
A Grammar for the C- Programming Language (Version S20)

January 21, 2020

1 Introduction

This is a grammar for the Spring 2020 semester’s C- programming language. This language is
very similar to C and has a lot of features in common with a real-world structured programming
language. There are also some real differences between C and C-. For instance the declaration
of procedure arguments, the loops that are available, what constitutes the body of a procedure
etc. Also because of time limitations this language unfortunately does not have any heap related
structures. It would be great to do a lot more, but we’ll save for a second semester of compilers ©.
NOTE: this grammar is not a Bison grammar! You’ll have to fix that.

For the grammar that follows here are the types of the various elements by type font or symbol:

• Keywords are in this type font.

• TOKEN CLASSES ARE IN THIS TYPE FONT.

• Nonterminals are in this type font.

• The symbol ε means the empty string in a CS grammar sense.

1.1 Some Token Definitions

• letter = a | . . . | z | A | . . . | Z |

• digit = 0 | . . . | 9

• letdig = digit | letter

• ID = letter letdig∗

• NUMCONST = digit+

• CHARCONST = is a representation for a single character by placing that character in
single quotes. A backslash is an escape character. Any character preceded by a backslash
is interpreted as that character. For example \x is the letter x, \’ is a single quote, \\ is a
single backslash. There are only two exceptions to this rule: \n is a newline character and
\0 is the null character.

• STRINGCONST = any series of zero or more characters enclosed by double quotes. A
backslash is an escape character. Any character preceded by a backslash is interpreted as that
character without meaning to the string syntax. For example \x is the letter x, \" is a double
quote, \’ is a single quote, \\ is a single backslash. There are only two exceptions to this
rule: \n is a newline character and \0 is the null character. The string constant can be an

1

empty string: a string of length 0. All string constants are terminated by the first unescaped
double quote. String constants must be entirely contained on a single line, that is, they
contain no unescaped newlines!

• White space (a sequence of blanks and tabs) is ignored. Whitespace may be required to
separate some tokens in order to get the scanner not to collapse them into one token. For
example: “intx” is a single ID while “int x” is the type int followed by the ID x. The scanner,
by its nature, is a greedy matcher.

• Comments are ignored by the scanner. Comments begin with // and run to the end of the
line.

• All keywords are in lowercase. You need not worry about being case independent since not
all lex/flex programs make that easy.

2 The Grammar

1. program → declarationList

2. declarationList → declarationList declaration | declaration

3. declaration → varDeclaration | funDeclaration

4. varDeclaration → typeSpecifier varDeclList ;

5. scopedVarDeclaration → scopedTypeSpecifier varDeclList ;

6. varDeclList → varDeclList , varDeclInitialize | varDeclInitialize

7. varDeclInitialize → varDeclId | varDeclId : simpleExpression

8. varDeclId → ID | ID [NUMCONST]

9. scopedTypeSpecifier → static typeSpecifier | typeSpecifier

10. typeSpecifier → int | bool | char

11. funDeclaration → typeSpecifier ID (params) statement | ID (params) statement

12. params → paramList | ε

13. paramList → paramList ; paramTypeList | paramTypeList

14. paramTypeList → typeSpecifier paramIdList

2

15. paramIdList → paramIdList , paramId | paramId

16. paramId → ID | ID []

17. statement→ expressionStmt | compoundStmt | selectionStmt | iterationStmt | returnStmt
| breakStmt

18. expressionStmt → expression ; | ;

19. compoundStmt → { localDeclarations statementList }

20. localDeclarations → localDeclarations scopedVarDeclaration | ε

21. statementList → statementList statement | ε

22. elsifList → elsifList elsif simpleExpression then statement | ε

23. selectionStmt → if simpleExpression then statement elsifList | if simpleExpression then
statement elsifList else statement

24. iterationRange → ID = simpleExpression .. simpleExpression | ID = simpleExpression ..
simpleExpression : simpleExpression

25. iterationStmt → while simpleExpression do statement | loop forever statement | loop
iterationRange do statement

26. returnStmt → return ; | return expression ;

27. breakStmt → break ;

28. expression → mutable = expression | mutable += expression | mutable −= expression
| mutable ∗= expression | mutable /= expression | mutable ++ | mutable −−
| simpleExpression

29. simpleExpression → simpleExpression or andExpression | andExpression

30. andExpression → andExpression and unaryRelExpression | unaryRelExpression

31. unaryRelExpression → not unaryRelExpression | relExpression

32. relExpression → sumExpression relop sumExpression | sumExpression

33. relop → <= | < | > | >= | == | ! =

34. sumExpression → sumExpression sumop mulExpression | mulExpression

35. sumop → + | −

3

36. mulExpression → mulExpression mulop unaryExpression | unaryExpression

37. mulop → ∗ | / | %

38. unaryExpression → unaryop unaryExpression | factor

39. unaryop → − | ∗ | ?

40. factor → immutable | mutable

41. mutable → ID | mutable [expression]

42. immutable → (expression) | call | constant

43. call → ID (args)

44. args → argList | ε

45. argList → argList , expression | expression

46. constant → NUMCONST | CHARCONST | STRINGCONST | true | false

3 Semantic Notes

• The only numbers are ints.

• There is no conversion or coercion between types such as between ints and bools or bools and
ints.

• There can only be one function with a given name. There is no function overloading.

• The unary asterisk is the only unary operator that takes an array as an argument. It takes
an array and returns the size of the array.

• The STRINGCONST token translates to a fixed size char array.

• The logical operators and and or are NOT short cutting. Although it is easy to do, we have
plenty of other stuff to implement.

• In if statements the else is associated with the most recent if. The above grammar allows for
ambiguous associations between else and if.

• elsif is treated as if it is an else containing the if test and all the immediately following elsif’s.
The rule of matching the else is associated with the most recent if applies here as a result.

• loop with a range creates a new scope with the ID declared as a variable in that scope. The
from, to, and by values for range are computed once before the loop begins and stored in
non-visible variables related to the loop and stored in the scope of the loop.

4

• Expressions are evaluated in order consistent with operator associativity and precedence found
in mathematics. Also, no reordering of operands is allowed.

• A char occupies the same space as an integer or bool.

• A string is a constant char array.

• Initialization of variables can only be with expressions that are constant, that is, they are
able to be evaluated to a constant at compile time. For this class, it is not necessary that
you actually evaluate the constant expression at compile time. But you will have to keep
track of whether the expression is constant. Type of variable and expression must match (see
exception for char arrays below).

• Array assignment works. The source array is copied to the target array. If the target array
is smaller the source array is trimmed. If the target array is larger only the elements in the
target corresponding to the source elements change. Array comparison doesn’t work natively.
We just don’t have time. Passing of arrays is done by reference. Functions cannot return an
array, but they can modify the content of an array passed in.

• Assignments in expressions happen at the time the assignment operator is encountered in the
order of evaluation. The value returned is value of the rhs of the assignment. Assignments
include the ++ and −− operator. That is, the ++ and −− operator do NOT behave as in
C or C++.

• Assignment of a string (char array) to a char array. This simply assigns all of the chars in the
rhs array into the lhs array. It will not overrun the end of the lhs array. If it is too short it
will pad the lhs array with null characters which are equivalent to zeroes.

• The initializing a char array to a string behaves like an array assignment to the whole array.

The second initializing case for a char array is to initialize it to a char (not a char array). This
will fill the array with copies of the given character. By the way, this is an illegal assignment.

• Function return type is specified in the function declaration, however if no type is given to
the function in the declaration then it is assumed the function does not return a value. To
aid discussion of this case, the type of the return value is said to be void, even though there
is no void keyword for the type specifier.

• Code that exits a procedure without a return returns a 0 for an function returning int and
false for a function returning bool and a blank for a function returning char.

• All variables, functions must be declared before use.

• ?n generates a uniform random integer in the range 0 to |n|− 1 with the sign of n attached to
the result. ?5 is a random number in the range 0 to 4. ?−5 is a random number in the range
0 to −4. ?0 is undefined. ?x for array x gives a random element from the array x.

5

4 An Example of C- Code

char zev[10]:"corgis";

int x:42, y:666;

int ant(int bat, cat[]; bool dog, elk; int fox; char gnu)

{

int goat, hog[100];

gnu = ’W’;

goat = hog[2] = 3**cat; // hog is 3 times the size of array passed to cat

if dog and elk or bat > cat[3] then dog = !dog;

else fox++;

if bat <= fox then {

while dog do {

static int hog; // hog in new scope

hog = fox;

dog = fred(fox++, cat)>666;

if hog>bat then break;

else if fox!=0 then fox += 7;

}

}

loop i=1..10:3 do { // i is an int local to the loop

if x==1 then cat[i] = bat;

elsif (x==2) then cat[i] = bat%17;

elsif (x==3) then cat[i] = 78;

else x++;

}

loop forever if x>333 then break; else x++;

return (fox+bat*cat[bat])/-fox;

}

// note that functions are defined using a statement

int max(int a, b) if a>b then return a; else return b;

6

Table 1: A table of all operators in the language. Note that C- supports = for all types of arrays.
It does not support relative testing: ≥,≤, >,< for any arrays.

Operator Arguments Return Type

initialization equal,string N/A

initialization equal N/A

not bool bool

and bool,bool bool

or bool,bool bool

== equal types bool

! = equal types bool

<= int,int bool

< int,int bool

>= int,int bool

> int,int bool

<= char,char bool

< char,char bool

>= char,char bool

> char,char bool

= equal types incl. arrays type of lhs

+= int,int int

−= int,int int

∗= int,int int

/= int,int int

−− int int

++ int int

∗ any array int

− int int

? int int

∗ int,int int

+ int,int int

− int,int int

/ int,int int

% int,int int

[] array,int type of lhs

7

