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Abstract

Background: The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide
association studies and implementation of genomic selection. The availability of high-density single nucleotide
polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In
this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and
explored its variation across autosomes and the X chromosome.

Findings: In each breed, LD decayed rapidly and r2 was less than 0.2 for marker pairs separated by 50 kb. The LD
decay curves clustered into three groups of similar LD decay that distinguished the three main cattle types. At short
distances between markers (< 10 kb), taurine breeds showed higher LD (r2 = 0.45) than their indicine (r2 = 0.25) and
composite (r2 = 0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller effective population
size and a stronger bottleneck during breed formation. Using all SNPs on only the X chromosome, the three cattle
types could still be distinguished. However for taurine breeds, the LD decay on the X chromosome was much
faster and the background level much lower than for indicine breeds and composite populations. When using only
SNPs that were polymorphic in all breeds, the analysis of the X chromosome mimicked that of the autosomes.

Conclusions: The pattern of LD mirrored some aspects of the history of breed populations and showed a sharp
decay with increasing physical distance between markers. We conclude that the availability of the HD chip can be
used to detect association signals that remained hidden when using lower density genotyping platforms, since LD
dropped below 0.2 at distances of 50 kb.
Background
Linkage disequilibrium (LD) between molecular markers
reflects the correlation between genotypes of two markers
or the degree of non-random association between their
alleles. Previous studies that used single nucleotide poly-
morphisms (SNPs) to describe patterns of LD in cattle at
the whole-genome level [1-6] have suggested that 30 000
to 300 000 SNPs are necessary to perform a genome-wide
association study (GWAS), depending on the trait studied
and the statistical power desired [1,2]. Today, the availabil-
ity of high-density SNP platforms that can assay more
than 0.5 million loci offers the required marker density.
The extent of LD has implications for both GWAS and

the delivery of accurate genomic predictions. However, its
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importance is often neglected despite the fact that it is
known that it can introduce bias. Collecting and using
SNP genotyping data have exploded for cattle in the last
few years due in part to decreasing genotyping cost and
to efforts to improve cattle breeding through genomic
selection. Despite this, few studies have documented the
behaviour of LD using the expanded set of 777 000 SNPs
available on the BovineHD platform (Illumina Inc, San
Diego). One of the significant advances of this denser chip
is that it allows for an accurate estimation of LD over
short physical distances as it contains many more marker
pairs separated by 10 kb or less.
Here, we present the LD decay curves for SNPs on bo-

vine autosomes and the X chromosome for three genetic
groups of cattle breeds: Bos taurus (taurine), Bos indicus
(indicine) and a composite beef cattle group. The results
were compared to an independent population to confirm
and potentially generalize the findings. This report is
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
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Table 1 Description of samples and summary of results*

Breed Breed type Total nb Nb of males Pn He LD at 10 kb
autos

LD at 10 kb
BTAX

LD at 70 kb
autos

LD at 70 kb
BTAX

Australian population

Angus Bt 195 165 0.85 0.27 0.46 0.47 0.20 0.25

Hereford Bt 79 73 0.85 0.31 0.49 0.51 0.23 0.28

Limousin Bt 62 58 0.86 0.30 0.42 0.49 0.15 0.23

Shorthorn Bt 130 127 0.90 0.25 0.43 0.46 0.19 0.27

Tropical Composite Bt × Bi 351 186 1.00 0.35 0.30 0.43 0.13 0.33

Santa Gertrudis Bt × Bi 168 82 0.99 0.33 0.32 0.47 0.16 0.37

Belmont Red Bt × Bi 97 77 1.00 0.34 0.33 0.44 0.15 0.34

Brahman Bi 519 304 1.00 0.26 0.25 0.42 0.13 0.32

Bovine HapMap population

Angus Bt 55 42 0.84 0.29 0.46 0.47 0.20 0.23

Santa Gertrudis Bt × Bi 35 32 0.98 0.34 0.34 0.48 0.18 0.39

Brahman Bi 46 36 0.91 0.25 0.28 0.43 0.16 0.33
*Bt = Bos taurus; Bi = Bos indicus; Bt × Bi = composite breed; Pn = proportion of polymorphic SNPs; He = gene diversity or heterozygosity; 10 kb = average r2 of all
pairs of SNPs that are between 9.5 to 10.5 kb apart; Autos = autosomes; 70 kb = average r2 of all pairs of SNPs that are between 69.5 to 70.5 kb apart.
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intended to be used as an updated description of the
extent of LD in beef cattle.

Methods
All analyses were performed using genotypes generated
in previous work. Therefore, for this study, no animal
ethics approval was requested because no new animals
were sampled.
Animals used in this study (Table 1) were part of a large

experimental Australian population [7] that includes the
Figure 1 Linkage disequilibrium (r2) decay on beef cattle autosomes
samples. Additional file 1: Figure S1 discriminates each breed.
three main cattle types: Bos taurus breeds (Angus,
Hereford, Limousin and Shorthorn), Bos indicus (Brahman)
and composite cattle (Tropical Composite, Santa Gertrudis
and Belmont Red). To confirm our findings, genotyping
data from each cattle type (Angus, Brahman and Santa
Gertrudis) were sourced from the Bovine HapMap con-
sortium [3].
All animals were genotyped using the BovineHD

SNP chip (Illumina, San Diego; http://www.illumina.com/
documents/products/datasheets/datasheet_bovineHD.pdf)
using a selection of Australian cattle breeds and HapMap

http://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
http://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
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that includes 777 962 markers. Quality control and imput-
ation of missing data in the Australian sample followed
the pipeline described by Bolormaa et al. [8]. Briefly, strin-
gent filters were applied to each SNP (call rate, duplicated
map position, extreme departure from Hardy-Weinberg
equilibrium), resulting in 729 068 informative SNPs. Miss-
ing genotypes were imputed within each breed type using
30 iterations of the BEAGLE software [9]. Genotypes
for the same set of SNPs were extracted from the Bovine
HapMap dataset [10] but missing genotypes were not
imputed. LD between each pair of SNPs, measured as r2,
which is less susceptible to bias due to differences in allelic
Figure 2 Linkage disequilibrium (r2) on the X chromosome of beef ca
(B). MAF =minor allele frequency.
frequency [4], and within-breed genetic diversity (het-
erozygosity and proportion of polymorphic SNPs) were
calculated using PLINK v1.07 [11]. For the X chromo-
some, two scenarios were explored: one including all
markers, and the second including only fairly poly-
morphic markers with a minor allele frequency (MAF)
greater than 0.1 in all breeds.

Results and discussion
A high proportion of polymorphic markers was observed
across all breeds, with the taurine breeds showing a
slightly lower proportion (Pn ~ 0.86) than their indicine
ttle using all SNPs (A) and only polymorphic SNPs in all breeds
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and composite counterparts (Pn ~ 1.00 for both)
(Table 1). Heterozygozity (He) ranged from 0.25 (Brah-
man from the HapMap dataset and Shorthorn) to 0.35
(Tropical Composite). In general, the composite breeds
showed higher He (0.34) than the taurine (0.28) and
indicine breeds (0.26) because they originated from a
mixture of both these types of cattle.
The pattern of LD differed between breeds and the

resulting decay curves could be grouped according to
breed type (Figure 1 and Additional file 1: Figure S1). At
short marker distances, indicine breeds had lower LD
for autosomes compared to either the composite (inter-
mediate) or taurine (highest) breeds. This is in agree-
ment with previous studies [2,3], but the degree of
variation fluctuates. When the distance between markers
was 10 kb, the average observed LD (r2) for Brahman
and Angus was 0.25 and 0.46, respectively (Table 1),
which is equivalent to the LD reported for a comparable
indicine cattle breed i.e. Nelore (0.27) [12], but higher
than the value previously reported for Angus (0.35) [13].
This difference is not as clear for markers separated by a
larger physical distance (> 70 kb) where LD quickly
approached background levels, and r2 was ~ 0.10 in both
studies and also in dairy breeds [6]. The average LD
between unlinked markers (SNPs on different chromo-
somes) was at the background level or less across all
breeds (see Additional file 2: Table S1) and was nega-
tively correlated with sample size (Pearson correlation,
r = −0.75). Indicine cattle continued to have a lower LD
than most of the other breeds when the distances
between markers were large, which suggests that they
originated from a larger ancestral population.
Analysis of LD across the bovine X chromosome

(BTAX) revealed a different pattern to that observed for
autosomes (Figure 2). The LD decay curves were still
grouped by cattle type, however with a different ranking
compared to what was observed for LD on autosomes.
Over very short distances between markers on BTAX
(< 5 kb), the indicine breeds still had the lowest average
LD (r2 ~ 0.5) and the taurine breeds had the highest
(r2 > 0.6). However, contrary to the pattern observed for
autosomes, LD across BTAX decayed fastest in the
taurine breeds, such that for marker pairs separated by
50 kb, the average LD was lower than that in either of
the composite indicine populations (Figure 2A). The
same LD patterns were observed when males only were
evaluated (see Additional file 1: Figure S2). However,
when only SNPs that were polymorphic for all breeds
(MAF > 0.1) were used, the LD decay for BTAX became
much more homogeneous across all breeds and, in fact,
did not differ much from the results obtained for auto-
somes (Figure 2B). Because of the bottlenecks that cattle
populations have experienced since their domestication
and more recently during breed formation and because
of the frequent intensive use of artificial insemination, it
would be reasonable to expect extensive LD on BTAX.
This expectation agrees with the LD decay observed for
indicine and composite breeds when using all SNPs but
not with the LD decay observed for all taurine breeds,
nor for the LD decay observed for all breeds when only
polymorphic SNPs were used. We speculate that the use
of all markers inflated the LD observed for indicine and
composite breeds (or biased the LD for taurine breeds
downwards). However, the use of only polymorphic
SNPs was too stringent and did not allow the analyses to
capture the expected difference in LD on BTAX due to
its unique inheritance.
To assess whether the results obtained here were a

specific feature of the Australian population, we repeated
the analyses with an independent sample of Angus,
Santa Gertrudis and Brahman animals from the Bovine
HapMap dataset [3,10]. Results for all analyses on these
populations showed high concordance with LD observed
in the Australian populations for both the autosomes
and BTAX (Figures 1 and 2).

Conclusions
Our results expand on previous studies of genome-wide
LD in bovine populations. By using larger samples and a
much higher density of markers than before and by
exploring variation across autosomes and the X chromo-
some, we obtained an exponential increase in pair-wise
LD comparisons, which allowed us to produce robust re-
sults. Because LD dropped below 0.2 at marker distances
above 50 kb, we conclude that the availability of the HD
chip enables detection of association signals that remained
hidden when using lower density genotyping platforms.

Additional files

Additional file 1: Figure S1. Linkage disequilibrium (r2) decay on beef
cattle autosomes from the Australian sample. AA = Angus, BB = Brahman,
TC = Tropical Composite, SG = Santa Gertrudis, BR = Belmont Red, HH =
Hereford, LL = Limousin, SS = Shorthorn. Plot of the linkage disequilibrium (r2)
decay on beef cattle autosomes from the Australian sample colour-coded
per breed. Figure S2. Linkage disequilibrium (r2) decay on the X chromosome
of male beef cattle only. AA = Angus, BB = Brahman, TC = Tropical Composite,
SG = Santa Gertrudis, BR = Belmont Red, HH=Hereford, LL = Limousin,
SS = Shorthorn. Plot of the linkage disequilibrium (r2) decay on the X
chromosome of male beef cattle colour-coded per breed and cattle type.

Additional file 2: Table S1. Average linkage disequilibrium (r2) between
unlinked markers. About ~7 K SNPs were randomly sampled and linkage
disequilibrium was calculated for SNP pairs on different chromosomes.
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