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1 Introduction

Particle Swarm Optimization (PSO) is a technique used to explore the search space of a given problem to
find the settings or parameters required to maximize a particular objective. This technique, first described
by James Kennedy and Russell C. Eberhart in 1995 [1], originates from two separate concepts: the idea of
swarm intelligence based off the observation of swarming habits by certain kinds of animals (such as birds
and fish); and the field of evolutionary computation.

This short tutorial first discusses optimization in general terms, then describes the basics of the particle
swarm optimization algorithm.

2 Optimization

Optimization is the mechanism by which one finds the maximum or minimum value of a function or process.
This mechanism is used in fields such as physics, chemistry, economics, and engineering where the goal
is to maximize efficiency, production, or some other measure. Optimization can refer to either minimiza-
tion or maximization; maximization of a function f is equivalent to minimization of the opposite of this
function, −f [4].

Mathematically, a minimization task is defined as:

Given f : R
n → R

Find x̂ ∈ R
n such that f(x̂) ≤ f(x),∀x ∈ R

n

Similarly, a maximization task is defined as:

Given f : R
n → R

Find x̂ ∈ R
n such that f(x̂) ≥ f(x),∀x ∈ R

n

The domain R
n of f is referred to as the search space (or parameter space [2]). Each element of R

n is
called a candidate solution in the search space, with x̂ being the optimal solution. The value n denotes the
number of dimensions of the search space, and thus the number of parameters involved in the optimization
problem. The function f is called the objective function, which maps the search space to the function space.
Since a function has only one output, this function space is usually one-dimensional. The function space is
then mapped to the one-dimensional fitness space, providing a single fitness value for each set of parameters.
This single fitness value determines the optimality of the set of parameters for the desired task. In most
cases, including all the cases discussed in this paper, the function space can be directly mapped to the
fitness space. However, the distinction between function space and fitness space is important in cases such
as multiobjective optimization tasks, which include several objective functions drawing input from the same
parameter space [2, 5].

For a known (differentiable) function f , calculus can fairly easily provide us with the minima and maxima
of f . However, in real-life optimization tasks, this objective function f is often not directly known. Instead,
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the objective function is a “black box” to which we apply parameters (the candidate solution) and receive
an output value. The result of this evaluation of a candidate solution becomes the solution’s fitness. The
final goal of an optimization task is to find the parameters in the search space that maximize or minimize
this fitness [2].

In some optimization tasks, called constrained optimization tasks, the elements in a candidate solution
can be subject to certain constraints (such as being greater than or less than zero) [4]. For the purposes of
this paper, we will focus on unconstrained optimization tasks.

A simple example of function optimization can be seen in Figure 1. This figure shows a selected region
the function f , demonstrated as the curve seen in the diagram. This function maps from a one-dimensional
parameter space—the set of real numbers R on the horizontal x-axis—to a one-dimensional function space—
the set of real numbers R on the vertical y-axis. The x-axis represents the candidate solutions, and the
y-axis represents the results of the objective function when applied to these candidate solutions. This type
of diagram demonstrates what is called the fitness landscape of an optimization problem [2]. The fitness
landscape plots the n-dimensional parameter space against the one-dimensional fitness for each of these
parameters.

Figure 1: Function Maximum

Figure 1 also shows the presence of a local maximum in addition to the marked global maximum. A local
maximum is a candidate solution that has a higher value from the objective function than any candidate
solution in a particular region of the search space. For example, if we choose the interval [0,2.5] in Figure 1,
the objective function has a local maximum located at the approximate value x = 1.05. Many optimiza-
tion algorithms are only designed to find the local maximum, ignoring other local maxima and the global
maximum. However, the PSO algorithm as described in this paper is intended to find the global maximum.

3 PSO Algorithm

The PSO algorithm works by simultaneously maintaining several candidate solutions in the search space.
During each iteration of the algorithm, each candidate solution is evaluated by the objective function being
optimized, determining the fitness of that solution. Each candidate solution can be thought of as a particle

“flying” through the fitness landscape finding the maximum or minimum of the objective function.
Initially, the PSO algorithm chooses candidate solutions randomly within the search space. Figure 2

shows the initial state of a four-particle PSO algorithm seeking the global maximum in a one-dimensional
search space. The search space is composed of all the possible solutions along the x-axis; the curve denotes
the objective function. It should be noted that the PSO algorithm has no knowledge of the underlying
objective function, and thus has no way of knowing if any of the candidate solutions are near to or far away
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from a local or global maximum. The PSO algorithm simply uses the objective function to evaluate its
candidate solutions, and operates upon the resultant fitness values.

Figure 2: Initial PSO State

Each particle maintains its position, composed of the candidate solution and its evaluated fitness, and its
velocity. Additionally, it remembers the best fitness value it has achieved thus far during the operation of
the algorithm, referred to as the individual best fitness, and the candidate solution that achieved this fitness,
referred to as the individual best position or individual best candidate solution. Finally, the PSO algorithm
maintains the best fitness value achieved among all particles in the swarm, called the global best fitness,
and the candidate solution that achieved this fitness, called the global best position or global best candidate

solution.
The PSO algorithm consists of just three steps, which are repeated until some stopping condition is

met [4]:

1. Evaluate the fitness of each particle

2. Update individual and global best fitnesses and positions

3. Update velocity and position of each particle

The first two steps are fairly trivial. Fitness evaluation is conducted by supplying the candidate solution
to the objective function. Individual and global best fitnesses and positions are updated by comparing the
newly evaluated fitnesses against the previous individual and global best fitnesses, and replacing the best
fitnesses and positions as necessary.

The velocity and position update step is responsible for the optimization ability of the PSO algorithm.
The velocity of each particle in the swarm is updated using the following equation:
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vi(t + 1) = wvi(t) + c1r1[x̂i(t) − xi(t)] + c2r2[g(t) − xi(t)]

The index of the particle is represented by i. Thus, vi(t) is the velocity of particle i at time t and
xi(t) is the position of particle i at time t. The parameters w, c1, and c2 (0 ≤ w ≤ 1.2, 0 ≤ c1 ≤ 2, and
0 ≤ c2 ≤ 2) are user-supplied coefficients. The values r1 and r2 (0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1) are random
values regenerated for each velocity update. The value x̂i(t) is the individual best candidate solution for
particle i at time t, and g(t) is the swarm’s global best candidate solution at time t.

Each of the three terms of the velocity update equation have different roles in the PSO algorithm. The
first term wvi(t) is the inertia component, responsible for keeping the particle moving in the same direction
it was originally heading. The value of the inertial coefficient w is typically between 0.8 and 1.2, which can
either dampen the particle’s inertia or accelerate the particle in its original direction [3]. Generally, lower
values of the inertial coefficient speed up the convergence of the swarm to optima, and higher values of the
inertial coefficient encourage exploration of the entire search space.

The second term c1r1[x̂i(t)−xi(t)], called the cognitive component, acts as the particle’s memory, causing
it to tend to return to the regions of the search space in which it has experienced high individual fitness.
The cognitive coefficient c1 is usually close to 2, and affects the size of the step the particle takes toward its
individual best candidate solution x̂i.

The third term c2r2[g(t) − xi(t)], called the social component, causes the particle to move to the best
region the swarm has found so far. The social coefficient c2 is typically close to 2, and represents the size
of the step the particle takes toward the global best candidate solution g(x) the swarm has found up until
that point.

The random values r1 in the cognitive component and r2 in the social component cause these components
to have a stochastic influence on the velocity update. This stochastic nature causes each particle to move
in a semi-random manner heavily influenced in the directions of the individual best solution of the particle
and global best solution of the swarm.

In order to keep the particles from moving too far beyond the search space, we use a technique called
velocity clamping to limit the maximum velocity of each particle [4]. For a search space bounded by the range
[−xmax, xmax], velocity clamping limits the velocity to the range [−vmax, vmax], where vmax = k × xmax.
The value k represents a user-supplied velocity clamping factor, 0.1 ≤ k ≤ 1.0. In many optimization
tasks, such as the ones discussed in the paper, the search space is not centered around 0 and thus the range
[−xmax, xmax] is not an adequate definition of the search space. In such a case where the search space is
bounded by [xmin, xmax], we define vmax = k × (xmax − xmin)/2.

Once the velocity for each particle is calculated, each particle’s position is updated by applying the new
velocity to the particle’s previous position:

xi(t + 1) = xi(t) + vi(t + 1)

This process is repeated until some stopping condition is met. Some common stopping conditions include:
a preset number of iterations of the PSO algorithm, a number of iterations since the last update of the global
best candidate solution, or a predefined target fitness value.

4 PSO Variations

Apart from the canonical PSO algorithm described in Section 3, many variations of the PSO algorithm exist.
For instance, the inertia weight coefficient was originally not a part of the PSO algorithm, but was a later
modification that became generally accepted. Additionally, some variations of the PSO do not include a
single global best aspect of the algorithm, and instead use multiple global best that are shared by separate
subpopulations of the particles.

Many more variations exist. For a full review of many of these modifications to the PSO algorithm,
please see [4].
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