

Create Your First Application:
Node.js and Windows Azure
Windows Azure Developer Center

Summary: Create your first application using Node.js and Windows Azure.

• Implement a simple Hello World application in Node.js and deploy the
application to a Windows Azure Web Site.

• Learn how to use the Windows Azure PowerShell cmdlets to create a Node.js
application, test it in the Windows Azure Emulator, and then deploy it as a
Windows Azure Cloud Service.

• Implement a Node.js application using WebMatrix, and then deploy it to a
Windows Azure web site.

• Implement a task list application using Node.js and MongoDB.

Category: Quick Step-by-Step
Applies to: Windows Azure, Node.js
Source: Windows Azure Developer Center (link to source content)
E-book publication date: June 2012

http://www.windowsazure.com/en-us/develop/nodejs/�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Create and deploy a Node.js application to a Windows Azure Web Site .. 5

Set up the Windows Azure environment ... 5
Create a Windows Azure account ... 5
Enable Windows Azure Web Sites .. 6

Create a Windows Azure Web Site and enable Git publishing .. 7
Install developer tools .. 11
Build and test your application locally ... 12
Publish your application .. 13
Publish changes to your application ... 15
Revert to a previous deployment ... 16
Next steps ... 17
Additional Resources .. 17

Node.js Cloud Service ... 18
Setting Up the Development Environment .. 18
Creating a New Node Application ... 19
Running Your Application Locally in the Emulator .. 23
Deploying the Application to Windows Azure .. 24

Creating a Windows Azure Account ... 24
Downloading the Windows Azure Publishing Settings ... 25
Publishing the Application .. 26

Stopping and Deleting Your Application .. 28

Create and deploy a Node.js application to a Windows Azure Web Site using WebMatrix 30
Set up the Windows Azure environment .. 31

Create a Windows Azure account .. 31
Enable Windows Azure Web Sites ... 31

Create a Windows Azure Web Site .. 33
Import the web site into WebMatrix and apply the Express template .. 34
Publish your application to Windows Azure .. 37
Modify and republish your application.. 40
Next Steps ... 42

Node.js Web Application with Storage on MongoDB ... 43
Prerequisites ... 45
Preparation ... 45

Create a virtual machine and install MongoDB .. 45
Sign up for the Windows Azure Web Sites preview feature .. 45
Enable Windows Azure Web Sites ... 46

Install modules and generate scaffolding ... 47
Install express and generate scaffolding ... 48
Install additional modules ... 49

Using MongoDB in a node application.. 50
Create the model .. 50
Create the controller ... 50
Modify app.js ... 52
Modify the index view .. 52

Run your application locally ... 53
Deploy your application to Windows Azure .. 56

Install the Windows Azure command-line tool for Mac and Linux ... 57
Import publishing settings .. 57
Create a Windows Azure Web Site .. 58
Publish the application ... 59

Next steps ... 60
Additional resources ... 60

Node.js Web Application using the Windows Azure SQL Database .. 61
Prerequisites ... 62
Enable the Windows Azure Web Site feature .. 62
Create a web site with database ... 63
Get SQL Database connection information .. 71
Design the task table .. 72
Install modules and generate scaffolding ... 75

Install express and generate scaffolding ... 75
Install additional modules ... 77

Use SQL Database in a node application .. 78
Modify the controller .. 78
Modify app.js ... 79
Modify the index view .. 80
Modify the global layout ... 81
Create configuration file .. 82

Run your application locally ... 82
Deploy your application to Windows Azure .. 84

Publish the application ... 84
Switch to an environment variable .. 84

Next steps ... 86
Additional resources ... 86

 5

Create and deploy a Node.js application to a
Windows Azure Web Site
This tutorial shows you how to create a node application and deploy it to a Windows
Azure Web Site using Git. The instructions in this tutorial can be followed on any
operating system that is capable of running node.
You will learn:

• How to create a Windows Azure Web Site using the Windows Azure Developer
Portal

• How to publish and re-publish your application to Windows Azure using Git

By following this tutorial, you will build a simple Hello World web application in Node.js.
The application will be hosted in a Windows Azure Web Site when deployed.
A screenshot of the completed application is below:

Set up the Windows Azure environment
First, set up the Windows Azure environment. You'll create a Windows Azure account
and enable this account to use the Windows Azure Web Sites preview feature.

Create a Windows Azure account
1. Open a web browser and browse to http://www.windowsazure.com.
2. To get started with a free account, click Free Trial in the upper-right corner and

follow the steps. You'll need a credit card number and a mobile phone number
for proof of identity, but you will not be billed.

http://nodejs.org/�
http://git-scm.com/�
http://www.windowsazure.com/�

 6

Enable Windows Azure Web Sites
After signing up, follow these steps to enable the Windows Azure Web Site feature.

1. Navigate to https://account.windowsazure.com/ and sign in with your Windows
Azure account.

2. Click preview features to view the available previews.

3. Scroll down to Web Sites and click try it now.

https://account.windowsazure.com/�

 7

4. Select your subscription and click the check.

Create a Windows Azure Web Site and enable Git
publishing
Follow these steps to create a Windows Azure Web Site, and then enable Git publishing
for the web site.

1. Login to the Windows Azure Portal.
2. Click the + NEW icon on the bottom left of the portal

http://manage.windowsazure.com/�

 8

3. Click WEB SITE, then QUICK CREATE. Enter a value for URL and select the

datacenter for your web site in the REGION dropdown. Click the checkmark at
the bottom of the dialog.

4. Once the web site status changes to Running, click on the name of the web site

to access the Dashboard

 9

5. At the bottom right of the Dashboard, select Set up Git Publishing.

 10

6. To enable Git publishing, you must provide a user name and password. If you
have previously enabled publishing for a Windows Azure Web Site, you will not
be prompted for the user name or password. Instead, a Git repository will be
created using the user name and password you previously specified. Make a note
of the user name and password, as they will be used for Git publishing to all
Windows Azure Web Sites you create.

7. Once the Git repository is ready, you will be presented with instructions on the

Git commands to use in order to setup a local repository and then push the files
to Windows Azure.

 11

Note Save the instructions returned by the Push my local files to Windows
Azure link, as they will be used in the following sections.

Install developer tools
To successfully complete the steps in this tutorial, you must have a working installation
of Node.js and Git. Installation package for Node.js is available from the nodejs.org
download page while installation package for Git is available from the git-scm.com
download page.

http://nodejs.org/#download�
http://nodejs.org/#download�
http://git-scm.com/download�
http://git-scm.com/download�

 12

Note If you are performing this tutorial on Windows, you can set up your machine
with Windows Azure SDK for Node.js that includes Node.js.

Build and test your application locally
In this section, you will create a server.js file containing the 'hello world' example
from nodejs.org. This example has been modified from the original example by adding
process.env.port as the port to listen on when running in a Windows Azure Web Site.

Note This tutorial makes reference to the helloworld folder. The full path to this folder
is omitted, as path semantics differ between operating systems. You should create this
folder in a location that is easy for you to access on your local file system, such as
~/node/helloworld or c:\node\helloworld

Note Many of the steps below mention using the command-line. For these steps, use
the command-line for your operating system, such as Windows PowerShell, cmd.exe,
GitBash (Windows,) or Bash (Unix Shell). On OS X systems you can access the command-
line through the Terminal application.

1. Using a text editor, create a new file named server.js in the helloworld directory.

If the helloworld directory does not exist, create it.
2. Add the following as the contents of the server.js file, and then save it:

var http = require('http')
var port = process.env.port || 1337;
http.createServer(function(req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World\n');

}).listen(port);

3. Open the command-line, and use the following command to start the web page
locally:
node server.js

4. Open your web browser and navigate to http://localhost:1337. A web page
displaying "Hello World" will appear as shown in the screenshot below:

http://go.microsoft.com/fwlink/?LinkId=254279&clcid=0x409�
http://nodejs.org/�
http://localhost:1337

 13

5. To stop the application, switch to the Terminal window and hold down the CTRL

and C keys on your keyboard.

Publish your application
1. From the command-line, change directories to the helloworld directory and

enter the following commands to initialize a local Git repository.
git init

2. Use the following commands to add files to the repository:
git add .
git commit -m "initial commit"

3. Add a Git remote for pushing updates to the Windows Azure Web Site you
created previously, using the following command:
git remote add azure [URL for remote repository]

Note the URL used should be the one returned at the end of the Create a
Windows Azure Web Site and Set up Git Publishing section. If you forgot to
save the URL earlier you can retrieve it now by clicking the “Deployment” tab of
your Windows Azure Web Site within the management portal

 14

4. Push your changes to Windows Azure using the following command:

git push azure master

You will be prompted for the password you created earlier and will see the
following output:

If you navigate to the deployments tab of your Windows Azure Web Site within
the management portal, you will see your first deployment in the deployment
history:

 15

5. Browse to http://[your web site url]/ to begin using the application. You can

find your web site url on the "Dashboard" tab of your Windows Azure Web Site
within the management portal.

Publish changes to your application
1. Open the server.js file in a text editor, and change 'Hello World\n' to 'Hello

Azure\n'. Save the file.
2. From the command-line, change directories to the helloworld directory and run

the following commands:
git add .

 git commit -m "changing to hello azure"

git push azure master

You will be prompted for the password you created earlier. If you navigate to the
deployments tab of your Windows Azure Web Site within the management
portal, you will see your updated deployment history:

http://[yourwebsiteurl]/

 16

3. Browse to http://[your web site url]/ and note that the updates have been

applied.

Revert to a previous deployment
Since Windows Azure maintains a git repository for your web site, you can use the
Deployments page to revert to a previous deployment.

1. In the Windows Azure Portal, select your web site and then select Deployments.
2. Select a previous deployment, and then click Redeploy at the bottom of the

page. When prompted, select Yes.

http://manage.windowsazure.com/�
http://[yourwebsiteurl]/

 17

3. Once the deployment status changes to Active Deployment, view the web site in

your browser and note that it has reverted to the selected deployment.

Next steps
While the steps in this article use the Windows Azure Portal to create a web site, you can
also use the Windows Azure Command-Line Tools for Mac and Linux to perform the
same operations.

Additional Resources
Windows Azure PowerShell
Windows Azure Command-Line Tools for Mac and Linux

http://www.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�
http://windowsazure.com/�
http://www.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�

 18

Node.js Cloud Service
Developing for Windows Azure is easy when using the available tools. This tutorial
assumes you have no prior experience using Windows Azure. On completing this guide,
you will have an application that uses multiple Windows Azure resources up and running
in the cloud.
You will learn:

• How to create a new Windows Azure Node.js application using the Windows
PowerShell tools.

• How to run your Node application locally using the Windows Azure compute
emulator

• How to publish and re-publish your application to a Cloud Service in Windows
Azure.

By following this tutorial, you will build a simple Hello World web application. The
application will be hosted in an instance of a web role that, when running in Windows
Azure, is itself hosted in a dedicated virtual machine (VM).
A screenshot of the completed application is below:

Setting Up the Development Environment
Before you can begin developing your Windows Azure application, you need to get the
tools and set up your development environment.

1. To install the Windows Azure SDK for Node.js, click the button below:
Get Tools and SDK

2. Select Install Now, and when prompted to run or save azurenodesdk.exe, click
Run:

http://go.microsoft.com/?linkid=9790229&clcid=0x409�

 19

3. Click Install in the installer window and proceed with the installation:

Once the installation is complete, you have everything necessary to start developing. The
following components are installed:

• Node.js
• IISNode
• NPM for Windows
• Windows Azure Compute & Storage Emulators
• Windows Azure PowerShell

Creating a New Node Application
The Windows Azure SDK for Node.js includes a Windows PowerShell environment that is
configured for Windows Azure and Node development. It includes tools that you can use
to create and publish Node applications.

 20

1. On the Start menu, click All Programs, Windows Azure, right-click Windows
Azure PowerShell, and then select Run As Administrator. Opening your
Windows PowerShell environment this way ensures that all of the Node
command-line tools are available. Running with elevated privileges avoids extra
prompts when working with the Windows Azure Emulator.

2. Create a new node directory on your C drive, and change to the c:\node

directory:

3. Enter the following cmdlet to create a new solution:

PS C:\node> New-AzureServiceProject tasklist

You will see the following response:

The New-AzureServiceProject cmdlet generates a basic structure for creating a
new Windows Azure Node application which will be published to a Cloud Service.
It contains configuration files necessary for publishing to Windows Azure. The
cmdlet also changes your working directory to the directory for the service.

 21

Enter the following command to see a listing of the files that were generated:
PS C:\node\tasklist> ls

• ServiceConfiguration.Cloud.cscfg, ServiceConfiguration.Local.cscfg and

ServiceDefinition.csdef are Windows Azure-specific files necessary for
publishing your application. For more information about these files,
see Overview of Creating a Hosted Service for Windows Azure.

• deploymentSettings.json stores local settings that are used by the Windows
Azure PowerShell deployment cmdlets.

4. Enter the following command to add a new web role using the Add-
AzureNodeWebRole cmdlet:
PS C:\node\tasklist> Add-AzureNodeWebRole

You will see the following response:

The Add-AzureNodeWebRolecmdlet creates a new directory for your
application and generates additional files that will be needed when your
application is published. In Windows Azure, roles define components that can run
in the Windows Azure execution environment. A web role is customized for web
application programming.
By default if you do not provide a role name, one will be created for you i.e.
WebRole1. You can provide a name as the first parameter to Add-
AzureNodeWebRole to override i.e. Add-AzureNodeWebRole MyRole

http://msdn.microsoft.com/en-us/library/windowsazure/gg432976.aspx�

 22

Enter the following commands to change to the newly generated directory and
view its contents:
PS C:\node\tasklist> cd WebRole1

PS C:\node\tasklist\WebRole1> ls

• server.js contains the starter code for your application.

5. Open the server.js file in Notepad. Alternatively, you can open the server.js file in
your favorite text editor.
PS C:\node\tasklist\WebRole1> notepad server.js

This file contains the following starter code that the tools have generated. This
code is almost identical to the “Hello World” sample on the nodejs.org website,
except:

• The port has been changed to allow IIS to handle HTTP traffic on behalf of
the application. IIS Node.js integration provides Node.js applications with
a number of benefits when running on-premise or in Windows Azure,
including: process management, scalability on multi-core servers, auto-
update, side-by-side with other languages, etc.

• Console logging has been removed.

 23

Running Your Application Locally in the Emulator
One of the tools installed by the Windows Azure SDK is the Windows Azure compute
emulator, which allows you to test your application locally. The compute emulator
simulates the environment your application will run in when it is deployed to the cloud,
including providing access to services like Windows Azure Table Storage. This means you
can test your application without having to actually deploy it.

1. Close Notepad and switch back to the Windows PowerShell window. Enter the
following cmdlet to run your service in the emulator and launch a browser
window:
PS C:\node\tasklist\WebRole1> Start-AzureEmulator -Launch

The –launch parameter specifies that the tools should automatically open a
browser window and display the application once it is running in the emulator. A
browser opens and displays “Hello World,” as shown in the screenshot below.
This indicates that the service is running in the compute emulator and is working
correctly.

 24

2. To stop the compute emulator, use the Stop-AzureEmulator command:

PS C:\node\tasklist\WebRole1> Stop-AzureEmulator

Deploying the Application to Windows Azure
In order to deploy your application to Windows Azure, you need an account. If you do
not have one you can create a free trial account. Once you are logged in with your
account, you can download a Windows Azure publishing profile. The publishing profile
authorizes your computer to publish deployment packages to Windows Azure using the
Windows PowerShell cmdlets.

Creating a Windows Azure Account
1. Open a web browser, and browse to http://www.windowsazure.com.

To get started with a free account, click on Free Trial in the upper right corner
and follow the steps.

2. Your account is now created. You are ready to deploy your application to

Windows Azure!

http://www.windowsazure.com/�

 25

Downloading the Windows Azure Publishing Settings
1. From the Windows PowerShell window, launch the download page by running

the following cmdlet:
PS C:\node\tasklist\WebRole1> Get-AzurePublishSettingsFile

This launches the browser for you to log into the Windows Azure Management
Portal with your Windows Live ID credentials.

2. Log into the Management Portal. This takes you to the page to download your

Windows Azure publishing settings.
3. Save the profile to a file location you can easily access:

4. In the Windows Azure PowerShell window, use the following cmdlet to configure

the Windows PowerShell for Node.js cmdlets to use the Windows Azure
publishing profile you downloaded:
PS C:\node\tasklist\WebRole1> Import-
AzurePublishSettingsFile [path to file]

After importing the publish settings, consider deleting the downloaded
.publishSettings as the file contains information that can be used by others to
access your account.

 26

Publishing the Application
1. Publish the application using the Publish-AzureServiceProject cmdlet, as shown

below.
• ServiceName specifies the name for the service. The name must be unique

across all other services in Windows Azure. For example, below, “TaskList” is
suffixed with “Contoso,” the company name, to make the service name
unique. By default if ServiceName is not provided, the project folder name will
be used.

• Location specifies the country/region for which the application should be
optimized. You can expect faster loading times for users accessing it from this
region. Examples of the\ available regions include: North Central US,
Anywhere US, Anywhere Asia, Anywhere Europe, North Europe, South Central
US, and Southeast Asia.

• Launch specifies to open the browser at the location of the hosted service
after publishing has completed.

PS C:\node\tasklist\WebRole1> Publish-AzureServiceProject –
ServiceName TaskListContoso –Location "North Central US” -
Launch

Be sure to use a unique name, otherwise the publish process will fail. After
publishing succeeds, you will see the following response:

The Publish-AzureServiceProject cmdlet performs the following steps:

1. Creates a package that will be deployed to Windows Azure. The package
contains all the files in your node.js application folder.

2. Creates a new storage account if one does not exist. The Windows Azure
storage account is used in the next section of the tutorial for storing and
accessing data.

3. Creates a new hosted service if one does not already exist. A hosted
serviceis the container in which your application is hosted when it is
deployed to Windows Azure. For more information, see Overview of
Creating a Hosted Service for Windows Azure.

4. Publishes the deployment package to Windows Azure.

http://msdn.microsoft.com/en-us/library/windowsazure/gg432976.aspx�
http://msdn.microsoft.com/en-us/library/windowsazure/gg432976.aspx�

 27

It can take 5–7 minutes for the application to deploy. Since this is the first time you
are publishing, Windows Azure provisions a virtual machine (VM), performs security
hardening, creates a web role on the VM to host your application, deploys your code
to that web role, and finally configures the load balancer and networking so you
application is available to the public.
After the deployment is complete, the following response appears.

The browser also opens to the URL for your service and display a web page that calls
your service.

Your application is now running on Windows Azure! The hosted service contains the
web role you created earlier. You can easily scale your application by changing the
number of instances allocated to each role in the ServiceConfiguration.Cloud.cscfg
file. You may want to use only one instance when deploying for development and
test purposes, but multiple instances when deploying a production application.

 28

Stopping and Deleting Your Application
After deploying your application, you may want to disable it so you can avoid costs or
build and deploy other applications within the free trial time period.
Windows Azure bills web role instances per hour of server time consumed. Server time is
consumed once your application is deployed, even if the instances are not running and
are in the stopped state.
The following steps show you how to stop and delete your application.

1. In the Windows PowerShell window, stop the service deployment created in the
previous section with the following cmdlet:
PS C:\node\tasklist\WebRole1> Stop-AzureService

Stopping the service may take several minutes. When the service is stopped, you
receive a message indicating that it has stopped.

2. To delete the service, call the following cmdlet:

PS C:\node\tasklist\WebRole1> Remove-AzureService

When prompted, enter Y to delete the service.
Deleting the service may take several minutes. After the service has been deleted
you receive a message indicating that the service was deleted.

Note Deleting the service does not delete the storage account that was created when
the service was initially published, and you will continue to be billed for storage used.
Since storage accounts can be used by multiple deployments, be sure that no other
deployed service is using the storage account before you delete it. For more information
on deleting a storage account, see How to Delete a Storage Account from a Windows

http://msdn.microsoft.com/en-us/library/windowsazure/hh531562.aspx�

 29

Azure Subscription.

http://msdn.microsoft.com/en-us/library/windowsazure/hh531562.aspx�

 30

Create and deploy a Node.js application to a
Windows Azure Web Site using WebMatrix
This tutorial shows you how to use WebMatrix to develop and deploy a Node.js
application to a Windows Azure Website. WebMatrix is a free web development tool
from Microsoft that includes everything you need for website development. WebMatrix
includes several features that make it easy to use Node.js including code completion,
pre-built templates, and editor support for Jade, LESS, and CoffeeScript. Learn more
about WebMatrix for Windows Azure.
Upon completing this guide, you will have a node web site running in Windows Azure.
You will learn:

• How to create a web site from the Windows Azure Portal.
• How to develop a node application using WebMatrix.
• How to publish and re-publish your application to Windows Azure using

WebMatrix.
By following this tutorial, you will build a simple node web application. The application
will be hosted in a Windows Azure Web Site. A screenshot of the running application is
below:

http://go.microsoft.com/fwlink/?LinkID=253622&clcid=0x409�

 31

Set up the Windows Azure environment
First, set up the Windows Azure environment. You'll create a Windows Azure account
and enable this account to use the Windows Azure Web Sites preview feature.

Create a Windows Azure account
1. Open a web browser and browse to http://www.windowsazure.com.
2. To get started with a free account, click Free Trial in the upper-right corner and

follow the steps. You'll need a credit card number and a mobile phone number
for proof of identity, but you will not be billed.

Enable Windows Azure Web Sites
After signing up, follow these steps to enable the Windows Azure Web Site feature.

1. Navigate to https://account.windowsazure.com/ and sign in with your Windows
Azure account.

2. Click preview features to view the available previews.

http://www.windowsazure.com/�
https://account.windowsazure.com/�

 32

3. Scroll down to Web Sites and click try it now.

4. Select your subscription and click the check.

 33

Create a Windows Azure Web Site
Follow these steps to create a Windows Azure Web Site.

1. Login to the Windows Azure Portal.
2. Click the + NEW icon on the bottom left of the portal

3. Click WEB SITE, then QUICK CREATE. Enter a value for URL and select the

datacenter for your web site in the REGION dropdown. Click the checkmark at
the bottom of the dialog.

4. Once the web site is created, the portal will display all the web sites associated

with your subscription. Verify that the web site you just created has a Status of
Running and then click the web site name to view the Dashboard for this web
site.

http://manage.windowsazure.com/�

 34

Import the web site into WebMatrix and apply the
Express template

1. From the Dashboard, click the WebMatrix icon at the bottom of the page to
open the web site in WebMatrix 2.

2. If WebMatrix 2 is not installed, Web Platform Installer 4.0 will install Microsoft

WebMatrix 2 and all necessary prerequisites. WebMatrix will launch and display a
dialog indicating Empty Site Detected. Click Yes, install from the Template
Gallery to select a built-in template.

 35

3. In the Site from Template dialog, select Node and then select Express Site.

Finally, click Next. If you are missing any prerequisites for the Express Site
template, you will be prompted to install them.

 36

4. After WebMatrix finishes building the web site, the WebMatrix IDE is displayed.

 37

Publish your application to Windows Azure
1. In WebMatrix, click Publish from the Home ribbon to display the Publish

Preview dialog box for the web site.

 38

2. Click Continue. When publishing is complete, the URL for the web site on

Windows Azure is displayed at the bottom of the WebMatrix IDE

 39

3. Click the link to open the web site in your browser.

 40

Modify and republish your application
You can easily modify and republish your application. Here, you will make a simple
change to the heading in in the index.jade file, and republish the application.

1. In WebMatrix, select Files, and then expend the views folder. Open the
index.jade file by double-clicking it.

2. Change the second line to the following:

p Welcome to #{title} with WebMatrix on Windows Azure!

3. Click the save icon, and then click the publish icon.

 41

4. Click Continue in the Publish Preview dialog and wait for the update to be
published.

5. When publishing has completed, use the link returned when the publish process

is complete to see the updated site.

 42

Next Steps
You've seen how to create and deploy a web site from WebMatrix to Windows Azure. To
learn more about WebMatrix, check out these resources:
WebMatrix for Windows Azure
WebMatrix website
Publishing a Windows Azure Web site using Git

http://go.microsoft.com/fwlink/?LinkID=253622&clcid=0x409�
http://www.microsoft.com/click/services/Redirect2.ashx?CR_CC=200106398�
http://www.windowsazure.com/en-us/develop/nodejs/common-tasks/publishing-with-git/�

 43

Node.js Web Application with Storage on
MongoDB
This tutorial shows you how to use MongoDB to store and access data from a node
application hosted on Windows Azure. MongoDB is a popular open source, high
performance NoSQL database. This tutorial assumes that you have some prior
experience using node, MongoDB, and Git.
You will learn:

• How to set up a virtual machine running Linux or Windows and install MongoDB
• How to use npm (node package manager) to install the node modules
• How to access MongoDB from a node application
• How to use the Cross-Platform Tools for Windows Azure to create a Windows

Azure Web Site
By following this tutorial, you will build a simple web-based task-management
application that allows creating, retrieving and completing tasks. The tasks are stored in
MongoDB.
The project files for this tutorial will be stored in a directory named tasklist and the
completed application will look similar to the following:

http://www.mongodb.org/�
http://nodejs.org/�
http://www.mongodb.org/�
http://git-scm.com/�

 44

Note This tutorial makes reference to the tasklist folder. The full path to this folder is
omitted, as path semantics differ between operating systems. You should create this
folder in a location that is easy for you to access on your local file system, such as
~/node/tasklist or c:\node\tasklist

Note Many of the steps below mention using the command-line. For these steps, use
the command-line for your operating system, such as Windows PowerShell (Windows)
or Bash (Unix Shell). On OS X systems you can access the command-line through the
Terminal application.

 45

Prerequisites
Before following the instructions in this article, you should ensure that you have the
following installed:

• node recent version
• Git

Preparation
In this section you will learn how to create a virtual machine in Windows Azure and
install MongoDB, set up your development environment, and install the MongoDB C#
driver.

Create a virtual machine and install MongoDB
This tutorial assumes you have created a virtual machine in Windows Azure. After
creating the virtual machine you need to install MongoDB on the virtual machine:

• To create a Linux virtual machine and install MongoDB, see Installing MongoDB
on a Linux Virtual machine.

After you have created the virtual machine in Windows Azure and installed MongoDB, be
sure to remember the DNS name of the virtual machine ("testlinuxvm.cloudapp.net", for
example) and the external port for MongoDB that you specified in the endpoint. You will
need this information later in the tutorial.

Sign up for the Windows Azure Web Sites preview feature
You will need to sign up for the Windows Azure Web Sites preview feature in order to
create a Windows Azure web site. You can also sign up for a free trial account if you do
not have a Windows Azure account.

1. Open a web browser and browse to http://www.windowsazure.com.
2. To get started with a free account, click Free Trial in the upper-right corner and

follow the steps. You'll need a credit card number and a mobile phone number
for proof of identity, but you will not be billed.

http://nodejs.org/�
http://git-scm.com/�
http://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm/�
http://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm/�
http://www.windowsazure.com/�

 46

Enable Windows Azure Web Sites

1. Navigate to https://account.windowsazure.com/ and sign in with your Windows
Azure account.

2. Click preview features to view the available previews.

3. Scroll down to Web Sites and click try it now.

https://account.windowsazure.com/�

 47

4. Select your subscription and click the check.

Install modules and generate scaffolding
In this section you will create a new Node application and use npm to add module
packages. For the task-list application you will use the Express and Mongoose modules.
The Express module provides a Model View Controller framework for node, while
Mongoose is a driver for communicating with MongoDB.

http://expressjs.com/�
http://mongoosejs.com/�

 48

Install express and generate scaffolding
1. From the command-line, change directories to the tasklist directory. If the

tasklist directory does not exist, create it.
2. Enter the following command to install express.

sudo npm install express –g

Note When using the '-g' parameter on some operating systems, you may
receive an error of Error: EPERM, chmod '/usr/local/bin/express' and a request
to try running the account as an administrator. If this occurs, use the sudo
command to run npm at a higher privilege level.

The output of this command should appear similar to the following:
express@2.5.9 /usr/local/lib/node_modules/express

├── mime@1.2.4

├── mkdirp@0.3.0

├── qs@0.4.2

└── connect@1.8.7

Note The '-g' parameter used when installing the express module installs it
globally. This is done so that we can access the express command to generate
web site scaffolding without having to type in additional path information.

3. To create the scaffolding which will be used for this application, use the express
command:
express

The output of this command should appear similar to the following:
create : .

create : ./package.json

create : ./app.js

create : ./public

create : ./public/javascripts

create : ./public/images

create : ./public/stylesheets

create : ./public/stylesheets/style.css

create : ./routes

create : ./routes/index.js

create : ./views

create : ./views/layout.jade

 49

create : ./views/index.jade

dont forget to install dependencies:

$ cd . && npm install

After this command completes, you should have several new directories and files
in the tasklist directory.

Install additional modules
The package.json file is one of the files created by the express command. This file
contains a list of additional modules that are required for an Express application. Later,
when you deploy this application to a Windows Azure Web Site, this file will be used to
determine which modules need to be installed on Windows Azure to support your
application.

1. From the command-line, change directories to the tasklist folder and enter the
following to install the modules described in the package.json file:
npm install

The output of this command should appear similar to the following:
express@2.5.8 ./node_modules/express

├── mime@1.2.4

├── qs@0.4.2

├── mkdirp@0.3.0

└── connect@1.8.7

jade@0.26.0 ./node_modules/jade

├── commander@0.5.2

└── mkdirp@0.3.0

This installs all of the default modules that Express needs.
2. Next, enter the following command to install the Mongoose module locally as

well as to save an entry for it to the package.json file:
npm install mongoose --save

The output of this command should appear similar to the following:
mongoose@2.6.5 ./node_modules/mongoose

├── hooks@0.2.1

 50

└── mongodb@1.0.2

Note You can safely ignore any message about installing the C++ bson parser.

Using MongoDB in a node application
In this section you will extend the basic application created by the express command by
adding a task.js file which contains the model for your tasks. You will also modify the
existing app.js and create a new tasklist.js controller file to make use of the model.

Create the model
1. In the tasklist directory, create a new directory named models.
2. In the models directory, create a new file named task.js. This file will contain the

model for the tasks created by your application.
3. At the beginning of the task.js file, add the following code to reference required

libraries:
 var mongoose = require('mongoose')

 , Schema = mongoose.Schema;

4. Next, you will add code to define and export the model. This model will be used
to perform interactions with the MongoDB database.
var TaskSchema = new Schema({
 itemName : String
 , itemCategory : String
 , itemCompleted : { type: Boolean, default: false }
 , itemDate : { type: Date, default: Date.now }
});

module.exports = mongoose.model('TaskModel', TaskSchema)

5. Save and close the task.js file.

Create the controller
1. In the tasklist/routes directory, create a new file named tasklist.js and open it in

a text editor.
2. Add the folowing code to tasklist.js. This loads the mongoose module and the

task model defined in task.js. The TaskList function is used to create the
connection to the MongoDB server based on the connection value:
var mongoose = require('mongoose')
 , task = require('../models/task.js');

 51

module.exports = TaskList;

function TaskList(connection) {
 mongoose.connect(connection);

}

3. Continue adding to the tasklist.js file by adding the methods used to
showTasks, addTask, and completeTasks:
TaskList.prototype = {
 showTasks: function(req, res) {
 task.find({itemCompleted: false}, function
foundTasks(err, items) {
 res.render('index',{title: 'My ToDo List ', tasks:
items})
 });
 },

 addTask: function(req,res) {
 var item = req.body.item;
 newTask = new task();
 newTask.itemName = item.name;
 newTask.itemCategory = item.category;
 newTask.save(function savedTask(err){
 if(err) {
 throw err;
 }
 });
 res.redirect('home');
 },

 completeTask: function(req,res) {
 var completedTasks = req.body;
 for(taskId in completedTasks) {
 if(completedTasks[taskId]=='true') {
 var conditions = { _id: taskId };
 var updates = { itemCompleted:
completedTasks[taskId] };
 task.update(conditions, updates, function
updatedTask(err) {
 if(err) {
 throw err;
 }
 });

 52

 }
 }
 res.redirect('home');
 }

}

4. Save the tasklist.js file.

Modify app.js
1. In the tasklist directory, open the app.js file in a text editor. This file was created

earlier by running the express command.
2. Replace the content after the //Routes comment with the following code. This

will initialize TaskList with the connection string for the MongoDB server and add
the functions defined in tasklist.js as routes:
var TaskList = require('./routes/tasklist');
var taskList = new
TaskList('mongodb://mongodbserver/tasks');

app.get('/', taskList.showTasks.bind(taskList));
app.post('/addtask', taskList.addTask.bind(taskList));
app.post('/completetask',
taskList.completeTask.bind(taskList));

app.listen(process.env.port || 3000);

Note You must replace the connection string above with the connection string
for the MongoDB server you created earlier. For example,
mongodb://mymongodb.cloudapp.net/tasks

3. Save the app.js file.

Modify the index view
1. Change directories to the views directory and open the index.jade file in a text

editor.
2. Replace the contents of the index.jade file with the code below. This defines the

view for displaying existing tasks, as well as a form for adding new tasks and
marking existing ones as completed.
h1= title
form(action="/completetask", method="post")

 53

 table(border="1")
 tr
 td Name
 td Category
 td Date
 td Complete
 each task in tasks
 tr
 td #{task.itemName}
 td #{task.itemCategory}
 - var day = task.itemDate.getDate();
 - var month = task.itemDate.getMonth() + 1;
 - var year = task.itemDate.getFullYear();
 td #{month + "/" + day + "/" + year}
 td
 input(type="checkbox", name="#{task._id}",
value="#{!task.itemCompleted}",
checked=task.itemCompleted)
 input(type="submit", value="Update tasks")
hr
form(action="/addtask", method="post")
 table(border="1")
 tr
 td Item Name:
 td
 input(name="item[name]", type="textbox")
 tr
 td Item Category:
 td
 input(name="item[category]", type="textbox")

input(type="submit", value="Add item")

3. Save and close index.jade file.

Run your application locally
To test the application on your local machine, perform the following steps:

1. From the command-line, change directories to the tasklist directory.
2. Use the following command to launch the application locally:

node app.js

3. Open a web browser and navigate to http://localhost:3000. This should display a
web page similar to the following:

http://localhost:3000

 54

4. Use the provided fields for Item Name and Item Category to enter information,

and then click Add item.

 55

5. The page should update to display the item in the ToDo List table.

 56

6. To complete a task, simply check the checkbox in the Complete column, and then

click Update tasks. While there is no visual change after clicking Update tasks,
the document entry in MongoDB has now been marked as completed.

7. To stop the node process, go to the command-line and press the CTRL and C
keys.

Deploy your application to Windows Azure
The steps in this section use the Windows Azure command-line tools to create a new
Windows Azure Web Site, and then use Git to deploy your application. To perform these
steps you must have a Windows Azure subscription.

Note These steps can also be performed by using the Windows Azure portal. For steps
on using the Windows Azure portal to deploy a Node.js application, see Create and
deploy a Node.js application to a Windows Azure Web Site.
Note If this is the first Windows Azure Web Site you have created, you must use the

http://www.windowsazure.com/en-us/develop/nodejs/tutorials/create-a-website-(mac)/�
http://www.windowsazure.com/en-us/develop/nodejs/tutorials/create-a-website-(mac)/�

 57

Windows Azure portal to deploy this application.

Install the Windows Azure command-line tool for Mac and Linux
To install the command-line tools, use the following command:
sudo npm install azure –g

Note If you have already installed the Windows Azure SDK for Node.js from
the Windows Azure Developer Center, then the command-line tools should already be
installed. For more information, see Windows Azure command-line tool for Mac and
Linux.
Note While the command-line tools were created primarily for Mac and Linux users,
they are based on Node.js and should work on any system capable of running Node.

Import publishing settings
Before using the command-line tools with Windows Azure, you must first download a file
containing information about your subscription. Perform the following steps to
download and import this file.

1. From the command-line, enter the following command to launch the browser
and navigate to the download page. If prompted, login with the account
associated with your subscription.
azure account download

The file download should begin automatically; if it does not, you can click the link
at the beginning of the page to manually download the file.

http://www.windowsazure.com/en-us/develop/nodejs/�
http://www.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�
http://www.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�

 58

2. After the file download has completed, use the following command to import the
settings:
azure account import <path-to-file>

Specify the path and file name of the publishing settings file you downloaded in
the previous step. Once the command completes, you should see output similar
to the following:
info: Executing command account import

info: Found subscription: subscriptionname

info: Setting default subscription to: subscriptionname

warn: The '/Users/user1/.azure/publishSettings.xml' file
contains sensitive information.

warn: Remember to delete it now that it has been
imported.

info: Account publish settings imported successfully

info: account iomport command OK

3. Once the import has completed, you should delete the publish settings file as it is
no longer needed and contains sensitive information regarding your Windows
Azure subscription.

Create a Windows Azure Web Site
1. From the command-line, change directories to the tasklist directory.
2. Use the following command to create a new Windows Azure Web Site. Replace

'myuniquesitename' with a unique site name for your web site. This value is used
as part of the URL for the resulting web site.
azure site create myuniquesitename --git

You will be prompted for the datacenter that the site will be located in. Select the
datacenter geographically close to your location.
The --git parameter will create a Git repository locally in the tasklist folder if
none exists. It will also create a Git remote named 'azure', which will be used to
publish the application to Windows Azure. It will create an iisnode.yml, which
contains settings used by Windows Azure to host node applications. Finally it will
also create a .gitignore file to exclude the node-modules folder for being
published to .git.

Note If this command is ran from a directory that already contains a Git
repository, it will not re-initialize the directory.
Note If the '--git' parameter is omitted, yet the directory contains a Git
repository, the 'azure' remote will still be created.

http://git-scm.com/docs/git-remote�
https://github.com/WindowsAzure/iisnode/blob/master/src/samples/configuration/iisnode.yml�

 59

Once this command has completed, you will see output similar to the following.
Note that the line beginning with Created website at contains the URL for the
web site.
info: Executing command site create

info: Using location southcentraluswebspace

info: Executing `git init`

info: Creating default web.config file

info: Creating a new web site

info: Created website at
mongodbtasklist.azurewebsites.net

info: Initializing repository

info: Repository initialized

info: Executing `git remote add azure
http://username@mongodbtasklist.azurewebsites.net/mongodbta
sklist.git`

info: site create command OK

Note If this is the first Windows Azure Web Site for your subscription, you will
be instructed to use the portal to create the web site. For more information,
see Create and deploy a Node.js application to Windows Azure Web Sites.

Publish the application
1. In the Terminal window, change directories to the tasklist directory if you are not

already there.
2. Use the following commands to add, and then commit files to the local Git

repository:
git add .

git commit -m "adding files"

3. When pushing the latest Git repository changes to the Windows Azure Web Site,
you must specify that the target branch is master as this is used for the web site
content.
git push azure master

You will see output similar to the following. As the deployment takes place
Windows Azure will download all npm modules.
Counting objects: 17, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), 3.21 KiB, done.

http://www.windowsazure.com/en-us/develop/nodejs/tutorials/create-a-website-(mac)/�
http://username@mongodbtasklist.azurewebsites.net/mongodbtasklist.git
http://username@mongodbtasklist.azurewebsites.net/mongodbtasklist.git

 60

Total 17 (delta 0), reused 0 (delta 0)

remote: New deployment received.

remote: Updating branch 'master'.

remote: Preparing deployment for commit id 'ef276f3042'.

remote: Preparing files for deployment.

remote: Running NPM.

...

remote: Deploying Web.config to enable Node.js activation.

remote: Deployment successful.

To
https://username@mongodbtasklist.azurewebsites.net/MongoDBT
asklist.git

 * [new branch] master -> master

4. Once the push operation has completed, browse to the web site by using the
azure site browse command to view your application.

Next steps
While the steps in this article describe using MongoDB to store information, you can also
use the Windows Azure Table Service. See Node.js Web Application with the Windows
Azure Table Service for more information.

Additional resources
Windows Azure command-line tool for Mac and Linux
Create and deploy a Node.js application to Windows Azure Web Sites
Publishing to Windows Azure Web Sites with Git

http://www.windowsazure.com/en-us/develop/nodejs/tutorials/web-site-with-storage/�
http://www.windowsazure.com/en-us/develop/nodejs/tutorials/web-site-with-storage/�
http://www.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�
http://www.windowsazure.com/en-us/develop/nodejs/tutorials/create-a-website-(mac)/�
http://www.windowsazure.com/en-us/develop/nodejs/common-tasks/publishing-with-git/�
https://username@mongodbtasklist.azurewebsites.net/MongoDBTasklist.git
https://username@mongodbtasklist.azurewebsites.net/MongoDBTasklist.git

 61

Node.js Web Application using the Windows
Azure SQL Database
This tutorial shows you how to use SQL Database provided by Windows Azure Data
Management to store and access data from a node application hosted on Windows
Azure. This tutorial assumes that you have some prior experience using node and Git.
You will learn:

• How to use the Windows Azure preview portal to create a Windows Azure Web
Site and SQL Database

• How to use npm (node package manager) to install the node modules
• How to work with a SQL Database using the node-sqlserver module
• How to use app settings to specify run-time values for an application

By following this tutorial, you will build a simple web-based task-management
application that allows creating, retrieving and completing tasks. The tasks are stored in
SQL Database.
The project files for this tutorial will be stored in a directory named tasklist and the
completed application will look similar to the following:

http://nodejs.org/�
http://git-scm.com/�

 62

Note The Microsoft Driver for node.js for SQL Server used in this tutorial is currently
available as a preview release, and relies on run-time components that are only available
on the Microsoft Windows and Windows Azure operating systems.
Note This tutorial makes reference to the tasklist folder. The full path to this folder is
omitted, as path semantics differ between operating systems. You should create this
folder in a location that is easy for you to access on your local file system, such as
~/node/tasklist or c:\node\tasklist
Note Many of the steps below mention using the command-line. For these steps, use
the command-line for your operating system, such as cmd.exe (Windows) or bash (UNIX
shell). On OS X systems you can access the command-line through the terminal
application.

Prerequisites
Before following the instructions in this article, you should ensure that you have the
following installed:

• node version 0.6.14 or higher
• Git
• Microsoft SQL Server Native Client libraries - available as part of the Microsoft

SQL Server 2012 Feature Pack
• A text editor
• A web browser

Enable the Windows Azure Web Site feature
If you do not already have a Windows Azure subscription, you can sign up for free. After
signing up, follow these steps to enable the Windows Azure Web Site feature.

1. Navigate to https://account.windowsazure.com/ and sign in with your Windows
Azure account.

2. Click preview features to view the available previews.

3. Scroll down to Web Sites and click try it now.

http://nodejs.org/�
http://git-scm.com/�
http://www.microsoft.com/en-us/download/details.aspx?id=29065�
http://www.microsoft.com/en-us/download/details.aspx?id=29065�
http://windowsazure.com/�
https://account.windowsazure.com/�

 63

4. Select your subscription and click the check.

Create a web site with database
Follow these steps to create a Windows Azure Web Site and a SQL Database:

1. Login to the Preview Management Portal.
2. Click the + New icon on the bottom left of the portal.

https://manage.windowsazure.com/�

 64

3. Click WEB SITE, then CREATE WITH DATABASE.

Enter a value for URL, select Create a New SQL Database from the DATABASE
dropdown, and select the data center for your web site in the REGION
dropdown. Click the arrow at the bottom of the dialog.

 65

4. Enter a value for the NAME of your database, select the EDITION (WEB or
BUSINESS), select the MAX SIZE for your database, choose the COLLATION, and
select NEW SQL Database server. Click the arrow at the bottom of the dialog.

http://msdn.microsoft.com/en-us/library/windowsazure/ee621788.aspx�
http://msdn.microsoft.com/en-us/library/windowsazure/ee621788.aspx�

 66

5. Enter an administrator name and password (and confirm the password), choose
the region in which your new SQL Database server will be created, and check the
Allow Windows Azure Services to access the server box.

 67

When the web site has been created you will see the text Creation of Web Site
‘[SITENAME]’ completed successfully. Now, you can enable Git publishing.

6. Click the name of the web site displayed in the list of web sites to open the web
site’s Quick Start dashboard.

 68

7. At the bottom of the Quick Start page, click Set up Git publishing.

 69

8. To enable Git publishing, you must provide a user name and password. Make a
note of the user name and password you create. (If you have set up a Git
repository before, this step will be skipped.)

It will take a few seconds to set up your repository.

 70

9. When your repository is ready, you will see instructions for pushing your
application files to the repository. Make note of these instructions - they will be
needed later.

 71

Get SQL Database connection information
To connect to the SQL Database instance that is running in Windows Azure Web Sites,
your will need the connection information. To get SQL Database connection information,
follow these steps:

1. From the Preview Management Portal, click LINKED RESOURCES, then click the
database name.

 72

2. Click View connection strings.

3. From the ODBC section of the resulting dialog, make note of the connection
string as this will be used later.

Design the task table
To create the database table used to store items for the tasklist application, perform the
following steps:

1. From the Preview Management Portal, select your SQL Database and then click
MANAGE from the bottom of the page. If you receive a message stating that the
current IP is not part of the firewall rules, select OK to add the IP address.

2. Login using the login name and password you selected when creating the
database server earlier.

 73

3. From the bottom left of the page, select Design and then select New Table.

 74

4. Enter 'tasks' as the Table Name and check Is Identity? for the ID column.

 75

5. Change Column1 to name and Column2 to category. Add two new columns by
clicking the Add column button. The first new column should be named created
and have a type of date. The second new column should be named completed
and have a type of bit. Both new columns should be marked as Is Required?.

6. Click the Save button to save your changes to the table. You can now close the
SQL Database management page.

Install modules and generate scaffolding
In this section you will create a new Node application and use npm to add module
packages. For the task-list application you will use the express and node-sqlserver
modules. The Express module provides a Model View Controller framework for node,
while the node-sqlserver module provides connectivity to Windows Azure SQL Database.

Install express and generate scaffolding
1. From the command-line, change directories to the tasklist directory. If the

tasklist directory does not exist, create it.

http://expressjs.com/�
https://github.com/WindowsAzure/node-sqlserver�

 76

2. Enter the following command to install express.
npm install express –g

Note When using the '-g' parameter on some operating systems, you may receive an
error of error: eperm, chmod '/usr/local/bin/express' and a request to try running the
account as an administrator. if this occurs, use the sudo command to run npm at a
higher privilege level.

The output of this command should appear similar to the following:
express@2.5.9 /usr/local/lib/node_modules/express

├── mime@1.2.4

├── mkdirp@0.3.0

├── qs@0.4.2

└── connect@1.8.7

Note The '-g' parameter used when installing the express module installs it globally.
This is done so that we can access the express command to generate web site
scaffolding without having to type in additional path information.

3. To create the scaffolding which will be used for this application, use the express

command:
express

The output of this command should appear similar to the following:
create : .

create : ./package.json

create : ./app.js

create : ./public

create : ./public/javascripts

create : ./public/images

create : ./public/stylesheets

create : ./public/stylesheets/style.css

create : ./routes

create : ./routes/index.js

create : ./views

create : ./views/layout.jade

create : ./views/index.jade

 77

dont forget to install dependencies:

$ cd . && npm install

After this command completes, you should have several new directories and files
in the tasklist directory.

Install additional modules
1. From the command-line, change directories to the tasklist folder and enter the

following to install the modules described in the package.json file:
npm install

The output of this command should appear similar to the following:
express@2.5.8 ./node_modules/express

├── mime@1.2.4

├── qs@0.4.2

├── mkdirp@0.3.0

└── connect@1.8.7

jade@0.26.0 ./node_modules/jade

├── commander@0.5.2

└── mkdirp@0.3.0

This installs all of the default modules that Express needs.
2. Next, use the following command to add the nconf module. This module will be

used by the application to read the database connection string from a
configuration file.
npm install nconf –save

3. Next, download the binary version of the Microsoft Driver for Node.JS for SQL
Server from the download center.

4. Extract the archive to the tasklist\node_modules directory.
5. Run the node-sqlserver-install.cmd file in the tasklist\node_modules directory.

This will create a node-sqlserver subdirectory under node_modules and move
the driver files into this new directory structure.

6. Delete the node-sqlserver-install.cmd file, as it is no longer needed.

http://www.microsoft.com/en-us/download/details.aspx?id=29995�

 78

Use SQL Database in a node application
In this section you will extend the basic application created by the express command
modifying the existing app.js and create a new index.js files to use the database created
earlier.

Modify the controller
1. In the tasklist/routes directory, open the index.js file in a text editor.
2. Replace the existing code in the index.js file with the following code. This loads

the node-sqlserver, and nconf modules, then uses nconf to load the connection
string from either an environment variable named SQL_CONN or an SQL_CONN
value in the config.json file.
var sql = require('node-sqlserver')

 , nconf = require('nconf');

nconf.env()

 .file({ file: 'config.json' });

var conn = nconf.get("SQL_CONN");

3. Continue adding to the index.js file by adding the index and updateItem
methods. The index method returns all uncompleted tasks from the database,
while updateItem will mark selected tasks as completed.
exports.index = function(req, res) {

 var select = "select * from tasks where completed = 0";

 sql.query(conn, select, function(err, items) {

 if(err)

 throw err;

 res.render('index', { title: 'My ToDo List ',
tasks: items });

 });

};

exports.updateItem = function(req, res) {

 var item = req.body.item;

 if(item) {

 79

 var insert = "insert into tasks (name, category,
created, completed) values (?, ?, GETDATE(), 0)";

 sql.query(conn, insert, [item.name, item.category],
function(err) {

 if(err)

 throw err;

 res.redirect('home');

 });

 } else {

 var completed = req.body.completed;

 if(!completed.forEach)

 completed = [completed];

 var update = "update tasks set completed = 1 where
id in (" + completed.join(",") + ")";

 sql.query(conn, update, function(err) {

 if(err)

 throw err;

 res.redirect('home');

 });

 }

}

4. Save the index.js file.

Modify app.js
1. In the tasklist directory, open the app.js file in a text editor. This file was created

earlier by running the express command.
2. Replace the content after the //Routes comment with the following code. This

will add a new route to the updateItem method you added previously in the
index.js file and listen on the port specified in process.env.PORT. The port value
will be used once the application is deployed to Windows Azure.
// Routes

app.get('/', routes.index);

app.post('/', routes.updateItem);

 80

app.listen(process.env.PORT || 3000);

3. Save the app.js file.

Modify the index view
1. Change directories to the views directory and open the index.jade file in a text

editor.
2. Replace the contents of the index.jade file with the code below. This defines the

view for displaying existing tasks, as well as a form for adding new tasks and
marking existing ones as completed.
h1= title

br

form(action="/", method="post")

 table(class="table table-striped table-bordered")

 thead

 tr

 td Name

 td Category

 td Date

 td Complete

 tbody

 each task in tasks

 tr

 td #{task.name}

 td #{task.category}

 td #{task.created}

 td

 input(type="checkbox", name="completed",
value="#{task.ID}", checked=task.completed == 1)

 button(type="submit") Update tasks

hr

 81

form(action="/", method="post", class="well")

 label Item Name:

 input(name="item[name]", type="textbox")

 label Item Category:

 input(name="item[category]", type="textbox")

 br

 button(type="submit", class="btn") Add Item

3. Save and close index.jade file.

Modify the global layout
The layout.jade file in the views directory is used as a global template for other .jade
files. In this step you will modify it to use Twitter Bootstrap, which is a toolkit that makes
it easy to design a nice looking web site.

1. Download and extract the files for Twitter Bootstrap. Copy the bootstrap.min.css
file from the bootstrap\css folder to the public\stylesheets directory of your
tasklist application.

2. From the views folder, open the layout.jade in your text editor and replace the
contents with the following:
!!!html

html

 head

 title= title

 meta(http-equiv='X-UA-Compatible', content='IE=10')

 link(rel='stylesheet',
href='/stylesheets/style.css')

 link(rel='stylesheet',
href='/stylesheets/bootstrap.min.css')

 body(class='app')

 div(class='navbar navbar-fixed-top')

 .navbar-inner

 .container

 a(class='brand', href='/') My Tasks

 .container!= body

3. Save the layout.jade file.

http://twitter.github.com/bootstrap/�
http://twitter.github.com/bootstrap/�

 82

Create configuration file
The config.json file contains the connection string used to connect to the SQL Database,
and is read by the index.js file at run-time. To create this file, perform the following
steps:

1. In the tasklist directory, create a new file named config.json and open it in a text
editor.

2. The contents of the config.json file should appear similiar to the following:
{

 "SQL_CONN" : "connection_string"

}

Replace the connection_string with the ODBC connection string value returned
earlier.

3. Save the file.

Run your application locally
To test the application on your local machine, perform the following steps:

1. From the command-line, change directories to the tasklist directory.
2. Use the following command to launch the application locally:

node app.js

3. Open a web browser and navigate to http://127.0.0.1:3000. This should display a
web page similar to the following:

http://127.0.0.1:3000

 83

4. Use the provided fields for Item Name and Item Category to enter information,
and then click Add item.

5. The page should update to display the item in the ToDo List.

6. To complete a task, simply check the checkbox in the Complete column, and then
click Update tasks.

 84

7. To stop the node process, go to the command-line and press the CTRL and C
keys.

Deploy your application to Windows Azure
In this section, you will use the deployment steps you received after creating the web site
to publish your application to Windows Azure.

Publish the application
1. At the command-line, change directories to the tasklist directory if you are not

already there.
2. Use the following commands to initialize a local git repository for your

application, add the application files to it, and finally push the files to Windows
Azure
git init

git add .

git commit -m "adding files"

git remote add azure [URL for remote repository]

git push azure master

At the end of the deployment, you should see a statement similar to the
following:
To
https://username@tabletasklist.azurewebsites.net/TableTaskl
ist.git

 * [new branch] master -> master

3. Once the push operation has completed, browse to http://[site
name].azurewebsites.net/ to view your application.

Switch to an environment variable
Earlier we implemented code that looks for a SQL_CONN environment variable for the
connection string or loads the value from the config.json file. In the following steps you
will create a key/value pair in your web site configuration that the application real access
through an environment variable.

1. From the Preview Management Portal, click Web Sites and then select your web
site.

https://username@tabletasklist.azurewebsites.net/TableTasklist.git
https://username@tabletasklist.azurewebsites.net/TableTasklist.git
http://[sitename].azurewebsites.net/
http://[sitename].azurewebsites.net/

 85

2. Click CONFIGURE and then find the app settings section of the page.

3. In the app settings section, enter SQL_CONN in the KEY field, and the ODBC
connection string in the VALUE field. Finally, click the checkmark.

 86

4. Finally, click the SAVE icon at the bottom of the page to commit this change to
the run-time environment.

5. From the command-line, change directories to the tasklist directory and enter
the following command to remove the config.json file:
git rm config.json

git commit -m "Removing config file"

6. Perform the following command to deploy the changes to Windows Azure:
git push azure master

Once the changes have been deployed to Windows Azure, your web application should
continue to work as it is now reading the connection string from the app settings entry.
To verify this, change the value for the SQL_CONN entry in app settings to an invalid
value. Once you have saved this value, the web site should fail due to the invalid
connection string.

Next steps
Node.js Web Application with MongoDB
Node.js Web Application with Table Storage

Additional resources
Windows Azure command-line tool for Mac and Linux

http://content-ppe.windowsazure.com/en-us/develop/nodejs/tutorials/website-with-mongodb-(mac)/�
http://content-ppe.windowsazure.com/en-us/develop/nodejs/tutorials/web-site-with-storage/�
http://content-ppe.windowsazure.com/en-us/develop/nodejs/how-to-guides/command-line-tools/�

	Cover

	Contents
	Create and deploy a Node.js application to a Windows Azure Web Site
	Set up the Windows Azure environment
	Create a Windows Azure account
	Enable Windows Azure Web Sites

	Create a Windows Azure Web Site and enable Git publishing
	Install developer tools
	Build and test your application locally
	Publish your application
	Publish changes to your application
	Revert to a previous deployment
	Next steps
	Additional Resources

	Node.js Cloud Service
	Setting Up the Development Environment
	Creating a New Node Application
	Running Your Application Locally in the Emulator
	Deploying the Application to Windows Azure
	Creating a Windows Azure Account
	Downloading the Windows Azure Publishing Settings
	Publishing the Application

	Stopping and Deleting Your Application

	Create and deploy a Node.js application to a Windows Azure Web Site using WebMatrix
	Set up the Windows Azure environment
	Create a Windows Azure account
	Enable Windows Azure Web Sites

	Create a Windows Azure Web Site
	Import the web site into WebMatrix and apply the Express template
	Publish your application to Windows Azure
	Modify and republish your application
	Next Steps

	Node.js Web Application with Storage on MongoDB
	Prerequisites
	Preparation
	Create a virtual machine and install MongoDB
	Sign up for the Windows Azure Web Sites preview feature
	Enable Windows Azure Web Sites

	Install modules and generate scaffolding
	Install express and generate scaffolding
	Install additional modules

	Using MongoDB in a node application
	Create the model
	Create the controller
	Modify app.js
	Modify the index view

	Run your application locally
	Deploy your application to Windows Azure
	Install the Windows Azure command-line tool for Mac and Linux
	Import publishing settings
	Create a Windows Azure Web Site
	Publish the application

	Next steps
	Additional resources

	Node.js Web Application using the Windows Azure SQL Database
	Prerequisites
	Enable the Windows Azure Web Site feature
	Create a web site with database
	Get SQL Database connection information
	Design the task table
	Install modules and generate scaffolding
	Install express and generate scaffolding
	Install additional modules

	Use SQL Database in a node application
	Modify the controller
	Modify app.js
	Modify the index view
	Modify the global layout
	Create configuration file

	Run your application locally
	Deploy your application to Windows Azure
	Publish the application
	Switch to an environment variable

	Next steps
	Additional resources

