCODE::Address.Zip +UspsStandardized] 

                oprZIP4 <= [CVAAADDONCODE::Address.Zip4 +UspsStandardized] 

                oprPRIADDRESS <= [AAOUTPRIMADDRESSBEFORECOA::Address.Primary +UspsStandardized 

+DeliverabilityValidated] 

                oprSECADDRESS <= [AAOUTSECADDRESSBEFORECOA::Address.Secondary +UspsStandardized 

+DeliverabilityValidated] 

                oprURBNAME <= [CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized] 

                oprADDRESSFLAGS <= [AAADDRESSFLAGSBEFORECOA::Address.Flags +UspsStandardized] 

            } 

 

            OPTION MAPPINGS 

            { 

            } 

 

            END STATE 

            { 

                Address.Primary::Address.Primary 

                Name.Full::Name.Full 

                Address.CityStateZip::Address.CityStateZip 

                CVFIRSTNAME1::Name.First 

                CVMIDDLENAME1::Name.Middle 

                CVLASTNAME1::Name.Last 

                CVGENDERCODE1::Name.Gender 

                CVADDRESSTYPE::Address.Type 

                CVPRIMARYADDRESS::Address.Primary 

                CVSECONDARYADDRESS::Address.Secondary 

                CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized 

                CVAAPREDIR1::Address.PreDirectional +UspsStandardized 
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                CVAAPRINAME::Address.PrimaryName +UspsStandardized 

                CVAASUFFIX1::Address.Suffix +UspsStandardized 

                CVAAPOSTDIR::Address.PostDirectional +UspsStandardized 

                CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized 

                CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized 

                CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized 

                CVAACITYNAME::Address.City +UspsStandardized 

                CVAASTATEABBREV::Address.State +UspsStandardized 

                CVAAZIPCODE::Address.Zip +UspsStandardized 

                CVAAADDONCODE::Address.Zip4 +UspsStandardized 

                CVPROFTITLE1::Name.ProfessionalTitle 

                CVPRIMARYBUSINESS::Name.Business 

                CVSECONDARYBUSINESS::Name.Business 

                CVAABUSNAME::Name.Business +UspsStandardized 

                AAPRINUMBERBEFORECOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1BEFORECOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEBEFORECOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1BEFORECOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1BEFORECOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESBEFORECOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERBEFORECOA::Address.SecondaryNumber +UspsStandardized 

+DeliverabilityValidated 

                AAOUTPRURBBEFORECOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSBEFORECOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEBEFORECOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVBEFORECOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEBEFORECOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEBEFORECOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSBEFORECOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSBEFORECOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSBEFORECOA::Address.Flags +UspsStandardized 

                AAPRINUMBERAFTERCOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1AFTERCOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEAFTERCOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1AFTERCOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1AFTERCOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESAFTERCOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERAFTERCOA::Address.SecondaryNumber +UspsStandardized +DeliverabilityValidated 

                AAOUTPRURBAFTERCOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSAFTERCOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEAFTERCOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVAFTERCOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEAFTERCOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEAFTERCOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSAFTERCOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSAFTERCOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSAFTERCOA::Address.Flags +UspsStandardized 

                GX_SUGFNAME::Name.First +NameEditChecked 

                GX_SUGLNAME::Name.Last +NameEditChecked 

                PASBUSADDRESS::Address.Business +CurrentAddressSelected 

                PASPRINUMBER::Address.PrimaryNumber +CurrentAddressSelected 

                PASPREDIR::Address.PreDirectional +CurrentAddressSelected 

                PASPRINAME::Address.PrimaryName +CurrentAddressSelected 

                PASSUFFIX::Address.Suffix +CurrentAddressSelected 
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                PASPOSTDIR::Address.PostDirectional +CurrentAddressSelected 

                PASSECUNITDES::Address.SecondaryUnitDesignator +CurrentAddressSelected 

                PASSECNUMBER::Address.SecondaryNumber +CurrentAddressSelected 

                PASCITYNAME::Address.City +CurrentAddressSelected 

                PASSTATEABREV::Address.State +CurrentAddressSelected 

                PASZIPCODE::Address.Zip +CurrentAddressSelected 

                PASADDONCODE::Address.Zip4 +CurrentAddressSelected 

                PASPRIADDRESS::Address.Primary +CurrentAddressSelected 

                PASSECADDRESS::Address.Secondary +CurrentAddressSelected 

                PASPRURBANIZATION::Address.UrbanizationName +CurrentAddressSelected 

                PASADDRESSFLAGS::Address.Flags +CurrentAddressSelected 

            } 

 

            REMAINING GOALS 

            { 

                [CVPROFTITLE1 :: Name.ProfessionalTitle +IndustryCoded] 

            } 

        } 

 

        IndustryCode 

        { 

 

            INPUT MAPPINGS 

            { 

                PROFESSIONAL_TITLE <= [CVPROFTITLE1::Name.ProfessionalTitle] 

            } 

 

            OPTION MAPPINGS 

            { 

                SUFFIX TITLE <= (N) 

                BUSINESS NAME <= (N) 

            } 

 

            END STATE 

            { 

                Address.Primary::Address.Primary 

                Name.Full::Name.Full 

                Address.CityStateZip::Address.CityStateZip 

                CVFIRSTNAME1::Name.First 

                CVMIDDLENAME1::Name.Middle 

                CVLASTNAME1::Name.Last 

                CVGENDERCODE1::Name.Gender 

                CVADDRESSTYPE::Address.Type 

                CVPRIMARYADDRESS::Address.Primary 

                CVSECONDARYADDRESS::Address.Secondary 

                CVAAPRINUMBER::Address.PrimaryNumber +UspsStandardized 

                CVAAPREDIR1::Address.PreDirectional +UspsStandardized 

                CVAAPRINAME::Address.PrimaryName +UspsStandardized 

                CVAASUFFIX1::Address.Suffix +UspsStandardized 

                CVAAPOSTDIR::Address.PostDirectional +UspsStandardized 

                CVAASECUNITDES::Address.SecondaryUnitDesignator +UspsStandardized 

                CVAASECNUMBER::Address.SecondaryNumber +UspsStandardized 

                CVAAOUTPRURB::Address.UrbanizationName +UspsStandardized 

                CVAACITYNAME::Address.City +UspsStandardized 

                CVAASTATEABBREV::Address.State +UspsStandardized 

                CVAAZIPCODE::Address.Zip +UspsStandardized 
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                CVAAADDONCODE::Address.Zip4 +UspsStandardized 

                CVPROFTITLE1::Name.ProfessionalTitle 

                CVPRIMARYBUSINESS::Name.Business 

                CVSECONDARYBUSINESS::Name.Business 

                CVAABUSNAME::Name.Business +UspsStandardized 

                AAPRINUMBERBEFORECOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1BEFORECOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEBEFORECOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1BEFORECOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1BEFORECOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESBEFORECOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERBEFORECOA::Address.SecondaryNumber +UspsStandardized 

+DeliverabilityValidated 

                AAOUTPRURBBEFORECOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSBEFORECOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEBEFORECOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVBEFORECOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEBEFORECOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEBEFORECOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSBEFORECOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSBEFORECOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSBEFORECOA::Address.Flags +UspsStandardized 

                AAPRINUMBERAFTERCOA::Address.PrimaryNumber +UspsStandardized +DeliverabilityValidated 

                AAPREDIR1AFTERCOA::Address.PreDirectional +UspsStandardized +DeliverabilityValidated 

                AAPRINAMEAFTERCOA::Address.PrimaryName +UspsStandardized +DeliverabilityValidated 

                AASUFFIX1AFTERCOA::Address.Suffix +UspsStandardized +DeliverabilityValidated 

                AAPOSTDIR1AFTERCOA::Address.PostDirectional +UspsStandardized +DeliverabilityValidated 

                AASECUNITDESAFTERCOA::Address.SecondaryUnitDesignator +UspsStandardized 

+DeliverabilityValidated 

                AASECNUMBERAFTERCOA::Address.SecondaryNumber +UspsStandardized +DeliverabilityValidated 

                AAOUTPRURBAFTERCOA::Address.UrbanizationName +UspsStandardized +DeliverabilityValidated 

                AAOUTBUSADDRESSAFTERCOA::Address.Business +UspsStandardized +DeliverabilityValidated 

                AACITYNAMEAFTERCOA::Address.City +UspsStandardized +DeliverabilityValidated 

                AASTATEABREVAFTERCOA::Address.State +UspsStandardized +DeliverabilityValidated 

                AAZIPCODEAFTERCOA::Address.Zip +UspsStandardized +DeliverabilityValidated 

                AAADDONCODEAFTERCOA::Address.Zip4 +UspsStandardized +DeliverabilityValidated 

                AAOUTPRIMADDRESSAFTERCOA::Address.Primary +UspsStandardized +DeliverabilityValidated 

                AAOUTSECADDRESSAFTERCOA::Address.Secondary +UspsStandardized +DeliverabilityValidated 

                AAADDRESSFLAGSAFTERCOA::Address.Flags +UspsStandardized 

                GX_SUGFNAME::Name.First +NameEditChecked 

                GX_SUGLNAME::Name.Last +NameEditChecked 

                PASBUSADDRESS::Address.Business +CurrentAddressSelected 

                PASPRINUMBER::Address.PrimaryNumber +CurrentAddressSelected 

                PASPREDIR::Address.PreDirectional +CurrentAddressSelected 

                PASPRINAME::Address.PrimaryName +CurrentAddressSelected 

                PASSUFFIX::Address.Suffix +CurrentAddressSelected 

                PASPOSTDIR::Address.PostDirectional +CurrentAddressSelected 

                PASSECUNITDES::Address.SecondaryUnitDesignator +CurrentAddressSelected 

                PASSECNUMBER::Address.SecondaryNumber +CurrentAddressSelected 

                PASCITYNAME::Address.City +CurrentAddressSelected 

                PASSTATEABREV::Address.State +CurrentAddressSelected 

                PASZIPCODE::Address.Zip +CurrentAddressSelected 

                PASADDONCODE::Address.Zip4 +CurrentAddressSelected 

                PASPRIADDRESS::Address.Primary +CurrentAddressSelected 

                PASSECADDRESS::Address.Secondary +CurrentAddressSelected 
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                PASPRURBANIZATION::Address.UrbanizationName +CurrentAddressSelected 

                PASADDRESSFLAGS::Address.Flags +CurrentAddressSelected 

                SIMNEWTITLE::Name.IndustryTitle 

                SIMTITLECODE::Name.IndustryTitleCode 

                SIMFUNCTION1CODE::Name.IndustryFunctionCode 

                PROFESSIONAL_TITLE::Name.ProfessionalTitle +IndustryCoded 

            } 

 

            REMAINING GOALS 

            { 

            } 

        } 

    } 

} 
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C.2 Testing Scenario 2 

C.2.1 Distinct Sequences 

1. Parser => AddressEnhance => AddressEditCheck => NameEditCheck => AddressSelect => ContactLink 

=> IndustryCode 

2. Parser => AddressEnhance => AddressEditCheck => NameEditCheck => AddressSelect => IndustryCode 

=> ContactLink 

3. Parser => AddressEnhance => AddressEditCheck => NameEditCheck => IndustryCode => AddressSelect 

=> ContactLink 

4. Parser => AddressEnhance => AddressEditCheck => AddressSelect => ContactLink => NameEditCheck 

=> IndustryCode 

5. Parser => AddressEnhance => AddressEditCheck => AddressSelect => ContactLink => IndustryCode => 

NameEditCheck 

6. Parser => AddressEnhance => AddressEditCheck => AddressSelect => NameEditCheck => ContactLink 

=> IndustryCode 

7. Parser => AddressEnhance => AddressEditCheck => AddressSelect => NameEditCheck => IndustryCode 

=> ContactLink 

8. Parser => AddressEnhance => AddressEditCheck => AddressSelect => IndustryCode => ContactLink => 

NameEditCheck 

9. Parser => AddressEnhance => AddressEditCheck => AddressSelect => IndustryCode => NameEditCheck 

=> ContactLink 

10. Parser => AddressEnhance => AddressEditCheck => IndustryCode => NameEditCheck => AddressSelect 

=> ContactLink 

11. Parser => AddressEnhance => AddressEditCheck => IndustryCode => AddressSelect => ContactLink => 

NameEditCheck 

12. Parser => AddressEnhance => AddressEditCheck => IndustryCode => AddressSelect => NameEditCheck 

=> ContactLink 

13. Parser => AddressEnhance => NameEditCheck => AddressEditCheck => AddressSelect => ContactLink 

=> IndustryCode 

14. Parser => AddressEnhance => NameEditCheck => AddressEditCheck => AddressSelect => IndustryCode 

=> ContactLink 

15. Parser => AddressEnhance => NameEditCheck => AddressEditCheck => IndustryCode => AddressSelect 

=> ContactLink 

16. Parser => AddressEnhance => NameEditCheck => AddressSelect => ContactLink => AddressEditCheck 

=> IndustryCode 

17. Parser => AddressEnhance => NameEditCheck => AddressSelect => ContactLink => IndustryCode => 

AddressEditCheck 

18. Parser => AddressEnhance => NameEditCheck => AddressSelect => AddressEditCheck => ContactLink 

=> IndustryCode 

19. Parser => AddressEnhance => NameEditCheck => AddressSelect => AddressEditCheck => IndustryCode 

=> ContactLink 

20. Parser => AddressEnhance => NameEditCheck => AddressSelect => IndustryCode => ContactLink => 

AddressEditCheck 

21. Parser => AddressEnhance => NameEditCheck => AddressSelect => IndustryCode => AddressEditCheck 

=> ContactLink 

22. Parser => AddressEnhance => NameEditCheck => IndustryCode => AddressEditCheck => AddressSelect 

=> ContactLink 

23. Parser => AddressEnhance => NameEditCheck => IndustryCode => AddressSelect => ContactLink => 

AddressEditCheck 

24. Parser => AddressEnhance => NameEditCheck => IndustryCode => AddressSelect => AddressEditCheck 

=> ContactLink 
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25. Parser => AddressEnhance => AddressSelect => ContactLink => AddressEditCheck => NameEditCheck 

=> IndustryCode 

26. Parser => AddressEnhance => AddressSelect => ContactLink => AddressEditCheck => IndustryCode => 

NameEditCheck 

27. Parser => AddressEnhance => AddressSelect => ContactLink => NameEditCheck => AddressEditCheck 

=> IndustryCode 

28. Parser => AddressEnhance => AddressSelect => ContactLink => NameEditCheck => IndustryCode => 

AddressEditCheck 

29. Parser => AddressEnhance => AddressSelect => ContactLink => IndustryCode => AddressEditCheck => 

NameEditCheck 

30. Parser => AddressEnhance => AddressSelect => ContactLink => IndustryCode => NameEditCheck => 

AddressEditCheck 

31. Parser => AddressEnhance => AddressSelect => AddressEditCheck => ContactLink => NameEditCheck 

=> IndustryCode 

32. Parser => AddressEnhance => AddressSelect => AddressEditCheck => ContactLink => IndustryCode => 

NameEditCheck 

33. Parser => AddressEnhance => AddressSelect => AddressEditCheck => NameEditCheck => ContactLink 

=> IndustryCode 

34. Parser => AddressEnhance => AddressSelect => AddressEditCheck => NameEditCheck => IndustryCode 

=> ContactLink 

35. Parser => AddressEnhance => AddressSelect => AddressEditCheck => IndustryCode => ContactLink => 

NameEditCheck 

36. Parser => AddressEnhance => AddressSelect => AddressEditCheck => IndustryCode => NameEditCheck 

=> ContactLink 

37. Parser => AddressEnhance => AddressSelect => NameEditCheck => ContactLink => AddressEditCheck 

=> IndustryCode 

38. Parser => AddressEnhance => AddressSelect => NameEditCheck => ContactLink => IndustryCode => 

AddressEditCheck 

39. Parser => AddressEnhance => AddressSelect => NameEditCheck => AddressEditCheck => ContactLink 

=> IndustryCode 

40. Parser => AddressEnhance => AddressSelect => NameEditCheck => AddressEditCheck => IndustryCode 

=> ContactLink 

41. Parser => AddressEnhance => AddressSelect => NameEditCheck => IndustryCode => ContactLink => 

AddressEditCheck 

42. Parser => AddressEnhance => AddressSelect => NameEditCheck => IndustryCode => AddressEditCheck 

=> ContactLink 

43. Parser => AddressEnhance => AddressSelect => IndustryCode => ContactLink => AddressEditCheck => 

NameEditCheck 

44. Parser => AddressEnhance => AddressSelect => IndustryCode => ContactLink => NameEditCheck => 

AddressEditCheck 

45. Parser => AddressEnhance => AddressSelect => IndustryCode => AddressEditCheck => ContactLink => 

NameEditCheck 

46. Parser => AddressEnhance => AddressSelect => IndustryCode => AddressEditCheck => NameEditCheck 

=> ContactLink 

47. Parser => AddressEnhance => AddressSelect => IndustryCode => NameEditCheck => ContactLink => 

AddressEditCheck 

48. Parser => AddressEnhance => AddressSelect => IndustryCode => NameEditCheck => AddressEditCheck 

=> ContactLink 

49. Parser => AddressEnhance => IndustryCode => AddressEditCheck => NameEditCheck => AddressSelect 

=> ContactLink 

50. Parser => AddressEnhance => IndustryCode => AddressEditCheck => AddressSelect => ContactLink => 

NameEditCheck 

51. Parser => AddressEnhance => IndustryCode => AddressEditCheck => AddressSelect => NameEditCheck 

=> ContactLink 

52. Parser => AddressEnhance => IndustryCode => NameEditCheck => AddressEditCheck => AddressSelect 

=> ContactLink 
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53. Parser => AddressEnhance => IndustryCode => NameEditCheck => AddressSelect => ContactLink => 

AddressEditCheck 

54. Parser => AddressEnhance => IndustryCode => NameEditCheck => AddressSelect => AddressEditCheck 

=> ContactLink 

55. Parser => AddressEnhance => IndustryCode => AddressSelect => ContactLink => AddressEditCheck => 

NameEditCheck 

56. Parser => AddressEnhance => IndustryCode => AddressSelect => ContactLink => NameEditCheck => 

AddressEditCheck 

57. Parser => AddressEnhance => IndustryCode => AddressSelect => AddressEditCheck => ContactLink => 

NameEditCheck 

58. Parser => AddressEnhance => IndustryCode => AddressSelect => AddressEditCheck => NameEditCheck 

=> ContactLink 

59. Parser => AddressEnhance => IndustryCode => AddressSelect => NameEditCheck => ContactLink => 

AddressEditCheck 

60. Parser => AddressEnhance => IndustryCode => AddressSelect => NameEditCheck => AddressEditCheck 

=> ContactLink 

61. Parser => AddressEditCheck => AddressEnhance => NameEditCheck => AddressSelect => ContactLink 

=> IndustryCode 

62. Parser => AddressEditCheck => AddressEnhance => NameEditCheck => AddressSelect => IndustryCode 

=> ContactLink 

63. Parser => AddressEditCheck => AddressEnhance => NameEditCheck => IndustryCode => AddressSelect 

=> ContactLink 

64. Parser => AddressEditCheck => AddressEnhance => AddressSelect => ContactLink => NameEditCheck 

=> IndustryCode 

65. Parser => AddressEditCheck => AddressEnhance => AddressSelect => ContactLink => IndustryCode => 

NameEditCheck 

66. Parser => AddressEditCheck => AddressEnhance => AddressSelect => NameEditCheck => ContactLink 

=> IndustryCode 

67. Parser => AddressEditCheck => AddressEnhance => AddressSelect => NameEditCheck => IndustryCode 

=> ContactLink 

68. Parser => AddressEditCheck => AddressEnhance => AddressSelect => IndustryCode => ContactLink => 

NameEditCheck 

69. Parser => AddressEditCheck => AddressEnhance => AddressSelect => IndustryCode => NameEditCheck 

=> ContactLink 

70. Parser => AddressEditCheck => AddressEnhance => IndustryCode => NameEditCheck => AddressSelect 

=> ContactLink 

71. Parser => AddressEditCheck => AddressEnhance => IndustryCode => AddressSelect => ContactLink => 

NameEditCheck 

72. Parser => AddressEditCheck => AddressEnhance => IndustryCode => AddressSelect => NameEditCheck 

=> ContactLink 

73. Parser => AddressEditCheck => NameEditCheck => AddressEnhance => AddressSelect => ContactLink 

=> IndustryCode 

74. Parser => AddressEditCheck => NameEditCheck => AddressEnhance => AddressSelect => IndustryCode 

=> ContactLink 

75. Parser => AddressEditCheck => NameEditCheck => AddressEnhance => IndustryCode => AddressSelect 

=> ContactLink 

76. Parser => AddressEditCheck => NameEditCheck => IndustryCode => AddressEnhance => AddressSelect 

=> ContactLink 

77. Parser => AddressEditCheck => IndustryCode => AddressEnhance => NameEditCheck => AddressSelect 

=> ContactLink 

78. Parser => AddressEditCheck => IndustryCode => AddressEnhance => AddressSelect => ContactLink => 

NameEditCheck 

79. Parser => AddressEditCheck => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck 

=> ContactLink 

80. Parser => AddressEditCheck => IndustryCode => NameEditCheck => AddressEnhance => AddressSelect 

=> ContactLink 
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81. Parser => NameEditCheck => AddressEnhance => AddressEditCheck => AddressSelect => ContactLink 

=> IndustryCode 

82. Parser => NameEditCheck => AddressEnhance => AddressEditCheck => AddressSelect => IndustryCode 

=> ContactLink 

83. Parser => NameEditCheck => AddressEnhance => AddressEditCheck => IndustryCode => AddressSelect 

=> ContactLink 

84. Parser => NameEditCheck => AddressEnhance => AddressSelect => ContactLink => AddressEditCheck 

=> IndustryCode 

85. Parser => NameEditCheck => AddressEnhance => AddressSelect => ContactLink => IndustryCode => 

AddressEditCheck 

86. Parser => NameEditCheck => AddressEnhance => AddressSelect => AddressEditCheck => ContactLink 

=> IndustryCode 

87. Parser => NameEditCheck => AddressEnhance => AddressSelect => AddressEditCheck => IndustryCode 

=> ContactLink 

88. Parser => NameEditCheck => AddressEnhance => AddressSelect => IndustryCode => ContactLink => 

AddressEditCheck 

89. Parser => NameEditCheck => AddressEnhance => AddressSelect => IndustryCode => AddressEditCheck 

=> ContactLink 

90. Parser => NameEditCheck => AddressEnhance => IndustryCode => AddressEditCheck => AddressSelect 

=> ContactLink 

91. Parser => NameEditCheck => AddressEnhance => IndustryCode => AddressSelect => ContactLink => 

AddressEditCheck 

92. Parser => NameEditCheck => AddressEnhance => IndustryCode => AddressSelect => AddressEditCheck 

=> ContactLink 

93. Parser => NameEditCheck => AddressEditCheck => AddressEnhance => AddressSelect => ContactLink 

=> IndustryCode 

94. Parser => NameEditCheck => AddressEditCheck => AddressEnhance => AddressSelect => IndustryCode 

=> ContactLink 

95. Parser => NameEditCheck => AddressEditCheck => AddressEnhance => IndustryCode => AddressSelect 

=> ContactLink 

96. Parser => NameEditCheck => AddressEditCheck => IndustryCode => AddressEnhance => AddressSelect 

=> ContactLink 

97. Parser => NameEditCheck => IndustryCode => AddressEnhance => AddressEditCheck => AddressSelect 

=> ContactLink 

98. Parser => NameEditCheck => IndustryCode => AddressEnhance => AddressSelect => ContactLink => 

AddressEditCheck 

99. Parser => NameEditCheck => IndustryCode => AddressEnhance => AddressSelect => AddressEditCheck 

=> ContactLink 

100. Parser => NameEditCheck => IndustryCode => AddressEditCheck => AddressEnhance => AddressSelect 

=> ContactLink 

101. Parser => IndustryCode => AddressEnhance => AddressEditCheck => NameEditCheck => AddressSelect 

=> ContactLink 

102. Parser => IndustryCode => AddressEnhance => AddressEditCheck => AddressSelect => ContactLink => 

NameEditCheck 

103. Parser => IndustryCode => AddressEnhance => AddressEditCheck => AddressSelect => NameEditCheck 

=> ContactLink 

104. Parser => IndustryCode => AddressEnhance => NameEditCheck => AddressEditCheck => AddressSelect 

=> ContactLink 

105. Parser => IndustryCode => AddressEnhance => NameEditCheck => AddressSelect => ContactLink => 

AddressEditCheck 

106. Parser => IndustryCode => AddressEnhance => NameEditCheck => AddressSelect => AddressEditCheck 

=> ContactLink 

107. Parser => IndustryCode => AddressEnhance => AddressSelect => ContactLink => AddressEditCheck => 

NameEditCheck 

108. Parser => IndustryCode => AddressEnhance => AddressSelect => ContactLink => NameEditCheck => 

AddressEditCheck 
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109. Parser => IndustryCode => AddressEnhance => AddressSelect => AddressEditCheck => ContactLink => 

NameEditCheck 

110. Parser => IndustryCode => AddressEnhance => AddressSelect => AddressEditCheck => NameEditCheck 

=> ContactLink 

111. Parser => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck => ContactLink => 

AddressEditCheck 

112. Parser => IndustryCode => AddressEnhance => AddressSelect => NameEditCheck => AddressEditCheck 

=> ContactLink 

113. Parser => IndustryCode => AddressEditCheck => AddressEnhance => NameEditCheck => AddressSelect 

=> ContactLink 

114. Parser => IndustryCode => AddressEditCheck => AddressEnhance => AddressSelect => ContactLink => 

NameEditCheck 

115. Parser => IndustryCode => AddressEditCheck => AddressEnhance => AddressSelect => NameEditCheck 

=> ContactLink 

116. Parser => IndustryCode => AddressEditCheck => NameEditCheck => AddressEnhance => AddressSelect 

=> ContactLink 

117. Parser => IndustryCode => NameEditCheck => AddressEnhance => AddressEditCheck => AddressSelect 

=> ContactLink 

118. Parser => IndustryCode => NameEditCheck => AddressEnhance => AddressSelect => ContactLink => 

AddressEditCheck 

119. Parser => IndustryCode => NameEditCheck => AddressEnhance => AddressSelect => AddressEditCheck 

=> ContactLink 

120. Parser => IndustryCode => NameEditCheck => AddressEditCheck => AddressEnhance => AddressSelect 

=> ContactLink 
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