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1 Introduction

Let G be a unimodular locally compact topological group and Γ a discrete
subgroup of G. We take a Haar measure dg on G and form the Hilbert space of
square integrable complex valued functions,

L2(Γ\G) =

{
f : Γ\G→ C :

∫
Γ\G
|f(g)|2 dg <∞

}
,

which affords a representation R of G via right translation, i.e. for ϕ ∈ L2(Γ\G)
and x, g ∈ G,

(R(g)ϕ)(x) = ϕ(xg).

Our goal is to understand this representation of G. We shall be interested in
the case that G is a real Lie group and Γ is a lattice in G (e.g. G = R and
Γ = Z, or G = SL(2,R) and Γ = SL(2,Z)) or G is a reductive algebraic group
over Q and G = G(AQ) and Γ = G(Q).

For example, if G is a compact topological group and Γ = {1} then the
Peter-Weyl theorem asserts that

L2(G) ∼=
⊕
π∈Ĝ

(dimC π)π.

When studying representations it is natural to study the trace of R(g), this
works well for finite groups but of course doesn’t make sense if the quotient Γ\G
is infinite. Instead we can view L2(Γ\G) as a representation for the algebra
Cc(G) of compactly supported functions on G. Let f ∈ Cc(G) then we get a
representation R(f) by right convolution, i.e. if ϕ ∈ L2(Γ\G) and x ∈ G, then,

(R(f)ϕ)(x) =
∫
G

f(y)ϕ(xy) dy.
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The trace formula attempts to compute trR(f). This need not make sense in
general, trR(f) may only make sense when restricted to a subspace of L2(Γ\G);
e.g. the space of cuspidal functions. However if the quotient is compact then it
does.

Note that we can write

(R(f)ϕ)(x) =
∫
G

f(y)ϕ(xy) dy

=
∫
G

f(x−1y)ϕ(y) dy

=
∫

Γ\G

∑
γ∈Γ

f(x−1γy)ϕ(γy) dy

=
∫

Γ\G

∑
γ∈Γ

f(x−1γy)

ϕ(y) dy.

Thus, R(f) is an integral operator with kernel

Kf (x, y) =
∑
γ∈Γ

f(x−1γy).

Hence the trace can be computed as

trR(f) =
∫

Γ\G
Kf (x, x) dx.

Let {Γ} denote the set of representatives of conjugacy classes in Γ and for
γ ∈ Γ we set

Γγ = {δ ∈ Γ : δ−1γδ = γ}
Gγ = {g ∈ G : g−1γg = γ}.

We now compute,

trR(f) =
∫

Γ\G

∑
γ∈Γ

f(x−1γx) dx

=
∫

Γ\G

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f(x−1δ−1γδx) dx

=
∑
γ∈{Γ}

∫
Γ\G

∑
δ∈Γγ\Γ

f(x−1δ−1γδx) dx

=
∑
γ∈{Γ}

∫
Γγ\G

f(x−1γx) dx

=
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(x−1γx) dx.
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On the other hand if we write

L2(Γ\G) ∼=
⊕
π∈Ĝ

mππ

then,
trR(f) =

∑
π∈Ĝ

mπ trπ(f).

The trace formula is then the equality of these two expressions,∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(x−1γx) dx =
∑
π∈Ĝ

mπ trπ(f).

The left hand side is called the geometric expansion of the trace formula, the
right hand side the spectral side. One should think of the left hand side as an
explicit expression and the right hand side as the mysterious but interesting side
of the trace formula.

What’s this expression good for? Applications of the trace formula usually
fall into one of two categories.

1. Using the trace formula in isolation. One can attempt to compute the
geometric expansion of the trace formula for suitable test functions f .
This leads to,

(a) dimension formulas for spaces of automorphic forms,

(b) closed formulas for traces of Hecke operators,

(c) Existence of cusp forms, Weyl’s law.

2. Comparing the trace formula as one varies the group G. One can perhaps
imagine trying to match up the geometric sides of the trace formula for
different groups. This leads to,

(a) Langlands’ functorialities, e.g. the Jacquet-Langlands correspon-
dence,

(b) decomposition of the L-function of a Shimura variety into products
of automorphic L-functions when the trace formula is compared with
the Lefschetz fixed point formula.

1.1 Plan for the course

February: Detailed proof of the trace formula in the case of a compact quo-
tient. Applications to Weyl’s law and some simple cases of functoriality.

March: Derivation of the trace formula for GL(2,AQ) and application to the
Jacquet-Langlands correspondence.

April: Stabilization of the SL(2) trace formula. Work of Labesse-Langlands.
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May: The trace formula in general.

References will be given each lecture. More details can be found on the
course webpage with links to online references where available. As you’ll see
this turned out to be far too ambitious for a one semester course!

1.2 Acknowledgements

It’s a pleasure to thank Kevin Buzzard for his numerous comments on an earlier
draft of these notes.

2 Trace formula for finite groups

Much of this section is taken from [Joy].
Let G be a finite group and Γ a subgroup of G. We consider the space

VΓ = {ϕ : G→ C : ϕ(γg) = ϕ(g) for all γ ∈ Γ, g ∈ G}.

Clearly the group G acts on this space by right translation, i.e. for g, x ∈ G and
ϕ ∈ VΓ,

(R(g)ϕ)(x) = ϕ(xg).

R is the representation of G obtained by induction from the trivial represen-
tation of Γ. Let Ĝ denote the finite set of isomorphism classes of irreducible
representations of G. We can decompose

R =
⊕
π∈Ĝ

mΓ
ππ,

with mπ ∈ N ∪ {0}.
Let π be a representation of G on a vector space V . Let f : G → C, we

define a linear map π(f) : V → V by

π(f)v =
∑
g∈G

f(g)π(g)v,

for v ∈ V .
We shall now compute the trace of R(f) for any function f : G → C. We

note that trπ(f) depends only on the isomorphism class of π, hence we have,

trR(f) =
∑
π∈Ĝ

mΓ
π trπ(f).

We note that we have, by definition, for f : G→ C, ϕ ∈ VΓ and x ∈ G,

(R(f)ϕ)(x) =
∑
y∈G

f(y)ϕ(xy).
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After making the change of variables y 7→ x−1y,

(R(f)ϕ)(x) =
∑
y∈G

f(x−1y)ϕ(y),

we can rewrite this as the double sum

(R(f)ϕ)(x) =
∑
y∈Γ\G

∑
γ∈Γ

f(x−1γy)ϕ(γy).

We now use the fact that the function ϕ ∈ VΓ is left Γ invariant to deduce that

(R(f)ϕ)(x) =
∑
y∈Γ\G

∑
γ∈Γ

f(x−1γy)

ϕ(y).

We define
Kf (x, y) =

∑
γ∈Γ

f(x−1γy)

so that
(R(f)ϕ)(x) =

∑
y∈Γ\G

Kf (x, y)ϕ(y).

Let Γz ∈ Γ\G, we define δΓz ∈ VΓ by

δΓz(x) =
{

1, if x ∈ Γz;
0, otherwise.

Then we can take a basis for VΓ to be

B = {δΓz : Γz ∈ Γ\G} .

From above we have, for Γz ∈ Γ\G and x ∈ G,

(R(f)δΓz)(x) =
∑
y∈Γ\G

Kf (x, y)δΓz(y) = Kf (x, z).

Hence,
R(f)δΓz =

∑
x∈Γ\G

Kf (x, z)δΓx.

Thus,
trR(f) =

∑
z∈Γ\G

Kf (z, z).

We now wish to compute trR(f) using this expression.

trR(f) =
∑

x∈Γ\G

Kf (x, x)

=
∑

x∈Γ\G

∑
γ∈Γ

f(x−1γx).
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Before continuing we introduce the following notation.

{Γ} = { set of representatives for the conjugacy classes in Γ }

For γ ∈ Γ we set

Γγ = {δ ∈ Γ : δ−1γδ = γ}
Gγ = {g ∈ G : g−1γg = γ}.

We have,

trR(f) =
∑

x∈Γ\G

∑
γ∈Γ

f(x−1γx)

=
∑

x∈Γ\G

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f(x−1δ−1γδx)

=
∑
γ∈{Γ}

∑
x∈Γ\G

∑
δ∈Γγ\Γ

f(x−1δ−1γδx)

=
∑
γ∈{Γ}

∑
x∈Γγ\G

f(x−1γx)

=
∑
γ∈{Γ}

#Gγ
#Γγ

∑
x∈Gγ\G

f(x−1γx).

Theorem 2.1. (The trace formula for finite groups) With notation as above,
for f : G→ C we have,∑

π∈Ĝ

mΓ
π trπ(f) = trR(f) =

∑
γ∈{Γ}

#Gγ
#Γγ

∑
x∈Gγ\G

f(x−1γx).

For comparison with the trace formula given above we can write this more
suggestively using integration notation. We take all measures on finite groups
to give points volume 1. Then,

trR(f) =
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(x−1γx) dx.

As an application of the trace formula we have just developed we prove
Frobenius reciprocity for the representation R.

Theorem 2.2. (Frobenius reciprocity) For π ∈ Ĝ, mΓ
π = dimπΓ, where πΓ

denotes the subspace of (the space of) π fixed by Γ.

Before giving the proof we recall that for a finite dimensional representation
π of G we have, ∑

g∈G
trπ(g) = #GdimπG.
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Note furthermore that ∑
g∈G

trπ(g) =
∑
g∈{G}

#G
#Gγ

trπ(g)

where {G} denotes a set of representatives for the conjugacy classes in G. Hence,∑
g∈{G}

1
#Gγ

trπ(g) = dimπG.

Proof. We fix an irreducible representation σ ∈ Ĝ. We set fσ equal to the
complex conjugate of the character of σ. Thus, fσ(g) = trσ(g). Let π ∈ Ĝ.
Recall that,

π(fσ) : π → π : v 7→
∑
g∈G

fσ(g)π(g)v =
∑
g∈G

trσ(g)π(g)v.

Hence,
trπ(fσ) =

∑
g∈G

trσ(g) trπ(g).

Thus, by character orthogonality,

trπ(fσ) =
{

#G, if π ∼= σ;
0, otherwise.

Hence we deduce that

trR(fσ) =
∑
π∈Ĝ

mΓ
π trπ(fσ) = #G.mΓ

σ.

On the other hand we have, by the trace formula,

trR(fσ) =
∑
γ∈{Γ}

#Gγ
#Γγ

∑
x∈Gγ\G

fσ(x−1γx)

=
∑
γ∈{Γ}

#Gγ
#Γγ

#G
#Gγ

trσ(γ)

= #G
∑
γ∈{Γ}

1
#Γγ

trσ(γ)

= #GdimσΓ.

The proof is now complete.

Exercise 2.3. Derive the trace formula for the representation of G induced
from an arbitrary representation of Γ. Use it to deduce Frobenius reciprocity.
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3 Trace formula for compact quotient

Much of this section is taken from notes produced by Jacquet for a course on
the trace formula taught at Columbia University in 2004.

In this section we will derive the trace formula for a compact quotient Γ\G.
For example one could take G = R and Γ = Z. For a non-abelian example

one could take D to be a quaternion division algebra over Q and consider
G = D×/Z(D×) as an algebraic group over Q. Then, G(Q)\G(AQ) is compact.
More explicitly, consider D to be a quaternion division algebra over Q such that
D ⊗Q R = M2(R). Let O be an order in D and consider the subgroup Γ of
PGL(2,R) give as the image of O× under the map,

O× ↪→ D× ↪→ GL(2,R) � PGL(2,R).

Then the quotient Γ\PGL(2,R) is compact.

3.1 Some functional analysis

Let H be a complex Hilbert space. We let 〈 , 〉 denote the inner product on H.
Then

‖v‖ := 〈v, v〉

is a norm on H. The space H is complete for ‖ ‖. Equivalently there is a total
orthonormal system {ei : i ∈ I}. This means that

〈ei, ej〉 = δi,j

and every vector v ∈ H can be expanded in a sum

v =
∑
i∈I
〈v, ei〉ei

with ∑
i∈I
|〈v, ei〉|2

finite. We shall assume throughout that H is separable so that the set I is
countable. We have for v, w ∈ H,

〈v, w〉 =
∑
i∈I
〈v, ei〉〈ei, w〉

and
‖v‖2 =

∑
i∈I
|〈v, ei〉|2.

A linear operator A : H → H is called bounded if

sup
‖v‖=1

‖Av‖
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is finite1. We recall that A is bounded if and only if it is continuous. One sets

‖A‖ := sup
‖v‖=1

‖Av‖.

Then clearly for any v ∈ H,

‖Av‖ ≤ ‖A‖‖v‖.

If A is a bounded operator then the adjoint of A is the bounded operator
A∗ : H → H such that

〈A∗v1, v2〉 = 〈v1, Av2〉

for all v1, v2 ∈ H.
An operator A : H → H is said to be compact if the set {Av : ‖v‖ ≤ 1}

is relatively compact, i.e. its closure is compact. It amounts to the same to
demand that every for every bounded sequence of vectors {vn} the sequence
{Avn} has a convergent subsequence. For example, any operator of finite rank
is compact.

Lemma 3.1. Let An : H → H be a sequence of compact operators which
converge to an operator A in the norm topology (i.e. ‖A−An‖ → 0 as n→∞).
Then A is compact.

Proof. Proof left as an exercise. See, for example, [RS80, Theorem VI.12].

Lemma 3.2. Let A : H → H be a bounded operator. Let B be an orthonormal
basis for H. The quantity ∑

b∈B

‖Ab‖2

is independent of the choice of B. If this sum is finite we set

‖A‖2 =
√∑
b∈B

‖Ab‖2

and we say that A is Hilbert-Schmidt. Furthermore we note that ‖A‖ ≤ ‖A‖2
and ‖A‖2 = ‖A∗‖2.

Proof. Suppose we chose another orthonormal basis B′. Let b ∈ B. Then we
can write

Ab =
∑
b′∈B′
〈Ab, b′〉b′.

and hence,
‖Ab‖2 =

∑
b′∈B′

‖〈Ab, b′〉‖2.

1The supremum here should be taken in R≥0 so that the zero map between zero dimen-
sional vector spaces is bounded.
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Thus, ∑
b∈B

‖Ab‖2 =
∑
b∈B

∑
b′∈B′

‖〈Ab, b′〉‖2

=
∑
b∈B

∑
b′∈B′

‖〈b, A∗b′〉‖2

=
∑
b′∈B′

∑
b∈B

‖〈b, A∗b′〉‖2

=
∑
b′∈B′

‖A∗b′‖2.

First by taking B′ = B we note that∑
b∈B

‖Ab‖2 =
∑
b∈B

‖A∗b‖2,

for any orthonormal basis B of V . Hence from above,∑
b∈B

‖Ab‖2 =
∑
b′∈B′

‖A∗b′‖2 =
∑
b′∈B′

‖Ab′‖2.

Finally we note that if v ∈ H is a unit vector then we can find an orthonormal
basis {ei} with e1 = v and hence,

‖Av‖2 ≤
∑
i

‖Aei‖2 = ‖A‖2.

Thus since, by definition,
‖A‖ = sup

‖v‖=1

‖Av‖

we see that ‖A‖ ≤ ‖A‖2.

Lemma 3.3. Let A be a Hilbert-Schmidt operator. Then A is compact.

Proof. Let {ei} be an orthonormal basis of H. Then,

‖A‖22 =
∑
i

‖Aei‖2 <∞.

Given n ≥ 1 there exists Nn such that,∑
i>Nn

‖Aei‖2 <
1
n2
.

Let An be the operator defined by

Anv =
∑
i≤Nn

〈Av, ei〉ei.
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Since An is of finite rank it is compact. We have,

‖A−An‖2 =
∑
i>Nn

‖Aei‖2 <
1
n2
.

Hence,

‖A−An‖ ≤ ‖A−An‖2 <
1
n
.

Thus A is the limit of the An in the uniform norm. Hence A is compact by
Lemma 3.1.

We now come to the notion of the trace of a bounded operator. For a more
complete discussion of trace class operators see [RS80, Section VI.6].

Definition 3.4. Let A : H → H be a bounded operator. We say that A is of
trace class if ∑

b∈B

|〈Ab, b〉|

converges for every orthonormal basis B of H.

We remark that the condition that∑
b∈B

|〈Ab, b〉|

converge for every orthonormal basis B of H is important. For example consider
the following operator on `2(N). Let {ei : i ∈ N} denote the standard basis of
`2(N). We define A : `2(N)→ `2(N) by,

Aei =
{
ei+1, if i is odd;
ei−1, if i is even.

Clearly we have, 〈Aei, ei〉 = 0 for all i. On the other hand if we choose the basis
B = {bi : i ∈ N} where

bi =
{

(ei + ei+1)/
√

2, if i is odd;
(ei − ei−1)/

√
2, if i is even.

Then,

Abi =
{
bi/
√

2, if i is odd;
−bi/

√
2, if i is even.

Hence,
∞∑
i=1

|〈Abi, bi〉| =
∞∑
i=1

1√
2

=∞.

Lemma 3.5. Let A : H → H be of trace class. Then,∑
b∈B

〈Ab, b〉

is absolutely convergent and independent of the choice of orthonormal basis B.
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Proof. By definition the sum is absolutely convergent. A proof of the indepen-
dence of the sum can be found in [RS80, Theorem VI.24]. In the proof of the
next Proposition we will show that the trace is independent of the basis when A
is the composition of two Hilbert-Schmidt operators. It will turn out that we’ll
only be interested in this case.

We can now define the trace of a trace class operator.

Definition 3.6. Let A : H → H be of trace class. We define the trace of A to
be

TrA =
∑
b∈B

〈Ab, b〉

where B is any orthonormal basis for H.

Proposition 3.7. 1. Any trace class operator is Hilbert-Schmidt.

2. If A and B are Hilbert-Schmidt operators then AB is of trace class and
TrAB = TrBA.

3. |TrAB| ≤ ‖A‖2‖B‖2.

4. If A is of trace class then A∗ is also of trace class and TrA∗ = TrA.

Proof. The first part follows from [RS80, Theorem VI.21] and [RS80, Theorem
VI.22(e)]. Suppose now A and B are Hilbert-Schmidt operators. Let B be any
orthonormal basis for H. We have,∑

b∈B

|〈A(Bb), b〉| =
∑
b∈B

|〈Bb,A∗b〉|

≤
∑
b∈B

‖Bb‖‖A∗b‖

≤ ‖B‖2‖A∗‖2
= ‖B‖2‖A‖2,

which is finite since A and B are assumed to be Hilbert Schmidt. We check
here also that TrAB is independent of the choice of basis. Let B′ be another
orthonormal basis for H. Then,

〈A(Bb), b〉 = 〈Bb,A∗b〉 =
∑
b′∈B′
〈Bb, b′〉〈b′, A∗b〉.

Hence, ∑
b∈B

〈A(Bb), b〉 =
∑
b∈B

∑
b′∈B′
〈Bb, b′〉〈A∗b, b′〉.
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We wish to apply Fubini’s theorem to change the order of summation. We note
that,

∑
b∈B

∑
b′∈B′

|〈Bb, b′〉||〈A∗b, b′〉| ≤
∑
b∈B

(∑
b′∈B′

|〈Bb, b′〉|2
) 1

2
(∑
b′∈B′

|〈A∗b, b′〉|2
) 1

2

=
∑
b∈B

‖Bb‖‖A∗b‖

≤

(∑
b∈B

‖Bb‖2
) 1

2
(∑
b∈B

‖A∗b‖2
) 1

2

= ‖B‖2‖A‖2.

Thus we can apply Fubini’s theorem to yield,∑
b∈B

〈A(Bb), b〉 =
∑
b′∈B′

∑
b∈B

〈Bb, b′〉〈b′, A∗b〉

=
∑
b′∈B′

∑
b∈B

〈Ab′, b〉〈b, B∗b′〉

=
∑
b′∈B′
〈Ab′, B∗b′〉

=
∑
b′∈B′
〈B(Ab′), b′〉.

Thus, first by taking B = B′ we see that, for any orthonormal basis B,∑
b∈B

〈A(Bb), b〉 =
∑
b∈B

〈B(Ab), b〉.

And hence that for any bases B and B′ we have,∑
b∈B

〈A(Bb), b〉 =
∑
b′∈B′
〈B(Ab′), b′〉 =

∑
b′∈B′
〈A(Bb′), b′〉.

The third part of the Proposition now follows as well.
For the fourth part of the Proposition we note that if A : H → H is of trace

class and B is an orthonormal basis of H then∑
b∈B

〈Ab, b〉 =
∑
b∈B

〈b, A∗b〉 =
∑
b∈B

〈A∗b, b〉

from which the fourth part of the Proposition follows.

We remark that by [RS80, Theorem VI.22(h)] any trace class operator is the
composition of two Hilbert-Schmidt operators.
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3.1.1 Integral operators

We now take a locally compact measure space (X,µ) and set H = L2(X,µ)
with inner product

〈f1, f2〉 =
∫
X

f1(x)f2(x) dx.

We assume that H is separable. We set ‖f‖2 = 〈f, f〉 12 . Let K(x, y) ∈ L2(X ×
X,µ⊗ µ). The integral operator AK : H → H with kernel K is defined by

(AKf)(x) =
∫
X

K(x, y)f(y) dy,

for f ∈ L2(X) and x ∈ X. Note that if f1, f2 ∈ L2(X,µ) then∫
X

(AKf1)(x)f2(x) dx =
∫
X

∫
X

K(x, y)f1(y)f2(x) dx dy

converges absolutely, with absolute value bounded by ‖K‖2‖f1‖2‖f2‖2. Hence
the function

x 7→
∫
X

K(x, y)f(y) dy

is in L2(X,µ). Furthermore since

|〈AKf1, f2〉| ≤ ‖K‖2‖f1‖2‖f2‖2

we see that AK is bounded, and in fact ‖AK‖ ≤ ‖K‖2.

Proposition 3.8. AK is Hilbert-Schmidt, and in fact ‖AK‖2 = ‖K‖2.

Proof. Let B be an orthonormal basis of L2(X). We have,

‖AK‖22 =
∑

f1,f2∈B

|〈AKf1, f2〉|2

=
∑

f1,f2∈B

∣∣∣∣∫
X

∫
X

K(x, y)f1(x)f2(y) dx dy
∣∣∣∣2

=
∑

f1,f2∈B

|〈K(x, y), f1(x)f2(y)〉L2(X×X)|2.

Since the functions (x, y) 7→ f1(x)f2(y) for f1, f2 ∈ B form an orthonormal basis
of L2(X ×X) so,∑

f1,f2∈B

|〈K(x, y), f1(x)f2(y)〉L2(X×X)|2 = ‖K(x, y)‖22.

Hence, ‖AK‖2 = ‖K‖2.
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3.2 Aside on Haar measure

For more details see [KL06, Chapter 7]. Let G be a locally compact topological
group. A left Haar measure on G is a measure µ such that

1. µ(A) = µ(xA) for all x ∈ G and all measureable sets A, and

2. µ(U) > 0 for all non-empty open sets U of G.

It is a fundamental fact that any locally compact topological group has a Haar
measure and such a measure is unique up to scaling. One can define a right
Haar measure similarly. We say G is unimodular if left and right Haar measures
agree. Abelian groups, discrete groups and compact groups are all unimodular;
see [KL06, Proposition 7.7].

We now take H to be a closed unimodular subgroup of a unimodular group
G with Haar measure dg. The quotient space H\G is locally compact and
Hausdorff. Let dh be a Haar measure on H. Then there exists a unique measure
dḡ on H\G such that for all f ∈ Cc(G),∫

G

f(g) dg =
∫
H\G

(∫
H

f(hḡ) dh
)
dḡ.

Furthermore the measure dḡ is right G-invariant, and positive on non-empty
open sets. For the proof we refer to [KL06, Theorem 7.10]. Throughout these
notes we will frequently write dg for dḡ, with the dependence on a choice of
Haar measure on H being understood.

We note that if H1 is a closed unimodular subgroup of H then,∫
H1\G

f(g) dg =
∫
H\H1

(∫
H1\G

f(hg) dh

)
dg.

See [KL06].

3.3 The geometric side of the trace formula

Let G be a unimodular locally compact topological group and Γ a discrete
subgroup of G, e.g. G = R and Γ = Z. We fix a Haar measure dg on G and
take the counting measure on Γ. We form the space L2(Γ\G) which affords a
representation R of G via right translation, i.e.

(R(g)ϕ)(x) = ϕ(xg).

Let Cc(G) denote the space of continuous compactly supported functions on G.
We recall that Cc(G) is an algebra under convolution, i.e. for f1, f2 ∈ Cc(G),

(f1 ∗ f2)(g) =
∫
G

f1(gh−1)f2(h) dh.
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Let f ∈ Cc(G), a continuous function with compact support. Then f defines
an operator R(f) on L2(Γ\G) by right convolution. That is if ϕ ∈ L2(Γ\G) and
x ∈ G then

(R(f)ϕ)(x) :=
∫
G

f(z)ϕ(xz) dz.

We wish to realize R(f) as an integral operator. Making the change of
variables y = xz in the definition of (R(f)ϕ)(x) yields,

(R(f)ϕ)(x) =
∫
G

f(x−1y)ϕ(y) dy

=
∫

Γ\G

∑
γ∈Γ

f(x−1γy)ϕ(γy) dy

=
∫

Γ\G

∑
γ∈Γ

f(x−1γy)

ϕ(y) dy.

Thus R(f) is an integral operator with kernel

Kf (x, y) =
∑
γ∈Γ

f(x−1γy).

We note that since f is compactly supported, for x and y fixed there are only
finitely many γ that contribute to the sum. Hence Kf (x, y) is a continuous
function on the compact space Γ\G and so is square integrable. Hence R(f) is
a Hilbert-Schmidt operator on L2(Γ\G).

Lemma 3.9. For f = f1 ∗ f2 with f1, f2 ∈ Cc(G),

R(f) = R(f1) ◦R(f2).

Hence R(f), being the composition of two Hilbert-Schmidt operators, is of trace
class. Furthermore,

Kf (x, y) =
∫

Γ\G
Kf1(x, z)Kf2(z, y) dz.

Proof. Let ϕ ∈ L2(Γ\G) and x ∈ G, then

(R(f)ϕ)(x) =
∫
G

f(y)ϕ(xy) dy

=
∫
G

∫
G

f1(yz−1)f2(z)ϕ(xy) dz dy

=
∫
G

f1(y)
(∫

G

f2(z)ϕ(xyz) dz
)
dy

=
∫
G

f1(y)(R(f2)ϕ)(xy) dy

= (R(f1)R(f2)ϕ)(x).
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For the second part we note that,

R(f1)(R(f2)ϕ)(x) =
∫

Γ\G
Kf1(x, z)(R(f2)ϕ)(z) dz

=
∫

Γ\G
Kf1(x, z)

∫
Γ\G

Kf2(z, y)ϕ(y) dy dz

=
∫

Γ\G

(∫
Γ\G

Kf1(x, z)Kf2(z, y) dz

)
ϕ(y) dy.

Lemma 3.10. Let f1, f2 ∈ Cc(G) and set f = f1 ∗f2 then R(f) is of trace class
and,

trR(f) =
∫

Γ\G
Kf (x, x) dx.

Proof. We now take f = f1 ∗ f2 ∈ Cc(G). Let B be an orthonormal basis for
L2(Γ\G). Then,

trR(f) = tr(R(f1) ◦R(f2)) =
∑
b∈B

∑
b′∈B

〈R(f2)b, b′〉〈b′, R(f1)∗b〉

=
∑
b∈B

∑
b′∈B

〈R(f2)b, b′〉〈R(f1)∗b, b′〉.

Now R(f1)∗ is the operator defined by the kernel

K∗f1(x, y) = Kf1(y, x).

Note also that,

〈R(f2)b, b′〉 =
∫

Γ\G
(R(f2)b)(x)b′(x) dx

=
∫

Γ\G

∫
Γ\G

Kf2(x, y)b(y)b′(x) dy dx

= 〈Kf2 , b⊗ b̄′〉,

with the inner product taken in L2(Γ\G× Γ\G).
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Thus,

trR(f) =
∑
b∈B

∑
b′∈B

〈R(f2)b, b′〉〈R(f1)∗b, b′〉

=
∑
b∈B

∑
b′∈B

〈Kf2 , b⊗ b̄′〉〈K∗f1b⊗ b̄
′〉

= 〈Kf2 ,K
∗
f1〉

=
∫

Γ\G

∫
Γ\G

Kf2(x, y)K∗f1(x, y) dy dx

=
∫

Γ\G

∫
Γ\G

Kf2(x, y)Kf1(y, x) dy dx

=
∫

Γ\G
Kf (x, x) dx.

We will now make this expression for the trace of R(f) more explicit and give
the geometric side of the trace formula. Let {Γ} denote a set of representatives
for the conjugacy classes in Γ. For γ ∈ Γ we define,

Γγ = {δ ∈ Γ : δ−1γδ = γ}
Gγ = {g ∈ G : g−1γg = γ}.

Proposition 3.11. (The geometric side of the trace formula) Let f = f1 ∗ f2

with f1, f2 ∈ Cc(G). Then, R(f) is of trace class and

trR(f) =
∑
γ∈{Γ}

∫
Γγ\G

f(x−1γx) dx.

If, furthermore, Gγ is unimodular for each γ ∈ Γ, then,

trR(f) =
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(x−1γx) dx.

Proof. We begin by grouping terms in Kf (x, x) into conjugacy classes,

Kf (x, x) =
∑
γ∈Γ

f(x−1γx) =
∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f(x−1δ−1γδx).

Now we have,∫
Γ\G

Kf (x, x) dx =
∫

Γ\G

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f(x−1δ−1γδx) dx

=
∑
γ∈{Γ}

∫
Γ\G

∑
δ∈Γγ\Γ

f(x−1δ−1γδx) dx

=
∑
γ∈{Γ}

∫
Γγ\G

f(x−1γx) dx.
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If we assume that each Gγ is unimodular, then,

trR(f) =
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(x−1γx) dx.

We remark that if G = G(AF ) for a reductive algebraic group G over a
number field F then Gγ(AF ) is unimodular for each γ ∈ G(F ). In fact, further-
more, if G(F )\G(AF ) is compact then each γ ∈ G(F ) is semisimple, hence Gγ
is reductive and Gγ(AF ) is unimodular.

Fact 3.12. If G is a Lie group or the adelic points of a reductive algebraic
group then any C∞ function of compact support is a finite sum of convolutions
of continuous functions of compact support; see [DL71].

3.4 Spectral theory of compact operators

We return to the setting of a Hilbert space H and a bounded operator A of H.
Recall that A is called Hermitian or self-adjoint if A = A∗. That is,

〈Av,w〉 = 〈v,Aw〉

for all v, w ∈ H.

Proposition 3.13. Let A 6= 0 be a compact and self-adjoint operator. Then
there exists a real non-zero number λ such that the eigenspace

H(λ) = {v ∈ H : Av = λv}

is non-zero. Moreover, dimH(λ) is finite.

We begin with a Lemma.

Lemma 3.14. If A is self-adjoint, then

‖A‖ = sup
‖v‖=1

|〈Av, v〉|.

Proof. Recall that, by definition,

‖A‖ = sup
‖v‖=1

‖Av‖ = sup
‖v‖=1

〈Av,Av〉 12 .

Set
k = sup

‖v‖=1

|〈Av, v〉|.

Now,
|〈Av, v〉| ≤ ‖A‖‖v‖2.
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Hence, k ≤ ‖A‖. To prove the reverse inequality it suffices to check that for all
v, w ∈ H with ‖v‖, ‖w‖ ≤ 1 that,

|〈Av,w〉| ≤ k.

It suffices to check this for v, w such that 〈Av,w〉 is real. Now,

4〈Av,w〉 = 〈A(v+w), v+w〉−〈A(v−w), v−w〉+i (〈A(v + iw), v + iw〉 − 〈A(v − iw), v − iw〉) .

Since the bracketed terms are imaginary, this reduces to,

4〈Av,w〉 = 〈A(v + w), v + w〉 − 〈A(v − w), v − w〉
≤ k(‖v + w‖2 + ‖v − w‖2)

= k(2‖v‖2 + ‖w‖2)
≤ 4k.

The lemma now follows.

Proof of Proposition 3.13. We now prove the Proposition. Let (vn) be a sequence
of unit vectors such that,

lim
n→∞

|〈Avn, vn〉| = ‖A‖.

After passing to a subsequence if necessary we may assume further that,

lim
n→∞

〈Avn, vn〉 = α,

exists. Then, |α| = ‖A‖. By the compactness of A, passing to a subsequence,
we may assume that,

Avn → v.

Then,
‖Avn − αvn‖2 = 〈Avn, Avn, 〉 − 2α〈Avn, vn〉+ α2〈vn, vn〉

because 〈Avn, vn〉 is real. But,

〈Avn, Avn〉 ≤ ‖A‖2 = α2.

Hence,
‖Avn − αvn‖2 ≤ α2 − 2α〈Avn, vn〉+ α2 → 0

as n → ∞. Hence Avn − αvn → 0. Since Avn → v we have vn → v/α and
hence v ∈ V (α). Moreover v 6= 0 for otherwise 〈Avn, vn〉 → 0, hence α = 0 and
so ‖A‖ = 0. Finally, dimH(α) is finite since the restriction of A to H(α) is a
compact scalar operator.

An immediate corollary of the proposition,
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Corollary 3.15. Let A be compact and self-adjoint. Then one has an orthog-
onal decomposition,

H = H(0)⊕λ∈S H(λ),

where the H(λ), for λ ∈ S, have finite dimension.

In particular if A is the product of two Hilbert-Schmidt operators then the
trace of A is well defined and,

trA =
∑
λ∈S

dimH(λ).λ.

3.5 The spectral side of the trace formula

We again take G to be a locally compact unimodular group. Let H be a Hilbert
space and let U(H) denote the group of unitary operators on H; i.e. operators
A : H → H such that,

〈Av,Aw〉 = 〈v, w〉

for all v, w ∈ H. A unitary representation π of G on H is a homomorphism
π : G → U(H) such that for all v ∈ H the function g 7→ π(g)v is continuous.
The representation π is called irreducible if H contains no non-trivial closed
invariant subspaces. Suppose (π,H) is a unitary representation of G, then we
obtain a homomorphism π : Cc(G)→ End(H) by defining,

π(f)v =
∫
G

f(g)π(g)v dg.

We note that if, for f ∈ Cc(G) we define f∗ ∈ Cc(G) by f∗(g) = f(g−1) then
π(f)∗ = π(f∗). We let Ĝ denote the set of equivalence classes of irreducible
representations of G.

We again take Γ to be a discrete subgroup of G such that Γ\G is compact.
We assume that Cc(G) contains approximations of unity.2 We take R to be the
representation of G on L2(Γ\G) via right translation. In this section we will
prove the following.

Theorem 3.16. As a representation of G,

L2(Γ\G) ∼=
⊕
π∈Ĝ

mππ

with the multiplicities mπ being finite.

We begin with a lemma.

Lemma 3.17. Let H be a non-zero closed G-invariant subspace of L2(Γ\G).
Then H contains a closed irreducible subspace.

2In fact it seems this assumption is unnecessary as it follows from Urysohn’s Lemma for
locally compact Hausdorff spaces.
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Proof. We follow [Bum97, Lemma 2.3.2]. We begin by finding a function f ∈
Cc(G) such that R(f) is self-adjoint and R(f) is non-zero when restricted to H.
We take 0 6= v ∈ H to be a unit vector. Since the map g 7→ π(g)v is continuous
we can find an open neighborhood of the identity in G such that,

‖R(g)v − v‖ < 1
2

for all g ∈ U . Let f be a real-valued non-negative function with compact support
contained in U such that, ∫

G

f(g) dg = 1.

Then we have,

‖R(f)v − v‖ =
∥∥∥∥∫

G

f(g)(R(g)v − v) dg
∥∥∥∥ ≤ ∫

G

f(g)‖R(g)v − v‖ dg < 1
2
.

Clearly we could make the further assumption that f(g) = f(g−1) so that R(f)
is self-adjoint.

Recall that R(f) is a Hilbert-Schmidt operator on H. By Proposition 3.13
we can take λ to be a non-zero eigenvalue of R(f) on H. We let H(λ) denote
the corresponding eigenspace which is finite dimensional by Proposition 3.13.
Among all invariant subspaces M of H we choose one such that dimM(λ) is
positive but minimal. Let v ∈M(λ) be a non-zero vector. Let E be the closed
invariant subspace generated by v. Then we have,

M = E ⊕ E⊥.

The space E⊥ is also closed and invariant and,

M(λ) = E(λ)⊕ E⊥(λ).

By the minimality of the dimension of M(λ) we have E⊥(λ) = {0}. Thus,
M(λ) = E(λ). Thus we may as well replace M by E. Now suppose E1 is a closed
invariant subspace of E. Then we again have an orthogonal decomposition,

E = E1 ⊕ E⊥1 ,

and
E(λ) = E1(λ)⊕ E⊥1 (λ).

By the minimality of the decomposition we have E(λ) = E1(λ) or E(λ) =
E⊥1 (λ). In particular v ∈ E1 or v ∈ E⊥1 . This implies that E1 = E or E⊥1 =
E.

Proof of Theorem 3.16. By Zorn’s lemma, let S be a maximal set of orthogonal
closed irreducible subspaces. Let H =

⊕
V ∈S V . If H is proper, applying

Lemma 3.17 to its orthogonal complement contradicts the maximality of S.
The finiteness of the multiplicities mπ follows from the fact that R(f) is

Hilbert-Schmidt for any f ∈ Cc(G).

Before writing down the trace formula we make the following observation.
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Lemma 3.18. Let π be a representation of G on a Hilbert space H. For f ∈
Cc(G) we define,

π(f) : H → H : v 7→
∫
G

f(g)π(g)v dg.

If π(f) is of trace class then trπ(f) depends only on the isomorphism class of
π and the Haar measure dg.

Corollary 3.19. (The spectral side of the trace formula) As a representation
of G, we have,

L2(Γ\G) =
⊕
π∈Ĝ

mππ

with each mπ ≥ 0. Hence for R(f) of trace class,

trR(f) =
∑
π∈Ĝ

mπ trπ(f).

Proof. By definition,
trR(f) =

∑
b∈B

〈R(f)b, b〉

where B is any orthonormal basis for L2(Γ\G). We form an orthonormal ba-
sis for L2(Γ\G) by taking an orthonormal basis for each subrepresentation of
L2(Γ\G). The Corollary now follows.

Combining Proposition 3.11 and Corollary 3.19 yields the following.

Theorem 3.20. (The trace formula) Assume that f = f1 ∗ f2 with f1, f2 ∈
Cc(G). Then R(f) is of trace class and,∑

π∈Ĝ

mπ trπ(f) = trR(f) =
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(g−1γg) dg.

3.6 Example: Poisson Summation

We now give an explicit example of the trace formula. Suppose G = R and
Γ = Z. For each integer n let χn be the character of R given by

χn : R→ C× : x 7→ e2πinx.

Then the theory of Fourier series tells us that,

L2(Z\R) =
⊕
n∈Z

Ce2πinx.

Hence as a representation of R we have,

L2(Z\R) =
⊕
n∈Z

χn.
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Let f ∈ C∞c (R). Then we have,

trR(f) =
∑
n∈Z

trχn(f).

To compute trχn(f) we note that if v is in the space of χn then, have,

χn(f)v =
∫
R

f(y)χn(y)v dy

=
(∫

R

f(y)e2πiny dy

)
v.

Thus,

trχn(f) =
∫
R

f(y)e2πiny dy = f̂(−n),

where f̂ denotes the Fourier transform of f . Hence,

trR(f) =
∑
n∈Z

f̂(n).

On the other hand from the geometric expansion for the trace formula we
have,

trR(f) =
∑
n∈Z

f(n).

Thus we obtain,

Theorem 3.21. (Poisson summation formula) Let f ∈ C∞c (R). Then,∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

4 Weyl’s law

References for this section [Bum97, Section 2.3] and [Bum03]. One can also see
the books of Iwaniec [Iwa97] and [Iwa02] for further details.

Let Ω be a bounded region in the plane R2 with smooth boundary ∂Ω.
Consider the Euclidean Laplacian,

∆ =
∂2

∂x2
+

∂2

∂y2

One looks for solutions to the partial differential equation,

∆ϕ+ λϕ = 0

with boundary condition ϕ|∂Ω ≡ 0. We note that λ ≥ 0 and we let NΩ(T )
denote the number of linearly independent solutions with λ ≤ T . Weyl proved,

NΩ(T ) ∼ area(Ω)
4π

T
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as T → ∞. More generally one may consider a compact Riemannian manifold
(M, g) of dimension d and its Laplacian ∆ = div grad. Let NM (T ) denote the
number of eigenfunctions for ∆ with λ ≤ T . Then Weyl’s law in this context is,

NM (T ) ∼ vol(M)

(4π)
d
2 Γ(d2 + 1)

T
d
2

as T →∞.
Selberg originally developed the trace formula to extend Weyl’s law to certain

non-compact spaces of the form Γ\H where Γ is a congruence subgroup of
SL(2,R), i.e. a subgroup of SL(2,Z) containing

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z) : a, d ≡ 1 mod N, b, c ≡ 0 mod N

}
for some N .

In this section we will explain how the trace formula can be used to prove
Weyl’s law for compact quotients of the upper half plane which includes the
case of any compact Riemann surface of genus at least 2.

4.1 About SL(2, R)

We now fix a Haar measure on G. We set,

A =
{
a(u) =

(
e
u
2 0

0 e−
u
2

)
: u ∈ R

}
N =

{
n(x) =

(
1 x
0 1

)
: x ∈ R

}
K =

{
k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ [0, 2π]

}
.

On each of these groups we take Lebesgue measure on R and pull it back to the
group. Using the Iwasawa decomposition, G = ANK, we define a measure on
G by,

dg =
1

2π
du dx dθ.

That is, if f ∈ Cc(G), then,∫
G

f(g) dg =
1

2π

∫
[0,2π]

∫
R

∫
R

f(a(u)n(x)k(θ)) du dx dθ.

Lemma 4.1. The measure dg defined above is a left and right Haar measure
on G.

We also recall the Cartan decomposition G = KAK.
We recall the well known classification of motions. Let g ∈ G \ {±I}. Then,

1. g is called parabolic if | tr(g)| = 2,

26



2. g is called hyperbolic if | tr(g)| > 2, and

3. g is called elliptic if | tr(g)| < 2.

Equivalently,

1. g is parabolic if g is conjugate to an element in ±N ,

2. g is hyperbolic if g is conjugate to an element in ±A, and

3. g is elliptic if g is conjugate to an element in K.

4.2 Maass forms

For more information see [Mil97, Chapter 2] or the extended online version of
[Bum03], especially Sections 1 and 8.

We take
H = {z = x+ iy : x ∈ R, y ∈ R>0}

to be the upper half plane. We take the metric on H to be,

ds2 = y−2(dx2 + dy2).

For z, w ∈ H we let ρ(z, w) denote the distance between z and w with respect
to this metric. The hyperbolic measure on H given by,

dz =
dx dy

y2
.

The non-Euclidean Laplacian is given by,

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
and acts on the space C∞(H) of smooth functions on H.

We recall that the group SL(2,R) acts on H on the left by Mobius transfor-
mation, i.e. (

a b
c d

)
: z 7→ az + b

cz + d
.

It will be convenient to think of H ↪→ Ĉ = C ∪ {∞} and to extend the action
of SL(2,R) to Ĉ. One can readily check that for g ∈ SL(2,R) \ {±I},

1. g is parabolic if g has one fixed point on R̂,

2. g is hyperbolic if g has two distinct fixed points on R̂, and

3. g is elliptic if g has one fixed point in H (and one in H̄).

One can easily check,
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Lemma 4.2. The metric ds and measure dz are invariant under SL(2,R). The
non-Euclidean Laplacian is invariant under SL(2,R) in the sense that,

∆(f ◦ g)(z) = (∆f)(gz)

for all f ∈ C∞(H) and g ∈ SL(2,R).

We note that SL(2,R) acts transitively on H and the stabilizer of i is,

SO(2) =
{(

a b
−b a

)
: a2 + b2 = 1

}
.

This yields a homeomorphism,

SL(2,R)/ SO(2) ∼−→H : γ 7→ γ(i).

Note that if we take f ∈ Cc(H) then,∫
SL(2,R)

f(g(i)) dg =
∫
H
f(z) dz.

Let Γ be a discrete subgroup of H. The group Γ acts on H discontinuously,
i.e. for each z ∈ H the orbit Γz has no limit point in H. We restrict our interest
to discrete groups Γ such that the quotient Γ\H has finite volume (these are
the Fuchsian groups of the first kind), equivalently such that Γ\ SL(2,R) has
finite volume. For example, SL(2,Z) is a Fuchsian group of the first kind, but{(

1 x
0 1

)
: x ∈ Z

}
isn’t.

A connected open set F ⊂ H is called a fundamental domain for Γ if,

1. distinct points in F are inequivalent mod Γ, and

2. any orbit of Γ in H contains a point in F .

We note that,

area(Γ\H) =
∫
F

dz

is independent of the choice of fundamental domain F .
For Fuchsian groups of the first kind fundamental domains exist and can be

constructed as follows: Pick a point w ∈ H such that γz 6= z for all γ ∈ Γ and
take,

D(w) = {z ∈ H : ρ(z, w) < ρ(z, ρw) for all γ ∈ Γ}.

Lemma 4.3. ([Bum03, Proposition 1]) With w as above, D(w) is a fundamental
domain for Γ. Furthermore the boundary of D(w) consists of pairs of geodesic
arcs {αi, γi(αi)} with γi ∈ Γ such that if the boundary of D(w) is traversed
counterclockwise then the arcs αi and γi(αi) are traversed in opposite directions.
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Let F be a fundamental domain of Γ, a Fuchsian group of the first kind.
We view H ⊂ Ĉ so that ∂H = R̂ = R ∪ {∞}. A cusp for F is a point on
∂H ∩ F . Let SF denote the set of cusps of F . We note that the fundamental
domain is compact if and only if SF = ∅. One can arrange F so that all cusps
in SF are inequivalent modulo Γ (see Section 8 of the online extended version
of [Bum03]). We assume that F is chosen so that this is the case. Furthermore
any cusp of F is fixed by a parabolic element of Γ and, furthermore, when all
cusps of F are inequivalent modulo F we have a bijection,

SF ←→ Γ\{x ∈ R̂ : γx = x for some parabolic γ ∈ Γ}.

Thus we have,

Lemma 4.4. Let Γ be a Fuchsian group of the first kind. Then Γ\H is compact
if and only if Γ contains no parabolic elements.

We set, A(Γ\H) equal to the space of smooth functions on Γ\H which can
be identified with

A(Γ\H) = {ϕ ∈ C∞(H) : ϕ(γz) = ϕ(z) for all γ ∈ Γ}.

By Lemma 4.2 ∆ acts on the space A(Γ\H). We define,

C(Γ\H) = {ϕ ∈ A(Γ\H) : ϕ vanishes at the cusps},

and
B(Γ\H) = {ϕ ∈ A(Γ\H) : ϕ is bounded},

and
D(Γ\H) = {ϕ ∈ B(Γ\H) : ∆ϕ ∈ B(Γ\H)} .

We note that C(Γ\H) ⊂ B(Γ\H).
We take the inner product 〈 , 〉 on B(Γ\H) defined by,

〈ϕ1, ϕ2〉 =
∫

Γ\H
ϕ1(z)ϕ2(z) dz.

This can be computed as,

〈ϕ1, ϕ2〉 =
∫
F

ϕ1(z)ϕ2(z) dz,

where F is any fundamental domain for Γ.

Lemma 4.5. ([Bum03, Proposition 2] when Γ\H is compact or [Iwa02, Chapter
4] in general) The Laplacian ∆ acts on C(Γ\H) and satisfies,

1. 〈∆ϕ1, ϕ2〉 = 〈ϕ1,∆ϕ2〉 for all ϕ1, ϕ2 ∈ D(Γ\H), and

2. 〈∆ϕ,ϕ〉 ≤ 0 for all ϕ ∈ D(Γ\H)

29



Proof. For the first part we need to prove that,

〈∆ϕ1, ϕ2〉 − 〈ϕ1,∆ϕ2〉 = 0.

Taking a fundamental domain F as in Lemma 4.3 this equals,∫
F

(
ϕ̄2

(
∂2ϕ1

∂x2
+
∂2ϕ1

∂y2

)
− ϕ1

(
∂2ϕ̄2

∂x2
+
∂2ϕ̄2

∂y2

))
dx dy =

∫
F

dω

where
ω = −ϕ1

∂ϕ̄2

∂x
dy + ϕ1

∂ϕ̄2

∂y
dx+ ϕ̄2

∂ϕ1

∂x
dy − ϕ̄2

∂ϕ1

∂y
dx.

By Stokes’ theorem, ∫
F

dω =
∫
∂F

ω.

But by Lemma 4.3 the contributions of the boundary arcs cancel in pairs. The
second part of the Lemma also follows from Stokes’ theorem; see the cited
references.

Definition 4.6. An function ϕ ∈ A(Γ\H) is called an automorphic form if,

∆ϕ+ λϕϕ = 0

for some λϕ ∈ R and has polynomial growth at the cusps. We say that ϕ is a
cusp form if ϕ vanishes at the cusps.

We note that if ϕ is a cusp form then ϕ ∈ D(Γ\H) and by Lemma 4.5 λϕ ≥ 0.
Furthermore if Γ\H is compact then any automorphic form is automatically a
cusp form.

A natural analogue of Weyl’s law for the not necessarily compact surfaces
Γ\H would be the following: For T ≥ 0 let,

NΓ(T ) = #{ linearly independent cusp forms ϕ : λϕ ≤ T}.

Then,

NΓ(T ) ∼ area(Γ\H)
4π

T

as T →∞.
In this generality Weyl’s law is monstrously false. In fact for a generic

Fuchsian group of the first kind it seems that the number of cusp forms is
likely to be finite; see [PS92]. Selberg established Weyl’s law in the case of a
congruence subgroup of SL(2,Z). We will establish Weyl’s law in the case of
a cocompact lattice Γ over the next few sections using the trace formula for
L2(Γ\ SL(2,R)) as established above.
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4.3 Connection between Maass forms and representation
theory

We continue with Γ a discrete subgroup of SL(2,R) such that Γ\ SL(2,R) is
compact. We will explain the connection between the representation of SL(2,R)
on L2(Γ\ SL(2,R)) and Maass forms. By Theorem 3.16 we have,

L2(Γ\SL(2,R)) =
⊕
π∈Ĝ

mππ.

The goal of this section is to prove the following.

Theorem 4.7. Let H be a closed SL(2,R)-invariant irreducible subspace of
L2(Γ\ SL(2,R)). Then HK is at most one-dimensional. Suppose 0 6= ϕ ∈ HK .
Then ϕ ∈ C∞(Γ\ SL(2,R)) and, as a function on Γ\H,

∆ϕ+ λϕ = 0

for some λ ∈ R which depends only on the isomorphism class of H.

For more complete proofs see [Bum97, Chapter 2]
We let C∞c (G//K) denote the algebra (under convolution) of bi-K-invariant

functions on G.

Lemma 4.8. Let f ∈ C∞c (G//K). Then,

f(g) = f(tg)

for all g ∈ G.

Proof. We recall the Cartan decomposition,

G = KAK

where A is the diagonal torus in G. Thus we can write any g ∈ G in the form,

g = k1

(
a 0
0 a−1

)
k2.

Thus, taking transpose,

tg = tk2

(
a 0
0 a−1

)
tk1.

Note that tk1,
tk2 ∈ K. Thus, for f ∈ C∞c (G//K) and g ∈ G, f(tg) = f(g).

Lemma 4.9. The algebra C∞c (G//K) is commutative.

31



Proof. We take f1, f2 ∈ C∞c (G) and g ∈ G, then,

(f1 ∗ f2)(g) =
∫
G

f1(gh−1)f2(h) dh

=
∫
G

f1(th−1tg)f2(th) dh

=
∫
G

f1(th−1)f2(tgth) dh.

Finally we make the change of variables h 7→ th which preserves the Haar
measure to obtain,∫

G

f1(th−1)f2(tgth) dh =
∫
G

f1(h−1)f2(tgh) dh

= (f2 ∗ f1)(tg)
= (f2 ∗ f1)(g).

This completes the proof.

More generally, let χ be a character of K. We define,

C∞c (G//K,χ) = {f ∈ C∞c (G) : f(k1gk2) = χ(k1)χ(k2)f(g)} .

Then one can show that C∞c (G//K,χ) is also commutative; see [Bum97, Propo-
sition 2.2.8].

Lemma 4.10. ([Bum97, Lemma 2.3.2]) Let π be a unitary representation of
G. Let v be a non-zero vector in the space of π such that,

π(k)v = χ(k)v

for all k ∈ K. Then there exists f ∈ C∞c (G//K,χ−1) such that π(f) is self-
adjoint and π(f)v 6= 0.

Proof. We will prove this Lemma in the case that χ is trivial, leaving the general
case to the reader. We let U ⊂ G be an open neighborhood of the identity such
that,

‖π(g)v − v‖ < 1
2

for all g ∈ U . We next seek an open neighborhood V of the identity such that
kV k−1 ⊂ U for all k ∈ K. We note that the map,

α : G×K → G : (g, k) 7→ kgk−1

is continuous. Hence α−1(U) is open in G ×K. Furthermore for each k ∈ K,
(1, k) ∈ α−1(U). Hence for each k ∈ K we can find open sets Vk and Wk such
that,

(1, k) ∈ Vk ×Wk ⊂ α−1(U).
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The open sets Wk cover K, hence by compactness we can find a finite set
{k1, . . . , kr} ⊂ K such that,

Wk1 ∪ . . . ∪Wkr = K.

Let V = Vk1 ∩ . . . ∩ Vkr , then V has the necessary property.
We now take f1 to be a smooth function positive function supported in V

such that f(g) = f(g−1) for all g ∈ G. We define, f2 ∈ C∞c (G) by,

f2(g) =
∫
K

f(kgk−1) dk.

Then f2 is supported in U . After scaling we can assume
∫
G
f2(g) dg = 1 and

then one can check, as in the proof of Lemma 3.17, that,

π(f2)v 6= 0.

Finally if we define f ∈ C∞c (G) by

f(g) =
∫
K

f2(gk) dk

then f ∈ C∞c (G//K), f(g−1) = f(g) and π(f)v = π(f2)v 6= 0.

Definition 4.11. Let π be a representation of G on a Hilbert space H. We call
π admissible if,

π|K =
⊕
ρ∈K̂

mρρ

with mρ <∞.

Fact 4.12. Any irreducible unitary representation of G is admissible.

We are only interested in those irreducible unitary representations π which
appear in L2(Γ\G), and for those we can prove this fact directly.

Proposition 4.13. Let π be an irreducible unitary representation of G ap-
pearing in L2(Γ\G). Then π is admissible and, furthermore, πK is at most
one-dimensional.

Let π be an irreducible representation of SL(2,R). Then, π becomes a
representation of C∞c (G) by defining,

π(f)v =
∫
G

f(g)π(g)v dg.

We note that if f(kg) = f(g) for all g ∈ G and k ∈ K then π(f)v ∈ πK . Hence,
πK is a representation of C∞c (G//K).
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Proof. We need to show that for each character χ of K,

{v ∈ π : π(k)v = χ(k)v}

is finite dimensional.
We will verify this for the trivial character χ leaving the general case as an

exercise.
We may as well assume πK 6= {0}. We first show that C∞c (G//K) acts

irreducibly on πK . Suppose L ⊂ πK is a non-zero closed C∞c (G//K)-invariant
subspace of πK . We take v ∈ πK and will show that v ∈ L. We fix ε > 0. Since
π is irreducible the closure of π(C∞c (G))L is the whole of π. Hence there exists
f ∈ C∞c (G) and w ∈ L such that ‖π(f)w− v‖ < ε. We set v1 = π(f)w and let,

v2 =
∫
K

π(k)v1 dk.

Here dk is the Haar measure on K normalized to give K volume one. Then
v2 ∈ πK and,

‖v2− v‖ =
∥∥∥∥∫

K

π(k)(v1 − v) dk
∥∥∥∥ ≤ ∫

K

‖π(k)(v1− v)‖ dk =
∫
K

‖v1− v‖ dk < ε.

Since w is K-fixed, so

π(k)π(f)π(k′)w = π(k)π(f)w = π(k)v1

for all k, k′ ∈ K. Integrating over k and k′ we get π(f0)w = v2 where f0 ∈
C∞c (G//K) is defined by,

f0(g) :=
∫
K

∫
K

f(kgk′) dk dk′

Since L is invariant under C∞c (G//K) we see that v2 ∈ L. Hence v ∈ πK can be
arbitrarily closely approximated by elements of L. Since L is closed so v ∈ L.
Thus L = πK .

Let 0 6= v ∈ πK . We can find by Lemma 4.10 a function f ∈ C∞c (G//K)
such that π(f) = π(f)∗ and π(f)v 6= 0. Now we use the fact that π appears in
L2(Γ\G) to deduce that π(f) is compact. (We note that π(f) is the restriction
of R(f) to a subspace and since R(f) is Hilbert-Schmidt so is π(f), hence π(f)
is compact.) Now by Proposition 3.13 π(f) has a non-zero eigenvalue on πK , λ
say, and the eigenspace,

πK(λ) =
{
v ∈ πK : π(f)v = λv

}
is finite dimensional. Now since C∞c (G//K) is commutative the space πK(λ)
is preserved by C∞c (G//K). Hence πK(λ) is a C∞c (G//K)-invariant subspace
of πK and since it’s finite dimensional it’s closed. Thus we see that πK =
πK(λ) is finite dimensional. Finally we note that πK is an irreducible finite
dimensional representation for the commutative algebra C∞c (G//K), hence it’s
one-dimensional.

34



We can now prove the first part of Theorem 4.7. Let H be an irreducible sub-
representation of L2(Γ\G). So far we know that HK is at most one-dimensional.
Suppose 0 6= ϕ ∈ HK . From Lemma 4.10 we can find f ∈ C∞c (G//K) such
that R(f)ϕ 6= 0. We note that since R(f) preserves H so R(f)ϕ = λϕ for
some non-zero λ. By definition, R(f)ϕ is the convolution of ϕ with f which is
a smooth function of compact support, hence R(f)ϕ is smooth and so too is ϕ.

In order to finish the proof of the theorem we need to give a representation
theoretic definition of the Laplacian.

Let g denote the Lie algebra of G, i.e.

g = {X ∈M(2,R) : trX = 0}

with Lie bracket,
[X,Y ] = XY − Y X.

Let U(g) denote the universal enveloping algebra which is an associative ring
constructed in the following way from g. Consider,

∞⊕
k=0

⊗kg

with multiplication coming from the obvious map,

⊗kg×⊗lg→ ⊗k+lg.

Let I denote the ideal generated by the elements,

X ⊗ Y − Y ⊗X − [X,Y ]

with X,Y ∈ g. We define,

U(g) =

( ∞⊕
k=0

⊗kg

)
/I.

We recall that G acts on C∞(G) by right translation. The Lie algebra acts
on C∞(G) in the usual way,

(dXϕ)(g) =
d

dt
f(g exp(tX))

∣∣∣∣
t=0

giving a representation of g, i.e. d : g→ End(C∞(G)) such that for all X,Y ∈ g,

dX ◦ dY − dY ◦ dX = d[X,Y ].

This representation may therefore be extended to of U(g) by defining,

d(X1 ⊗ . . .⊗Xn)ϕ = d(X1) ◦ . . . ◦ d(Xn)ϕ,

noting that since π is a representation of g this is well defined on U(g). This
representation is faithful and in this way U(g) may be realized as the space of
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left-invariant differential operators on G. The center Z(U(g)) of the universal
enveloping algebra may then be realized as the space of left and right invariant
differential operators on G; see [Bum97, Proposition 2.2.4]

Consider the following basis of g,

R =
(

0 1
0 0

)
, L =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

We define the element in U(g),

C = −1
4

(H ⊗H + 2R⊗ L+ 2L⊗R) .

Lemma 4.14. ([Bum97, Theorem 2.2.1]) The element C defined above lies in
the center of U(g).

Proof. Easy to check by straightforward calculation.

Let π be a representation of G on a Hilbert space H. Let v ∈ H. We call v
C1 if for all X ∈ g,

π(X)v =
d

dt
π(exp(tX))v

∣∣∣∣
t=0

,

exists. We say v is Ck if v is C1 and for all X ∈ g, π(X)v is Ck−1. Finally,
v is called smooth if v is Ck for all k. We denote by H∞ the space of smooth
vectors in H. We note that G preserves H∞.

Lemma 4.15. ([Bum97, Lemma 2.4.2]) For the representation of G on L2(Γ\G)
we have ϕ ∈ L2(Γ\G)∞ if and only if ϕ ∈ C∞(Γ\G).

Lemma 4.16. ([Bum97, Proposition 2.4.1]) Let π be a representation of G on
a Hilbert space H. The space H∞ affords a Lie algebra representation of g, i.e.
π : g→ End(H∞) such that for all v ∈ H∞ and X,Y ∈ g,

π(X)π(Y )v − π(Y )π(X)v = π([X,Y ])v.

Furthermore for g ∈ G, X ∈ g and v ∈ H∞,

π(g)π(X)π(g)−1v = π(Ad(g)X)v.

Hence for g ∈ G and D ∈ Z(U(g)),

π(g) ◦ π(D) = π(D) ◦ π(g)

on H∞.

Lemma 4.17. ([Bum97, Proposition 2.2.5]) Let G act on the space C∞(G) by
right translation. Let ϕ ∈ C∞(G) be right invariant under K. Then we can
consider ϕ as a function on H and with this identification we have,

∆ϕ = −Cϕ,

where ∆ denotes the non-Euclidean Laplacian on C∞(H).
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Proof. If one uses the coordinates,

g =
(

1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cos θ sin θ
− sin θ cos θ

)
,

with y ∈ R>0, x ∈ R, θ ∈ R, coming from the Iwasawa decomposition for G,
then,

dR = y cos(2θ)
∂

∂x
+ y sin(2θ)

∂

∂y
+ sin2(θ)

∂

∂θ

dL = y cos(2θ)
∂

∂x
+ y sin(2θ)

∂

∂y
− cos2(θ)

∂

∂θ

dH = −2y sin(2θ)
∂

∂x
+ 2y cos(2θ)

∂

∂y
+ sin(2θ)

∂

∂θ
.

Now one can compute the action of C on ϕ and check the statement of the
lemma.

We can now finally finish the proof of Theorem 4.7. We again take H to
be a closed irreducible subspace of L2(Γ\G). As we have already observed HK

is at most one-dimensional. If there exists 0 6= ϕ ∈ HK then we have already
observed that ϕ is smooth, by Lemma 4.16 we have Cϕ = λϕ for some λ ∈ C
and by Lemma 4.17 if we view ϕ as an element of A(Γ\H) then ∆ϕ+ λϕ = 0.

4.4 Spherical representations of SL(2, R)

For more details see [Bum97, Sections 2.5 & 2.6].
With a view to returning to the trace formula we wish to enumerate the

irreducible unitary representations π of SL(2,R) such that πK 6= {0}. Further-
more we wish to determine the action of the Casimir operator on πK and give
an expression for trπ(f) for any f ∈ C∞c (G//K).

We recall the construction of the principal series representations. We set,

B =
{(

a b
0 a−1

)
∈ SL(2,R)

}
= ±AN

equal to the upper triangular Borel subgroup of G. Let s ∈ C and consider the
character

χs : B → C× :
(
a b
0 a−1

)
7→ |a|s.

Let δB be the character,

δB : B → C× :
(
a b
0 a−1

)
7→ |a|2.

We consider the representation of G (unitarily) induced from this character.
That is we consider G acting by right translation on the space of functions,

Vs =
{
ϕ : G→ C : ϕ(bg) = χs(b)δB(b)

1
2ϕ(g) for all b ∈ B

}
.
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We note that a function ϕ in this space is determined completely, by the Iwasawa
decomposition, by its restriction to K. We set,

Hs =
{
ϕ ∈ Vs : ϕ|K ∈ L2(K)

}
.

We note that given ψ ∈ L2(K) there exists a function ϕ ∈ Vs such that ϕ|K = ψ
if and only if ψ(k(−θ)) = ψ(k(θ)) for all k(θ) ∈ K.

We let G act on Hs by right translation.

Theorem 4.18. The action of G on Hs yields an admissible representation
of G with dimHK

s = 1. This representation has a unique irreducible subquo-
tient πs with πKs 6= {0}. In fact Hs is irreducible unless s is an odd integer in
which case πs ∼= Sym|s|−1 V where V denotes the standard 2-dimensional rep-
resentation of G. Up to infinitesimal equivalence every irreducible admissible
representation π of G with πK 6= {0} appears in this way. Furthermore πs and
πs′ are infinitesimally equivalent if and only if s = ±s′.

We note that up to infinitesimal equivalence every irreducible admissible
representation of G is a subquotient of a representation induced from the Borel
subgroup. One can also consider the representation induced from characters of
the form,

B → C× :
(
a b
0 a−1

)
7→ sgn(a)|a|s.

However since these characters are non-trivial on the element −I ∈ SL(2,R)
none of the induced representations will have a K-fixed vector.

We are of course only interested in those representations πs which are uni-
tary. Suppose ϕ1 ∈ Hs1 and ϕ2 ∈ Hs2 then we can consider

〈ϕ1, ϕ2〉 =
∫
K

ϕ1(k)ϕ2(k) dk.

This is clearly a K-invariant Hermitian pairing on Hs1 ×Hs2 and is G-invariant
precisely when s2 = −s̄1. Thus when s ∈ iR this defines a G-invariant inner
product on Hs. When s is real one can construct an intertwining map M(s) :
Hs → H−s (strictly speaking this is only defined on the smooth vectors) defined
by analytic continuation of,

(M(s)ϕ)(g) =
∫ ∞
−∞

ϕ

((
0 −1
1 0

)(
1 x
0 1

)
g

)
dx.

for ϕ ∈ Hs. (The integral is absolutely convergent only if <s > 0.) One then
obtains a G-invariant Hermitian product on Hs by,

〈ϕ1, ϕ2〉 =
∫
K

ϕ1(k)(M(s)ϕ2)(k) dk

for ϕ1, ϕ2 ∈ Hs. This pairing is positive definite if and only if s ∈ (−1, 1). Thus
πs is unitary if s ∈ iR ∪ [−1, 1] and in fact these are all the irreducible unitary
representations of G which posses a K-fixed vector.
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Finally we compute the action of the Casimir element. We take ϕ ∈ πKs
which we normalize by taking ϕ(k) = 1. Then we have,

ϕ

((
a b
0 a−1

)
k

)
= |a|s+1.

If we think of the function ϕ as a function on the upper half plane then,

ϕ(x+ iy) = y
s+1
2 .

From Lemma 4.17 the Casimir operator acts as −∆ on functions on the upper
half plane and we have,

∆ϕ = y2 ∂
2ϕ

∂y2
=
s+ 1

2
s− 1

2
y
s+1
2 =

s2 − 1
4

ϕ.

Theorem 4.19. Let Γ be a cocompact discrete subgroup of G. We write,

L2(Γ\G) =
⊕
π∈Ĝ

mππ.

For s ∈ C we set λs = 1−s2
4 . Then,

dim{ϕ ∈ A(Γ\H) : ∆ϕ+ λsϕ = 0} = mπs .

(Of course mπs = 0 unless s ∈ iR ∪ [−1, 1].)

In order to use the trace formula we need to write down trπs(f) for f ∈
C∞c (G//K). We note the following,

Lemma 4.20. Let s ∈ C and f ∈ C∞c (G//K). Then,

trπs(f) =
∫ ∞
−∞

∫ ∞
−∞

f

(
e
u
2 x

0 e−
u
2

)
e
us
2 du dx.

Proof. Since πKs is one-dimensional we have trπs(f) equal to the scalar by which
πs(f) acts on a non-zero vector in πKs . We again take ϕ ∈ πKs normalized so
that ϕ(I) = 1. Then,

(πs(f)ϕ)(I) =
∫
G

f(g)ϕ(g) dg

=
1

2π

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

f(a(u)n(x)k(θ))ϕ(a(u)n(x)k(θ)) du dx dθ

=
∫ ∞
−∞

∫ ∞
−∞

f(a(u)n(x))ϕ(a(u)n(x)) du dx

=
∫ ∞
−∞

∫ ∞
−∞

f

(
e
u
2 e

u
2 x

0 e−
u
2

)
e
u(1+s)

2 du dx

=
∫ ∞
−∞

∫ ∞
−∞

f

(
e
u
2 x

0 e−
u
2

)
e
us
2 du dx.
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4.5 Bi-K-invariant functions

We will now endeavor to explicate the trace formula for L2(Γ\ SL(2,R)) when
the test function f lies in C∞c (G//K). In this section we give a concrete real-
ization of C∞c (G//K) and recast the terms in the trace formula in terms of this
realization.

We recall that we have set,

A =
{(

a 0
0 a−1

)
: a ∈ R>0

}
.

Let f ∈ C∞c (G//K), we define its Harish-Chandra transform Hf ∈ C∞c (A)
defined by,

Hf

(
a 0
0 a−1

)
= a

∫
R

f

((
a 0
0 a−1

)(
1 x
0 1

))
dx

= a

∫
R

f

((
a ax
0 a−1

))
dx

=
∫
R

f

((
a x
0 a−1

))
dx.

Let W = NG(A)/ ± A be the Weyl group of A which has representatives
modulo the diagonal torus,

W =
{(

1 0
0 1

)
,

(
0 1
−1 0

)}
.

We let w denote the non-trivial element in W . We note that

w−1

(
a x
0 a−1

)
w =

(
a−1 0
−x a

)
Thus since w ∈ K,

f

(
a x
0 a−1

)
= f

(
a−1 0
−x a

)
= f

(
a−1 −x
0 a

)
,

by Lemma 4.8. Hence we see that Hf ∈ C∞c (A)W .

Theorem 4.21. The map H : C∞c (G//K) → C∞c (A)W is an isomorphism of
algebras.

We leave as an exercise the verification that the map is a homomorphism
(see [Lan85, Chapter V, Theorem 2]), we will check that the map is bijective.
Before we begin we record the following lemma,

Lemma 4.22. Let f ∈ C∞c (R>0) such that f(z) = f(z−1) for all z ∈ R>0.
Define F on R≥1 by,

F

(
a2 + a−2

2

)
= f(a).

Then F ∈ C∞c (R≥1).
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Proof. By definition, for a ≥ 1,

F (a) = f(a+
√
a2 − 1).

Hence we see that F is smooth at every point except possibly a = 1. We define
g ∈ C∞c (R) by g(x) = f(ex). Hence g(x) = g(−x). Then we have,

F (a) = g(log(a+
√
a2 − 1)).

We write a = b+ 1 so that,

F (b) = g(log(b+ 1 +
√
b2 + 2b)).

But now,
(
√
b+
√
b+ 2)2 = 2(b+ 1) + 2

√
b2 + 2b,

hence,

F (b) = g

(
log
(

1
2

(
√
b+
√
b+ 2)2

))
= g

(
2 log

(
1√
2

(
√
b+
√
b+ 2)

))
.

One has,

log
(

1√
2

(
√
b+
√
b+ 2)

)
=
∞∑
k=0

akb
2k+1

2 .

Hence when we substitute this expression into the smooth even function g we
obtain a function of b which has continuous derivatives of all orders at b = 0.

Lemma 4.23. Let f ∈ C∞c (G//K) then there exists Ff ∈ C∞c (R≥1) such that,

f(g) = Ff

(
1
2

tr gtg
)
.

Conversely given F ∈ C∞c (R≥1) the function f defined by f(g) = F
(

1
2 tr gtg

)
lies in C∞c (G//K).

Proof. We recall that by the Cartan decomposition (G = KAK) we can write
any g ∈ G as g = k1ak2 and we have,

gtg = k1ak2
tk2

tatk1 = k1a
2k−1

1 .

If we write,

a =
(
α 0
0 α−1

)
with α > 0, then

f(g) = f

(
α 0
0 α−1

)
= f

(
α−1 0

0 α

)
,
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and hence f depends only on α+ α−1. We have,

gtg = k1

(
α2 0
0 α−2

)
k−1

1

Hence, since f depends only on α+α−1 it also depends only on α2 +α−2 = tr(g-
tg). Thus there exists a function Ff on [1,∞) such that

f(g) = Ff

(
1
2

tr gtg
)

for all g ∈ G. By Lemma 4.22 we have Ff ∈ C∞c (R≥1).
Conversely given F ∈ C∞c (R) we note that if we define f(g) = F (1/2 tr gtg)

then for k1, k2 ∈ K and a ∈ A,

f(k1ak2) = F

(
1
2

tr(k1a
2k−1

1 )
)

= F

(
1
2

tr a2

)
= f(a).

If we write,

g =
(
a b
c d

)
then tr(gtg) = a2 + b2 + c2 + d2. Hence we have,

f

(
a b
c d

)
= Ff

(
a2 + b2 + c2 + d2

2

)
.

Thus,

Hf

(
a 0
0 a−1

)
=
∫
R

f

((
a x
0 a−1

))
dx

=
∫
R

Ff

(
a2 + a−2

2
+
x2

2

)
dx.

Lemma 4.24. Let F ∈ C∞c (R≥1) and define, for a ≥ 1,

H(a) =
∫
R

F (a+ x2/2) dx.

Then H ∈ C∞c (R≥1) and

F (a) = − 1
2π

∫
R

H ′(a+ x2/2) dx.

The converse also holds.
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Proof. Differentiating under the integral sign gives,

H ′(a) =
∫
R

F ′(a+ x2/2) dx.

Hence, ∫
R

H ′(a+ y2/2) dy =
∫ ∞
−∞

∫ ∞
−∞

F ′(a+ (x2 + y2)/2) dx dy

=
∫ 2π

0

∫ ∞
0

F ′(a+ r2/2)r dr dθ

= 2π
∫ ∞

0

F ′(a+ x) dx

= −2πF (a).

The converse follows in the same way.

Proof of Theorem 4.21. We can now complete the proof of Theorem 4.21. We
note that given H ∈ C∞c (A)W we can write

H

(
a 0
0 a−1

)
= h

(
a2 + a−2

2

)
for a unique h ∈ C∞c (R≥1). Then by Lemma 4.24 there exists a unique F ∈
C∞c (R≥1) such that,

h(a) =
∫
R

F

(
a+

x2

2

)
dx

for all a ≥ 1. Hence,

H

(
a 0
0 a−1

)
= Hf

(
a 0
0 a−1

)
where,

f(g) = F

(
1
2

tr gtg
)
.

Which completes the proof.

We now want to cast all the terms in the trace formula in terms of the
Harish-Chandra transform Hf . From above if we write,

hf

(
a2 + a−2

2

)
= Hf

(
a 0
0 a−1

)
then,

Ff (a) = − 1
2π

∫
R

h′f (a+ x2/2) dx.
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To save on notation we define, for f ∈ C∞c (G//K), gf ∈ C∞c (R)even, by

gf (u) = Hf

(
e
u
2 0

0 e−
u
2

)
= hf

(
eu + e−u

2

)
= hf (cosh(u)).

Hence,
g′f (u) = h′f (cosh(u)) sinh(u).

Thus,

f

(
e
u
2 0

0 e−
u
2

)
= Ff (coshu) = − 1

2π

∫
R

h′f (coshu+ x2/2) dx.

We begin with the geometric terms.

Theorem 4.25. (Plancherel Formula) Let f ∈ C∞c (G//K), then

f

(
1 0
0 1

)
=

1
2π

∫ ∞
0

ĝf (u)u tanh(πu) du.

where,

ĝf (u) =
∫
R

gf (v)eiuv dv

is the Fourier transform of gf .

Proof. We wish to compute,

f(I) = − 1
2π

∫
R

h′f (1 + x2/2) dx.

We write x = e
t
2 − e− t2 = 2 sinh(t/2). Then dx = cosh(t/2) dt and,

f(I) = − 1
2π

∫
R

h′f (1 + 2 sinh2(t/2)) cosh(t/2) dt

= − 1
2π

∫
R

h′f (cosh(t)) cosh(t/2) dt

= − 1
2π

∫
R

g′f (t)
cosh(t/2)

sinh(t)
dt

= − 1
2π

∫
R

g′f (t)

e
t
2 − e− t2

dt

Since gf is even g′f is odd and we have by the Fourier inversion theorem,

gf (t) =
1
π

∫ ∞
0

ĝf (u)e−iut du

and
g′f (t) =

1
iπ

∫ ∞
0

uĝf (u)e−iut du.
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Hence,

f(I) = − 1
2π2i

∫ ∞
−∞

∫ ∞
0

uĝf (u)
e−iut

e
t
2 − e− t2

du dt

= − 1
2π2i

∫ ∞
0

uĝf (u)
∫ ∞
−∞

e−iut

e
t
2 − e− t2

dt du

Finally we use that, ∫ ∞
−∞

e−iut

e
t
2 − e− t2

dt = −πi tanh(πu)

(which can be established by moving the line of integration into the lower half
plane and counting residues) to deduce that,

f(I) =
1

2π

∫ ∞
0

ĝf (u)u tanh(πu) du.

For γ ∈ G we set,

I(γ, f) =
∫
Gγ\G

f(g−1γg) dg.

Note that if,

γ =
(
a 0
0 a−1

)
with a 6= ±1 then Gγ = ±A. We take the Lebesgue measure du on,

A =
{(

e
u
2 0

0 e−
u
2

)
: u ∈ R

}
,

and use this to define a measure on Gγ .

Lemma 4.26. Let f ∈ C∞c (G//K). For u 6= 0,

gf (2u) =
|eu − e−u|

2
I

((
eu 0
0 e−u

)
, f

)
,

with the measure on Gγ = ±A chosen as above.

Proof. For the first part we note that for u 6= 0 if we set

γ =
(
eu 0
0 e−u

)
then Gγ = ±A. Hence,

I(γ, f) =
∫
Gγ\G

f(g−1γg) dg

=
1
2

∫
A\G

f(g−1γg) dg
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We have written the measure dg on G as dg = da dn dk hence,∫
A\G

f(g−1γg) dg =
1

2π

∫ ∞
−∞

∫ 2π

0

f(k(θ)−1n(x)−1γn(x)k(θ)) dθ dx

=
∫ ∞
−∞

f(n(x)−1γn(x)) dx,

since f ∈ C∞(G//K). We write this out explicitly as,∫ ∞
−∞

f

(
eu (eu − e−u)x
0 e−u

)
dx.

Hence making the change of variables x 7→ (eu − e−u)−1x gives,

I(γ, f) = |eu − e−u|
∫ ∞
−∞

f

(
eu x
0 e−u

)
dx

= |eu − e−u|gf (2u).

We now look at the spectral terms,

Lemma 4.27. For f ∈ C∞c (G//K) and r ∈ C,

ĝf (r) = trπ2ir(f).

Proof. From Lemma 4.20,

trπs(f) =
∫ ∞
−∞

∫ ∞
−∞

f

(
e
u
2 x

0 e−
u
2

)
e
us
2 du dx

=
∫ ∞
−∞

gf (u)e
us
2 du

= ĝf (s/2i).

4.6 Explication of the trace formula

We again take a discrete cocompact subgroup Γ of SL(2,R). We know (Lemma
4.4) that Γ doesn’t contain any parabolic elements and we will assume further
that Γ is hyperbolic and contains −I, i.e. all elements γ ∈ Γ \ {±I} are hyper-
bolic. For example if X is a compact Riemann surface of genus at least 2 then
the universal cover of X is H, Γ = π1(X) acts on H with quotient X and is a
hyperbolic group.
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Suppose γ 6= ±I is an element of Γ. Then, γ is conjugate in G to an element
of the form,

±
(
e
t
2 0

0 e−
t
2

)
,

with t > 0. Let’s assume, for the sake of convenience, that in fact,

γ =
(
e
t
2 0

0 e−
t
2

)
.

Then γ acts onH by z 7→ etz. Its fixed points on R̂ are 0 and∞. The geodesic in
H between these fixed points is the imaginary axis in H. The distance between
i and γi is equal to t, hence also the distance between the points z and γz for
any points on the geodesic. The image of this geodesic in Γ\H will close on
itself forming a closed geodesic in Γ\H (which may wind around itself several
times) of length `(γ) = t . We note that γ1 and γ2 give rise to the same geodesic
if and only if they are conjugate in Γ. In this way the conjugacy classes in Γ
correspond to the closed geodesics in Γ\H. We note that for each γ ∈ Γ \ {±I}
the centralizer of γ in Γ is of the form,

Γγ =
{
±γk0 : k ∈ Z

}
for some element γ0 ∈ Γ called primitive. (Note that Γγ is a discrete subgroup
of Gγ ∼= {±1} ×R of infinite order.) We have vol(Γγ\Gγ) = log `(γ0). We also
have vol(Γ\G) = 1

2 vol(Γ\H).

Theorem 4.28. Let Γ be a cocompact hyperbolic subgroup of SL(2,R) con-
taining −I. Let {λj} denote the eigenvalues (appearing with multiplicity) of ∆
acting on A(Γ\H) ordered such that 0 = λ0 < λ1 ≤ λ2 ≤ . . .. We write each
λj = 1

4 + r2
j with rj ∈ R≥0 ∪ [0, 1

2 ]i. Then, for any g ∈ C∞c (R)even,

∞∑
j=0

ĝ(rj) =
area(Γ\H)

2π

∫ ∞
0

ĝ(r)r tanh r dr +
1
2

∑
γ∈{Γ}

`(γ0)

e
`(γ)
2 − e−

`(γ)
2

g(`(γ)).

This is just the trace formula rewritten using the results above. The trace
formula gave us,∑
π∈Ĝ

mπ trπ(f) = vol(Γ\G)f(I)+vol(Γ\G)f(−I)+
∑

γ∈{Γ},γ 6=±I

vol(Γγ\Gγ)
∫
Gγ\G

f(g−1γg) dg.

The equality of the left hand sides follows from Theorem 4.19 and Lemma 4.27,
the identity elements come from the Plancherel formula, Theorem 4.25 and the
non-central elements come from Lemma 4.26.

4.7 Proof of Weyl’s law

Theorem 4.29. (Weyl’s law) Let Γ be a discrete cocompact hyperbolic subgroup
of SL(2,R). Let 0 = λ0 < λ1 ≤ λ2 ≤ . . . denote the eigenvalues of ∆ (appearing
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with multiplicity) acting on A(Γ\H). For T ≥ 0 we set,

NΓ(T ) = # {j : λj < T} .

Then,

NΓ(T ) ∼ area(Γ\H)
4π

T

as T →∞.

Our proof of Theorem 4.29 follows [LV07, Section 5.1].

Lemma 4.30. Let 0 < ε < 1. Then there exists g ∈ C∞c (R)even such that,

1. ĝ(s) = ĝ(−s) for all s ∈ C,

2. ĝ(s) is real and non-negative for s ∈ R ∪ iR,

3. ĝ(s) ≤ 1 for all s ∈ R,

4. ĝ(s) ≥ 1− ε whenever s ∈ R with 0 ≤ |s|2 ≤ 1− ε,

5. for t sufficiently small,∣∣∣∣t2 ∫ ∞
0

ĝ(tu)u tanh(πu) du− 1
2

∣∣∣∣ ≤ ε,
6.

sup
r≥1

(1 + r)3|ĝ(r)| < ε.

Proof. Let χ be the characteristic function of [−1, 1] on R. There exists a
non-empty open set of Schwartz functions ψ on R such that,

1. 0 ≤ ψ(x) < 1 for |x| ≤ 1,

2. ψ(x) >
√

1− ε if |x| ≤
√

1− ε,

3. sup|x|≥1(1 + |x|)3|ψ(x)| < ε/2, and

4.
∫
R
|ψ(x)− χ(x)|(1 + |x|) dx < ε/2.

We recall that the Fourier transform is an isomorphism of the Schwartz space
onto itself and the space C∞c (R) is dense in the Schwartz space. Hence we
can find ψ satisfying these conditions whose Fourier transform is compactly
supported. Furthermore we can assume (by replacing ψ by 1

2 (ψ(x) + ψ(−x)))
that ψ(x) = ψ(−x).

Since the Fourier transform of ψ is compactly supported it follows that ψ
extends to a holomorphic function on C. Hence as a function on C we see
that ψ(s) depends only on s2. Furthermore we note that for ε sufficiently small
conditions 1 and 3 ensure that supr∈R |ψ(r)| ≤ 1.
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There exists g1 ∈ C∞c (R)even such that ĝ1 = ψ. We set g = g1 ∗ g1. Then
ĝ(s) = ψ(s)ψ(s̄) hence we obtain claim 2. Since for s ∈ R we have g(s) = |ψ(s)|2
we obtain 1, 3, 4 and 6. Finally we check claim 5.

We note that | tanh(u)| ≤ 1 and∫ T

0

u tanh(πu) du ∼ T 2

2

as T →∞.
Thus,

lim sup
t→0

∣∣∣∣t2 ∫ ∞
0

ĝ(tu)u tanh(πu) du− 1
2

∣∣∣∣ = lim sup
t→0

∣∣∣∣∣t2
∫ ∞

0

ĝ(tu)u tanh(πu) du− t2
∫ t−1

0

u tanh(πu) du

∣∣∣∣∣
= lim sup

t→0

∣∣∣∣∫ ∞
0

(t2ĝ(tu)− t2χ(ut))u tanh(πu) du
∣∣∣∣

≤ lim sup
t→0

∫ ∞
0

|t2ĝ(tu)− t2χ(tu)|(1 + u)du

= lim sup
t→0

∫ ∞
0

|ĝ(u)− χ(u)|(t+ u)du

≤ lim sup
t→0

∫ ∞
0

|ĝ(u)− χ(u)|(1 + u)du.

We recall that,
sup
r∈R
|ψ(r)| ≤ 1

so that |ĝ(u)− χ(u)| ≤ 2|ψ(u)− χ(u)| for u ∈ R. Using the fact that∫
R

|ψ(x)− χ(x)|(1 + |x|) dx < ε/2

we see that for t sufficiently small,∣∣∣∣t2 ∫ ∞
0

ĝ(tu)u tanh(πu) du− 1
2

∣∣∣∣ ≤ ε.
Proof of Theorem 4.29. Fix ε > 0 and let g ∈ C∞c (R)even given by Lemma
4.30. For 0 < t ≤ 1 let gt ∈ C∞c (R)even such that ĝt(s) = ĝ(ts). Thus,
gt(u) = t−1g(ut−1). Then as t → 0 the support of gt shrinks to 0. Hence for t
sufficiently small, the trace formula gives us,

∞∑
j=0

ĝt(rj) =
area(Γ\H)

2π

∫ ∞
0

ĝt(u)u tanh(πu) du,

which is the same as,
∞∑
j=0

ĝ(trj) =
area(Γ\H)

2π

∫ ∞
0

ĝ(tu)u tanh(πu) du,
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By construction, ∣∣∣∣t2 ∫ ∞
0

ĝt(u)u tanh(πu) du− 1
2

∣∣∣∣ ≤ ε,
hence for t sufficiently small,∣∣∣∣∣∣

∞∑
j=0

ĝ(trj)−
area(Γ\H)

4πt2

∣∣∣∣∣∣ ≤ ε.
We note that for but finitely many j we have rj ∈ R≥0 (i.e. those j such that
λj ≤ 1

4 ) and hence ĝ(trj) ≤ 1. Furthermore for all j, ĝ(trj) is real, non-negative,
and uniformly bounded for t ∈ (0, 1]. From (4) of Lemma 4.30 we have,

1− ε ≤ ĝ(s)

for any real number s with 0 ≤ s2 ≤ 1− ε. Hence,

(1− ε)#{j : 0 ≤ rj < t−1
√

1− ε} ≤ area(Γ\H)
4πt2

+ ε.

Thus for t (t 7→ t
√

1− ε) sufficiently small,

#{j : 0 ≤ rj < t−1} ≤ area(Γ\H)
4πt2(1− ε)2

+
ε

(1− ε)

≤ area(Γ\H)
4πt2

(1 + ε) .

On the other hand applying this together with (6) of Lemma 4.30 gives,∑
j:rj>t−1

ĝ(trj) ≤
∞∑
n=0

∑
j:trj∈[2n,2n+1]

ĝ(trj).

Now by (6) we have, for j such that trj ∈ [2n, 2n+1],

ĝ(trj) <
ε

(1 + trj)3
≤ ε

(1 + 2n)3
.

On the other hand, from above, we see that for t sufficiently small,

#{j : trj ∈ [2n, 2n+1]} ≤ #{j : rj < (t2−n)−1} ≤ area(Γ\H)22n

2πt2
.

Thus, ∑
j:trj∈[2n,2n+1]

ĝ(trj) ≤
ε

(1 + 2n)3

area(Γ\H)22n

2πt2
.

Hence, ∑
j:rj>t−1

ĝ(trj) ≤
ε area(Γ\H)

2πt2

∞∑
n=0

22n

(1 + 2n)3
= Cε

area(Γ\H)
4πt2

50



for some constant C which doesn’t depends on ε or t (provided t is sufficiently
small).

Now we use that ĝ(u) ≤ 1 for u ∈ R,

#{j : rj < t−1} ≥ #{j : λj = 1/4 + r2
j ≤ 1/4}+

∑
j:0≤rj<t−1

ĝ(trj)

≥ constant+
∞∑
j=0

ĝ(trj)−
∑

j:rj>t−1

ĝ(trj)

=
area(Γ\H)

4πt2
(1− Cε) .

This completes the proof of Theorem 4.29.

Remarks:
1. One could ask for a remainder term in Theorem 4.29, the correct remain-

der is O(
√
T ); see [Lap08, Section 6].

2. One can also find in [LV07, Section 5.1] a proof of the general case of
compact quotient.

3. More generally one can consider the following setup. Let G be a semisim-
ple group over Q and let K be a maximal compact subgroup of G(R). The
space G(R)/K∞ is a symmetric space and one may consider quotients of it of
the form M = Γ\G(R)/K with Γ ⊂ G(Q) a congruence subgroup. In this case
let N(T ) denote the number of cuspidal eigenfunctions of the Laplacian with
eigenvalue ≤ T . Sarnak conjectured,

N(T ) ∼ c(M)T
dim(M)

2

for some explicit constant c(M) involving the volume of M . In the case of
SL(2,R) this was proven by Selberg and was his original reason for developing
the trace formula. For G a split adjoint group over Q Weyl’s law was proven
by Lindenstrauss and Venkatesh [LV07]. We set X = G(R)/K when Γ\G(R)
is not compact one has a decomposition,

L2(Γ\G) = L2
cusp(Γ\G)⊕ L2

Eisen(Γ\G).

The trace formula in the noncompact setting (which we will develop in the case
of GL(2) later in the course), gives an expression,

trRcusp(f) + trREis(f) = trR(f) =
∑
γ∈{Γ}

orbital integrals of f.

(In the non-compact case trR(f) doesn’t make sense, but the trace formula in
this case gives an expression as suggested above, and on the cuspidal part of the
spectrum it is the trace of R(f).) One can play the same game as above, and pick
test functions which only see the identity orbital integral on the geometric side.
However, now to prove Weyl’s law one needs to know that the Eisenstein terms

51



don’t dominate the spectral side of the trace formula. In general this is a very
tricky issue. Instead Lindenstrauss and Venkatesh construct test functions f
which kill the Eisenstein series without losing too much of the cuspidal spectrum
(it has been known for a while that one can do this, but the usual method of
killing the Eisenstein series kills far too much of the cuspidal spectrum to be of
use in proving Weyl’s law). The geometric side of the trace formula for these test
functions will not just consist of the identity orbital integrals but the analysis
of the geometric side is manageable. One caveat, the work of Lindenstrauss and
Venkatesh doesn’t give an error term to Weyl’s law.

4. Weyl’s law proved by localizing the geometric side of the trace formula,
can do similar thing on the spectral side, localizing to the zero eigenvalue cor-
responding to the constant functions. In this way obtain asymptotics for the
lengths of primitive closed geodesics on Γ\H which are very similar to the dis-
tribution of prime numbers; see [Iwa02].

5. Other applications of the trace formula in isolation: use pseudo-coefficients
of discrete series to get formulas for dimensions of the space of automorphic
forms, throw in a Hecke operator to get formulas for the trace of Hecke opera-
tors acting on spaces of modular forms.

5 A case of functoriality

The previous section described an application of the trace formula used in iso-
lation. We computed the geometric side of the trace formula for particular test
functions in order to derive information about the spectrum of the Laplace op-
erator ∆. In this section we will study a comparison of trace formulas. The aim
of this section will be to prove the following.

Let F be a number field with ring of integers OF and let AF denote the ring
of adeles of F . We recall that, AF =

∏′
v Fv with the product taken over all

places v of F and with the prime denoting that AF consists of all tuples (xv)
with xv ∈ Fv for all v and xv ∈ OFv for almost all (non archimedean) v. If G
is an algebraic group over F then we can consider its adelic points G(AF ). We
note that we can identify G(AF ) with

∏′
v G(Fv) with the prime denoting that

we consider tuples (gv) with gv ∈ G(Fv) for all v and gv ∈ G(OFv ) for almost
all v. For a finite set of places S of F we let AS

F denote the ring of adeles away
from S and AF,S =

∏
v∈S Fv. The group G(AF ) has a natural topology coming

from that of AF , a basis of open sets for G(AF ) is given by open sets of the
form

∏
v Uv with Uv open in G(Fv) for all v and with Uv = G(OFv ) for almost

all v.
Let D and D′ be central division algebras of prime degree p (i.e. dimF D =

p2) over a number field D. We assume that D and D′ are ramified at precisely
the same set of places of F which we denote by S; i.e v ∈ S if and only if
Dv = D⊗F Fv and D′v = D′⊗F Fv are division algebras. We let G = D×/Z(D×)
and G′ = D′×/Z(D′×) which we view as algebraic groups over F . If v 6∈ S
we have Dv

∼= D′v
∼= M(p, Fv) we fix an isomorphism αv : Dv

∼−→D′v which
is well defined up to conjugation and which we can assume is defined over
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OFv for almost all v 6∈ S. Patching together the αv gives an isomorphism
α : G(AS

F ) ∼−→G′(AS
F ).

The group G(F ) embeds discretely in G(AS
F ) and G′(F ) embeds discretely

in G′(AS
F ). We let R denote the representation of G(AS

F ) on L2(G(F )\G(AF ))
and R′ denote the representation of G′(AS

F ) on L2(G(F )\G(AS
F )). The goal of

this section is to prove the following Theorem.

Theorem 5.1. With notation as above the representations R and R′ ◦ α of
G(AS

F ) on L2(G(F )\G(AS
F )) and L2(G′(F )\G′(AS

F )) are isomorphic.

We will often choose to identify L2(G(F )\G(AS
F )) with the subspace of

L2(G(F )\G(AF )) which is invariant under G(AF,S) and similarly with G′.
SinceD andD′ are division algebras the quotientsG(F )\G(AF ) andG′(F )\G′(AF )
are compact.

Equivalently, suppose we decompose,

L2(G(F )\G(AF )) =
⊕
π∈Ĝ

mππ

and
L2(G′(F )\G′(AF )) =

⊕
π′∈Ĝ′

mπ′π
′.

Let π be an irreducible admissible representation of G(AF ). We can write
π = ⊗vπv with πv an irreducible admissible representation of G(Fv) which is
unramified for almost all v. Suppose πv is the trivial representation for all
v ∈ S. We define π′ = ⊗vπ′v in the following way. For a place v ∈ S we set
π′v = 1v, the trivial representation of G′(Fv), and for v 6∈ S we transport πv
to a representation π′v of G′(Fv) via the isomorphism G(Fv) ∼= G′(Fv). Then
Theorem 5.1 tells us that mπ = mπ′ .

We note that if p = 2 then if D and D′ are ramified at the same set of
places then D ∼= D′, hence G and G′ are isomorphic over F and the statement
of the Theorem is trivial. If p > 2 then the set of ramification does not uniquely
determine the division algebra.

Here’s a concrete consequence of Theorem 5.1. Suppose F = Q and p > 2
so that the set S does not contain the real place of Q. Let K be a compact
open subgroup of G(A∞Q ) of the form,

K =
∏
p 6∈S

Kp ×
∏
p∈S

G(Qp),

with Kp a compact open subgroup of G(Qp) for all p 6∈ S and with Kp = G(Zp)
for almost all p. We let K ′ denote the corresponding compact open subgroup
of G′(A∞Q ).

By strong approximation G(A) = G(Q)G(R)K and hence,

G(Q)\G(A)/K ∼= Γ\G(R) ∼= Γ\PGL(p,R)
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where Γ = K ∩G(Q) and similarly

G′(Q)\G′(A)/K ′ ∼= Γ′\G′(R) ∼= Γ′\PGL(p,R)

where Γ′ = K ′ ∩ G′(Q). The Theorem tells us that the representations of
PGL(p,R) on

L2(G(Q)\G(A)/K) = L2(G(Q)\G(A))K ∼= L2(Γ\PGL(p,R))

and

L2(G′(Q)\G′(A)/K ′) = L2(G′(Q)\G′(A))K
′ ∼= L2(Γ′\PGL(p,R))

are isomorphic.
Let K∞ be a maximal compact subgroup of G(R) and let K ′∞ denote the

corresponding subgroup of G′(R). We let X = G(R)/K∞ and X ′ = G(R)/K ′∞,
these are symmetric spaces. The spaces Γ\X and Γ\X ′ are compact Riemannian
manifolds. The eigenvalues of the Laplace operator acting on these spaces are
related to the representations appearing in L2(Γ\G(R)) and L2(Γ′\G′(R)) as in
the case of p = 2 discussed in Section 4. Hence as a consequence of the Theorem
we see that these spaces are isospectral, i.e. they have the same eigenvalues for
the Laplace operator, however they won’t (in general) be isomorphic.

How might we prove Theorem 5.1?
The quotients G(F )\G(A) and G′(F )\G′(A) are compact. So if we decom-

pose,
L2(G(F )\G(A)) =

⊕
π∈Ĝ(A)

mππ

then the trace formula tells us that, for f ∈ C∞c (G(A)) (at least if f is the
convolution of two continuous functions of compact support),∑
π∈Ĝ(A)

mπ trπ(f) = trR(f) =
∑

γ∈Γ(G(F ))

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg

and for f ′ ∈ C∞c (G(A)) (at least if f is the convolution of two continuous
functions),∑
π′∈Ĝ′(A)

mπ′ trπ′(f ′) = trR′(f ′) =
∑

γ′∈Γ(G′(F ))

vol(G′γ(F )\G′γ(A))
∫
G′γ(A)\G′(A)

f ′(g−1γ′g) dg.

To ease notation we’ll write,

I(γ, f) =
∫
Gγ(A)\G(A)

f(g−1γg) dg

and
I(γ′, f ′) =

∫
G′γ(A)\G′(A)

f ′(g−1γ′g) dg.
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We want to be able to compare the two geometric sides of the trace formulas
for G and G′. In order to do this we’ll need to write down a bijection,

α : Γ(G(F )) ∼−→Γ(G′(F ))

and a map on functions,

β : C∞c (G(A))→ C∞c (G′(A))

such that for all γ ∈ G(F ) and f ∈ C∞c (G(A)),

vol(Gγ(F )\Gγ(A)) = vol(G′α(γ)(F )\G′α(γ)(A))

and
I(γ, f) = I(α(γ), β(f)).

Then we’ll get, via the trace formula that,∑
π∈Ĝ

mπ trπ(f) = trR(f) = trR′(β(f)) =
∑
π′∈Ĝ′

mπ′ trπ′(β(f)),

out of which we’ll hope to be able to establish Theorem 5.1.
Before we start the proof of Theorem 5.1 we’ll prove the following Theorem

which tells us that an identity of the form trR(f) = trR′(β(f)) is sufficient in
order to be able to extract data about the representations R and R′.

Theorem 5.2. Let G be a topological group and let π1 and π2 be unitary rep-
resentations of G. Assume that π1(f) and π2(f) are Hilbert-Schmidt operators
for all f ∈ Cc(G). For f ∈ Cc(G) let f∗ ∈ Cc(G) be defined by f∗(g) = f(g−1).
Then π2 is isomorphic to a subrepresentation of π1 if and only if,

trπ2(f ∗ f∗) ≤ trπ1(f ∗ f∗)

for all f ∈ Cc(G).

Clearly if π1 is isomorphic to a subrepresentation of π2 then we have such
an inequality. We need to prove the converse. We begin with a Lemma.

Lemma 5.3. Suppose H =
⊕
Hα is a unitary representation of G with each

Hα irreducible. Let xα ∈ Hα be a given vector such that∑
α

‖πα(f)xα‖2

is finite for all f ∈ Cc(G). Let (τ,Hτ ) be an irreducible unitary representation
of G which is not isomorphic to any (πα, Hα). Then for each y ∈ Hτ and any
ε > 0 there exists f ∈ Cc(G) such that,∑

α

‖πi(f)xα‖2 < ε‖τ(f)y‖2.
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Proof. Suppose this is not the case. Then there exists ε > 0 such that for every
f ∈ Cc(G) we have, ⊕

α

‖πi(f)xα‖2 ≥ ε‖τ(f)y‖2.

Let H ′ be closure in H of,

span

{⊕
α

πα(f)xα : f ∈ Cc(G)

}
.

We define a map A′ from H ′ to Hτ by,⊕
α

πα(f)xα 7→ τ(f)y.

We note that this map is well defined (if πα(f)xα = 0 for all α then τ(f)y = 0
by the inequality above) and originally only defined on a dense subset of H ′

but since it is bounded it extends to a map from H ′ to Hτ . Furthermore it is
a G-map and is non-zero. Let A be the map from H to Hτ which is A′ on H ′

and zero on its orthogonal complement. Since each πα is irreducible and not
isomorphic to τ so A|Hα must be zero for each α yielding a contradiction.

Proof of Theorem 5.2. We now prove the Theorem. Since πi(f) is Hilbert-
Schmidt for all f ∈ Cc(G) we can write,

π1 =
⊕
α

π1,α π2 =
⊕
β

π2,β .

(One can apply the same proof as in Theorem 3.16 which proved that L2(Γ\G)
decomposes discretely when the quotient Γ\G is compact.) It suffices to prove
the Theorem when no π2,β is isomorphic to a π1,α in which case we need to show
that π2 is zero. Equivalently we may as well assume that π2 is irreducible and
derive a contradiction. We choose a function h ∈ Cc(G) such that π2(h) is non-
zero and set f = h ∗ h∗. Then π2(f) = π2(h)π2(h)∗ is a non-zero compact self
adjoint map π2 → π2 and so has only non-negative eigenvalues. After scaling
we may as well assume that the largest eigenvalue is 1; cf Proposition 3.13. We
choose a unit vector x0 ∈ π2 such that π2(f)x0 = x0. On the other hand π1(f)
is also a compact self-adjoint map and we let λ denote the largest eigenvalue of
it. Since trπ1(f) ≥ trπ2(f) we have λ > 0. For each α let {xα,γ} be a basis of
eigenvectors for π1,α(f). Then we have,∑

α,γ

‖π1(f ′)xα,γ‖2 <∞.

for all f ′ ∈ Cc(G). We apply the previous Lemma to the representation ⊕α,γπα
to deduce the existence of f1 ∈ Cc(G) such that,∑

α,γ

‖π1,α(f1)xα,γ‖2 <
1

2λ2
‖π2(f1)x0‖2.
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Now we compute

tr(π1(f1 ∗ f)π1(f1 ∗ f)∗) = tr(π1(f1 ∗ f) ∗ (f1 ∗ f)∗).

This can be computed as,∑
α,γ

‖π1,α(f1)π1,α(f)xα,γ |‖2 ≤ λ2
∑
α,γ

‖π1,α(f1)xα,γ‖2

<
1
2
‖π2(f1)x0‖2

=
1
2
‖π2(f1)π2(f)x0‖2

=
1
2
‖π2(f1 ∗ f)x0‖2

≤ 1
2

tr(π2(f1 ∗ f)π2(f1 ∗ f)∗).

Hence we have,

tr(π1(f1 ∗ f)π1(f1 ∗ f)∗) ≤ 1
2

tr(π2(f1 ∗ f)π2(f1 ∗ f)),

which yields a contradiction.

Corollary 5.4. Let G be a topological group and let π1 and π2 be unitary
representations of G as in Theorem 5.2. Then π1 and π2 are isomorphic if and
only if,

trπ1(f ∗ f∗) = trπ2(f ∗ f∗)

for all f ∈ Cc(G).

5.1 Central simple algebras

The goal of this section will be, in the setting of the previous section, to describe
a bijection Γ(G(F ))↔ Γ(G′(F )). For more details including proofs see [Mil08,
Chapter IV].

Definition 5.5. A simple algebra over a field F is a finite dimensional F -
algebra A which contains no non-trivial two sided ideals. A is called central if
Z(D) = F .

For us F will either be a number field or a local field. The obvious example
of a central simple algebra is Mn(F ) the algebra of n×n matrices over F . More
generally one can take a division algebra D over F with Z(D) = F and consider
Mn(D). In fact any central simple algebra over F is isomorphic to Mn(D) for
some integer n and a division algebra D. (Take a minimal left ideal S of A and
consider the map A 7→ EndF (S). Let D be the centralizer of A in EndF (S).
The centralizer of D in EndF (S) is A, i.e. A = EndD(S). Schur’s lemma implies
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that D is a division algebra and therefore S is a free D-module, say S ∼= Dn,
hence A ∼= EndD(S) ∼= Mn(Dopp).)

Let D be a central simple algebra over F , the degree of D is defined as√
dimF D. Note that D ⊗F F is a central simple algebra over F and hence

isomorphic to Mn(F ) for some n. Thus,

dimF D = dimF D ⊗F F = dimF Mn(F ) = n2

hence the degree is an integer.
We recall,

Theorem 5.6. (Skolem-Noether theorem) Let f, g : A→ B be homomorphisms
from an F -algebra A to an F -algebra B. If A is simple and B is central simple
then there exists an invertible element b ∈ B such that f(a) = bg(a)b−1 for all
a ∈ A.

Proof. First consider the case that B = Mn(F ). Using f and g we may consider
Fn as an A-module in two ways. Any two modules over A of the same dimension
are isomorphic, but an isomorphism Fn → Fn is simply an invertible element of
Mn(F ). In general consider the induced maps, f ⊗ 1 and g⊗ 1 from A⊗F Bopp
to B ⊗F Bopp. Then B ⊗F Bopp is a matrix algebra. Hence from the first part
of the proof f ⊗ 1 and g⊗ 1 are conjugate by an element of b ∈ B⊗F Bopp from
which it follows that f and g are conjugate in B.s

We recall the definition of the Brauer group Br(F ). Let A and B be cental
simple algebras over F . We define an equivalence relation on central simple
algebras by A ∼ B if and only if there exist integers m and n such that A ⊗F
Mn(F ) ∼= B ⊗F Mm(F ) for some integers m and n. For equivalence classes [A]
and [B] we define,

[A].[B] = [A⊗F B].

We note that [A]−1 = [Aopp], where Aopp is the algebra with the same underlying
set as A but with the multiplication reversed. We note that the class [Mn(F )]
(for any n) is the identity in Br(F ).

We recall that the Brauer group has a natural interpretation in terms of
Galois cohomology. We have A⊗F F ∼= M(n, F ). Having fixed such an isomor-
phism we have two actions of the absolute Galois group Gal(F/F ) on M(F, F )
coming from the two Galois actions. By the Skolem-Noether theorem these
two actions differ by conjugation. Thus for each σ ∈ Gal(F/F ) there exists
gσ ∈ GL(n, F ) such that,

σA(g) = gσσ(g)g−1
σ

for all g ∈ M(n, F ), where σA denotes the action on M(n, F ) coming from the
isomorphism. In this way we get a well defined element (gσ) ∈ H1(F,PGL(n)).
The short exact sequence,

1→ GL(1)→ GL(n)→ PGL(n)→ 1
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gives a map H1(F,PGL(n, F )) → H2(F, F
×

). This gives an identification of
the Brauer group Br(F ) with H2(F, F

×
).

For a local field F we have,

Br(F ) ∼=

 Q/Z, if F is non-archimedean;
1
2Z/Z, if F = R;
Z/Z, if F = C.

Suppose F is a non-archimedean local field and D is a central simple algebra of
degree n. Then in Br(F ), [A] = c

n for some c with 0 ≤ c ≤ n − 1. We write
c
n = d

e in lowest terms with n = ef . Then A ∼= Mf (∆) with ∆ a central division
algebra of rank d. Hence, up to isomorphism, there are ϕ(n) non-isomorphic
central division algebras of rank n over F . If F = R the non-trivial element of
Br(R) is the usual Hamilton quaternion algebra.

If F is a number field then the Brauer group of F fits into a short exact
sequence,

0→ Br(F )→
⊕
v

Br(Fv)→ Q/Z→ 0.

The first map comes from the maps,

Br(F )→ Br(Fv) : [A] 7→ [A⊗F Fv]

for each place v of F and the second is given by summation inside Q/Z.
Suppose now D is a central division algebra over F . If we take γ ∈ D then

F [γ] is a field extension of F (it’s an integral domain of finite degree over F ). In
order to understand conjugacy classes in D× we need to understand which fields
embed in D. First we note that if D is a central simple algebra of degree n over
F then if L ↪→ D then [L : F ] divides n. This is a general fact, however we’re
only interested in the case that n = p is prime. In this case it’s obvious, since
D is a vector space over L that [L : F ] must divide p2. But if [L : F ] = p2 then
D = L which is commutative and hence Z(D) = L yielding a contradiction.

Lemma 5.7. Let L/F be an extension of degree n which embeds in a central
simple algebra D of degree n over F . Then the centralizer of L in D is equal to
L.

Proof. If we let C(L) denote the centralizer of L then we have,

n2 = [D : F ] = [L : F ][C(L) : F ] = n[C(L) : F ]

by [Mil08, Chapter IV, Theorem 3.1]. Hence [C(L) : F ] = n and since C(L) ⊃ L
so we must have C(L) = L.

Theorem 5.8. Let D be a central division algebra over F of degree n. Then
an extension L of degree n over F embeds in D if and only if D splits over L
(i.e. D ⊗F L ∼= Mn(L)).

Proof. See [Mil08, Chapter IV, Corollary 3.7].
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Theorem 5.9. Let A be a central simple algebra over a number field F of
degree n. Then an extension L/F of degree n embeds in A if and only if Lv =
L⊗F Fv ↪→ Av for all places v of F .

Proof. Use the injectivity of Br(F ) ↪→
⊕

v Br(Fv) together with Theorem 5.8
applied to F and Fv.

Theorem 5.10. Let A be a central simple algebra over a local field F of degree
n. Then every field extension L/F of degree n embeds in D.

Proof. We may as well assume that F is p-adic. Under the identification of
Br(F ) and Br(L) with Q/Z the map Br(F ) 7→ Br(L) : [A] 7→ [A ⊗F L] is
multiplication by n. Since the class of a central simple algebra of degree n over
F in Br(F ) is of the form a

n it follows that [A] lies in the kernel of this map.

Suppose now D is a division algebra of prime degree p over a number field
F . Let S denote the set of places where D is ramified, i.e. the places v of F such
that Dv is a division algebra. Let L be an extension of degree p over F . Then
L ↪→ D if and only if Lv ↪→ Dv for all v by the previous Theorem. Clearly if
v 6∈ S then Dv

∼= M(p, Fv) and Lv ↪→ Dv. On the other hand if v ∈ S then Dv

is a division algebra and Lv =
∏
w|v Lw embeds in Dv if and only if Lv is a field.

Thus, an extension L of degree p over F embeds in D if and only if the extension
is inert at all places of F in S. Let X(S, p) denote a set of representatives for
the isomorphism classes of field extensions of F which are of degree p and inert
at the places inside S.

Let γ be a non-zero element of D. Then γ is invertible and generates a
subfield F [γ] of D. If γ is non-central then the extension F [γ] will be of degree
p. Suppose now that L ∈ X(S, p) so L is an extension of F of degree p which
embeds in D. Then any two embeddings of L into D differ by conjugation by
an element of D× by the Noether-Skolem Theorem (Theorem 5.6). Hence each
non-zero γ ∈ L gives a well defined conjugacy class in D×. Furthermore two
elements γ1, γ2 ∈ L yield the same conjugacy class in D× if and only if there
is an automorphism of L over F mapping γ1 to γ2. Thus we get a well defined
bijection,∐
L∈X(S,p)

{L\F modulo F -automorphisms} ←→ { conjugacy classes of non-central elements in D× }.

Of course,

F× ←→ { conjugacy classes of central elements in D× }.

Suppose now that D and D′ are division algebras of prime degree p over F
which ramify at the same set of places S of F . Then we have a well defined
bijection,

β : Γ(D×)←→ Γ(D′×).

Given an element γ ∈ D× we consider the field extension F [γ] of F . We pick
an embedding ι : F [γ] ↪→ D′. Then β(γ) is defined to be the conjugacy class of
ι(γ). This is well defined.
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For each place v 6∈ S we have Dv
∼= D′v

∼= M(p, Fv). We fix an isomorphism
αv : Dv

∼−→D′v which is unique up to conjugation by the Skolem-Noether theo-
rem. Patching the αv together gives us an isomorphism α : D(AS

F ) ∼−→D′(AS
F ).

Suppose that γ ∈ D× then we obtain a conjugacy class β(γ) in D′×.

Lemma 5.11. Let γ ∈ D×. Then α(γ) ∈ D′×(AS
F ) is conjugate in D′×(AS

F )
to β(γ).

Proof. By the Skolem-Noether theorem we see that α(γ) and β(γ) when viewed
as elements of D′×(AS

F ) are conjugate under
∏
v 6∈S D

′×(Fv). In order to deduce
that they are actually conjugate in D′ × (AS

F ) one can use [Kot86, Proposition
7.2] which applies for almost all v 6∈ S.

5.2 Facts about reductive groups

Let F be a field and G/F a reductive algebraic group over F . (G is reductive if
the unipotent radicalRu(G), the maximal connected unipotent normal subgroup
of G, is trivial.) For an algebraic group G we let X(G) denote the group of
characters of G, i.e. homomorphisms of algebraic groups χ : G → GL(1). Let
X(G)F denote the group of characters defined over F .

Definition 5.12. Let T be a torus defined over F . We say that T is F -
anisotropic if X(T )F = {0}, i.e. the only character of T defined over F is
the trivial character. Let G be a reductive algebraic group over F . We say
G is F -anisotropic over if every (maximal) torus in G defined over F is F -
anisotropic.

We note that if G is F -anisotropic then G(F ) contains only semisimple
elements.

Lemma 5.13. Let D be a central division algebra over F . The group G =
D×/Z(D×) is F -anisotropic.

Proof. Let n denote the degree of D. The maximal tori in D× correspond to the
degree n field extensions L of F which embed in D. Let L be a field extension
of F of degree n and let T be the corresponding torus. Then,

T (F ) = (L⊗F F )× ∼=
∏
σ∈X

F
×

with the product taken over the embeddings σ : L ↪→ F over F . The action of
Gal(F/F ) is by permuting the factors, i.e. if τ ∈ Gal(F/F ) and (xσ) ∈

∏
σ F
×

then τ(xσ) = (xτσ). The characters of T (F ) are of the form,

(xσ) 7→
∏
σ

xnσσ

with nσ ∈ Z. The characters of T defined over F are precisely those which are
left invariant under Gal(F/F ). Since the absolute Galois group permutes the
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F
×

factors we see that such a character is defined over F if and only if nσ = n
for all σ.

We now consider the group G = D×/Z(D×) the maximal tori are of the
form L×/F× with L/F a field extension of degree n. Then we have,

T (F ) ∼=
∏
σ∈X

F
×
/∆F

×

where ∆F
×

denotes the image of F
×

diagonally embedded in the product.
We note that the characters of T (F ) are as before with the condition that∑
σ∈X nσ = 0. Hence we see that the only character defined over F is the

trivial character.

Suppose now F is a local field. Let G be an algebraic group over F . The
group of F -points G(F ) inherits a topology from that of F . One can realize G
as a closed subgroup of GL(n) and then G(F ) inherits the topology from that
of GL(n, F ).

Theorem 5.14. ([PR94, Theorem 3.1]) Let F be a local field and G a reductive
algebraic group defined over F . Then G(F ) is compact if and only if G is F -
anisotropic.

We leave the proof to the cited reference. We give the following example of
an anisotropic group. Let D be a division algebra of degree 2 over a local field
F . We can realize D in the following way. Let E/F be a quadratic extension
and let ε ∈ F× \NE/FE×. Then,

D ∼=
{(

α εβ
β̄ ᾱ

)
: α, β ∈ E

}
.

One can then readily check that the group G = D×/Z(D×) is compact.
Suppose now F is a number field. Let G be an algebraic group over F . The

adelic points of G, G(AF ) inherits a topology from that of AF . The group
G(AF ) is a locally compact topological group and hence has a Haar measure,
if G is reductive then G(AF ) is unimodular. The group of F -rational points
G(F ) embeds discretely in G(AF ) and so the quotient G(F )\G(AF ) possesses
a right G(AF ) invariant measure, unique up to scaling.

Theorem 5.15. ([PR94, Theorem 5.5]) Let F be a number field and G a re-
ductive algebraic group defined over F . Then G(F )\G(AF ) is compact if and
only if G is F -anisotropic and G(F )\G(AF ) has finite volume if and only if the
center of G is F -anisotropic.

We leave the proof to the cited reference which relies on reduction theory to
construct a fundamental domain for G(F )\G(AF ). When G = GL(2) we will
touch on this later in the term.
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In general if G is reductive and K is a compact open subgroup of G(AF,fin)
then

G(AF ) =
k∐
i=1

G(F )xiKG(AF,∞)

with xi ∈ G(AF,fin) and k < ∞; see [PR94, Theorem 5.1]. (When G = GL(1)
this is equivalent to the statement that the class group of F is finite.) Hence,
projection onto G(AF,∞) yields a homeomorphism,

G(F )\G(AF ) =
∐
i=1

Γi\G(AF,∞)

where Γi = G(F ) ∩ xiKx−1
i . Hence G(F )\G(AF ) is compact if and only if

Γi\G(AF,∞) is compact for all i. If G is F -anisotropic then G(F ) contains only
semisimple elements. In the case of G = SL(2) we showed (Lemma 4.4) that a
finite volume quotient Γ\ SL(2,R) is compact if and only if Γ doesn’t contain
parabolic (i.e. unipotent) elements.

5.3 Comparison of trace formulas

We now fix a number field F and denote by A the ring of adeles of F . Again
we take D and D′ to be division algebras of prime degree p over a number
field F such that S = Ram(D) = Ram(D′). We let G = D×/Z(D×) and G′ =
D′×/Z(D′×) which we view as algebraic groups over F . For each v 6∈ S we fix an
isomorphism αv : Dv

∼−→D′v which is unique up to conjugation by the Skolem-
Noether theorem. This clearly yields an isomorphism αv : G(Fv)

∼−→G′(Fv)
which we denote with the same notation. Furthermore we can ensure, after
conjugating the map αv, that for almost all v the map αv maps G(OFv ) into
G′(OFv ). Thus taking together all the αv we get an isomorphism,

α : G(AS) ∼−→G′(AS)

which is well defined up to conjugation.
The trace formula involves choices of measures. For each place v 6∈ S we fix

a Haar measure dgv on G(Fv) and transport it to a measure on G′(Fv) via the
isomorphism αv : G(Fv) → G′(Fv). We assume that the measures are chosen
so that G(OFv ) is given volume one for almost all v. At the places inside S
we take the Haar measures on G(Fv) and G′(Fv) to give these groups volumes
one (which is okay since by Theorem 5.14 they are compact). We take the
product of these measures to give the Haar measures on G(A) and G′(A). Let
γ ∈ G(F ). In writing down the trace formula we also need to choose measures
on Gγ(AF ). If γ = e then Gγ = G and we have already chosen our measures. If
γ ∈ G(F ) is non-trivial then F [γ] is an extension of F of degree p inside D and
Gγ = F [γ]×/F× by Lemma 5.7. We fix a Haar measure on Gγ(A). We recall
that β(γ) is defined up to conjugacy by picking an embedding F [γ] ↪→ D′ which
gives an isomorphism Gγ ∼= Gβ(γ) defined over F . We use this to transport the
measure on Gγ to one on Gβ(γ). With this choice we have,

vol(Gγ(F )\Gγ(A)) = vol(G′β(γ)(F )\G′β(γ)(A)).
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We denote by R the representation of G(A) on L2(G(F )\G(A)) and by R′

the representation of G′(A) on L2(G′(F )\G′(A)). Let f ∈ C∞c (G(AS)). We
view f as a function on G(A) by composing f with the projection G(A) →
G(AS). We note that since G(AS) is compact so f , as a function on G(A), is
still compactly supported.

Theorem 5.16. For all f ∈ C∞c (G(AS)),

trR(f) = tr(R′ ◦ α)(f).

Proof. We note that tr(R′ ◦ α)(f) = trR′(f ◦ α−1).
By the trace formula,

trR(f) = vol(G(F )\G(A))f(e) +
∑

γ∈Γ(G(F )),γ 6=e

vol(Gγ(F )\Gγ(A))I(γ, f)

and

trR′(f ′) = vol(G′(F )\G′(A))f ′(e′)+
∑

γ′∈Γ(G′(F )),γ′ 6=e′
vol(G′γ(F )\G′γ(A))I(γ′, f ′)

We note that for f ∈ C∞c (G(AS)),

I(γ, f) =
∏
v∈S

vol(Gγ(Fv)\G(Fv))
∫
Gγ(AS)\G(AS)

f(g−1γg) dg.

We recall the bijection,

β : Γ(G(F )) ∼−→Γ(G′(F )).

Let γ ∈ G(F ) be a non-identity element. Then β(γ) is conjugate in G′(AS
F ) to

α(γ), hence with our choice of measures,∫
Gγ(AS)\G(AS)

f(g−1γg) dg =
∫
G′
α(γ)(A

S)\G′(AS)

f ◦ α−1(g−1α(γ)g) dg

=
∫
G′
β(γ)(A

S)\G′(AS)

f ◦ α−1(g−1β(γ)g) dg,

the second equality coming from Lemma 5.11. We also have,∏
v∈S

vol(Gγ(Fv)\G(Fv)) =
∏
v∈S

vol(G′γ(Fv)\G′(Fv)).

Thus for all γ ∈ Γ(G(F )), I(γ, f) = I(β(γ), f ◦ α−1).
As discussed above if γ is a non-trivial element of G(F ) then,

vol(Gγ(F )\Gγ(A)) = vol(G′β(γ)(F )\G′β(γ)(A)).
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Hence we see that,

trR(f)− trR′(f ◦ α−1) = (vol(G(F )\G(A))− vol(G′(F )\G′(A))) f(e).

It remains to show that,

vol(G(F )\G(A)) = vol(G′(F )\G′(A)).

We note that this equality is not clear since the groups G and G′ are not
isomorphic over F .

The identity above can be written in the form,∑
π∈Ĝ(A)

nπ trπ(f) = (vol(G(F )\G(A))− vol(G′(F )\G′(A))) f(e)

with nπ ∈ Z. Fix a place u 6∈ S (either p-adic or archimedean) and functions
fv ∈ C∞c (G(Fv)) for v 6= S ∪ {u} with fv(e) 6= 0 and fv = 1G(OFv ) for almost
all v. Taking f = fu

∏
v 6=u fv we can then treat this identity as an identity of

distributions on G(Fu). The identity above is of the form,∑
πu∈Ĝ(Fu)

cπu trπu(fu) = Cfu(e)

for some constant C. The Plancherel formula gives an explicit expression for
fu(e) as a sum of integrals of trπu(fu) for πu tempered against a continuous
measure. For example in the case of SL(2,R) and f ∈ C∞c (SL(2,R)//SO(2))
we have from Theorem 4.25 and Lemma 4.27

f

(
1 0
0 1

)
=

1
4π

∫ ∞
−∞

trπ2ui(f)u tanh(πu) du.

An argument of Langlands then concludes that C = 0. Hence vol(G(F )\G(A)) =
vol(G′(F )\G′(A)) and trR(f) = tr(R′ ◦ α)(f) for all f ∈ C∞c (G(AS))..

Applying Corollary 5.4 yields,

Corollary 5.17. The representations of G(A) on L2(G(F )G(AS)\G(A)) and
L2(G′(F )G′(AS)\G′(A)) are isomorphic.

As a consequence of the proof of Theorem 5.16,

Corollary 5.18. vol(G(F )\G(A)) = vol(G′(F )\G′(A)).

Remarks:
1. One could relax the condition that the division algebras be of prime

degree. Instead one could work with division algebras D and D′ of composite
degree n. One would then need to demand that at any place where the division
algebras are not isomorphic that they both be division algebras. One could also
allow a central character.
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2. In fact Corollary 5.18 is true in great generality. Kottwitz [Kot88] proved,
via the trace formula, that if G and G′ are inner forms then with respect to the
Tamagawa measure vol(G(F )\G(AF )) = vol(G′(F )\G′(AF )).

3. Extend Corollary 5.17 to a correspondence between full automorphic
spectra. The result above applies to automorphic representations π = ⊗πv of
G(A) such that πv is the trivial representation of G(Fv) for all v ∈ S. We
established a correspondence between conjugacy classes,

β : Γ(G(F )) ∼−→Γ(G′(F )).

In order to match up the trace formulas one needed to establish a map,

δ : C∞c (G(A))→ C∞c (G′(A))

such that,
I(γ, f) = I(β(γ), δ(f)).

We could handle this for functions f ∈ C∞c (AS)) by using the isomorphism α :
G(AS)→ G′(AS). In order to obtain a correspondence between all automorphic
representations one would need to extend this map to all of C∞c (G(A)). However
this is now a more delicate issue at the places outside of S the groups G(Fv)
and G′(Fv) are not isomorphic.

4. Extend to a correspondence between all inner forms of GL(n). We took D
and D′ to be division algebras in order to ensure that the quotients G(F )\G(A)
and G′(F )\G′(A) were compact so we could apply the trace formula we have
developed above. However it would be natural to consider any central simple
algebra of degree p. Note that if we have D and D′ two central simple algebras
of degree p then we have an injection,

Γ(D×) ↪→ Γ(D′×)

if and only if Ram(D′) ⊂ Ram(D). In particular if we take D′ = M(p, F ) so
that D× = GL(p) then

Γ(D×) ↪→ Γ(GL(p))

The quotient PGL(p, F )\PGL(p,AF ) is no longer compact although it does
have finite volume by Theorem 5.15.

6 Problems when Γ\G is not compact

Suppose we take G to be a unimodular topological group and Γ a discrete
subgroup of G. As before the quotient Γ\G possesses a (unique up to scaling)
right G invariant measure and we can consider the space L2(Γ\G) of square
integrable functions on the quotient. This space admits a representation R of
G by right translation and one of Cc(G) by,

(R(f)ϕ)(x) =
∫
G

f(y)ϕ(xy) dy.
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This is an integral operator with kernel,

Kf (x, y) =
∑
γ∈Γ

f(x−1γy) ∈ C(Γ\G× Γ\G).

In the case that the quotient Γ\G is compact we showed that R(f) is Hilbert-
Schmidt and hence if f = f1∗f2 then R(f) = R(f1)R(f2), being the composition
of two Hilbert-Schmidt operators, is of trace class and

trR(f) =
∫

Γ\G
Kf (x, x) dx.

Interchanging summation and integration gave us the geometric side of the trace
formula,

trR(f) =
∑
γ∈{Γ}

vol(Γγ\Gγ)
∫
Gγ\G

f(g−1γg) dg.

We then used the fact that the operators R(f) are Hilbert-Schmidt, and hence
compact, to prove that as a representation of G the space L2(Γ\G) decomposed
into a (Hilbert space) direct sum of irreducible representations each appearing
with finite multiplicities (Theorem 3.16). This gave us the spectral side of the
trace formula,

trR(f) =
∑
π∈Ĝ

mπ trπ(f).

Now, R(f) is Hilbert-Schmidt if and only if,

Kf (x, y) ∈ L2(Γ\G× Γ\G).

Of course if Γ\G is compact then this is automatic since we know that Kf (x, y)
is continuous. However if Γ\G is not compact then this need not be the case.

How do this lack of compactness manifest itself in the trace formula?
On the spectral side of the trace formula the fact that the operators R(f)

are Hilbert-Schmidt allowed us to prove that L2(Γ\G) decomposed as a (Hilbert
space) direct sum of irreducible representations. This will no longer be the case
if the quotient is not compact. For example consider the case that G = R.
If we take Γ = Z then the theory of Fourier series tells us that any function
f ∈ L2(Z\R) can be written uniquely as,

f(x) =
∑
n∈Z

f̂(n)e2πinx.

Hence as a representation of R we have,

L2(Z\R) =
⊕
n∈Z

Ce2πinx.

On the other hand if Γ = {0} then the theory of the Fourier transform tells us
that each f ∈ L2(R) can be written as,

f(x) =
1

2π

∫
R

f̂(y)eiyx dy.
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Hence as a representation of R the space L2(R) is a direct integral of the
irreducible unitary characters x 7→ eiyx of R.

What goes wrong on the geometric side of the trace formula? Suppose now
we work with G = PGL(2)/Q. In this case the quotient PGL(2,Q)\PGL(2,A)
is not compact although does have finite volume by Theorem 5.15. The geo-
metric side of the trace formula in the compact case would give us,∑

γ∈Γ(G(Q))

vol(Gγ(Q)\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg.

Which of this terms no longer converge? If G were anisotropic over Q then every
element in G(Q) would lie in a Q-anisotropic torus. In PGL(2,Q) we have two
types of element which are not present in the anisotropic case. Namely, diagonal
elements, (

a 0
0 b

)
which lie in a split torus, and unipotent elements,(

1 x
0 1

)
.

In the first case if we take,

γ =
(
a 0
0 b

)
with a 6= b, then

Gγ =
{(

α 0
0 β

)}
.

Hence,
vol(Gγ(Q)\Gγ(A)) = vol(Q×\A×) =∞.

On the other hand suppose we take a unipotent element,

γ =
(

1 x
0 1

)
with x 6= 0. Then,

Gγ =
{(

1 α
0 1

)}
.

Since the quotient Q\A is compact so vol(Gγ(Q)\Gγ(A)) < ∞. On the other
hand suppose we take f =

∏
v fv ∈ C∞c (G(A)) then,∫

Gγ(A)\G(A)

f(g−1γg) dg =
∏
v

∫
Gγ(Qv)\G(Qv)

fv(g−1
v γgv) dgv.

For almost all finite p we have fp = 1PGL(2,Zp). The Iwasawa decomposition
gives us

PGL(2,Qp) = N(Qp)M(Qp) PGL(2,Zp)
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where,

N =
{(

1 α
0 1

)}
and

M =
{(

β 0
0 1

)}
.

Using this decomposition we can write the Haar measure on PGL(2,Qp) as

dg = |β|−1dα d×β dk

where dα denotes an additive Haar measure on Qp, d×β a multiplicative Haar
measure on Q×p and dk a Haar measure on the compact group PGL(2,Zp). Now
we have,∫
Gγ(Qp)\G(Qp)

fp(g−1
p γgp) dgp =

∫
PGL(2,Zp)

∫
Q×p

fp

(
k−1

(
β−1 0

0 1

)
γ

(
β 0
0 1

)
k

)
|β|−1 d×β dk.

If we take fp = 1PGL(2,Zp) then this integral is equal to,∫
Q×p

1PGL(2,Zp)

(
1 β−1x
0 1

)
|β|−1 d×β.

For almost all p we have x will lie in Z×p and hence this integral becomes∫
β−1∈Zp

|β−1| d×β = 1 +
1
p

+
1
p2

+ . . . =
1

1− p−1
.

Thus we have,∫
Gγ(A)\G(A)

f(g−1γg) dg = C(f)
∏
p

1
1− p−1

=∞.

Thus elements of PGL(2,Q) which lie in the Borel subgroup give us divergent
terms in the trace formula, in the case of semisimple elements we get infinite
volumes and in the case of unipotent elements we get infinite orbital integrals.

How to rectify this? We’ll work with G = PGL(2) over a number field F and
consider the quotient G(F )\G(A) which has finite volume. We consider again
L2(G(F )\G(A)). We define the space of cuspidal functions L2

cusp(G(F )\G(A))
to be those functions ϕ ∈ L2(G(F )\G(A)) such that,∫

F\A
ϕ

((
1 x
0 1

)
g

)
dx = 0

for (almost) all g ∈ G(A). We note that L2
cusp(G(F )\G(A)) is a closed G(A)-

invariant subspace of L2(G(F )\G(A)). Thus we will have an orthogonal de-
composition,

L2(G(F )\G(A)) = L2
cusp(G(F )\G(A))⊕ L2

Eis(G(F )\G(A)).
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We will see that if f ∈ C∞(G(A)) then the restriction ofR(f) to L2
cusp(G(F )\G(A))

is Hilbert-Schmidt and hence that,

L2
cusp(G(F )\G(A)) =

⊕
π∈Ĝ(A)

mππ

with mπ <∞ (in fact mπ ∈ {0, 1}). On the other hand the theory of Eisenstein
series gives an explicit decomposition for L2

Eis(G(F )\G(A)) in terms of contin-
uous integrals involving Eisenstein series. We shall see that for f ∈ C∞c (G(A))
the kernel has a spectral expansion,

Kf (x, y) = Kf,cusp(x, y) +Kf,Eis(x, y)

which describes the action of R(f) on L2
cusp(G(F )\G(A)) and L2

Eis(G(F )\G(A))
respectively.

One way is to write down a trace formula is to restrict the choice of test func-
tions f . One can consider functions f which avoid the problems on the geometric
side, by being supported on the regular elliptic elements, and on the spectral
side by killing the Eisenstein series. Suppose we take f =

∏
v fv ∈ C∞c (G(A))

such that fv1 is the matrix coefficient of some supercuspdial representation of
G(Fv1) and fv2 is supported on the elliptic regular elements in G(Fv2). In this
case the image of R(f) will lie in L2

cusp(G(F )\G(A)) and hence will be of trace
class. One can then compute the trace of R(f) and one will obtain the following
trace formula,

trR(f) =
∑

π cuspidal

mπ trπ(f).

and

trR(f) =
∑

γ∈Γ(G(F )),ell. reg.

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg

This simple trace formula has many applications, for example to obtaining cases
of functoriality, however it’s clear that one will be losing information. For
example one will always kill representations which are everywhere unramified.
In particular this simple trace formula will be of no use in trying to establish
Weyl’s law, say for SL(2,Z)\H.

Following Arthur we will consider a truncation of the kernel KT
f (x, y) de-

pending on a truncation parameter T � 0 such that,

JT (f) =
∫
G(F )\G(A)

KT
f (x, x) dx

is absolutely integrable. Of course this integral no longer represents the trace
of anything. However, the truncation we define will not affect the cuspidal part
of the kernel and so,

JT (f) = trRcusp(f) +
∫
G(F )\G(A)

KT
f,Eis(x, x) dx,
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where, Rcusp(f) denotes the restriction of R(f) to L2
cusp(G(F )\G(A)).

Similarly using the geometric expansion for Kf (x, y) we will obtain a geo-
metric expansion for∫

G(F )\G(A)

KT
f (x, x) dx =

∑
o∈O

JTo (f).

Here the sum is over equivalence classes O of elements γ ∈ G(F ) defined in the
following way. Given γ1, γ2 ∈ G(F ) we write γ1 = γ1,sγ1,u and γ2 = γ2,sγ2,u in
their Jordan decompositions. We define an equivalence relation by γ1 ∼ γ2 if
and only if γ1,s and γ2,s are conjugate. The terms JTo (f) will involve weighted
orbital integrals. By analogy with the spectral side of the trace formula some
terms will be untouched by the truncation. Suppose γ ∈ G(F ) is a regular
elliptic element then the equivalence class of γ is the same as its conjugacy class
and,

JTo (f) = vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg.

On the geometric side the truncation will affect only those elements which are
conjugate to elements in the Borel subgroup.

Thus the trace formula we will develop will have an expansion of the form,

Jell(f) + JTpar(f) = JT (f) = Jcusp(f) + JTEis(f).

Where Jell(f) looks like the geometric side of the trace formula for compact quo-
tient, and Jcusp(f) looks like the spectral side of the trace formula for compact
quotient. If one wishes this can be written as,

Jcusp(f) = Jell(f) + JTpar(f)− JTEis(f),

which computes the trace of R(f) on L2
cusp(G(F )\G(A)), although now the

right hand side contains both geometric and spectral terms.

7 Geometric side of the trace formula for GL(2)

The main references for this section are [GJ79] and [Gel96].
We fix the following notation throughout this section. We take F to be a

number field with ring of adeles A. We set G = GL(2) which we view as an
algebraic group over F . We define the following F -subgroups of G,

Z =
{(

a 0
0 a

)}
, B =

{(
a b
0 d

)}
, M =

{(
a 0
0 d

)}
, N =

{(
1 b
0 1

)}
.

For each place v of F we fix a maximal compact subgroup Kv of GL(2, Fv). For
v p-adic we take,

Kv = GL(2,OFv )
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where OFv denotes the ring of integers in Fv. For v real we set,

Kv = O(2)

and for v complex we take,
Kv = U(2).

We set,
K =

∏
v

Kv ⊂ G(A).

The Iwasawa decomposition gives us,

G(A) = B(A)K.

The Bruhat decomposition gives us,

G = B qBwB

where,

w =
(

0 1
−1 0

)
.

For x = (xv) ∈ A× we define,

|x| =
∏
v

|xv|v.

The local | |v are normalized in the usual way so that,

|x| =
∏
v

|x|v = 1

for any x ∈ F×. We let,

A1 =
{
x ∈ A× : |x| = 1

}
.

7.1 Geometry of G(F )\G(A)

We define, HM : M(A)→ R by,

HM

(
a 0
0 d

)
= log |ad−1|.

We extend HM to a map H : G(A) → R by using the Iwasawa decomposition
G(A) = N(A)M(A)K and defining,

H(nmk) = HM (m).

We note that
H(g) =

∑
v

Hv(gv)
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where Hv denotes the corresponding height function on G(Fv).
It’s perhaps worth illustrating what this map does for elements in G(R).

Suppose g ∈ G(R) and we write

g =
(
z 0
0 z

)(
a b
0 1

)
k

with b ∈ B(R) with det b > 0. Recalling that G(R) acts onH then g(i) = b+|a|i
and H(g) = log |a| is the logarithm of the height of g(i) above the x-axis. (More
correctly on H ∪ H−, the union of the upper and lower half planes, but after
modding out by complex conjugation we get an action of G(R) on H.)

We now introduce the notion of a Siegel domain which will play the role of
a fundamental domain for G(F )\G(A). We write elements g ∈ G(A) in the
following way using the Iwasawa decomposition,

g = znhtmak

with z ∈ Z(A), n ∈ N(A), ht = (ht,v) ∈M(A) such that,

ht,v =
(

1 0
0 1

)
for each finite v, and

ht,v =
(
et 0
0 e−t

)
at each infinite place v,

ma =
(
a 0
0 1

)
with a ∈ A1 and k ∈ K.

Let C1 be a compact subset of N(A) and let C2 be a compact subset of A1.
Given c > 0 we define a Siegel set Sc to be the set of all g ∈ G(A) of the form

g = znhtmak

as above, with n ∈ C1, a ∈ C2, and t > c
2 . Note that,

Sc ⊂ {g ∈ GL(2,A) : H(g) > c}.

Theorem 7.1. ([Gel96, Lecture II, Facts 1 & 2]) For any c > 0, Sc ∩ γSc 6= ∅
for only finitely many γ ∈ GL(2, F ) modulo Z(F ). If Sc is sufficiently large (i.e.
if C1 and C2 are sufficiently large, and c is sufficiently small), then G(A) =
G(F )Sc.

This theorem is due to Godement. We’ll explain how one can see this theo-
rem in the case of GL(2)/Q. First we claim that,

G(A) = G(Q)G(R)Kfin.
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Note that by the Iwasawa decomposition it suffices to verify this for γ ∈ B(Afin).
It suffices to show that

B(Afin) = B(Q)(B(Afin) ∩Kfin).

Which follows from the fact that,

A×fin = Q×
∏
p

Z×p

which is equivalent to the assertion that Q has class number one, and

Afin = Q +
∏
p

Zp.

Using G(A) = G(Q)G(R)Kfin we see that projection onto G(R) yields a home-
omorphism,

G(Q)\G(A)/Kfin
∼−→Kfin ∩G(Q)\G(R) = GL(2,Z)\GL(2,R).

We will translate the assertions of the Theorem into questions about GL(2,R).
We now choose compact sets C1 and C2. We take,

C1 =
{(

1 x
0 1

)
: xp ∈ Zp, x∞ ∈ [−α, α]

}
for some fixed α > 0, and we take,

C2 =
∏
p

Z×p .

Suppose we have g = znhtmk ∈ Sc. We will separate out these elements of
G(A) into their finite and infinite parts. We have,

g = (zf , z∞)
((

1 xf
0 1

)
,

(
1 x∞
0 1

))((
1 0
0 1

)
,

(
et 0
0 e−t

))((
af 0
0 1

)
,

(
1 0
0 1

))
(kf , k∞),

which equals

g = (zf , z∞)
((

1 xf
0 1

)(
af 0
0 1

)
,

(
1 x∞
0 1

)(
et 0
0 e−t

))
(kf , k∞).

By our choice of C1 and C2 we see that,(
1 xf
0 1

)(
a 0
0 1

)
∈
∏
p

Kp.

Hence after changing kf we can rewrite g as,

g =
(
zfkf , z∞

(
1 x∞
0 1

)(
et 0
0 e−t

)
k∞

)
,
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with x∞ ∈ [−α, α] and t > c
2 . We write Sc = Sc,fin × Sc,∞, so Sc,fin =

Z(Afin)Kfin. Suppose γ ∈ G(Q) is such that Sc ∩ γSc 6= ∅. Since γSc,fin ∩
Sc,fin 6= ∅ so γ ∈ G(Q) ∩ Z(Afin)Kfin = Z(Q)G(Z). If we now project Sc,∞
onto H = Z(R)\G(R)/K∞ then we see that the image of Sc,∞ is,

{x+ iy ∈ H : x ∈ [−α, α], y > ec}.

And hence there are only finitely many γ ∈ G(Z) such that γSc,∞ ∩Sc,∞ 6= ∅.
As is well known if α ≥ 1

2 and c < log(
√

32) then G(R) = G(Z)Sc,∞. We claim
that then also G(A) = G(Q)Sc. Suppose g = (gf , g∞) ∈ G(A). Then we know
we can write gf = γkf with γ ∈ G(Q) and kf ∈ Kfin. Hence,

g = (γkf , γγ−1g∞).

Now γ−1g∞ = δx∞ with x∞ ∈ Sc,∞ and δ ∈ G(Z) = G(Q) ∩Kfin. Hence,

g = (γkf , γδx∞) = (γδ, γδ)(δ−1kf , x∞) ∈ G(Q)Sc.

Theorem 7.2. The space Z(A)G(F )\G(A) has finite volume.

Using the decomposition,

g = znhtmak

we can write the Haar measure of G(A) in the following way,∫
Z(A)\G(A)

f(g) dg =
∫
K

∫
N(A)

∫
A1

∫ ∞
−∞

f(nhtmk)e−2t dt d×a dn dk.

Thus we see that for a suitable Siegel domain Sc,

vol(Z(A)G(F )\G(A)) ≤
∫
Z(A)\Sc

dg =
∫
K

∫
C1

∫
C2

∫ ∞
c

e−2t dt d×a dn dk,

which is finite since K, C1 and C2 are all compact.

7.2 Truncation operator

Let ϕ ∈ C(G(F )\G(A)). We define its constant term along N to be the function
ϕN ∈ C(M(F )N(A)\G(F )) defined by,

ϕN (g) =
∫
N(F )\N(A)

ϕ(ng) dg.

We take the measure on N(A) to be such that vol(N(F )\N(A)) = 1. By
definition ϕ is cuspidal if and only if ϕN ≡ 0. Let τ be the characteristic
function on R of the interval (0,∞). Let T > 0. We obtain a function on
B(F )N(A)\G(A),

ϕN (g)τ(H(g)− T ).
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In order to obtain a function onG(F )\G(A) we need to average overB(F )\G(F ).
We define ΛTϕ on G(F )\G(A) by,

ΛTϕ(g) = ϕ(g)−
∑

δ∈B(F )\G(F )

ϕN (δg)τ(H(δg)− T ).

The sum on the right hand side is always finite. In fact more is true.

Lemma 7.3. Let Sc be a Siegel domain for G and let T ∈ R. Then the set of
γ ∈ G(F ) such that H(γg) > T for some g ∈ Sc is finite modulo B(F ).

We’ll prove this lemma for F = Q and functions f on SL(2,Z)\H provided
T is sufficiently large. We use the homeomorphism,

Z(A)G(Q)\G(A)/K ∼−→ SL(2,Z)\H

to pull f back to a function ϕ on G(Q)\G(A) which is right K invariant. Since
G(A) = G(Q)B(R)K so ϕ is completely determined by its values on B(R) and
we have,

ϕ

(
a∞ b∞
0 1

)
= f(b∞ + a∞i)

for a∞ ∈ R>0, b∞ ∈ R. Furthermore,

ϕN

(
a∞ b∞
0 1

)
=
∫ 1

0

f(x+ a∞i) dx.

Suppose now we look at,

ΛTϕ
(
a∞ b∞
0 1

)
= ϕ

(
a∞ b∞
0 1

)
−

∑
δ∈B(F )\G(F )

ϕN

(
δ

(
a∞ b∞
0 1

))
τ

(
H

(
δ

(
a∞ b∞
0 1

))
− T

)
.

When δ ∈ B(F ) the term in the sum above is 0 if |a∞| ≤ eT and if |a∞| > eT

then it is ∫ 1

0

f(x+ a∞i) dx.

On the other hand suppose we take b∞ + ia∞ to lie in the usual fundamental
domain,

F = {z = x+ iy ∈ H : x ∈ [−1/2, 1/2], |z| > 1} ,

for the action of SL(2,Z) on H. Suppose δ ∈ G(F ) \B(F ) is such that,

τ

(
H

(
δ

(
a∞ b∞
0 1

))
− T

)
= 1,

i.e. assume that

H

(
δ

(
a∞ b∞
0 1

))
> T.
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Note that,

H

(
δ

(
a∞ b∞
0 1

))
=
∑
p

Hp(δ) +H∞

(
δ

(
a∞ b∞
0 1

))
.

Using the Iwasawa decomposition we can assume

δ = wn =
(

0 1
−1 −t

)
.

Then, (see [KL06, Lemma 7.19]),

Hp(δ) = − log max{1, |t|2p},

and

H∞

(
δ

(
a∞ b∞
0 1

))
= log

(
a∞

a2
∞ + (b∞ + t)2

)
.

Thus we need,
a2
∞ + (b∞ + t)2

|a∞|
∏
p

max{1, |t|2p} ≤ e−T .

and hence,∏
p

max{1, |t|2p} ≤
a∞

a2
∞ + (b∞ + t)2

e−T ≤ a−1
∞ e−T ≤ 2√

3
e−T

since b∞+ a∞i ∈ F and hence a∞ ≥
√

3
2 . Thus if T is sufficiently large then we

see that we must have t ∈ Z. But then we have,

H

(
δ

(
a∞ b∞
0 1

))
= H∞

(
δ

(
a∞ b∞
0 1

))
,

which is the logarithm of the height of the point,(
δ

(
a∞ b∞
0 1

))
(i) = δ(b∞ + ia∞)

above the x-axis. But now since b∞+ ia∞ is constrained to lie in F we see that
for T > 0,

H∞

(
δ

(
a∞ b∞
0 1

))
> eT

only if δ ∈ B(Z) which gives a contradiction. Thus only δ ∈ B(Q) contribute
to the sum and we have, for b∞ + ia∞ ∈ F ,

ΛTϕ
(
a∞ b∞
0 1

)
= f(b∞ + a∞i),

if b∞ ≤ eT , and

ΛTϕ
(
a∞ b∞
0 1

)
= f(b∞ + a∞i)−

∫ 1

0

f(x+ a∞i) dx

if b∞ > eT .
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7.3 Geometric side of the trace formula

We now take f ∈ C∞c (Z(A)\G(A)) and let,

Kf (x, y) =
∑

γ∈Z(F )\G(F )

f(x−1γy)

denote the corresponding kernel function. We define KT
f (x, y) = ΛT2 Kf (x, y)

where ΛT2 denotes that the truncation is taken in the second variable. Thus,

KT
f (x, y) = Kf (x, y)−

∑
δ∈B(F )\G(F )

Kf,N (x, δy)τ(H(δy)− T )

=
∑

γ∈Z(F )\G(F )

f(x−1γy)−
∑

δ∈B(F )\G(F )

∫
N(F )\N(A)

∑
γ∈Z(F )\G(F )

f(x−1γnδy) dn

 τ(H(δy)− T ).

Our goal in this section is to prove that,∫
Z(A)G(F )\G(A)

KT
f (x, x) dx

is absolutely convergent and to provide a geometric expansion for this integral.
If the quotient Z(A)G(F )\G(A) were compact then in order to write down

the geometric side of the trace formula we would write,

Kf (x, x) =
∑

γ∈Γ(Z(F )\G(F ))

∑
δ∈Gγ(F )\G(F )

f(x−1δx)

and then interchange integration over Z(A)G(F )\G(A) with the summation
over γ ∈ Γ(Z(F )\G(F )) which is legitimate since,

x 7→
∑

δ∈Gγ(F )\G(F )

f(x−1δx)

is a function on Z(A)G(F )\G(A).
In the same way we would like to write out a geometric expansion for

KT
f (x, x). Note that,

KT
f (x, x) =

∑
γ∈G(F )

f(x−1γx)−
∑

δ∈B(F )\G(F )

∫
N(F )\N(A)

∑
γ∈Z(F )\G(F )

f(x−1γnδx) dn

 τ(H(δx)−T ).

We note that we need to be more careful here because of the integral over
N(F )\N(A). The naive geometric expansion for KT

f (x, x) could yield terms
which are not well defined on N(F )\N(A).

We define the following equivalence on elements of G(F ). Let γ1, γ2 ∈ G(F ).
We write γ1 = γ1,sγ1,u and γ2 = γ2,sγ2,u in their Jordan decompositions. We

78



define γ1 ∼ γ2 if and only if γ1,s and γ2,s are conjugate. We let O denote the
set of equivalence classes with respect to this equivalence relation.

Let γ ∈ G(F ). If γ is regular elliptic (i.e. its eigenvalues don’t lie in F ) then
γ is automatically semisimple and the equivalence class of γ is just the conjugacy
class of γ. If γ is not regular elliptic then it is conjugate to an element of B(F ).
We may assume,

γ =
(
a b
0 d

)
.

If a 6= d then the equivalence class of γ is the same as the conjugacy class of γ,
which is the same as the conjugacy class of,(

a 0
0 d

)
.

On the other hand if a = d then the equivalence class of γ is equal to the union
of the conjugacy classes of, (

a 0
0 a

)
,

(
a 1
0 a

)
.

We write,
Kf (x, x) =

∑
o∈O

Kf,o(x, x)

where,
Kf,o(x, x) =

∑
γ∈o

f(x−1γx).

We want to write,
KT
f (x, x) =

∑
o∈O

KT
f,o(x, x).

The following lemma tells us that if T is sufficiently large then many of the
terms in

∑
δ∈B(F )\G(F )

∫
N(F )\N(A)

∑
γ∈Z(F )\G(F )

f(x−1δ−1γnδx) dn

 τ(H(δx)− T )

vanish.

Lemma 7.4. ([Gel96, Lecture II, Lemma 2.2]) Suppose Ω ⊂ G(A) is compact
modulo Z(A). Then there exists dΩ > 0 with the following property: if γ ∈ G(F )
is such that,

g−1γng ∈ Ω

for some n ∈ N(A) and g ∈ G(A) with H(g) > dΩ, then γ ∈ B(F ).
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Before giving a proof we’ll motivate the lemma by considering the real case.
We take Ω ⊂ G(R) to be a compact set modulo Z(R). Clearly we are free to
replace Ω by K∞ΩK∞. We may as well then assume that g ∈ B(R). We write,

g =
(
a b
0 d

)
so H∞(g) = log |ad−1|. Recall that g acts on H by,

g(z) = bd−1 + |ad−1|z.

Suppose g−1γng ∈ Ω with γ ∈ G(Z), n ∈ G(R). We project Ω onto a compact
subset of H which we again denote by Ω. Then we have,

(g−1γng)(i) ∈ Ω.

Or equivalently, (γng)(i) ∈ g(Ω). If H∞(g) = log |ad−1| is sufficiently large all
elements in g(Ω) will have imaginary part larger than 1. But also g(i) has large
imaginary part, equal to |ad−1| which we can assume if larger than 1. We recall
N(R) acts by translation and hence doesn’t effect the imaginary part of g(i).
Then since γ ∈ G(Z) we know that the imaginary part of (γng)(i) will be less
than 1 unless γ ∈ B(Z).

Proof. We follow the proof from [Gel96, Lecture II, Lemma 2.2]. Let V denote
the space of 2× 2 trace zero matrices and consider the adjoint representation,

ρ : G→ GL(V )

defined by,
ρ(g)X = gXg−1.

We fix the basis,

e0 =
(

0 1
0 0

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 0
−1 0

)
of V . Let,

α :
(
a 0
0 b

)
7→ ab−1.

Then we have,
ρ(a)ej = α(a)1−jej ,

for all a ∈M ,
ρ(n)e0 = e0

for all n ∈ N , and
ρ(w)e0 = e2.

For ξ ∈ V (A) we define,
‖ξ‖ =

∏
v

‖ξv‖v
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where, for v finite,

‖a0e0 + a1e1 + a2e2‖v = max{|a0|v, |a1|v, |a2|v},

and for v infinite we define ‖ ‖v via the Hilbert space structure that makes
{e0, e1, e2} into an orthonormal basis.

Suppose, with the notation of the lemma, we have,

g−1γng ∈ Ω.

We write g = n1ak using the Iwasawa decomposition. So that H(g) = H(a)
and,

a−1n−1
1 γnn1a ∈ KΩK.

Since the map g 7→ ρ(g)e0 is continuous with respect to the norm ‖ ‖ and ρ is
trivial on Z(A) so there exists d0 such that,

‖ρ(a−1n−1
1 γnn1a)e0‖ ≤ e2d0 .

Suppose now that γ 6∈ B(F ). Then by Bruhat’s decomposition we can write

g = b0wn0

with b0 = n′0m0 ∈ B(F ) and n0 ∈ N(F ). For any b ∈ B(A) and g ∈ G(A),

‖ρ(gb)e0‖ = eH(b)‖ρ(g)e0‖,

and
‖ρ(gb)e2‖ = e−H(b)‖ρ(g)e2‖,

We now compute,

‖ρ(a−1n−1
1 γnn1a)e0‖ = ‖ρ(a−1n−1

1 b0wn0nn1a)e0‖
= ‖ρ((a−1n−1

1 b0w)n0nn1a)e0‖
= eH(a)‖ρ(a−1n−1

1 b0w)e0‖
= eH(a)‖ρ(a−1n−1

1 n′0aa
−1bm0)e2‖

= e2H(a)‖ρ(a−1n−1
1 n′0a)e2‖.

We note that,

ρ

(
1 x
0 1

)
e2 = −x2e0 + xe1 + e2

and hence that ‖ρ(n′)e2‖ ≥ ‖e2‖ = 1 for all n′ ∈ N(A). Hence,

‖ρ(a−1n−1
1 γnn1a)e0‖ ≥ e2H(a).

Hence the lemma follows if we take dΩ > d0.
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Applying this lemma to the support of f we see that if T is sufficiently large,
then

KT
f (x, x) =

∑
γ∈Z(F )\G(F )

f(x−1γx)−
∑

δ∈B(F )\G(F )

∫
N(F )\N(A)

∑
γ∈Z(F )\B(F )

f(x−1δ−1γnδx) dn

 τ(H(δx)−T ).

Since we have B(F ) = N(F )M(F ) we can exchange the sum and integral to
give,

KT
f (x, x) =

∑
γ∈Z(F )\G(F )

f(x−1γx)−
∑

δ∈B(F )\G(F )

 ∑
γ∈Z(F )\M(F )

∫
N(A)

f(x−1δ−1γnδx) dn

 τ(H(δx)−T ).

For each equivalence class o ∈ O we define,

KT
f,o(x, x) =

∑
γ∈o

f(x−1γx)−
∑

δ∈B(F )\G(F )

 ∑
γ∈Z(F )\M(F )∩o

∫
N(A)

f(x−1δ−1γnδx) dn

 τ(H(δx)−T )

so that for T sufficiently large with respect to the support of f ,

KT
f (x, x) =

∑
o∈O

KT
f,o(x, x).

We want to prove the following,

Theorem 7.5. Let f ∈ C∞c (Z(A)\G(A)). Then for T sufficiently large (with
respect to the support of f),∑

o∈O

∫
Z(A)G(F )\G(A)

|KT
f,o(x, x)| dx <∞.

We begin with the elliptic conjugacy classes. By Lemma 7.4 if T is sufficiently
large,

KT
f,ell(x, x) =

∑
o∈O

elliptic

KT
f,o(x, x) =

∑
o∈O

elliptic

Kf,o(x, x) = Kf,ell(x, x).

Proposition 7.6. The function Kf,ell(x, x) is absolutely integrable over Z(A)G(F )\G(A).
Furthermore,∫
Z(A)G(F )\G(A)

Kf,ell(x, x) dx =
∑

γ∈Γ(Z(F )\G(F ))
elliptic

vol(Z(A)Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg.
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Proof. It suffices to prove the first assertion. We note that Kf,ell(x, x) is a
smooth function on Z(A)G(F )\G(A) and we will show that it is compactly
supported on Z(A)G(F )\G(A). Recall,

Kf,ell(x, x) =
∑

γ∈Γ(Z(F )\G(F ))
elliptic

f(x−1γx).

By Lemma 7.4 there exists d such that,

Kf,ell(x, x) = 0

for all x ∈ G(A) with H(x) > d. We take a Siegel domain Sc for G such that
G(F )Sc = G(A). Recall, that in the notation above,

Sc = {znhtmak : z ∈ Z(A), n ∈ C1, t > c, a ∈ C2, k ∈ K} .

Hence on Sc, Kf,ell(x, x) is supported on,

Sc = {znhtmak : z ∈ Z(A), n ∈ C1, c ≤ t ≤ d, a ∈ C2, k ∈ K} .

ThusKf,ell(x, x) is compactly supported on Z(A)\Sc and hence also on Z(A)G(F )\G(A).

We now consider the non-elliptic terms. Let o be a non-elliptic equivalence
class. Then, by definition,

KT
f,o(x, x) =

∑
γ∈o

f(x−1γx)−
∑

δ∈B(F )\G(F )

 ∑
γ∈Z(F )\M(F )∩o

∫
N(A)

f(x−1δ−1γnδx) dn

 τ(H(δx)−T ).

We define, Ff ∈ C∞c (A) by,

Ff (a) =
∫
K

f

(
k−1

(
1 a
0 1

)
k

)
dk.

Before continuing we recall some details from Tate’s Thesis; see [Bum97,
Section3.1]. Let f ∈ C∞c (A). One defines a zeta integral,

Z(f, s) =
∫
A×

f(a)|a|s d×a.

This defines an analytic function of s provided <s > 1 and has a meromorphic
continuation to C. This is obtained by writing,

Z(f, s) =
∫
F×\A×

∑
α∈F×

f(αa)|a|s d×a

which we then break up as, the sum of∫
|a|≥1

∑
α∈F×

f(αa)|a|s d×a

83



and ∫
|a|≤1

∑
α∈F×

f(αa)|a|s d×a.

The first integral defines an analytic function on C. For the second we obtain
the meromorphic continuation by using Poisson summation. We fix a non-trivial
additive character ψ : F\A→ C× and define,

f̂(x) =
∫
A

f(y)ψ(xy) dy.

Then Poisson summation gives us, for an appropriate choice of measure,∑
α∈F

f(α) =
∑
α∈F

f̂(α)

or more generally, for a ∈ A×,∑
α∈F×

f(aα) + f(0) = |a|−1
∑
α∈F×

f̂(a−1α) + |a|−1F̂f (0).

Hence the second integral above is equal to,∫
|a|≤1

(
|a|−1

∑
α∈F×

f̂(a−1α) + |a|−1f̂(0)− f(0)

)
|a|s d×a,

which is equal to,∫
|a|≤1

∑
α∈F×

f̂(a−1α)|a|s−1 + f̂(0)|a|s−1 − f(0)|a|s d×a.

The first part of the integral defines an analytic function of C. The second and
third are equal to,

f̂(0)
vol(F×\A1)

s
− f(0)

vol(F×\A1)
1− s

.

Thus we see that,

Z(f, s) + f(0)
vol(F×\A1)

1− s
is analytic at s = 1. We denote the value of this function at s = 1 as,

f.p.s=1(Z(f, s))

Proposition 7.7. Let o be the equivalence class of the identity. Then KT
f,o(x, x)

is absolutely integrable over Z(A)G(F )\G(A) and,∫
Z(A)G(F )\G(A)

KT
f,o(x, x) dx
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is equal to,

vol(Z(A)G(F )\G(A))f(I) + f.p.s=1(Z(Ff , s)) + T vol(F×\A1)
∫
A

Ff (y) dy.

We remark that Z(Ff , 1) is equal to the orbital integral of f at a unipotent
element.

Proof. We have,

o =
{(

1 0
0 1

)}⋃{
δ−1

(
1 α
0 1

)
δ : α ∈ F, δ ∈ B(F )\G(F )

}
.

Thus we have,

KT
f,o(x, x) = f

(
1 0
0 1

)
+

∑
δ∈B(F )\G(F )

∑
α∈F

f

(
x−1δ−1

(
1 α
0 1

)
δx

)

−
∑

δ∈B(F )\G(F )

(∫
N(A)

f(x−1δ−1nδx) dn

)
τ(H(δx)− T ).

The first term gives the first contribution to our integral. For the second
part we can replace our integral over Z(A)G(F )\G(A) by an integral over
Z(A)B(F )\G(A) of,

∑
α∈F

f

(
x−1

(
1 α
0 1

)
x

)
−

(∫
N(A)

f(x−1nx) dn

)
τ(H(x)− T ).

We again use the Iwasawa decomposition G(A) = N(A)M(A)K to write,

x =
(

1 a
0 1

)(
b 0
0 1

)
k

and we can decompose the Haar measure dg on G(A) as dg = |b|−1da d×b dk.
The measure da is chosen so that vol(F\A) = 1. Note that in this notation, we
have H(x) = log |b| and

x−1

(
1 α
0 1

)
x = k−1

(
1 b−1α
0 1

)
k.

We see that the integral of∑
α∈F

f

(
x−1

(
1 α
0 1

)
x

)
−

(∫
N(A)

f(x−1nx) dn

)
τ(H(x)− T ).

over Z(A)B(F )\G(A) is equal to,∫
F×\A×

( ∑
α∈F×

Ff (b−1α)−
∫
A

Ff (b−1a) da τ(log |b| − T )

)
|b|−1 d×b
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which equals,∫
F×\A×

( ∑
α∈F×

Ff (b−1α)−
∫
A

Ff (a) da |b|τ(log |b| − T )

)
|b|−1 d×b

after making a change of variables in the integral over A.
We can rewrite our integral as,∫

F×\A×

( ∑
α∈F×

Ff (b−1α)− F̂f (0)|b|τ(log |b| − T )

)
|b|−1 d×b.

which we break up as, the sum of,∫
|b|≤1

( ∑
α∈F×

Ff (b−1α)

)
|b|−1 d×b

and ∫
|b|≥1

( ∑
α∈F×

Ff (b−1α)− F̂f (0)|b|τ(log |b| − T )

)
|b|−1 d×b.

We apply Poisson summation,∑
α∈F×

Ff (b−1α) + Ff (0) = |b|
∑
α∈F×

F̂f (bα) + |b|F̂f (0)

to the second integral to yield,∫
|b|≥1

( ∑
α∈F×

F̂f (bα)− Ff (0)|b|−1 + F̂f (0)(1− τ(log |b| − T ))

)
d×b.

Summing up gives the integral as,∫
|b|≥1

∑
α∈F×

Ff (bα)|b|+
∑
α∈F×

F̂f (bα)−Ff (0)|b|−1 + F̂f (0)(1−τ(log |b|−T )) d×b.

This proves the absolute convergence of the integral and we see that it is equal
to,

f.p.s=1(Z(f, s)) + T vol(F×\A1)F̂f (0).

We now look at the contributions from non-identity elements lying in a split
torus.

Proposition 7.8. Let o be the equivalence class of a non-identity element γ ∈
M(F ). Then KT

f,o(x, x) is absolutely integrable over Z(A)G(F )\G(A) and,∫
Z(A)G(F )\G(A)

KT
f,o(x, x) dx
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is equal to,

2T vol(F×\A1
F )
∫
Gγ(A)\G(A)

f
(
g−1γg

)
dg−vol(F×\A1

F )
∫
Gγ(A)\G(A)

f(g−1γg)H(wg) dg

if w 6∈ o and is equal to 1
2 of this is w ∈ o.

Proof. We take the absolute convergence of the integral for granted, see [Gel96,
Lecture II, Section 4] for a proof along the same lines as the one above. We will
instead derive the formula given in the Proposition.

We now take a semisimple element of the form,

γ =
(
α 0
0 1

)
with α 6= 1. Then,

o =
{
δ−1

(
α 0
0 1

)
δ : δ ∈M(F )\G(F )

}
.

We note that since we are working mod the center if α = −1 then as δ runs
through M(F )\G(F ) each element of o is counted twice. We will assume
throughout that α 6= −1, otherwise one should insert 1

2 in appropriate places.
We recall,

KT
f,o(x, x) =

∑
δ∈M(F )\G(F )

f

(
x−1δ−1

(
α 0
0 1

)
δx

)

−
∑

δ∈B(F )\G(F )

(∫
N(A)

f

(
x−1δ−1

(
α 0
0 1

)
nδx

)
dn

)
τ(H(δx)− T )

−
∑

δ∈B(F )\G(F )

(∫
N(A)

f

(
x−1δ−1

(
α−1 0

0 1

)
nδx

)
dn

)
τ(H(δx)− T ).

We rewrite the first sum as,∑
δ∈B(F )\G(F )

∑
ν∈N(F )

f

(
x−1δ−1ν−1

(
α 0
0 1

)
νδx

)
.

We make the change of variables,

n 7→
(
α−1 0

0 1

)
n−1

(
α 0
0 1

)
n

in the first integral to yield,

∑
δ∈B(F )\G(F )

(∫
N(A)

f

(
x−1δ−1n−1

(
α 0
0 1

)
nδx

)
dn

)
τ(H(δx)− T )
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and we make a similar change in the second to yield,

∑
δ∈B(F )\G(F )

(∫
N(A)

f

(
x−1δ−1n−1

(
α−1 0

0 1

)
nδx

)
dn

)
τ(H(δx)− T ).

We again replace our integral over Z(A)G(F )\G(A) with one over Z(A)B(F )\G(A)
of ∑

ν∈N(F )

f

(
x−1ν−1

(
α 0
0 1

)
νx

)

−

(∫
N(A)

f

(
x−1n−1

(
α 0
0 1

)
nx

)
dn

)
τ(H(x)− T )

−

(∫
N(A)

f

(
x−1n−1

(
α−1 0

0 1

)
nx

)
dn

)
τ(H(x)− T ).

We can compute this by first integrating overN(F )\N(A) and then over Z(A)N(A)M(F )\G(A).
The first integral yields, ∫

N(A)

f

(
x−1n−1

(
α 0
0 1

)
nx

)
dn

−

(∫
N(A)

f

(
x−1n−1

(
α 0
0 1

)
nx

)
dn

)
τ(H(x)− T )

−

(∫
N(A)

f

(
x−1n−1

(
α−1 0

0 1

)
nx

)
dn

)
τ(H(x)− T ).

The integral over Z(A)N(A)M(F )\G(A) of this function is the same as the
integral over Z(A)M(F )\G(A) of,

f

(
x−1

(
α 0
0 1

)
x

)
−f
(
x−1

(
α 0
0 1

)
x

)
τ(H(x)−T )−f

(
x−1

(
α−1 0

0 1

)
x

)
τ(H(x)−T ),

which equals the integral over Z(A)M(F )\G(A) of,

f

(
x−1

(
α 0
0 1

)
x

)
(1− τ(H(x)− T )− τ(H(wx)− T )) .

We again use the Iwasawa decomposition G(A) = M(A)N(A)K to write our
elements in the form,

g =
(
b 0
0 1

)(
1 a
0 1

)
k

so that H(g) = log |b| and we decompose the measure on G(A) as,

dg = d×b da dk.
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The integral becomes,∫
K

∫
N(A)

f

(
k−1n−1

(
α 0
0 1

)
nk

)
dn dk

∫
F×\A×

(1−τ(log |b|−T )−τ(H(wn)−log |b|−T ))d×b.

We note that the integrand in the integral over F×\A× is zero unless H(wn)−
T < log |b| < T in which case it is one. Hence our integral is equal to,

2T vol(F×\A1
F )
∫
K

∫
N(A)

f

(
k−1n−1

(
α 0
0 1

)
nk

)
dn dk

− vol(F×\A1
F )
∫
K

∫
N(A)

f

(
k−1n−1

(
α 0
0 1

)
nk

)
H(wn) dn dk.

Finally we finish the proof of Theorem 7.5. We have,

KT
f (x, x) =

∑
o∈O

KT
f,o(x, x).

Propositions 7.6, 7.7 and 7.8 tells us that each Kf,o(x, x) is absolutely integrable
over Z(A)G(F )\G(A). It remains to observe that for non elliptic o the functions
KT
f,o(x, x) are identically zero except for finitely many o. For this we note that

if Ω ⊂ G(A) is compact modulo Z(A) then,

x−1δ−1

(
α 0
0 1

)
δx, x−1δ−1

(
α 0
0 1

)
nδx,

belong to Ω for only finitely many α.
Putting everything together we have,

Theorem 7.9. For T sufficiently large with respect to the support of f ,∫
Z(A)G(F )\G(A)

KT
f (x, x) dx

is absolutely integrable, and is equal to the sum of the following terms,

vol(Z(A)G(F )\G(A))f(I)+
∑

γ∈Γ(Z(F )\G(F ))
ell. reg.

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg

f.p.s=1(Z(Ff , s))−
1
2

vol(F×\A1)
∑

γ∈M(F )

∫
M(A)\G(A)

f(g−1γg)H(wg) dg

T vol(F×\A1)
∑

γ∈M(F )

∫
M(A)\G(A)

f(g−1γg) dg + T vol(F×\A1)
∫
A

Ff (y) dy
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8 Spectral side of the trace formula for GL(2)

We will now derive a spectral expansion for,∫
Z(A)G(F )\G(A)

KT
f (x, x) dx.

8.1 The space of cusp forms

We recall that in the case of a compact quotient we used the fact that the
operators R(f) were Hilbert-Schmidt to deduce that,

L2(Z(A)G(F )\G(A)) =
⊕
π

mππ

with the multiplicities mπ being finite. We then had,

trR(f) =
∑
π

mπ trπ(f).

Recall we have defined,
L2

cusp(G(F )\G(A))

to be the closed G(A)-invariant subspace of L2(G(F )\G(A)) of functions ϕ ∈
L2(G(F )\G(A)) such that,∫

N(F )\N(A)

ϕ(ng) dn ≡ 0.

Theorem 8.1. As a representation of G(A),

L2
cusp(Z(A)G(F )\G(A)) =

⊕
π∈Ĝ(A)

mππ

with finite multiplicities mπ.

This will follow as in Theorem 3.16 if we can prove that the operators R(f)
when restricted to L2

cusp(G) are Hilbert-Schmidt.
We again take f ∈ C∞c (G(A)). Let ϕ ∈ L2(G(F )\G(A)) then we have,

(R(f)ϕ)(x) =
∫
G(A)

f(y)ϕ(xy) dy =
∫
N(F )\G(A)

Hf (x, y)ϕ(y) dy

where we define
Hf (x, y) =

∑
γ∈N(F )

f(x−1γy).

We set,

H ′f (x, y) = Hf (x, y)−
∫
N(A)

f(x−1ny) dn.
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(Again taking the measure on N(A) such that vol(N(F )\N(A)) = 1.) Then
for ϕ ∈ L2

cusp(G(F )\G(A)),

(R(f)ϕ)(x) =
∫
N(F )\G(A)

H ′f (x, y)ϕ(y) dy.

For this it suffices to note that for ϕ ∈ L2
cusp(G(F )\G(A)),∫

N(F )\G(A)

ϕ(y)
∫
N(A)

f(x−1ny) dn dy =
∫
N(A)\G(A)

f(x−1y)
∫
N(F )\N(A)

ϕ(n−1y) dn dy = 0.

We now need to estimate the size of H ′f (x, y). We again take a Siegel domain,

S =
{
znhtmak : z ∈ Z(A), n ∈ C1, a ∈ C2, t >

c

2
, k ∈ K

}
such that G(F )S = G(A). Here C1 and C2 are suitable compact subsets of
N(A) and A1 respectively. We recall that,

ma =
(
a 0
0 1

)
.

For t ∈ R we set xt = (xt,v) ∈ A such that xt,v = 1 if v is finite and xt,v = et if
v is infinite. Then,

ht =
(
xt 0
0 x−1

t

)
.

We identify S with its image in N(F )\G(A) and we denote by L2(S) the
Hilbert space of functions f : Z(A)N(F )\S→ C such that,∫

N(F )Z(A)\S
|f(g)|2 dg <∞.

We note that restricting a function

ϕ ∈ L2(G(F )\G(A))

to Z(A)N(F )\S allows us to identify, L2(G(F )\G(A) with a closed subspace
of L2(S). Furthermore since S∩γS 6= ∅ for only finitely many γ ∈ Z(F )\G(F )
so the inclusion map,

L2(G(F )\G(A)) ↪→ L2(S)

and the orthogonal projection

L2(S)→ L2(G(F )\G(A))

are bounded operators.
Let Ωf denote a subset of G(A) which is compact modulo Z(A) and such

that f is supported on Ωf . Suppose x ∈ S and y ∈ G(A) are such that
N ′(x, y) 6= 0. Then there exists n′ ∈ N(A) such that,

x−1n′y ∈ Ωf .

91



We write x = znmahtk so that we have,

y ∈ (n′)−1xΩf = z(n′)−1nmahtkΩf .

Enlarging Ωf if needs be we can assume that,

y ∈ (n′)−1xΩf = z(n′)−1nmahtΩf .

Using the Iwasawa decomposition we have Ωf ⊂ CK with C ⊂ B(A) which is
compact modulo Z(A). Using this we see that there exists a Siegel set S′ such
that once we identify S′ with its image in Z(A)N(F )\G(A) so H ′(x, y) 6= 0
implies that y lies in S′. Again after enlarging S′ if needs be we may assume
that G(F )S′ = G(A).

We wish to show that,∫
N(F )Z(A)\S

∫
N(F )Z(A)\S′

|H ′f (x, y)|2 dx dy <∞.

Having fixed f ∈ C∞c (G(A)) we let Ωf be a compact subset of G(A) such
that the support of f is contained in Z(A)Ωf .

For x, y ∈ G(A) and a ∈ A we define,

Φx,y(a) = f

(
x−1

(
1 a
0 1

)
y

)
.

Then Φx,y ∈ C∞c (A). The Fourier transform of Φx,y is defined by,

ϕ̂x,y(α) =
∫
F\A

Φx,y(a)ψ(aα) da.

Here ψ : F\A→ C× is a character such that the measure da on A which gives
F\A volume one is self-dual with respect to ψ. We have,

H ′f (x, y) =
∑
α∈F

ϕx,y(α)− Φ̂x,y(0).

Hence after applying Poisson summation we have,

H ′f (x, y) =
∑
α∈F×

Φ̂x,y(α).

We write,

x = z

(
1 nx
0 1

)
mahtk ∈ S

and

y = z′
(

1 ny
0 1

)
ma′ht′k

′ ∈ S′.
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Then we have,

Φx,y(b) = f

(
k−1h−1

t m−1
a

(
1 b− nx + ny
0 1

)
ma′ht′k

′
)
.

Thus,

Φ̂x,y(α) =
∫
A

f

(
k−1h−1

t m−1
a

(
1 b− nx + ny
0 1

)
ma′ht′k

′
)
ψ(bα) db.

We make a change of variables in b to give,

Φ̂x,y(α) = ψ(α(nx − ny))
∫
A

f

(
k−1h−1

t m−1
a

(
1 b
0 1

)
ma′ht′k

′
)
ψ(bα) db

which equals,

Φ̂x,y(α) = ψ(α(nx − ny))
∫
A

f

(
k−1

(
1 a−1x−1

2t b
0 1

)
ma′a−1ht′−tk

′
)
ψ(bα) db.

We make another change of variables to yield,

Φ̂x,y(α) = ψ(α(nx − ny))|x2t|
∫
A

f

(
k−1

(
1 c
0 1

)
ma′a−1ht′−tk

′
)
ψ(αax2tc) dc.

For a ∈ A1, t ∈ R, k ∈ K and k′ ∈ K we define,

Fk,k′,a,t(b) = f

(
k−1

(
1 b
0 1

)
mahtk

)
∈ C∞c (A).

Thus we have,

Φ̂x,y(α) = ψ(α(nx − ny))|x2t|F̂k,k′,a−1a′,−t+t′(αax2t).

We note that since f is compactly supported modulo Z(A) so there exist com-
pact subsets Ω1 ⊂ A1 and Ω2 ⊂ R such that, if

Fk,k′,a,t(b) 6= 0

for some b and any k, k′ then a ∈ Ω1 and b ∈ Ω2.
We have,

|H ′f (x, y)| ≤ |x2t|
∑
α∈F×

|F̂k,k′,a−1a′,−t+t′(αax2t)|,

where F̂k,k′,a,t(y) is a Schwartz function of y, depending continuously on k,
k′, a and t and vanishing identically unless (k, k′, a, t) lie in the compact set
K ×K × Ω1 × Ω2. Thus given N > 0 there exists a constant CN such that,

|H ′f (x, y)| ≤ CNe−Nt.
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We recall that using the Iwasawa decomposition, g = znmahtk we can write
the measure on G(A) as,

dg = |x−2t| dt d×a dn dk.

Using this, together with the bound on |H ′f (x, y)| provided above we see that,∫
Z(A)N(F )\S

∫
Z(A)N(F )\S′

|H ′f (x, y)|2 dx dy <∞.

Hence H ′f (x, y) is the kernel of a Hilbert-Schmidt operator,

B : L2(S)→ L2(S′).

Thus we can realize R(f), on L2
cusp(G(F )\G(A)) as the composition of the

maps,

L2
cusp(G(F )\G(A)) ↪→ L2(S)→ L2(S′)→ L2

cusp(G(F )\G(A)).

Hence we see that R(f) is a Hilbert-Schmidt operator on L2
cusp(G(F )\G(A)).

Corollary 8.2. Let f ∈ C∞c (G(A)) then (at least if f = f1∗f2) if we decompose,

L2
cusp(Z(A)G(F )\G(A)) =

⊕
π∈Ĝ(A)

mππ

we have
trR(f)|L2

cusp(G(F )\G(A)) =
∑

π∈Ĝ(A)

mπ trπ(f).

8.2 The orthogonal complement of the cusp forms

The main reference for this section is [GJ79, Sections 3, 4 & 5].
We want to give an explicit construction of the space orthogonal to L2

cusp(G(F )\G(A)).
Let f be a function on G(A) such that,

f(nγzg) = f(g)

for all n ∈ N(A), γ ∈ B(F ), z ∈ Z(A) and g ∈ G(A). We form the series,

F (g) =
∑

γ∈B(F )\G(F )

f(γg).

Recall from Lemma 7.3 that if S is a Siegel set and T ∈ R then the set of
γ ∈ G(F ) such that H(γg) > T for some g ∈ S is finite modulo B(F ). Thus if
f is supported in,

{g ∈ G(A) : H(g) > T}
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for some T ∈ R then the series defining F (g) is finite. In particular if f is
compactly supported moduloN(A)Z(A)B(F ) then the series defining F is finite
and moreover F will be compactly supported modulo Z(A)G(F ), this follows
from the fact that if H(g) is large then H(γg) is small for all γ ∈ G(F ) \B(F ).
Suppose ϕ ∈ L2(G(F )\G(A)). Then,

(ϕ, F ) =
∫
Z(A)G(F )\G(A)

ϕ(g)F (g) dg

=
∫
Z(A)G(F )\G(A)

ϕ(g)
∑

γ∈B(F )\G(F )

f(γg) dg

=
∫
Z(A)G(F )\G(A)

∑
γ∈B(F )\G(F )

ϕ(γg)f(γg) dg

=
∫
Z(A)B(F )\G(A)

ϕ(g)f(g) dg

=
∫
Z(A)N(A)B(F )\G(A)

∫
N(F )\N(A)

ϕ(ng)f(ng) dn dg

=
∫
Z(A)N(A)B(F )\G(A)

f(g)
∫
N(F )\N(A)

ϕ(ng) dn dg

=
∫
Z(A)N(A)B(F )\G(A)

ϕN (g)f(g) dg.

Thus we see that if ϕ is cuspidal then ϕ is orthogonal to F . Conversely if ϕ is
orthogonal to all series F coming from f which are compactly supported modulo
Z(A)N(A)B(F ) then ϕ is cuspidal. Thus the series associated to compactly
supported f span a dense subspace of the complement of L2

cusp(G(F )\G(A)).
Suppose now we have two series F1 and F2 associated to f1 and f2. We now

compute,

(F1, F2) =
∫
Z(A)N(A)B(F )\G(A)

F1,N (g)F2(g) dg.

For a series F we have,

FN (g) =
∫
N(F )\N(A)

F (ng) dn

=
∫
N(F )\N(A)

∑
γ∈B(F )\G(F )

f(γng) dn.

From the Bruhat decomposition we have,

G(F ) = B(F )qB(F )wN(F ).

Hence,
F (g) = f(g) +

∑
γ∈N(F )

f(wγg).
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Thus,

FN (g) =
∫
N(F )\N(A)

f(ng) dn+
∫
N(F )\N(A)

∑
γ∈N(F )

f(wγng) dn.

As usual we normalize the measure on N(A) so that vol(N(F )\N(A)) = 1.
Thus,

FN (g) = f(g) + f ′(g)

where,

f ′(g) =
∫
N(A)

f(wng) dn.

Thus,

(F1, F2) =
∫
Z(A)N(A)B(F )\G(A)

f1(g)f2(g) dg+
∫
Z(A)N(A)B(F )\G(A)

f ′1(g)f2(g) dg.

These manipulations are valid if f1 and f2 are compactly supported modulo
Z(A)N(A)M(F ), although note that f ′1 need not be compactly supported.

We fix measures such that,∫
G(A)

f(g) dg =
∫
K

∫ ×
A

∫
N(A)

f

((
1 x
0 1

)(
a 0
0 1

)
k

)
|a|−1 dx d×a dk.

We define,
F+
∞ =

{
xt ∈ A× : t ∈ R>0

}
where xt = (xt,v) is such that, xt,v = 1 if v is finite and xt,v = t if v is infinite.

For s ∈ C we consider functions ϕ : G(A)→ C such that,

ϕ

((
αau x

0 βav

)
g

)
=
∣∣∣u
v

∣∣∣s+ 1
2
ϕ(g)

for all α, β ∈ F×, x ∈ A, a ∈ A× and u, v ∈ F+
∞. By the Iwasawa decomposition

these functions are determined by their restriction to elements of the form,

g =
(
a 0
0 1

)
k

with a ∈ A1 and k ∈ K. We set H(s) equal to the space of such ϕ for which,∫
K

∫
F×\A1

∣∣∣∣ϕ((a 0
0 1

)
k

)∣∣∣∣2 da dk <∞.

We have a representation πs of G(A) on H(s) via right translation.
We note that we can identify each space H(s) with H(0). For ϕ ∈ H(0) we

obtain an element ϕs of H(s) by defining,

ϕs(g) = esH(g)ϕ(g).
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We think of H(s) as a fibre bundle over C. We note that this bundle is trivial
since every ϕ ∈ H(0) defines a section of the bundle via,

(g, s) 7→ ϕs(g).

We define a pairing on H(s)×H(−s̄) by,

(ϕ1, ϕ2) =
∫
F×\A1

∫
K

ϕ1

((
a 0
0 1

)
k

)
ϕ2

((
a 0
0 1

)
k

)
da dk.

We note that, for all g ∈ G(A),

(πs(g)ϕ1, π−s̄(g)ϕ2) = (ϕ1, ϕ2).

(See [Bum97, Lemma 2.6.1].)
We recall the Mellin transform. Suppose f ∈ Cc(R>0), one defines for s ∈ C,

ϕ(s) =
∫ ∞

0

f(x)xs
dx

x
.

This defines a holomorphic function of s and one can recover f from ϕ via,

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sϕ(s) ds

for any c ∈ R. One also has the Plancherel formula,∫ ∞
0

f1(t)f2(t) fracdtt =
1

2πi

∫ c+i∞

c−i∞
ϕ1(s)ϕ2(−s̄) ds.

More generally consider functions f on R>0 which vanish for x sufficiently
large and are O(xu) as u→ 0. In this case the Mellin transform,

ϕ(s) =
∫ ∞

0

f(x)xs
dx

x

is well defined for <s > −u. The inversion formula

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sϕ(s) ds

will also hold provided c > −u.
Let f be a function on G(A) such that,

f(znγg) = f(g)

for all n ∈ N(A), γ ∈ B(F ), z ∈ Z(A) and g ∈ G(A). We can assume further
that f is smooth and compactly supported modulo Z(A)N(A)B(F ). We define
the Mellin transform of f by,

f̂(g, s) =
∫
F+
∞

f

((
t 0
0 1

)
g

)
|t|−s− 1

2 d×t,
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which gives a section of the bundle H(s). The Haar measure is chosen so that,

f(g) =
1

2πi

∫ x+i∞

x−i∞
f̂(g, s) ds.

We again take compactly supported functions f1 and f2 on Z(A)N(A)M(F )\G(A)
which give rise to the series F1 and F2. From above we have,

(F1, F2) =
∫
Z(A)N(A)B(F )\G(A)

f1(g)f2(g) dg+
∫
Z(A)N(A)B(F )\G(A)

f ′1(g)f2(g) dg.

Since f1 and f2 are compactly supported so their Mellin transforms f̂1(s) and
f̂2(s) are defined for all s ∈ C. We have,

f ′1(g) =
∫
N(A)

f1(wng) dn.

Now f ′1 is left invariant under Z(A)N(A)M(F ) however it need not be com-
pactly supported modulo this group. In particular the Mellin transform f̂ ′1(s)
is only defined if <s� 0.

For the first part of the expression for (F1, F2) we have,∫
Z(A)N(A)B(F )\G(A)

f1(g)f2(g) dg =
∫
K

∫
F×\A1

∫
F+
∞

f1

((
at 0
0 1

)
k

)
f2

((
at 0
0 1

)
k

)
|t|−1 d×t da dk

=
1

2πi

∫ x+i∞

x−i∞

∫
K

∫
F×\A1

f̂1

((
a 0
0 1

)
k, s

)
.f̂2

((
a 0
0 1

)
k,−s̄

)
da dk ds

=
1

2πi

∫ x+i∞

x−i∞
(f̂1(s), f̂2(−s̄)) ds.

This expression is valid for any x ∈ R. In the same way the second part of the
expression for (F1, F2) is equal to,

1
2πi

∫ x+i∞

x−i∞
(f̂ ′1(−s), f̂2(s̄)) ds.

Here we need to integrate over a line where f̂ ′1(−s) is defined by a convergent
integral, i.e. we must have x > 1

2 .
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Furthermore we compute, for <s > 1
2 ,

f̂ ′(−s) =
∫
F+
∞

f ′
((

t 0
0 1

)
g

)
|t|s− 1

2 d×t

=
∫
F+
∞

|t|s− 1
2 d×t

∫
A

f

(
w

(
t 0
0 1

)(
1 t−1x
0 1

)
g

)
dx

=
∫
F+
∞

|t|s+ 1
2 d×t

∫
A

f

((
1 0
0 t

)
w

(
1 x
0 1

)
g

)
dx

=
∫
F+
∞

|t|−s− 1
2 d×t

∫
A

f

((
t 0
0 1

)
w

(
1 x
0 1

)
g

)
dx

=
∫
A

(∫
F+
∞

f

((
t 0
0 1

)
w

(
1 x
0 1

)
g

)
|t|−s− 1

2 d×t

)
dx

=
∫
A

f̂

(
w

(
1 x
0 1

)
g, s

)
dx.

We define an operator M(s) : H(s) → H(−s) (at least on the smooth vectors)
by,

(M(s)ϕ)(g) =
∫
N(A)

ϕ(wng) dn.

This integral converges when <s > 1
2 and in this range we have,

f̂ ′(−s) = M(s)f̂(s).

Proposition 8.3. ([GJ79, (3.19)]) Let F1 and F2 be the series associated to f1

and f2 which are assumed to be compactly supported modulo Z(A)N(A)B(F ).
Then,

(F1, F2) =
1

2πi

∫
(f̂1(s), f̂2(−s̄)) ds+

1
2πi

∫
(M(s)f̂1(s), f̂2(s̄)) ds.

The integrals are taken over any vertical lines with <s > 1
2 .

We wish to move these integrals to the imaginary axis. To begin with we
analytically continue M(s) to the whole complex plane.

Theorem 8.4. ([GJ79, Theorem 4.19]) The operator M(s) has a meromorphic
continuation to C and satisfies the functional equation,

M(−s)M(s) = Id.

Its only pole in the half-plane <s ≥ 0 is at s = 1
2 and the residue there is such

that,

(Ress= 1
2
M(s)f̂1(1/2), f̂2(1/2)) = c

∑
χ:χ2=1

(f̂1(1/2), χ ◦ det)(f̂2(1/2), χ ◦ det)

for some constant c.
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We refer to the reference for the proof and just make some vague comments
here. Recall that the group F×\A1 is compact and so the space H(s) decom-
poses as a Hilbert space direct sum,

H(s) =
⊕
χ

H(s)χ

taken over the characters χ : F×\A1 → C× and where H(s)χ consists of func-
tions ϕ : G(A)→ C such that,

ϕ

((
a b
0 d

)
g

)
=
∣∣∣a
d

∣∣∣s+ 1
2
χ
(a
d

)
ϕ(g).

Here we view χ as a character of A× by using the decomposition A× = A1×F+
∞

and making χ trivial on F+
∞. The operator M(s) then maps H(s)χ to H(−s)χ−1 .

We now note that everything factors. The space H(s)χ is spanned by functions
of the form,

ϕ =
∏
v

ϕv

with ϕv ∈ Hv(s)χv (defined in the obvious fashion as functions on G(Fv)) and
such that ϕv is invariant under Kv and ϕv(I) = 1 for almost all v. In the same
way the intertwining operator M(s) factors as a product of local intertwining
operators defined by,

(Mv(s)χvϕv)(g) =
∫
N(Fv)

ϕv(wng) dn =
∫
Fv

ϕv

((
0 1
−1 0

)(
1 x
0 1

)
g

)
dx

for ϕv ∈ Hv(s)χv . We take a section,

ϕs =
∏
v

ϕs,v ∈ H(s)χ.

Consider a partition of unity of the form,

ϕ1(x) + ϕ2(x−1) = 1

with ϕ1, ϕ2 smooth and compactly supported. So we have,

(Mv(s)χvϕs,v)(g) =
∫
Fv

ϕs,v

((
0 1
−1 0

)(
1 x
0 1

)
g

)
ϕ1(x) dx+

∫
Fv

ϕs,v

((
0 1
−1 0

)(
1 x
0 1

)
g

)
ϕ2(x−1) dx.

The first integral converges for ϕs,v ∈ H(s)χv for any s. For the second we note
that (

0 1
−1 0

)(
1 x
0 1

)
=
(

0 1
−1 −x

)
=
(
−x−1 1

0 −x

)(
1 0
x−1 1

)
.

Hence,

ϕs,v

((
0 1
−1 0

)(
1 x
0 1

)
g

)
= ϕs,v

((
−x−1 1

0 −x

)(
1 0
x−1 1

)
g

)
= |x|−2s−1

v χv(x)−2ϕs,v

((
1 0
x−1 1

)
g

)
.
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Thus the second integral is equal to,∫
Fv

ϕs,v

((
1 0
x−1 1

)
g

)
ϕ2(x−1)|x|−2s−1

v χv(x)−2 dx

which equals, after the change of variables x 7→ x−1,∫
Fv

ϕs,v

((
1 0
x 1

)
g

)
ϕ2(x)|x|2s−1

v χv(x)2 dx.

This is equal to a zeta integral of the type considered by Tate and is equal to
a holomorphic multiple of L(2s, χ2

v). Thus we see that the local intertwining
operators M(s)v have meromorphic continuation to C with a pole at s = 0 if
χ2
v = 1. Furthermore if v is a non-archimedean place such that χv is unramified,
dx is unramified and ϕs,v = ϕ0

s,v is the spherical vector in Hv(s)χv such that
ϕs,v(I) = 1 then,

Mv(s)χvϕ
0
s,v =

L(2s, χ2)
L(2s+ 1, χ2)

ϕ
′0
−s̄,v

where ϕ
′0
−s̄,v is the spherical vector in Hv(s)χ−1

v
such that ϕ

′0
−s̄,v(I) = 1. One

defines normalized intertwining operators Rv(s)χv by,

Mv(s)χv =
L(2s, χ2

v)
L(2s+ 1, χ2

v)ε(2s, χ2
v, ψv)

R(s)v.

Then Rv(s)χv are holomorphic on C and at an unramified place,

Rv(s)χvϕ
0
s,v = ϕ0

−s̄,v.

Globally we take R(s)χ =
∏
v Rv(s)χv then R(s) : H(s)χ → H(−s)χ−1 is well

defined and holomorphic for all s. Since,

M(s)χ =
L(2s, χ2)

L(2s+ 1, χ2)ε(2s, χ2)
R(s)

we see that M(s) is holomorphic if χ2 6= 1 and if χ2 = 1 then it has a pole at
s = 1

2 . Furthermore one obtains the functional equation for M(s)χ from the
functional equation,

L(1− s, χ2)ε(s, χ2) = L(s, χ2)

and the local functional equations Rv(s)χvRv(−s)χ−1
v

= 1.
Finally it remains to analyze the poles of the intertwining operators M(s)χ.

It’s clear that if <s ≥ 0 then the only pole of M(s)χ will occur when s = 1
2 and

χ2 = 1. In this case we see that,

Ress= 1
2
M(s)χ = cR(1/2)χ.

Now we need to examine,

R (1/2)χ = ⊗vR (1/2)χv .
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Recall,
Rv (1/2)χv : Hv(1/2)χv → Hv(−1/2)χ−1

v
.

Now the representations Hv(1/2)χv and Hv(−1/2)χ−1
v

are reducible. The space
Hv(1/2)χv contains an irreducible subspace of codimension one,{

ϕ ∈ Hv(1/2)χv :
∫
Fv

ϕ

(
w

(
1 x
0 1

))
dx = 0

}
.

Thus Rv(1/2)χv is trivial on this subspace. Similarly the space Hv(−1/2)χ−1
v

contains an irreducible 1-dimensional subspace generated by the function χ−1
v ◦

det.
Thus given f1 and f2 with compact support giving rise to the series F1 and

F2 we have,

(F1, F2) =
1

2π

∫ ∞
−∞

(
(f̂1(iy), f̂2(iy)) + (M(iy)f̂1(iy), f̂2(−iy))

)
dy+c

∑
χ2=1

(f̂1(1/2), χ◦det)(f̂2(1/2), χ ◦ det).

Given f we define, the section af of H(s) over iR by,

af (iy) =
1
2

(
f̂(iy) +M(−iy)f̂(−iy)

)
.

Then,
M(−iy)af (−iy) = af (iy).

Hence,

1
2π

∫ ∞
−∞

(
(f̂1(iy), f̂2(iy)) + (M(iy)f̂1(iy), f̂2(−iy))

)
dy =

1
π

∫ ∞
−∞

(af1(iy), af2(iy)) dy.

Furthermore we note that,

(f̂1(1/2), χ ◦ det) =
∫
F×\A1

∫
K

f̂1

((
a 0
0 1

)
k,

1
2

)
χ(a det k) d×a dk

=
∫
F×\A1

∫
K

∫
F+
∞

f1

((
at 0
0 1

)
k

)
χ(adet k) d×t d×a dk

=
∫
Z(A)N(A)M(F )\G(A)

f1(g)χ(det g) dg

=
∫
Z(A)G(F )\G(A)

 ∑
γ∈B(F )\G(F )

f1(γg)

χ(det g) dg

=
∫
Z(A)G(F )\G(A)

F1(g)χ(det g) dg

= (F1, χ ◦ det).
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Hence we have,

(F1, F2) =
1
π

∫ ∞
−∞

(af1(iy), af2(iy)) dy + c
∑
χ2=1

(F1, χ ◦ det)(χ ◦ det, F2).

Note that for g ∈ G(A), R(g)F is the series obtained from R(g)f given by
translating f on the right by g and we have,

aR(g)f (iy) = πiy(g)af (iy).

We define L to be the Hilbert space of square integrable sections a : iR→ H
such that M(−iy)a(−iy) = a(iy). We define the inner product,

(a1, a2) =
1
π

∫ ∞
−∞

(a1(iy), a2(iy)) dy.

on L. We obtain a unitary representation π of G(A) on L by defining,

(π(g)a)(iy) = πiy(g)(a(iy)).

Theorem 8.5. The map,
F 7→ (af , f̂(1/2))

yields an isomorphism,

L2
cusp(G(F )\G(A))⊥ ∼−→L⊕

⊕
χ2=1

χ

as representations of G(A).

Thus we have a further decomposition,

L2(G(F )\G(A)) = L2
cusp(G(F )\G(A))⊕L2

res(G(F )\G(A))⊕L2
cont(G(F )\G(A))

where
L2

res(G(F )\G(A)) ∼=
⊕
χ2=1

χ

and
L2

cont(G(F )\G(A)) ∼= L.

We now want to write down the kernel of R(f) restricted to

L2
res(G(F )\G(A)) ∼=

⊕
χ2=1

χ.

We see that
c
∑
χ2=1

(F1, χ ◦ det)(χ ◦ detF2)
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is the scalar product of the orthogonal projections of F1 and F2 onto L2
res(G(F )\G(A)).

Therefore,

c =
1

vol(G(F )\G(A))
.

Furthermore the kernel for R(f) restricted to L2
res(G(F )\G(A)) is given by,

Kf,res(x, y) =
1

vol(G(F )\G(A))

∑
χ2=1

χ(detx)χ(det y)
∫
G(A)

f(g)χ(det g) dg.

We now wish to write down the kernel forR(f) restricted to L2
cont(G(F )\G(A))

using the isomorphism of this space with L. We denote by,

S : L2(G(F )\G(A))→ L

given by extending the map defined above to be zero on L2
cusp(G(F )\G(A)).

Then S∗S is equal to the projection of L2(G(F )\G(A)) onto L2
cont(G(F )\G(A)).

For f ∈ C∞c (G(A)) we have,

S∗SR(f)S∗S = S∗π(f)S.

If Kf,cont(x, y) denotes the kernel of R(f) restricted to L2
cont(G(F )\G(A))

then,

(S∗SR(f)S∗SF1, F2) =
∫
G(F )\G(A)

∫
G(F )\G(A)

Kf,cont(x, y)F1(x)F2(y) dx dy.

We want to find an expression for Kf,cont(x, y).
For series F1 and F2 coming from f1 and f2 we wish to compute,

(S∗SR(f)S∗SF1, F2) = (S∗π(f)SF1, F2) = (π(f)SF1, SF2).

By definition of the inner product on L,

(π(f)SF1, SF2) =
1
π

∫ ∞
−∞

(πiy(f)SF1(iy), SF2(iy)) dy.

We take an orthonormal basis {ϕα} for H(0) which we extend to a constant
section of our fiber bundle by defining,

ϕα(s, g) = esH(g)ϕα(g).

We note that for y ∈ R, {ϕα(iy)} is an orthonormal basis of H(iy). Then we
have,

(π(f)SF1, SF2) =
1
π

∫ ∞
−∞

∑
α

(πiy(f)SF1(iy), ϕα(iy))(ϕα(iy), SF2(iy)) dy

=
1
π

∫ ∞
−∞

∑
α

(SF1(iy), π∗iy(f)ϕα(iy))(ϕα(iy), SF2(iy)) dy
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Thus we need an expression for

(h, SF (iy))

with h ∈ H(iy).
We now need to introduce Eisenstein series. Let ϕ be a holomorphic section

of the bundle H(s). Then we define an Eisenstein series,

E(ϕ(s), g) =
∑

γ∈B(F )\G(F )

ϕ(γg, s).

This series converges for <s > 1
2 (see [Bum97, Proposition 3.7.2]) and defines a

holomorphic function there.
Suppose we take f as usual to be a function on

Z(A)N(A)M(F )\G(A)

of compact support. We let f̂(g, s) be the section of H(s) defined as usual.
Then we have,

f(g) =
1

2πi

∫ x+i∞

x−i∞
f̂(g, s) ds.

Hence,

F (g) =
∑

γ∈B(F )\G(F )

f(γg)

=
1

2πi

∑
γ∈B(F )\G(F )

∫ x+i∞

x−i∞
f̂(γg, s) ds

=
1

2πi

∫ x+i∞

x−i∞

∑
γ∈B(F )\G(F )

f̂(γg, s) ds

=
1

2πi

∫ x+i∞

x−i∞
E(f̂(s), g) ds,

provided x > 1
2 .

As before we want to analytically continue this integral to one over the imag-
inary axis. In order to do this we need to analytically continue the Eisenstein
series.

Theorem 8.6. Let ϕ(s) be a holomorphic section of H(s). Then the Eisenstein
series E(ϕ(s), g) has a meromorphic continuation with the only poles in <s ≥ 0
appearing at s = 1

2 and satisfies the functional equation,

E(ϕ(s), g) = E(M(s)ϕ(s), g).

For the case when ϕ(s) is a flat section see [Bum97, Theorem 3.7.1]. We say
a few words here relating the analytic continuation of the Eisenstein series to
the analytic continuation of the intertwining operator M(s).
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We will use the truncation operator to obtain the analytic continuation of
E(ϕ(s), g). We write

E(ϕ(s), g) = ΛTE(ϕ(s), g) +
∑

γ∈B(F )\G(F )

EN (ϕ(s), γg)τ(H(γg)− T ).

We can compute the constant term EN (ϕ(s), g) as before by the formula,

EN (ϕ(s), g) = ϕ(g, s) +
∫
N(A)

ϕ(wng, s) dn = ϕ(s)(g) + (M(s)ϕ(s))(g).

Thus we see that, ∑
γ∈B(F )\G(F )

EN (ϕ(s), γg)τ(H(γg)− T )

has meromorphic continuation to C with singularities at most those of M(s).
On the other hand,

ΛTE(ϕ(s), g)

is square integrable and one can analytically continue it as a square integrable
function to all of C (see [GJ79, Section 5]). For the functional equation we note
that,

EN (M(s)ϕ(s), g) = EN (ϕ(s), g)

which follows from the functional equation M(s)M(−s) = Id. Hence,

E(ϕ(s), g)− E(M(s)ϕ(s), g)

has zero constant term, i.e. it is a cuspidal function. On the other hand it we
know that it is orthogonal to all cuspidal functions. Hence we deduce that,

E(ϕ(s), g)− E(M(s)ϕ(s), g) = 0.

See [GJ79, Section 5.C] for more details.
We return to the formula,

F (g) =
1

2πi

∫ x+i∞

x−i∞
E(f̂(s), g) ds.

We have,
ress= 1

2
E(f̂(s), g) = ress= 1

2
M(s)f̂(1/2).

Proposition 8.7. Let h ∈ H(0) and F a series associated to a compactly
supported function f as usual. Then,

(h(iy), SF (iy)) =
1
2

∫
G(F )\G(A)

E(h(iy), g)F (g) dg.
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Proof. Suppose we take f1 and f2 compactly supported giving rise to the series
F1 and F2. Then,

(F1, F2) =
∫
G(F )\G(A)

(
1

2πi

∫ x+i∞

x−i∞
E(f̂1(s), g) ds

)
F2(g) dg

=
1

2πi

∫ x+i∞

x−i∞

∫
G(F )\G(A)

E(f̂1(s), g)F2(g) dg ds

provided x > 1
2 . We now shift the integral to the imaginary axis to obtain,

(F1, F2) =
1

2π

∫ ∞
−∞

∫
G(F )\G(A)

E(f̂1(iy), g)F2(g) dg+c
∑
χ2=1

(F1, χ◦det)(χ◦det, F2).

Now we use that,
E(M(s)ϕ(s), g) = E(ϕ(s), g)

and the definition,

af1(iy) =
1
2

(
f̂1(iy) +M(−iy)f̂1(−iy)

)
.

To deduce that,

(F1, F2) =
1

2π

∫ ∞
−∞

∫
G(F )\G(A)

E(af1(iy), g)F2(g) dg dy+c
∑
χ2=1

(F1, χ◦det)(χ◦det, F2).

On the other hand we have,

(F1, F2) =
1
π

∫ ∞
−∞

(af1(iy), af2(iy)) dy + c
∑
χ2=1

(F1, χ ◦ det)(χ ◦ det, F2).

Since the space of af1 is dense in L we conclude that,∫ ∞
−∞

(a(iy), SF (iy)) dy =
1
2

∫ ∞
−∞

∫
G(F )\G(A)

E(a(iy), g)F (g) dg dy

for any a ∈ L. Taking a(iy) = c(y)h(iy) with c(y) a constant function in L2(R)
gives∫ ∞
−∞

c(y)(h(iy), SF (iy)) dy =
1
2

∫ ∞
−∞

∫
G(F )\G(A)

c(y)E(h(iy), g)F (g) dg dy

from which we can conclude, by varying c(y), that

(h(iy), SF (iy)) =
1
2

∫
G(F )\G(A)

E(h(iy), g)F (g) dg.
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We now make the further assumption that f ∈ C∞c (Z(A)\G(A)) is right and
left K-finite and we pick our orthonormal basis {ϕα} of H(0) to be K-finite.
Applying this Proposition we see that,

(π(f)SF1, SF2) =
1

4π

∫ ∞
−∞

(∑
α

∫
G(F )\G(A)

F1(g)Ē(π∗iy(f)ϕα(iy), g) dg
∫
G(F )\G(A)

F̄2(h)E(ϕα(iy), h) dh

)
dy.

Interchanging summation and integration yields,

(π(f)SF1, SF2) =
∫
G(F )\G(A)

∫
G(F )\G(A)

F1(g)F̄2(h) dg dh

(∑
α

1
4π

∫ ∞
−∞

E(ϕα(iy), h)Ē(π∗iy(f)ϕα(iy), g)dy

)
.

Thus the kernel for the restriction of R(f) to L2
cont(G(F )\G(A)) is,

Kf,cont(h, g) =
1

4π

∑
α

∫ ∞
−∞

E(ϕα(iy), h)Ē(π∗iy(f)ϕα(iy), g)dy

Note that we have,

π∗iy(f)ϕα =
∑
β

(π∗iy(f)ϕα(iy), ϕβ(iy))ϕβ(iy)

and so we can rewrite

Kf,cont(h, g) =
1

4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ(iy), ϕα(iy))E(ϕα(iy), h)E(ϕβ(iy), g) dg.

8.3 Spectral side of the trace formula

In the previous section we have written down the kernel Kf,cont(x, y) for the
map,

PcontR(f)Pcont : L2(G(F )\G(A))→ L2(G(F )\G(A))

where Pcont denotes the orthogonal projection,

Pcont : L2(G(F )\G(A))→ L2
cont(G(F )\G(A)).

We can also write down the kernels for PcuspR(f)Pcusp and PresR(f)Pres

where Pcusp and Pres denote the orthogonal projections of L2(G(F )\G(A)) on
to the cuspidal and residual spaces respectively. We recall the following lemma,

Lemma 8.8. Let A : L2(X) → L2(X) be a Hilbert-Schmidt operator and let
{ϕi} be an orthonormal basis of L2(X), then the function,

KA(x, y) =
∑
i

(Aϕi)(x)ϕi(y) ∈ L2(X ×X)

and is a kernel for A,
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Thus we have,

Kf,res(x, y) =
1

vol(G(F )\G(A))

∑
χ:F×\A×→C×

χ2=1

χ(detx)χ(det y)
∫
G(A)

f(g)χ(det g) dg.

We note that for a fixed function f the sum over χ is finite, since such a function
f will be invariant under translation by a compact open subgroup of G(Afin).

If we decompose,

L2
cusp(G(F )\G(A)) =

⊕
π∈Ĝ(A)

mππ.

We set
Acusp(G) =

{
π ∈ Ĝ(A) : mπ > 0

}
and for each π ∈ Acusp(G) let B(π) denote an orthonormal basis of the π-isotypic
subspace of L2

cusp(G(F )\G(A)). Then since R(f) is a Hilbert-Schmidt operator
when restricted to L2

cusp(G(F )\G(A)) so,

Kf,cusp(x, y) =
∑

π∈Acusp(G)

∑
ϕ∈B(π)

(R(f)ϕ)(x)ϕ(y).

We now have obtained the spectral decomposition of the kernel,

Kf (x, y) = Kf,cusp(x, y) +Kf,res(x, y) +Kf,cont(x, y).

We recall that we defined,

KT
f (x, y) = ΛT2 Kf (x, y)

= Kf (x, y)−
∑

δ∈B(F )\G(F )

Kf,N (x, δy)τ(H(δy)− T )

where,

Kf,N (x, y) =
∫
N(F )\N(A)

Kf (x, ny) dn.

Thus we have,

KT
f (x, y) = KT

f,cusp(x, y) +KT
f,res(x, y) +KT

f,cont(x, y).

One now wants to prove that each term is absolutely integrable over the diagonal
and provide an expression for each integral. We will largely ignore the problem
of absolute convergence for which we refer to [Gel96, Lecture III] instead we’ll
focus on computing the integrals.

Before doing so we recall that we know from our geometric calculations that,∫
G(F )\G(A)

KT
f (x, x) dx
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is a polynomial in T . In particular we need only compute each term in the
spectral expansion up to terms which vanish as T →∞.

To begin with we see that,

KT
f,cusp(x, y) = Kf,cusp(x, y).

We denote by Rcusp(f) the restriction of R(f) to

L2
cusp(G(F )\G(A)).

Then we have, from the results of Section 8.1,

Proposition 8.9. Let f ∈ C∞c (G(A)) then∫
G(F )\G(A)

Kf,cusp(x, x) dx

is absolutely integrable and is equal to,

trRcusp(f).

We now deal with the residual terms. We recall,

Kf,res(x, y) =
1

vol(G(F )\G(A))

∑
χ:F×\A×→C×

χ2=1

χ(detx)χ(det y)
∫
G(A)

f(g)χ(det g) dg

and hence KT
f,res(x, y) is equal to,

1
vol(G(F )\G(A))

∑
χ:F×\A×→C×

χ2=1

χ(detx)χ(det y)
∫
G(A)

f(g)χ(det g) dg

1−
∑

δ∈B(F )\G(F )

τ(H(δy)− T )

 .

Proposition 8.10. As T →∞,∫
G(F )\G(A)

KT
f,res(x, x) dx→

∫
G(F )\G(A)

Kf,res(x, x) dx = trRres(f).

Proof. We note that

KT
f,res(x, x) =

1
vol(G(F )\G(A))

∑
χ:F×\A×→C×

χ2=1

∫
G(A)

f(g)χ(det g) dg

1−
∑

δ∈B(F )\G(F )

τ(H(δx)− T )

 .

Thus we need to show that,∫
G(F )\G(A)

∑
δ∈B(F )\G(F )

τ(H(δx)− T ) dx→ 0
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as T →∞. We note that this integral is equal to,∫
Z(F )B(F )\G(A)

τ(H(x)− T ) dx.

We again use the Iwasawa decomposition to write,

x = n

(
at 0
0 1

)
k

with n ∈ N(A), a ∈ A1, t ∈ F+
∞ and k ∈ K. Then the integral is equal to,

vol(F×\A1) vol(K)
∫
F+
∞

τ(log |t| − T )|t|−1d×t.

This integral is equal to,

C

∫ ∞
eT

dt

t2
= Ce−T

which tends to zero as T →∞.

Finally we deal with the continuous spectrum. We recall,

Kf,cont(h, g) =
1

4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ(iy), ϕα(iy))E(ϕα(iy), h)E(ϕβ(iy), g) dg.

Hence,

KT
f,cont(h, g) =

1
4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ(iy), ϕα(iy))E(ϕα(iy), h)ET (ϕβ(iy), g) dy.

Taking absolute convergence for granted we have,∫
G(F )\G(A)

KT
f,cont(g, g) dg =

1
4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ(iy), ϕα(iy))

(∫
G(F )\G(A)

E(ϕα(iy), g)ET (ϕβ(iy), g) dg

)
dy.

Lemma 8.11. We have, for y 6= 0,∫
G(F )\G(A)

E(ϕα(iy), g)ET (ϕβ(iy), g) dg

equal to

2(ϕα, ϕβ)T−(M(−iy)M ′(iy)ϕα, ϕβ)+
(
(ϕα,M(iy)ϕβ)e2iyT − (M(iy)ϕα, ϕβ)e−2iyT

) 1
2iy

.

Proof. Recall that ϕα ∈ H(0) and we define ϕα(s) ∈ H(s) by,

ϕα(s, g) = esH(g)ϕα(g).
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By definition,
E(ϕα(s), g) =

∑
γ∈B(F )\G(F )

ϕα(s, γg).

By definition,

ET (ϕα(s), g) = E(ϕα(s), g)−
∑

δ∈B(F )\G(F )

EN (ϕα(s), δg)τ(H(δg)− T )

and
EN (ϕα(s), g) = ϕα(s)(g) + (M(s)ϕα(s))(g).

Hence,

ET (ϕα(s), g) =
∑

γ∈B(F )\G(F )

ϕα(s, γg)−
∑

δ∈B(F )\G(F )

(ϕα(s, δg) + (M(s)ϕα(s))(δg)) τ(H(δg)− T )

=
∑

γ∈B(F )\G(F )

ϕα(s, γg)(1− τ(H(γg)− T )) +
∑

γ∈B(F )\G(F )

(M(s)ϕα(s))(γg)τ(H(γg)− T ).

Thus, since ET (ϕα(s), g) is a P -series so we have (E(ϕα(s1)), ET (ϕβ(s̄2))
equal to,∫
Z(A)N(A)M(F )\G(A)

EN (ϕα(s1), g)(ϕβ(s̄2, g)(1− τ(H(g)− T ))− (M(s̄2)ϕβ(s̄2))(g)τ(H(g)− T )) dg

which equals∫
Z(A)N(A)M(F )\G(A)

(ϕα(s1, g)+(M(s1)ϕα(s1))(g))(ϕβ(s̄2, g)(1− τ(H(g)− T ))− (M(s̄2)ϕβ(s̄2))(g)τ(H(g)− T )) dg.

We use the Iwasawa decomposition to write g ∈ Z(A)N(A)M(F )\G(A) as

g =
(
at 0
0 1

)
k

with a ∈ F×\A1, t ∈ F+
∞ and k ∈ K so that we can decompose the measure as,

dg = |t|−1d×a d×t dk.

Recall that for g written in this form we have,

ϕα(s, g) = |t|s+ 1
2ϕα

((
a 0
0 1

)
k

)
and

H(g) = log |t|.

We also recall the pairing on H(0)×H(0) defined by,

(h1, h2) =
∫
F×\A1

∫
K

h1

((
a 0
0 1

)
k

)
h2

((
a 0
0 1

)
k

)
d×a dk.
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Thus we see that (E(ϕα(s1)), ET (ϕβ(s̄2)) is equal to the integral of

(ϕα, ϕβ)|t|s1+s2(1−τ(log |t|−T ))−(M(s1)ϕα(s1),M(s̄2)ϕβ(s̄2))|t|−(s1+s2)τ(log |t|−T )

plus

−(ϕα,M(s̄2)ϕβ)|t|s1−s2τ(log |t|−T )+(M(s1)ϕα, ϕβ)|t|−s1+s2(1−τ(log |t|−T ))

with respect to d×t which equals,(
(ϕα, ϕβ)e(s1+s2)T − (M(s1)ϕα(s1),M(s̄2)ϕβ(s̄2))e−(s1+s2)T

) 1
s1 + s2

plus (
(ϕα,M(s̄2)ϕβ)e(s1−s2)T − (M(s1)ϕα, ϕβ)e−(s1−s2)T

) 1
s1 − s2

.

From the functional equation for M(s) and the fact that,

(M(s)ϕ1, ϕ2) = (ϕ1,M(s̄)ϕ2)

one sees that this expression is meromorphic in s with singularities at most
those of M(s). Furthermore we can rewrite this as,(

(ϕα, ϕβ)e(s1+s2)T − (M(s2)M(s1)ϕα, ϕβ)e−(s1+s2)T
) 1
s1 + s2

plus (
(ϕα,M(s̄2)ϕβ)e(s1−s2)T − (M(s1)ϕα, ϕβ)e−(s1−s2)T

) 1
s1 − s2

.

Specializing to the case that s1 = −s2 = s 6= 0 we see that the second term
is equal to, (

(ϕα,M(−s̄)ϕβ)e2sT − (M(s)ϕα, ϕβ)e−2sT
) 1

2s
.

while applying L’Hopital’s rule the first term is equal to,

2(ϕα, ϕβ)T − (M(−s)M ′(s)ϕα, ϕβ).

From this lemma we see that,∫
G(F )\G(A)

KT
f,cont(g, g) dg

is equal to the sum of

T

2π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ , ϕα)(ϕα, ϕβ) dy,
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− 1
4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ , ϕα)(M(−iy)M ′(iy)ϕα, ϕβ) dy

and

1
4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ , ϕα)
(
(ϕα,M(iy)ϕβ)e2iyT − (M(iy)ϕα, ϕβ)e−2iyT

) 1
2iy

dy.

After interchanging summation and integration we see that the first term is
equal to,

T

2π

∫ ∞
−∞

∑
α,β

(πiy(f)ϕβ , ϕα)(ϕα, ϕβ) dy =
T

2π

∫ ∞
−∞

∑
α

(πiy(f)ϕα, ϕα) dy

=
T

2π

∫ ∞
−∞

trπiy(f) dy.

Lemma 8.12. We have,

trπiy(f) = vol(F×\A1)
∫
K

∫
N(A)

∫
F+
∞

∑
α∈F×

f

(
k−1

(
tα 0
0 1

)
nk

)
|t| 12 +iy d×t dn dk.

Proof. Let ϕ ∈ H(iy). Thus ϕ : G(A)→ C such that,

ϕ

((
a x
0 1

)
g

)
= |a| 12 +iyϕ(g)

for a ∈ F×F+
∞, x ∈ A and g ∈ G(A). We recall that by the Iwasawa decompo-

sition we can identify the space H(iy) with square integrable functions,

ϕ

((
a 0
0 1

)
k

)
with a ∈ F×\A1 and k ∈ K. In order to compute the trace of πiy(f) we will
realize this operator, via this identification of H(iy), as an integral operator and
then compute the trace by integrating the kernel over the diagonal.

By definition,

(πiy(f)ϕ)(h) =
∫
G(A)

f(g)ϕ(hg) dg =
∫
G(A)

f(h−1g)ϕ(g) dg.

As usual we write,

g =
(

1 x
0 1

)(
at 0
0 1

)
k

with x ∈ A, a ∈ A1, t ∈ F+
∞ and k ∈ K and we decompose the measure as,

dg = |t|−1 dx d×a d×t dk.
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Then we have,

(πiy(f)ϕ)(h) =
∫
K

∫
F+
∞

∫
A1

∫
A

f

(
h−1

(
1 x
0 1

)(
at 0
0 1

)
k

)
ϕ

((
1 x
0 1

)(
at 0
0 1

)
k

)
|t|−1 dx d×a d×t dk

=
∫
K

∫
F+
∞

∫
A1

∫
A

f

(
h−1

(
1 x
0 1

)(
at 0
0 1

)
k

)
ϕ

((
a 0
0 1

)
k

)
|t|− 1

2 +iy dx d×a d×t dk

=
∫
K

∫
F×A1

(∫
A

∫
F+
∞

∑
α∈F×

f

(
h−1

(
1 x
0 1

)(
αat 0
0 1

)
k

)
|t|− 1

2 +iy d×t dx

)
ϕ

((
a 0
0 1

)
k

)
d×a dk.

Thus, πiy(f) is an integral operator on F×\A1 ×K with kernel,

Hf (h, g) =
∫
A

∫
F+
∞

∑
α∈F×

f

(
h−1

(
1 x
0 1

)(
αt 0
0 1

)
g

)
|t|− 1

2 +iy d×t dx.

Hence we have,

trπiy(f) =
∫
K

∫
F×\A1

Hf

((
a 0
0 1

)
k,

(
a 0
0 1

)
k

)
d×a dk

=
∫
K

∫
F×\A1

∫
A

∫
F+
∞

∑
α∈F×

f

(
k−1

(
a−1 0
0 1

)(
1 x
0 1

)(
αt 0
0 1

)(
a 0
0 1

)
k

)
|t|− 1

2 +iy d×t dx d×a dk

=
∫
K

∫
F×\A1

∫
A

∫
F+
∞

∑
α∈F×

f

(
k−1

(
αt 0
0 1

)(
1 a−1α−1t−1x
0 1

)
k

)
|t|− 1

2 +iy d×t dx d×a dk

=
∫
K

∫
F×\A1

∫
A

∫
F+
∞

∑
α∈F×

f

(
k−1

(
αt 0
0 1

)(
1 x
0 1

)
k

)
|t| 12 +iy d×t dx d×a dk

= vol(F×\A1)
∫
K

∫
A

∫
F+
∞

∑
α∈F×

f

(
k−1

(
αt 0
0 1

)(
1 x
0 1

)
k

)
|t| 12 +iy d×t dx dk.

Thus we have,

T

2π

∫ ∞
−∞

trπiy(f) dy =
vol(F×\A1)T

2π

∫
K

∫
N(A)

∑
α∈F×

∫ ∞
−∞

∫
F+
∞

f

(
k−1

(
tα 0
0 1

)
nk

)
|t| 12 +iy d×t dy dn dk.

We apply the Mellin inversion formula to give,

T

2π

∫ ∞
−∞

trπiy(f) dy = T vol(F×\A1)
∫
K

∫
N(A)

∑
α∈F×

f

(
k−1

(
α 0
0 1

)
nk

)
dn dk.

For the second term after interchanging summation and integration we have,

− 1
4π

∫ ∞
−∞

∑
α,β

(πiy(f)ϕβ , ϕα)(M(−iy)M ′(iy)ϕα, ϕβ) dy
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and we note that,∑
α,β

(πiy(f)ϕβ , ϕα)(M(−iy)M ′(iy)ϕα, ϕβ) =
∑
α,β

(πiy(f)ϕβ , ϕα)(ϕα, (M(−iy)M ′(iy))∗ϕβ)

=
∑
β

(πiy(f)ϕβ , (M(−iy)M ′(iy))∗ϕβ)

=
∑
β

(M(−iy)M ′(iy)πiy(f)ϕβ , ϕβ)

= tr(M(−iy)M ′(iy)πiy(f)).

Hence the second term is equal to

− 1
4π

∫ ∞
−∞

tr(M(−iy)M ′(−y)πiy(f)) dy.

Finally the third term is,

1
4π

∑
α,β

∫ ∞
−∞

(πiy(f)ϕβ , ϕα)
(
(ϕα,M(iy)ϕβ)e2iyT − (M(iy)ϕα, ϕβ)e−2iyT

) 1
2iy

dy

which equals,

1
4π

∫ ∞
−∞

∑
β

(
(πiy(f)ϕβ ,M(iy)ϕβ)e2iyT − (πiy(f)ϕβ ,M(−iy)ϕβ)e−2iyT

) 1
2iy

dy

which equals,

1
4π

∫ ∞
−∞

tr(M(−iy)πiy(f))e2iyT − tr(M(iy)πiy(f))e−2iyT

2iy
dy.

In order to compute this we note the following,

Lemma 8.13. Let Φ1 and Φ2 be continuous, integrable functions on R which
are differentiable at zero. Suppose further that,

Φ1(0) = Φ2(0).

Then,

lim
T→∞

∫ ∞
−∞

Φ1(y)e2iyT − Φ2(y)e−2iyT

y
dy = 2πiΦ1(0).

Proof. We break up the integral as the sum of,∫ ∞
−∞

(Φ1(y)− Φ2(y))e2iyT

y
dy +

∫ ∞
−∞

Φ2(y)(e2iyT − e−2iyT )
y

dy = 2πiΦ1(0).

For the first term we note that,

Φ1(y)− Φ2(y)
y
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is continuous and integrable on R, hence the term∫ ∞
−∞

(Φ1(y)− Φ2(y))e2iyT

y
dy

being the Fourier transform of an integrable function goes to zero as T → ∞.
For the second term we define,

G(T ) =
∫ ∞
−∞

Φ2(y)(e2iyT − e−2iyT )
y

dy.

Then G(0) = 0, and

G′(T ) = 2i
∫ ∞
−∞

Φ2(y)(e2iyT + e−2iyT ) dy = 2i(Φ̂2(T/π) + Φ̂2(−T/π)).

Hence,

G(T ) = 2i
∫ T

0

(Φ̂2(T/π) + Φ̂2(−T/π)) dT

= 2i
∫ T

−T
Φ̂2(T/π) dT

Hence as T →∞, G(T ) tends to 2πiΦ2(0).

Lemma 8.14. The functions,

y 7→ tr(M(−iy)πiy(f))

and
y 7→ tr(M(iy)πiy(f))

are integrable over R.

Proof. See [Gel75].

Thus we see that as T →∞,

1
4π

∫ ∞
−∞

tr(M(−iy)πiy(f))e2iyT − tr(M(iy)πiy(f))e−2iyT

2iy
dy

tends to,
1
4

trM(0)π0(f).

Proposition 8.15. We have,∫
G(F )\G(A)

KT
f,cont(x, x) dx

117



equal to the sum of

− 1
4π

∫ ∞
−∞

tr(M(−iy)M ′(iy)πiy(f)) dy +
1
4

tr(M(0)π0(f)).

and
T

2π
vol(F×\A1)

∫
K

∫
N(A)

∑
α∈F×

f

(
k−1

(
α 0
0 1

)
nk

)
dn dk.

and a term which tends to 0 as T →∞.

We can now write down the spectral side of the trace formula. We note that
from our calculation of, ∫

G(F )\G(A)

KT
f (x, x) dx

using the geometric expansion for the truncated kernel that this is a linear
polynomial in T . Hence from the calculations above we conclude,

Theorem 8.16. (Spectral side of the trace formula) We have,∫
G(F )\G(A)

KT
f (x, x) dx

equal to the sum of

trRcusp(f)+trRres(f)− 1
4π

∫ ∞
−∞

tr(M(−iy)M ′(iy)πiy(f)) dy+
1
4

tr(M(0)π0(f))

and
T

2π
vol(F×\A1)

∫
K

∫
N(A)

∑
α∈F×

f

(
k−1

(
α 0
0 1

)
nk

)
dn dk.

9 The trace formula for GL(2)

We can now finally give the statement of the trace formula for GL(2) which is
given by equating the constant terms of∫

G(F )\G(A)

KT
f (x, x) dx.

Theorem 9.1. (The trace formula for GL(2)) Let f ∈ C∞c (G(A)). Then, the
sum of

vol(Z(A)G(F )\G(A))f(I)+
∑

γ∈Γ(Z(F )\G(F ))
ell. reg.

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg

118



f.p.s=1(Z(Ff , s))−
1
2

vol(F×\A1)
∑

γ∈M(F )

∫
M(A)\G(A)

f(g−1γg)H(wg) dg

is equal to

trRcusp(f)+trRres(f)− 1
4π

∫ ∞
−∞

tr(M(−iy)M ′(iy)πiy(f)) dy+
1
4

tr(M(0)π0(f)).

9.1 Simpler form of the trace formula

For our application to the Jacquet-Langlands correspondence we record the
following simpler version of the trace formula. Suppose we now take a function
f =

∏
v fv ∈ C∞c (G(A)) such that for two distinct places v1 and v2 and any

γ ∈M(Fvi) \ Z(Fvi), we have,∫
M(Fvi )\G(Fvi )

fvi(g
−1γg) dg.

We begin with the geometric side of the trace formula. We recall for g =
(gv) ∈ G(A),

H(g) =
∑
v

Hv(gv).

Thus we have for f =
∏
v fv and γ ∈M(F ),∫

M(A)\G(A)

f(g−1γg)H(wg) dg =
∑
v

∫
M(A)\G(A)

f(g−1γg)Hv(wg) dg

=
∑
v

∫
M(Fu)\G(Fu))

fv(g−1
v γgv)Hv(wgv) dgv

∏
u6=v

∫
M(Fu)\G(Fu))

fu(g−1
u γgu) dgu

= 0.

For the unipotent term we recall that we defined, Ff ∈ C∞c (A) by

Ff (a) =
∫
K

f

(
k−1

(
1 a
0 1

)
k

)
dk.

Then,
f.p.s=1(Z(Ff , s))

is defined to be the finite part of the zeta integral

Z(Ff , s) =
∫
A×

Ff (a)|a|s d×a

which converges provided <s > 1. We note that for a factorizable function f
we have,

Ff =
∏
v

Ffv
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where

Ffv (a) =
∫
Kv

fv

(
k−1

(
1 a
0 1

)
k

)
dk.

And we have, for <s > 1,

Z(Ff , s) =
∏
v

∫
F×v

Ffv (a)|a|sv d×a.

We define,

θ(Ff , s) =
Z(Ff , s)
L(s, 1F )

which is holomorphic at s = 1. We define,

θ(Ffv , s) =
Z(Ffv , s)
L(s, 1Fv )

so that
θ(Ff , s) =

∏
v

θ(Ffv , s).

Almost all factors in this product are identically one and so,

θ(Ff , s) =
∏
v

θ(Ffv , s).

We expand L(s, 1F ) in its Laurent expansion around s = 1 as,

L(s, 1F ) =
a−1

s− 1
+ a0 + a1(s− 1) + . . . .

Then we have

f.p.s=1(Z(Ff , s)) = a−1θ
′(Ff , 1) + a0θ(Ff , 1).

We have,
θ′(Ff , s) =

∑
v

∏
u6=v

θ(Ffu , s)× θ′(Ffv , s).

Now we note that,

θ(Ffv , 1) =
1

L(1, 1Fv )

∫
F×v

∫
Kv

fv

(
k−1

(
1 a
0 1

)
k

)
|a| dk d×a

= C

∫
F×v

∫
Kv

fv

(
k−1

(
a 0
0 1

)(
1 1
0 1

)(
a−1 0
0 1

)
k

)
|a| dk d×a

= C

∫
Z(Fv)N(Fv)\G(Fv)

fv

(
g−1

(
1 1
0 1

)
g

)
dg.

But now we note that,∫
Z(Fv)N(Fv)\G(Fv)

fv

(
g−1

(
1 1
0 1

)
g

)
dg = lim

a→1
|1−a−1|

∫
M(Fv)\G(Fv)

fv

(
g−1

(
a 0
0 1

)
g

)
dg.
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Thus at the places v ∈ {v1, v2} we have

θ(Ffv , 1) = 0

and hence,
f.p.s=1(Z(Ff , s)) = 0.

Thus under the assumptions above the geometric side of the trace formula re-
duces to,

vol(Z(A)G(F )\G(A))f(I)+
∑

γ∈Γ(Z(F )\G(F ))
ell. reg.

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg.

We now consider the spectral side of the trace formula for functions f satis-
fying the condition above at the places v1 and v2. We begin with a lemma,

Lemma 9.2. Suppose f ∈ C∞c (G(Fv)) is such that,∫
M(Fv)\G(Fv)

f(g−1γg) dg = 0

for all γ ∈M(Fv) \Z(Fv). Then for all characters χ : Z(Fv)\M(Fv)→ C× we
have,

trπχ(f) = 0

where πχ is the representation of G(Fv) induced from χ.

Proof. Via the Iwasawa decomposition we identify the space of πχ with a closed
subspace of L2(K). Suppose ϕ ∈ πχ. Then by definition,

(πχ(f)ϕ)(x) =
∫
G(Fv)

f(y)ϕ(xy) dy =
∫
G(Fv)

f(x−1y)ϕ(y) dy.

We use the Iwasawa decomposition and write,

y =
(
a 0
0 1

)(
1 b
0 1

)
k

and decompose the Haar measure on G(Fv) as,

dy = d×a db dk.

Then we have,

(πχ(f)ϕ)(x) =
∫
K

∫
Fv

∫
F×v

f

(
x−1

(
a 0
0 1

)(
1 b
0 1

)
k

)
ϕ

((
a 0
0 1

)(
1 b
0 1

)
k

)
d×a db dk

=
∫
K

(∫
Fv

∫
F×v

f

(
x−1

(
a 0
0 1

)(
1 b
0 1

)
k

)
|a| 12χ(a) d×a db

)
ϕ(k) dk
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Thus map πχ(f) is given by the kernel,

Kf (x, y) =
∫
F×v

∫
Fv

f

(
y−1

(
a 0
0 1

)(
1 b
0 1

)
x

)
χ(a)|a| 12 d×a db.

After a change of variables this is equal to

Kf (x, y) =
∫
F×v

∫
Fv

f

(
y−1

(
1 −b
0 1

)(
a 0
0 1

)(
1 b
0 1

)
x

)
χ(a)

|a− 1|
|a| 12

d×a db.

We can compute the trace by integrating Kf (x, y) over the diagonal to yield,

trπχ(f) =
∫
F×v

(∫
M(Fv)\G(Fv)

f

(
g−1

(
a 0
0 1

)
g

)
dg

)
χ(a)

|a− 1|
|a| 12

d×a

which is zero by hypothesis.

To begin with we claim that,

tr(M(0)π0(f)) = 0.

We recall that we can decompose,

π0 =
⊕

χ:F×\A1→C×

π0,χ

by considering the left action of M(A) on π0. We recall that the intertwining
operator M(0) maps π0,χ into π0,χ−1 . Hence,

tr(M(0)π0(f)) =
∑

χ:χ2=1

tr(Mχ(0)π0,χ(f)).

For each such χ the representation π0,χ is irreducible and hence M(0) must act
on π0,χ by a scalar cχ. Thus we have,

tr(M(0)π0(f)) =
∑

χ:χ2=1

cχ trπ0,χ(f).

But now trπ0,χ(f) =
∏
v trπ0,χv (fv) = 0 by Lemma 8.12.

We now consider the term∫ ∞
−∞

tr(M(−iy)M ′(iy)πiy(f)) dy.

Again we can decompose,

πiy =
⊕

χ:F×\A1→C×

πiy,χ
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so that our term becomes∑
χ:F×\A1→C×

∫ ∞
−∞

tr(Mχ−1(−iy)M ′χ(iy)πiy,χ(f)) dy.

We recall that when we established the meromorphic continuation of the inter-
twining operators Mχ(s) we wrote them in the form,

M(s)χ =
L(2s, χ2)

L(2s+ 1, χ2)ε(2s, χ2)
R(s)χ

with R(s)χ a normalized intertwining operator which was defined as the product
of local normalized intertwining operators Rv(s)χv . For ease of notation we write
this in the form

M(s)χ = m(s)χR(s)χ.

We apply the product rule to obtain,

M ′(s)χ = m′(s)χR(s)χ +m(s)χR′(s)χ

= m′(s)χR(s)χ +m(s)χ
∑
v

R′v(s)χv ⊗u6=v Rv(s)χv .

Using the functional equation M(−s)χ−1M(s)χ = Id and R(−s)χ−1R(s)χ we
see that,

Mχ−1(−iy)M ′χ(iy) =
m′(iy)χ
m(iy)χ

Id+
∑
v

Rv(iy)χv−1R′v(iy)χv ⊗u 6=v Iv,χv ,

where
Iv,χ : Hv(s)χv → Hv(s)χv

denotes the identity. Thus, for a factorizable function f =
∏
v fv,

tr(Mχ−1(−iy)M ′χ(iy)πiy,χ(f)) =
m′(iy)χ
m(iy)χ

trπiy,χ(f)+
∑
v

tr(Rv(iy)χv−1R′v(iy)χvπiy,χv )
∏
u 6=v

trπiy,χv (fv).

Now at the places v ∈ {v1, v2} we have,

trπiy,χv (fv) = 0

by Lemma 9.2. Hence we conclude that for such functions f we have∫ ∞
−∞

tr(M(−iy)M ′(iy)πiy(f)) dy = 0.

Theorem 9.3. Let f ∈ C∞c (G(A)) satisfy the condition above. Then,

vol(Z(A)G(F )\G(A))f(I)+
∑

γ∈Γ(Z(F )\G(F ))
ell. reg.

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

f(g−1γg) dg

is equal to
trRcusp(f) + trRres(f).
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10 The Jacquet-Langlands correspondence

We now take D to be a quaternion division algebra over F . We denote by S
the set (finite and of even cardinality) of places v such that Dv = D ⊗F Fv is
a division algebra. We set GD = D× which we view as an algebraic group over
F . We let ZD denote the center of GD and we set GD = ZD\GD. Since the
quotient GD(F )\GD(A) is compact so

L2(GD(F )\GD(A)) ∼=
⊕
πD

mπDπ
D

as a Hilbert direct sum of irreducible representations of GD(A). We define,

A(GD) =
{
πD : mπD > 0}

}
.

We write,

L2
disc(G(F )\G(A)) = L2

cusp(G(F )\G(A))⊕ L2
res(G(F )\G(A)) ∼=

⊕
π

mππ

and define
Adisc(G) = {π : mπ > 0}} .

For each place v 6∈ S we fix an isomorphism,

αv : Dv
∼−→M(2, Fv)

which is well defined, by the Skolem-Noether theorem, up to conjugacy. This
induces,

αv : GD(Fv)
∼−→G(Fv)

and we assume that for almost all v,

αv : GD(OFv ) ∼−→G(OFv ).

A weak form of the Jacquet-Langlands correspondence is given by the fol-
lowing,

Theorem 10.1. Let πD ∈ A(GD). We write πD = ⊗vπDv . Then there exists
π = ⊗vπv ∈ Adisc(G) such that for all v 6∈ S,

πv = πDv ◦ α−1
v .

The stronger version of the Jacquet-Langlands correspondence determines
the representation πv at the places v ∈ S, asserts that the representations appear
with the same multiplicity and determines the image of A(GD) in A(G). This
stronger version can also be obtained via the trace formula but requires more
local inputs.
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The trace formula in the compact quotient case tells us that for f ∈ C∞c (GD(A)),∑
πD

mπD trπD(f) =
∑

γ∈Γ(GD)

vol(GD,γ(F )\GD,γ(A))I(γ, f),

where we have set,

I(γ, f) =
∫
GD,γ(A)\GD(A)

f(g−1γg) dg.

Furthermore if f =
∏
v fv then,

I(γ, f) =
∏
v

I(γ, fv).

Our goal is to compare the geometric side of the trace formula for GD with
the geometric side of the trace formula for G. We begin by establishing a map,

ι : Γ(GD(F )) ↪→ Γ(G(F )).

Since all quadratic extensions of F embed in M(2, F ) we can pick an embedding,

β : F [γ] ↪→M(2, F )

of F -algebras. By the Skolem-Noether theorem such a map is well defined up to
conjugacy and hence the conjugacy class of β(γ) in G(F ) is well defined. Thus
we get a well defined map,

ι : Γ(GD(F )) ↪→ Γ(G(F )).

Similarly if v ∈ S then we have maps

ιv : Γ(GD(Fv)) ↪→ Γ(G(Fv))

and for places v 6∈ S we have maps,

ιv : Γ(GD(Fv)) ↪→ Γ(G(Fv))

given by the isomorphism αv : Dv
∼−→M(2, Fv).

Lemma 10.2. Let γ ∈ G(F ). Then γ ∈ ι(Γ(GD(F ))) if and only if γ ∈
ιv(Γ(GD(Fv))) for all places v ∈ S.

Proof. It suffices to recall that a quadratic extension E of F embeds in D if and
only if Ev embeds in Dv for all places v of F .

Suppose γ ∈ D \ F . Then ι(γ) is defined by picking an embedding

β : F [γ] ↪→M(2, F ).

Thus β induces an isomorphism

β : GD,γ
∼−→Gβ(γ)

of algebraic groups over F . This allows us to relate the measure on GD,γ and
Gβ(γ) which are implicit in the statement of the trace formula.

Next time we will establish the following,
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Theorem 10.3. Let v ∈ S and fv ∈ C∞c (GD(Fv)). Then there exists f ′v ∈
C∞c (G(Fv)) such that for all γ ∈ GD(Fv)

I(γ, fv) = I(ιv(γ), f ′v).

Furthermore if δ is a semisimple element of G(Fv) which doesn’t lie in the image
of the map ιv then,

I(δ, f ′v) = 0.

We will take this result for granted for the moment and use it to prove
Theorem 10.1. Implicit in the statement of the theorem is a choice of Haar
measure on G(Fv) and GD(Fv). At the places v 6∈ S we fix a Haar measure
on G(Fv) and use the isomorphism αv to transport it to a Haar measure on
GD(Fv).

Let f =
∏
v fv ∈ C∞c (GD(A)). For each place v we define f ′v ∈ C∞c (G(A))

in the following way. If v 6∈ S we define,

f ′v = fv ◦ α−1
v ,

for places v ∈ S we take fv as in Theorem 10.3. Thus if we take γ ∈ Γ(GD(F ))
then

I(γ, f) =
∏
v

I(γ, fv) =
∏
v

I(ι(γ), f ′v) = I(ι(γ), f ′).

Furthermore if δ ∈ G(F ) does not lie in the image of ι then, by Lemma 10.2
there exists a place v ∈ S such that γ doesn’t lie in the image of ιv. Thus,

I(δ, fv) = 0

and hence I(δ, f) = 0. We can apply Theorem 9.3 to f ′ to deduce that,

trRdisc(f ′) = vol(G(F )\G(A))f ′(I) +
∑

δ∈Γ(G(F ))
ell. reg.

vol(Gδ(F )\Gδ(A))I(δ, f ′)

= vol(G(F )\G(A))f(I) +
∑

γ∈Γ(GD(F ))
ell. reg.

vol(GD,γ(F )\GD,γ(A))I(γ, f).

Thus we see that,

trRdisc(f ′)− trR(f) = vol(G(F )\G(A))− vol(GD(F )\GD(A))f(I).

Now one fixes a place u 6∈ S and functions fv for v 6= u and considers this an iden-
tity of distributions on C∞c (GD(Fv)) ∼= C∞c (G(Fv)). Applying the Plancherel
formula allows on to deduce that,

vol(G(F )\G(A)) = vol(GD(F )\GD(A))
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and hence that,
trRdisc(f ′) = trR(f).

Suppose now that we are given σ = ⊗σv ∈ A(GD). For each place v ∈ S
the group GD(Fv) is compact and hence σv is finite dimensional. For each
place v ∈ S we let fv be a matrix coefficient of σv. Then if τ is an irreducible
representation of GD(Fv) we have,

tr τ(fv) = 0

unless τ ∼= σv. Thus,

trR(f) =
∑

πD∈A(GD)

mπD trπD(f) = trσS(fS)
∑

πD∈A(GD)

πDS
∼=σS

mπD trπD,S(fS).

On the other hand we have,

trRdisc(f ′) =
∑

π∈Adisc(G)

mπ trπ(f ′) =
∑

π∈Adisc(G)

mπ trπS(f ′S) trπS(f ′S)

=
∑

π∈Adisc(G)

mπ trπS(f ′S) tr(πS ◦ αS)(fS).

Thus the distribution on C∞C (GD(AS)),

fS 7→ trσS(fS)
∑

πD∈A(GD)

πDS
∼=σS

mπD trπD,S(fS)−
∑

π∈Adisc(G)

mπ trπS(f ′S) tr(πS◦αS)(fS)

is identically zero. We can rewrite this as

∑
πD,S

(
σS(fS)mσS⊗πD,S −

∑
πS

mπS⊗πD,S◦α−1 trπS(f ′S)

)
trπD,S(fS).

Applying linear independence of characters [JL70, Lemma 16.1.1] we deduce
that for every representation πD,S of GD(AS) we have,

σS(fS)mσS⊗πD,S −
∑
πS

mπS⊗πD,S◦α−1 trπS(f ′S).

Applying this identity to πD,S = σS we see that there exists π ∈ Adisc(G) such
that πS = σS ◦ α−1 and mπ > 0. This concludes the proof of Theorem 10.1

10.1 On the proof of Theorem 10.3

For complete results see [Lan80, Chapter 6] and [Lan73, Section 6].
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We now switch to the local setting. We take F to be a local field (for us
we’ll restrict to the case that F is nonarchimedean) and D to be the quaternion
division algebra over F . We take,

ι : Γ(GD(F )) ↪→ Γ(G(F )).

In order to establish the existence of a function f ′ on G(F ) matching f we
need to a classification theorem for functions on G(F ) which arise as orbital
integrals of smooth compactly supported functions on G(F ).

Suppose we fix a set of representatives {T} for the tori in G(F ). Let f
be a smooth compactly supported function on G(F ). For a regular element
γ ∈ T (F ), i.e. for γ ∈ T (F ) \ Z(F ) we define normalized orbital integrals by,

FT (γ, f) = ∆(γ)
∫
T (F )\G(F )

f(g−1γg) dg.

where if γ1 and γ2 are the eigenvalues of γ then,

∆(γ) =
∣∣∣∣ (γ1 − γ2)2

γ1γ2

∣∣∣∣ 12 .
Of course these integrals depends on a choice of measure on T (F ) which we
suppress from our notations.

Suppose we have a collection of functions {aT } for each T defined on the
regular elements T (F ). We need to determine when such a family comes from
the orbital integrals of a smooth function of compact support.

In order for such a collection of functions to come from orbital integrals we
need to have some compatibility condition as the regular elements γ ∈ T (F )
approach other tori, i.e. as γ → Z(F ).

We begin with T being the diagonal torus M in G. Then for a regular
element

γ =
(
α 0
0 β

)
∈M(F )

we have,∫
M(F )\G(F )

f(g−1γg) dg =
∫
N(F )

∫
K

f(k−1n−1γnk) dk dn

=
∫
F

∫
K

f

(
k−1

(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
k

)
dk dx

=
∫
F

∫
K

f

(
k−1

(
α 0
0 β

)(
1 x(1− α−1β)
0 1

)
k

)
dk dx

=
1

|1− α−1β|

∫
F

∫
K

f

(
k−1

(
α 0
0 β

)(
1 x
0 1

)
k

)
dk dx.

Thus we see that

FM (γ) =
∣∣∣∣αβ
∣∣∣∣ 12 ∫

F

∫
K

f

(
k−1

(
α 0
0 β

)(
1 x
0 1

)
k

)
dk dx,
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as a function on Mreg(F ), is locally constant and compactly supported. Fur-
thermore if γ is sufficiently close to(

z 0
0 z

)
∈ Z(F )

then,

FM (γ) =
∫
F

∫
K

f

(
k−1

(
z 0
0 z

)(
1 x
0 1

)
k

)
dk dx

=
∫
F×

∫
K

f

(
k−1

(
x 0
0 1

)(
z 1
0 z

)(
x−1 0

0 1

)
k

)
dk dx

=
∫
F×

∫
K

f

(
k−1

(
x−1 0

0 1

)(
z 1
0 z

)(
x 0
0 1

)
k

)
1
|x|2

dk dx

=
∫
F×

∫
K

f

(
k−1

(
x−1 0

0 1

)(
z 1
0 z

)(
x 0
0 1

)
k

)
1
|x|

dk d×x

=
∫
Gγ′ (F )\G(F )

f

(
g−1

(
z 1
0 z

)
g

)
dg,

where,

γ′ =
(
z 1
0 z

)
.

Suppose now that T is a non-split torus in G. In this case again FT (γ) is
locally constant and compactly supported on T (F ). In this case for z ∈ Z(F )
there is a neighborhood U of z such that if t ∈ T reg(F ) then,

FT (t) =
∫
Gγ′ (F )\G(F )

f

(
g−1

(
z 1
0 z

)
g

)
dg − cT f(z)

where cT is a constant depending on T ; see [JL70, Section 7].
This is a special case of a general phenomenon, the Shalika germ expansion.

Let G be a connected reductive algebraic group over a nonarchimedean field
F and let O1, . . . ,Or be the unipotent conjugacy classes in G(F ). Let T be a
maximal torus defined over F . Then there exist functions Γ1, . . . ,Γr on T reg(F )
such that: for every f ∈ C∞c (G(F )) there exists an open neighborhood of 1 such
that for all γ ∈ T reg(F ) ∩ Uf ,

Oγ(f) =
r∑
i=1

µi(f)Γi(γ)

where µi(f) denotes the orbital integral of f over Oi.
However, the Shalika germ expansion doesn’t determine the functions Γi. In

[JL70, Lemma 7.3.1] the orbital integrals of the characteristic function of G(OF )
are computed which is then sufficient to determine the functions Γi.

Conversely given a family of functions {aT } such that each aT is a smooth
function on T reg(F ) and is compactly supported function on T (F ). Then there
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exists a smooth compactly supported function f on G(F ) such that {aT } =
{FT } if and only if there exists locally constant functions of compact support
ζ and ξ on Z(F ) such that

1. aM (γ) = ξ(z) if γ is a regular element in M(F ) close to z ∈ Z(F ), and

2. aT (γ) = ξ(z)− cT ζ(z), for T a non-split torus and γ a regular element in
T (F ) close to Z(F ).

Given functions ζ and ξ Langlands explicitly constructs a smooth compactly
supported function f = fζ,ξ ∈ C∞c (G(F )) such that the associated family {FT }
satisfies the above conditions for that particular choice of ζ and ξ. Thus it
suffices to establish the claim for families {aT } which vanish near Z(F ).

Thus it suffices to prove that a family {aT } which vanishes near elements of
Z(F ) arises as the orbital integrals of a smooth compactly supported function
on G(F ).

One has a similar result for orbital integrals on D×, although now there
is no non-split torus to worry about. The point is that the constants cT that
appear are the same for D×. Thus given a function f ∈ C∞c (GD(F )) we form
a family aT } on G by setting aT equal to the normalized orbital integral of f
and set aM ≡ 0. Then this family of functions arises from the orbital integrals
of a function f ′ ∈ C∞c (G(F )).
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