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Updates 
•  Jan 2015: added new 3D applications  

•  Added details about our stereo camera with FPGA processing 

•  November 21, 2011: added experimental results for “Linear 
 stereo matching” (ICCV2011), Min et al’s algorithm (ICCV2011), 
 description of “Fast Segmentation driven (FSD)” (IC3D) 
 algorithm and description of SGM 

•  May 19, 2011: added experimental results of FBS on the GPU 
 [71] and the VisionSt stereo camera 

•  July 25, 2010: Linux and Windows implementations of the 
 Fast Bilateral Stereo algorithm available at: 
 www.vision.deis.unibo.it/smatt/fast_bilateral_stereo.htm 

•  April 20th, 2010: included descriptions and experimental 
 results for papers [67], [68], [69]  
 

 
The latest version of this document is available here: 

http://www.vision.deis.unibo.it/smatt/Seminars/StereoVision.pdf 
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Outline 

•  Introduction to stereo vision 

•  Overview of a stereo vision system 

•  Algorithms for visual correspondence 

•  Computational optimizations 

•  Hardware implementation 

•  Applications 
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What is stereo vision ? 

•  Is a technique aimed at inferring depth 
  from two or more cameras  

•  Wide research topic in computer vision  

•  This seminar is concerned with 

•  binocular stereo vision systems   

•  dense stereo algorithms 

•  stereo vision applications 

•  Emphasis is on approaches that are (or 
  might be hopefully soon) feasible for 
  real-time/hardware implementation 
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Applications 

www.nasa.gov www.nasa.gov 

www.vision.deis.unibo.it/smatt/stereo 
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O 

P 

Q 

p≡q 

π 

Single camera 

•  Both (real) points (P and Q) 
 project into the same image 
 point (p ≡ q) 

•  This occurs for each point 
 along the same line of sight 

•  Useful for optical illusions… 

π: image plane 

O: optical center 

Courtesy of http://www.coolopticalillusions.com/ 
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P 

Q 

p≡q 
p 

q 

OR OT 

πT πT 

Stereo camera 

With two (or more) cameras we can infer depth, by means of 
triangulation, if we are able to find corresponding 
(homologous) points in the two images 

‘ 

‘ 

Reference R Target T 
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How to solve the correspondence problem ? 

2D search domain ? 

No!! Thanks to the 
epipolar constraint 

Reference (R) Target (T) 

Reference (R) Target (T) 

? 
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P 

Q 

p≡q 
p 

q 

OR OT 

πR πT 

Epipolar constraint 

•  Consider two points P and Q on the same line of sight of 
  the reference image R (both points project into the same 
  image point p≡q on image plane πR of the reference image) 

•  The epipolar constraint states that the correspondence for 
 a point belonging to the (red) line of sight lies on the 
 green line on image plane πT of target image 

‘ 

‘ 

Reference R Target T 
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P 

Q 

p≡q 
p 

q 

OT OR 

πR πT 

Stereo camera in standard form 

Once we know that the search space for corresponding points 
can be narrowed from 2D to 1D, we can put (virtually) the 
stereo rig in a more convenient configuration (standard 
form) - corresponding points are constrained on the same 
image scanline 

‘ 

‘ 

Reference R Target T 

y y 
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Original stereo pair 

Stereo pair in standard form 
 
Cameras are “perfectly” aligned 
and with the same focal length 
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Disparity and depth 

B (Baseline) 
OR OT 

xR xT 

Z 

P 

p p’ 

With the stereo rig in standard form and by considering  
similar triangles (POROT and Ppp’): 
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Disparity and depth 



 
 

 
Stefano Mattoccia 

Disparity map 

xR xT 
Reference Target 

The disparity is the difference between the x coordinate of 
two corresponding points; it is typically encoded with 
greyscale image (closer points are brighter).  

B 
(Baseline) 

OR OT 

xR xT 
Z 

P 

p p’ 

B 
(Baseline) 

OR OT 

xR xT 
Z 

P 

p p’ 

Disparity is higher for points closer to the camera 
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Range field (Horopter) 

Given a stereo rig with baseline b and focal length f, the 
range field of the system is constrained by the disparity 
range [dmin, dmax]. 

mind
fb ⋅

maxd
fb ⋅

Horopter 
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•  Depth measured by a stereo vision system is discretized 
  into parallel planes (one for each disparity value) 
 
•  A better (virtual) discretization can be achieved with 
  subpixel techniques (see Disparity Refinements) 

mind
fb ⋅

maxd
fb ⋅
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•  The range field (horopter) using 5 disparity values  
 [dmin, dmin+4]  

mind
fb ⋅

4min +

⋅

d
fb
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•  Using 5 disparity values [Δ+dmin,Δ+dmin+4] 

•  With Δ>0, horopter gets closer and shrinks (depth  
  and obviously area/volume) 

mind
fb

+Δ

⋅

4min ++Δ

⋅

d
fb
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Accuracy vs Resolution: quantitative analysis 

Add here ! 
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Color or greyscale sensors ? 

Insert here 



Key module in stereo vision? 

The algorithm is crucial in this technology 

State of the art 
(e.g. ICCV 2011) 

Traditional 
algorithm 
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Overview of a stereo vision system 

Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

PC, FPGA 

Stereo pair 

Rectified stereo pair 

Disparity map 

Depth map 

Intrinsic 
and extrinsic 
parameters  
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Calibration (offline) 

Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

Calibration is carried out acquiring and 
processing 10+ stereo pairs of a known  
pattern (typically a checkerboard) 

Offline procedure aimed at finding: 
 

•  Intrinsic parameters of  the two cameras  
  (focal length, image center, parameters 
   of lenses distortion, etc) 
 
•  Extrinsic parameters 
  (R and T that aligns the two cameras) 
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Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

•  Calibration is available in OpenCV [39] and 
  Matlab [40] 

•  A detailed description of calibration can be 
  found in [20,21,22] 

•  Next slides show 20 stereo pairs used for 
  calibrating a stereo camera 
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R 

T 

R 

T 
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R 

T 

R 

T 



 
 

 
Stefano Mattoccia 

Rectification 

Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

Stereo camera in 
standard form 

Using the information from the calibration step: 
 

 a) removes lens distortions 
  
b) turns the stereo pair in standard form 
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Stereo correspondence 

Aims at finding homologous points in the  
stereo pair.   

Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

disparity map 

This topic will be extensively analyzed in 
the next slides... 
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Triangulation 

Rectification 

Stereo 
Correspondence 

Triangulation 

Calibration 
(offline) 

Given the disparity map, the baseline and the 
Focal length (calibration): triangulation 

computes 
the position of the correspondence in the 3D 

space 

d
fbZ ⋅

=

f
x

ZX R=

f
yZY R=

d(x,y) (X,Y,Z) 

disparity map depth map 
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Datasets: stereo sequences 
Sequences acquired with stereo cameras are available at: 
 

http://www.vision.deis.unibo.it/smatt/stereo.htm 
 
 
The datasets include:  

 
•  calibration parameters 

 
•  original sequences  

 
•  rectified sequences 

 
•  disparity maps 
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Architectures 
•  Microprocessors  
 - Floating Point (FP) units + SIMD 
 - C/C++ (+ assembly)  
 - power,cost and size are the main drawbacks 

•  Low power & low cost processor  
 - C/c++  
 - no FP  
 - no SIMD (often) 

•  GPUs (Graphic Processing Units)  
 – raw power  
 - high power dissipation and cost 
 - programming is difficult (CUDA and OpenCL help) 

•  FPGA (Field Programmable Gate Array) 
 - efficient, low power (<1 W), low cost    
 - programming language: VHDL  
 - coding is difficult and tailored for specific devices 



Our custom FPGA-based stereo camera 1/3 

•  We have designed a real-time stereo camera with  
  depth maps computed according to state of the art 
  algorithms 

•  Details: www.vision.deis.unibo.it/smatt 

•  Youtube channel: 
  www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw 



Our custom FPGA-based stereo camera 2/3 

•  Processing at 30+ fps (640x480) 

•  Power consumption: < 2.5 Watt 

•  Self powered via USB cable 

•  Weight: < 80 g with lenses and holders 



Our custom FPGA-based stereo camera 3/3 

www.youtube.com/watch?v=KXFWIvrcAYo 
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Some available stereo cameras 

www.videredesign.com 

www.ptgrey.com www.nvela.com 

www.valdesystems.com 

www.focusrobotics.com www.tyzx.com 

www.minoru3dwebcam.com 

* 

FPGA/ASIC 
DSP 

www.visionst.com 
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Why is stereo correspondence so challenging ? 

Next slides show 
common pitfalls… 
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Photometric distortions and noise 

Specular surfaces 
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Foreshortening 

Uniqueness constraint ? :-( 
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? ? ? ? ? 

Perspective distortions 

Uniform/ambiguous regions 

?
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Repetitive/ambiguous patterns 

How to reduce ambiguity... ? 
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Transparent objects 

Occlusions and discontinuities 1/2 

? 



 
 

 
Stefano Mattoccia 

Occlusions and discontinuities 2/2 

Reference Target 

Target Reference 

? 

? 
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Middlebury stereo evaluation 

[11] D. Scharstein and R. Szeliski, �A taxonomy and evaluation of dense two-frame stereo correspondence algorithms�  
Int. Jour. Computer Vision, 47(1/2/3):7–42, 2002  

[15] D. Scharstein and R. Szeliski, http://vision.middlebury.edu/stereo/eval/ 

Scharstein and Szeliski provide: 

•  a methodology for the evaluation of (binocular)  
  stereo vision algorithms [11]  

•  datasets with groundtruth [11,15,17,18,19] 

•  online evaluation procedure and ranking [15]  

Datasets (with groundtruth) of stereo pairs affected by 
photometric distortions are also available in [15]. 

The Middlebury stereo evaluation site [15] provides a framework  
and a dataset (showed in the next slide) for benchmarking  
novel algorithms. 
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Middlebury dataset (2003) [15] 

D. Scharstein and R. Szeliski, http://vision.middlebury.edu/stereo/eval/ 

Tsukuba, Venus, Teddy and Cones stereo pairs 

Right Left DISC ALL NON_OCC Groundtruth 
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The correspondence problem 

   According to the taxonomy proposed in [11] most stereo 
algorithms perform (subset of) these steps: 
 

1)  Matching cost computation 

2)  Cost aggregation 

3)  Disparity computation/optimization 

4)  Disparity refinement 

Local algorithms perform:  
1 ⇒ 2 ⇒ 3 (with a simple Winner Takes All (WTA) strategy) 
 
Global Algorithms perform:  
1 (⇒ 2) ⇒ 3 (with global or semi-global reasoning) 
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Pre-processing (0) 

•  Laplacian of Gaussian (LoG) filtering [41] 
 
•  Subtraction of mean values computed in nearby pixels [42] 

•  Bilateral filtering [16] 

•  Census transform  

Sometime is deployed a pre-processing stage mainly to 
compensate for photometric distortions. 
 
Typical operations include: 

[41] T. Kanade, H. Kato, S. Kimura, A. Yoshida, and K. Oda, Development of a Video-Rate Stereo Machine  
International Robotics and Systems Conference (IROS '95), Human Robot Interaction and Cooperative Robots, 1995 
 
[42] O. Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua, E. Thron, L. Moll, G. Berry,  
Real-time correlation-based stereo: Algorithm. Implementation and Applications, INRIA TR n. 2013, 1993 
 
[16] A. Ansar, A. Castano, L. Matthies, Enhanced real-time stereo using bilateral filtering 
IEEE Conference on Computer Vision and Pattern Recognition 2004 
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The simplest (naive and unused) local approach: 

W W 

H H 

x 

y 

x x+dmax 

Reference (R) Target (T) 

Reference (R) Target (T) 

epipolar 
line  
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Result 
(disappointing) 

Groundtruth 

•  matching cost (1): pixel-based absolute difference  
    between pixel intensities 

•  disparity computation (3): Winner Takes All (WTA) 

Reference 

0 dmax d 
Winner d*  

),(),( ydxIyxI TR +−
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Basically exist two different (not mutually exclusive) 
strategies:  

•  Local algorithms use the simple WTA disparity selection 
 strategy but reduce ambiguity (increasing the signal to 
 noise ratio (SNR)) by aggregating matching costs over a 
 support window (aka kernel or correlation window).  
 Sometime a smoothness term is adopted. Steps 1+2 (+ WTA) 

•  Global (and semi-global*) algorithms search for disparity 
 assignments that minimize an energy function over the whole 
 stereo pair using a pixel-based matching cost (sometime the 
 matching cost is aggregated over a support). Steps 1+3 

How to improve the results of the naive approach ? 

This hypothesis is implicitly assumed by local 
approaches while it is explicitly modelled by 
global approaches 

Both approaches assume that the scene is piecewise 
smooth. Sometime this assumption is violated...  

* subset of the stereo pair 
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Local approaches: 
 
In order to increase the SNR (reduce ambiguity) the 
matching costs are aggregated over a support window 

Reference (R) Target (T) 

Global (and semi-global*) approaches: 

( ) ( )dEdEdE smoothdata +=)(

* subset of the stereo pair 

Many algorithms search for the disparity assignment that  
minimize a certain cost function over the whole* stereo  
pair 
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Matching cost computation (1) 

Pixel-based matching costs 

),(),(),,( ydxIyxIdyxe TR +−=

•  Absolute differences 

( )2),(),(),,( ydxIyxIdyxe TR +−=

•  Squared differences 

•  Robust matching measures (M-estimators)  
 

•  Limit influence of outliers 

•  Example: truncated absolute differences (TAD) 
 { }TydxIyxIdyxe TR ,),(),(min),,( +−=

R T 

IR(x,y) IT(x,y) 
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Rx

1+Rx1−Rx

dxR +

1++dxR1−+dxR

),( yxI RR ),( ydxI RT +

),(~ yxI RR ),(~ ydxI RT +

•  Dissimilarity measure insensitive to image sampling  
 (Birchfield and Tomasi [27]) 

( )
!"

!
#
$

!%

!
&
'

−++−=
+≤≤−+≤≤−

),(~),(min,),(~,minmin),,(
2
1

2
1

2
1

2
1

yxIydxIydxIyxIdyxe RRT
xxx

TRR
xxx

R
RRRR

Reference (R) Target (T) 

BT helps at depth and color  
discontinuities 
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C(x,y,d) 
 

likelihood/confidence 
of each correspondence 

The Disparity Space Image (DSI) is a 3D matrix (WxHx(dmax-
dmin) 

Each element C(x,y,d) of the DSI represents the cost of 
the correspondence between IR(xR,y) and IT(xR+d,y) 
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Area-based matching costs: 

∑
∈

+−=
Sx

TR ydxIyxIdyxC ),(),(),,(
•  Sum of Absolute differences (SAD) 

( )∑
∈

+−=
Sx

TR ydxIyxIdyxC 2),(),(),,(
•  Sum of Squared differences (SSD) 

•  Sum of truncated absolute differences (STAD) 

{ }∑
∈

+−=
Sx

TR TydxIyxIdyxC ,),(),(min),,(

S 
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•  Normalized Cross Correlation [57] 

•  Zero mean Normalized Cross Correlation [58] 

•  Gradient based MF [59]  

•  Non parametric [60,61] 

•  Mutual Information [30] 

•  . . . 

•  Combination of matching costs 
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Add content here 
Area-based matching costs 
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Cost aggregation (2) 
Let’s start by examining the simplest Fixed Window (FW) 
cost aggregation strategy (TAD, disparity selection WTA) 

Reference (R) Target (T) 

Groundtruth Fixed Window (FW) 

What’s wrong with FW ? 
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FW (with WTA reasoning) fails in most points for the 
following reasons: 

a) 

b) 

c) 
d) 

Reference (R) Target (T) 

 a) implicitly assumes frontal-parallel surfaces 
 

 b) ignores depth discontinuities 
 

 c) does not deal explicitly with uniform areas 
 

 d) does not deal explicitly with repetitive patterns 
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S 

S 

a) FW implicitly assumes frontal-parallel surfaces 

Often violated in practice: top figure, slanted surfaces (down), etc. 

FW Ideal 

FW 

Nevertheless, almost all state-of-the-art cost aggregation 
strategies rely on the assumption that all the points 
belonging to the support share the same disparity (only few 
exceptions). 

FW Ideal 

front view front view 

front view front view 

S 

S 

x 

z 

x 

z 

z z 

x x 
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b) FW ignores depth discontinuities 

FW 

Implicitly assuming frontal-parallel surface in the real 
scene is violated near depth discontinuities.  

S 

Aggregating the matching costs of two populations at 
different depth (aligned foreground and misaligned 
background (outliers)) results in the typical inaccurate 
localization of depth borders. 

Background is  
misaligned ! 

Robust matching measures (TAD) can partially reduce the 
influence of outliers 
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S 

Ideal 

State-of-the-art cost aggregation strategies aim at shaping 
the support in order to include only points with the same 
(unknown) disparity. 

FW 

S 

For what concerns FW: decreasing the size of the support 
helps in reducing the border localization problem.  
 
However, this choice renders the correspondence problem more 
ambiguous (especially when dealing with uniform regions and 
repetitive patterns, see the next slide).   
 
In practice, for the FW approach the choice of the optimal 
size of the support is done empirically. 
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S 

S 

S 

S 

FW does not deal explicitly with ambiguous regions -  
uniform areas c) and repetitive patterns d) 

FW Ideal 

FW Ideal 

In both cases an ideal cost aggregation strategy should 
extend its support in order to include as much points at  
the same (unknown) depth as possible. 
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Quite surprisingly, in spite of its limitations, FW is widely  
adopted in practice (probably it is the most frequently used  
algorithm for real applications).    
 

•  Easy/fast implementation 
  
•  Fast, thanks to incremental calculation schemes 
 
•  Runs in real-time on standard processors (SIMD)  
 
•  Has limited memory requirements 
 
•  Hardware implementations (FPGA) run in real-time 
  with limited power consumption (<1W) 

Before analyzing more sophisticated approaches let�s consider  
two optimization techniques used by FW and other algorithms: 
 

•  Integral Images (II)  
 
•  Box-Filtering (BF) 
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Optimization: Integral Images  
(aka Summmed Area Table) 

y 

x 

( )

( ) ∑

∑

<<

<<

=

=

yjxi

yjxi

jiIyxS

jiIyxS

,

22

,

),(,

),(,
W 

•  Straightforward extension to stereo  
  (2 images)  

I(x,y) H 

F. Crow, Summed-area tables for texture mapping, Computer Graphics, 18(3):207–212, 1984 
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Left 

x 

y 2
n
+
1
 

2n+1 

∑
−=

+++−++=
n

nji

iyjdxRiyjxLdyxSAD
,

),(),(),,(

Right 

x+d 

y 2
n
+
1
 

2n+1 

y+1 y+1 

),1,(),,(),1,( dyxUdyxSADdyxSAD ++=+

∑
−=

++++−+++
n

nj

nyjdxRnyjxL )1,()1,(=+ ),1,( dyxU ∑
−=

−++−−+
n

nj

nyjdxRnyjxL ),(),(−

Optimization: Box-Filtering 1/2 

M. Mc Donnel. Box-filtering techniques. Computer Graphics and Image Processing, 17:65–70, 1981 
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Left 

x 

y 

2n+1 

2n+1 

Y+1 

Right 

x+d 

y 

2n+1 

2n+1 

Y+1 

∑
−=

++++−+++
n

nj

nyjdxRnyjxL )1,()1,(=+ ),1,( dyxU ∑
−=

−++−−+
n

nj

nyjdxRnyjxL ),(),(−

),1,(),,(),1,( dyxUdyxSADdyxSAD ++=+ [ ]max..0 dd∈

x-n-1 

y+n+1 D

x+d-n-1 

y+n+1 D'

x+n 

C

x+d+n 

C'

y-n A y-n A'B B'

( ) ''''),1,1(,1, DDCCBBAAdyxUdyxU −−−+−−−++−=+

( ) ''''),1,1(),,(,1, DDCCBBAAdyxUdyxSADdyxSAD −−−+−−−++−+=+

Optimization: Box-Filtering 2/2 
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-  Both require 4 operations per point 
 
-  Integral images can handle supports of different size 
 
-  Integral Images has overflow issues   
  (for example, with int32 and S2 ⇒ WxH<256x256)  
 
-  Integral images is more demanding in terms of memory 
  requirements. For single images: 
  
  WxHxsizeof(data_type) Vs ≈ Wxsizeof(int32) for S2  

Box-Filtering Vs Integral Images  

In practice, integral images may be convenient when  
supports of different size are required. 
 
Extension of box-filtering to more complex shapes was  
proposed in [47]. 
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Optimizations:  
Single Instruction Multiple Data (SIMD) 

a b Op 

A 

B 

Op 

It�s a computation paradigm that that allow for processing  
with the same operation multiple data in parallel.  

•  Several computer vision algorithms are suited for SIMD 
 
•  SIMD features are available in most current processors  
 
•  Intel processors SIMD available since Pentium (MMX) 

•  SIMD mapping is difficult (assembly) 

SIMD 
16 Ops in  
parallel ! 

Scalar computation 1 Op 
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Single Matching Phase Algorithm [48,49] 

•  Image type: grayscale  

•  Preprocessing: subtraction of mean values 

•  Matching cost (Step 1): Absolute Differences 

•  Aggregation strategy (Step 2): FW 

•  Disparity selection (Step 3): WTA 

•  Outlier detection: efficient strategy (later, Step 4) 

•  Discards uniform areas: yes, analyzing image variance 

•  Optimizations: box-filtering + SIMD instructions (SSE) 

•  Sub-pixel interpolation up to 1/16 of pixel (later) 

•  Runs in real-time on a standard PC 

L. Di Stefano, M. Marchionni, S. Mattoccia, A fast area-based stereo matching algorithm 
Image and Vision Computing, 22(12), pp 983-1005, October 2004 
 
L. Di Stefano, M. Marchionni, S. Mattoccia, A PC-based real-time stereo vision system 
Machine Graphics & Vision, 13(3), pp. 197-220, January 2004 
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How far can we go with more effective  
(frontal parallel) cost aggregation strategies ? 

We made an experiment computing ideal frontal parallel 
supports using the ground truth. 
 
With 43x43 max support, TAD and a WTA strategy: 

Results (errors in red) 

There is room for improvements... 
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•  Compared to pixel-based approaches the support aggregation 
(potentially) allows for improving robustness 
 

•  An ideal (frontal parallel) cost aggregation strategies 
should include in the support only points with similar 
disparity: 
 

•  expanding in regions at similar depth (left) 
 

•  shrinking near depth discontinuities (right) 
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What about symmetric/asymmetric support,  
discontinuities and occlusions ? 

•  (Unknown) Occlusions and discontinuities play a central 
   role for support aggregation strategies. The next slides  
   depict relevant cases using a simple object laying on a  
   planar background 
 
•  Occlusions and discontinuities are strictly related 
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Case 1: no half occlusion, no discontinuity 
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Case 2: near half occlusion vs inside 
discontinuity 
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Case 3: inside half occlusion vs any -> depth = occlusion !! 

? 
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Case 4: near half occlusion vs near discontinuity 
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Case 5: no half occlusion, no discontinuity 
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Case 6: near discontinuity, near occlusion 
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Case 7: inside discontinuity, near occlusion 
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Case 8: near discontinuity, no occlusion no discontinuity 
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Case 9: inside occlusion vs any -> depth = occlusion !!  

? 
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Case 10: near occlusion and discontinuity vs near discontinuity 
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Case 11: near discontinuity vs near discontinuity 
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Case 12: near discontinuity vs near discontinuity and occlusion 
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Classification and evaluation of cost 
aggregation strategies for stereo correspondence 

F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Classification and evaluation of cost aggregation methods for stereo 
correspondence, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2008) 
 
Accompanying web site and software:  www.vision.deis.unibo.it/spe/SPEHome.asp  

•  In [1] we classified, implemented and evaluated (accuracy  
  and execution time) 10+ state-of-the-art cost aggregation 
  strategies 
 
•  Since the focus is on the cost aggregation strategy the 
  evaluation methodology includes only DISC and NON_OCC 
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•  Analyzed a subset of relevant state-of-the-art cost 
  aggregation strategies 
 

•  position 
•  shape 
•  position and shape 
•  weights 

•  Most of these techniques compute the support using a 
  symmetric strategy  

•  Benchmarking platform: Intel Core Duo 2.14 GHz CPU 

•  Execution time: Teddy stereo pair (size 450x373) with 
  and a disparity search range of 60. 

•  Optimizations: the same proposed by authors*, no SIMD,  
  no multicores, etc 

•  The next slides describe most of these methods and some  
  novel approaches not included in the paper (i.e. Fast 
  Aggregation [64], Fast Bilateral Stereo (FBS) [65] and  
  the Locally Consistent (LC) methodology [66]) 
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Fixed Window: results 
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Shiftable Windows [11] 

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms  
Int. Jour. Computer Vision, 47(1/2/3):7–42, 2002  

R T 

•  This approach aims at reducing the border localization 
  problem of FW not constraining the support to be centered  
  on the central position 
 
•  Support is symmetric  
 
•  Execution time: 12 sec  

S 

The position with the best score  
is selected 
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Shiftable Windows: results 
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Multiple Windows [7] 

H. Hirschmuller, P. Innocent, and J. Garibaldi, Real-time correlation-based stereo vision with reduced border errors  
Int. Journ. of Computer Vision, 47:1–3, 2002 

•  The number of elements in the support is constant 

•  The shape of the support is not constrained to be rectangular 
 
•  Support is symmetric  
 
•  Proposed for 5, 9 and 25 sub-windows (5W, 9W and 25W) 

•  Execution time (9W): 11 sec (*) 

+ 4 out of  

according to the matching cost computed  
over the single sub-windows 

With 9 sub-windows (9W): 

S 
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Support: some shapes (with 9 sub-windows) 

R T 
S 
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Multiple (9) Windows: results 
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Variable Windows [12]  

O. Veksler, Fast variable window for stereo correspondence using integral images  
In Proc. Conf. on Computer Vision and Pattern Recognition (CVPR 2003), pages 556–561, 2003 

•  Pixel-based cost function: Birchfield and Tomasi 

•  Size of the support varies while shape is constrained (square) 
 
•  Position of the support changes (shiftable windows)  
 
•  Support is symmetric 
 
•  Efficient search based on a DP technique 
 
•  Execution time: 16 sec (good trade-off speed/accuracy) 

R T 

S 
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Variable Windows: results  
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Segmentation 

D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis !
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603–619, 2002

•  Partitioning of the image in regions made of connected  
  pixels with similar colors intensity 

•  Useful in stereo for cost aggregation, disparity refinement, 
  outliers detection, etc  

Original Segmented [50] 
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Segmentation based [5]  
•  Assumption: depth within each segment varies smoothly 

  
•  Segmentation of reference image (Not Symmetrical) 

•  Shape and size unconstrained (within max support)  

•  Pixel-based cost function: M-estimator 
 

•  Requires explicit segmentation 
 

•  Each cost is weighted 1 (same segment) or  
λ<<1 (different segment) 
 

•  Execution time: 2 sec (fast) 

M. Gerrits and P. Bekaert, Local Stereo Matching with Segmentation-based Outlier Rejection 
Proc. Canadian Conf. on Computer and Robot Vision, 2006 



 
 

 
Stefano Mattoccia 

R T 

S S 

R R(Seg) R 

For each point within the maximum allowed support: 
 

•  points within the same segment of the central point  
 (reference image) assume weight 1 
 
•  points outside are weighted λ<<1   
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Segmentation based: results  
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Bilateral Filtering [51] 

Weight function 

•  Edge preserving smoothing technique 
 
•  In the sum each element is weighted  
  according to its spatial and color  
  proximity (wrt the central point) 

•  Implicitly deploys segmentation 

Conventional 
smoothing 

Bilateral 
Filtering 

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV98, pages 839–846, 1998 

Original 
image 
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•  Costs are symmetrically weighted  
by spatial and color proximity 

•  Implicitly deploys segmentation 
 

•  Pixel-based cost function: TAD 
•  Symmetric support 
•  Execution time: 17 minutes (very slow) 

K. Yoon and I. Kweon. Adaptive support-weight approach for correspondence search IEEE PAMI, 28(4):650–656, 2006 

Adaptive Weights [14] 

R T 

S 

Simplified example (using only color proximity) 

p q 
WR 

WT 

WT WR 



 
 

 
Stefano Mattoccia 

( )
( ) ( ) ( )

( ) ( )ci
WqWp

tcir

iici
WqWTp

tcir

cc qqwppw

qpTADqqwppw
qpC

TiRi

Tii

,,

,,,
,

,

,

∑

∑

∈∈

∈∈

⋅

⋅⋅

=

( )
( ) ( )

c

cRiRc

p

cip pIpIdppd

ciR eeppw γγ
)(),(,

,
−−

=

( )
( ) ( )

c

cRiRc

p

cip qIqIdqqd

ciT eeqqw γγ
)(),(,

,
−−

=

pi pc qi qc 

WT WR 



 
 

 
Stefano Mattoccia 

Adaptive Weights: results  
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•  Segments both images 
•  Discard the spatial proximity assumption: weights 

rely only on segmentation and color proximity 
•  Cost function: TAD 
•  Symmetric support 
•  Execution time: 30 minutes (very slow) 

( )=ciR ppw ,'
( ) ( )( )

c

cRiRc pIpId

e γ
,

−

ci Spfor ∈0.1

otherwise,

Weights for reference (and target) image are assigned  
according to: 

Sc segment that  
includes the  
central point 

Segment Support [10] 

F. Tombari, S. Mattoccia, L. Di Stefano, Segmentation-based adaptive support for accurate stereo correspondence  
IEEE Pacific-Rim Symposium on Image and Video Technology  (PSIVT 2007)  

and then combined (symmetric support) 

pi pc 

WR 



 
 

 
Stefano Mattoccia 

Adaptive weights 

Adaptive weights 

Ideal vs Segment Support 

Ideal vs Segment Support 

Depth borders 

Planar regions 
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Repetitive patterns 

R T 

Adaptive weights 

T 

Ideal vs Segment Support 
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Segment Supports: results  
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Fast Aggregation [64] 

F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Near real-time stereo based on effective cost aggregation  
International Conference on Pattern Recognition (ICPR 2008) 

R T 

•  Assumption: depth within each segment varies smoothly 

•  Cost function: TAD 

•  Segments only the reference image R 

•  Asymmetric support (reference image) 

•  Support extends to the entire segment (R) 

•  Fast: 0.6 sec (segmentation accounts for 40%-80%) 

Sp 

r 

r 

S 

p q 

Sp 

WP 
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•  Cw tries to avoid �segment locking�  

•  Cw may help  in highly textured regions (small 
  segments) 

•  However, Cw may introduce artifacts (discontinuities) 
  since aggregation is performed on a fixed window 

( ) ( ) ( )
2

,,,,,,
r

dqpC
Sp

dqpCdqpC WS
agg +=
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+=
pi Sp
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Fast Aggregation: results  
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Fast Bilateral Stereo framework (FBS) [65] 

S. Mattoccia, S. Giardino,A. Gambini, Accurate and efficient cost aggregation strategy for stereo correspondence based on 
approximated joint bilateral filtering, Asian Conference on Computer Vision (ACCV2009) 

•  Symmetric support  

•  Combines accuracy of adaptive weights approaches with 
  efficiency of traditional (correlative) approach  

•  Deploys a regularized range filter computed on a block 
  basis of size wxw  

•  Increase noise robustness 

•  Efficient pixel-wise cost computation by means of 
  integral-image/box-filtering schemes 

•  Results comparable to top performing approaches 
  Segment Support and Adaptive Weights 

•  Fast: 32 sec on Teddy (w=3) 

•  Moreover, several trade-off speed vs accuracy are 
  feasible: 14 sec (w=5) , 9 sec (w=7), 5 sec (w=9) 

www.vision.deis.unibo.it/smatt/fast_bilateral_stereo.htm 
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•  The range filter is computed on a block-basis deploying 
  the average value within the block 
 
•  To avoid inaccurate localization of the discontinuities  
  the central point is kept as reference 
 
•  Spatial filter computed on block basis 

Three supports computed 
by Fast Bilateral Stereo 

w

w

W  

W 

y

x 
x+d 
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FBS (w=3) vs Adaptive Weights (AW) 

FBS 

AW 
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Fast Bilateral Stereo: results (w=3, w=5) 

w=3 

w=5 
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Fast Bilateral Stereo: results (w=7, w=9) 

w=7 

w=9 



Fast Bilateral Stereo on the GPU [71] 

•  The local nature of the FBS algorithm allows to 
  exploit parallel capabilities available in GPUs 

•  Compared to a single core CPU, on the Middlebury 
  dataset, the implementation of FBS with CUDA enables 
  to obtain: 

•  70X speed-up on an NVIDIA GEForce 460 GTX GPU 

•  100X speed-up on an NVIDIA Tesla C2070 GPU(*) 
 

The measured execution time, with parameters w=3 and 
W=19, is (Teddy stereo pair): 300 ms for the GEForce 460 
GTX and 200 ms on the Tesla C2070 
 
Detailed results available in:www.vision.deis.unibo.it/smatt/FBS_GPU.html 
 
(*) We acknowledge with thanks NVIDIA for the donation of the Tesla C2070 

S. Mattoccia, M. Viti, F. Ries,. Near real-time Fast Bilateral Stereo on the GPU, 7th IEEE Workshop on Embedded Computer  
Vision (ECVW20011), CVPR Workshop, June 20, 2011, Colorado Springs (CO), USA 



Fast Segmentation-driven (FSD) 

S. Mattoccia, L. De-Maeztu, A fast segmentation-driven algorithm for fast and accurate stereo correspondence, IC3D 2011 

•  Applies the SS strategy on a block basis 

•  Results equivalent to SS much more quickly (comparable 
to FBS) 
 

•  Compared to AW and FBS is effective also with greyscale 
images 
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Locally Consistent (LC) stereo [66] 

S. Mattoccia, A locally global approach to stereo correspondence, 3D Digital Imaging and Modeling  (3DIM2009) 

•  Exploits the mutual relationships among neighboring 
  pixels by explicitly modeling the continuity 
  constraints 

•  Very accurate (significant improvements near depth 
  discontinuities and low textured regions) 

•  Notable improvements compared to state-of-the-art 
  approaches 

•  Fast 37 sec* on Teddy (unoptimized code) deploying the 
  disparity hypotheses provided by Fast Bilateral Stereo 

•  Fast: 15 sec* on Teddy (unoptimized code) deploying the 
  disparity hypotheses provided by Fixed Window 
 
   * significantly reduced (see next slides/ECVW 2010 paper [68]) 

www.vision.deis.unibo.it/smatt/lc stereo.htm 

Measurements performed on a 2.49GHz Intel Core Duo processor 
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Before (FBS19(3)) 

LC19 

Locally Consistent stereo: results with FBS 

After LC19 (+ FBS19) 

LC 
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Before (FW4) 

After LC19 (+ FW4) 

LC19 

Locally Consistent stereo: results with FW 

LC 
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Locally consistent (LC) stereo vs FW: details 

FW4 

After 
LC19 (+ FW4) 

LC 
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•  The next slide provides an updated quantitative 
  evaluation of the approaches described so far  
  (yellow) according to the methodology described  
  in [1]  

•  The updated evaluation is available online at: 
 
 http://www.vision.deis.unibo.it/spe/SPEresults.aspx  
   

•  According to this evaluation the Locally Consistent 
  approach combined with the disparity hypotheses 
  provided by the Fast Bilateral Stereo (FBS) algorithm 
  outperforms the other approaches 

•  The FBS ranks second and provides a good trade-off 
  between accuracy and execution time (see the results 
  in the table with different parameters of the FBS 
  algorithm)     

•  In the successive slides will be described novel 
  approaches that rely on the LC technique (see papers 
  [67],[68],[69])  
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(Updated)Quantitative evaluation [1] (TAD) 
Algorithm 

Rank Tsukuba Tsukuba Venus Venus Teddy Teddy Cones Cones Time Teddy  
Acc. nonocc disc nonocc disc nonocc disc nonocc disc hh:mm:ss 

LocallyConsist(FBS 39(3)) 1 1.77 5.92 0.27 1.77 9.3 17.9 4.75 10.5 00:00:37 
FBS 39(3) 3.13 2.95 8.69 1.15 6.64 10.7 20.8 5.23 11.4 00:00:28 
Segment support 3.25 2.15 7.22 1.38 6.27 10.5 21.2 5.83 11.8 00:39:30 
LocallyConsist(FW) 3.5 3.07 9.63 0.66 5.11 10.6 21.8 5.3 11.6 00:00:15 
FBS 45(5) 5.75 3.34 9.99 2.11 6.72 11.5 21.8 6.81 13.8 00:00:14 
Segmentation based 6.75 2.25 8.87 1.37 9.4 12.7 24.8 11.1 20.1 00:05:14 
Adaptive Weight 6.88 4.66 8.25 4.61 13.3 12.7 22.4 5.5 11.9 00:20:35 
FBS 49(7) 7 3.99 12.3 3.01 8.42 12.3 23 7.5 15.1 00:00:09 
FBS 45(9) 8.75 4.6 13.7 5.42 10.6 13.9 24.8 9.47 17.7 00:00:05 
Variable Windows 11.13 3.12 12.4 2.42 13.3 17.7 25.5 21.2 27.3 00:00:26 
Reliability 11.13 5.08 17.9 3.92 13.9 18.9 29.9 11.3 18.3 00:13:39 
Multiple windows* (25W) 14.5 7.57 22.7 3.91 21.1 20.9 33.2 13.7 26.9 00:00:13 
Multiple windows (9W) 14.88 7.6 25.7 7.02 33 16 36.9 10.6 26.9 00:00:04 
Multiple windows (25W)  15.13 7.28 25.9 6.18 29 18 35.6 11.8 27.1 00:00:14 
Gradient guided 15.25 7.41 16.2 12.9 32.3 20.1 32.8 13.5 24.9 00:00:16 
Multiple windows* (9W) 15.63 9.18 22.6 6.23 28.1 21.4 34.5 13.2 26.7 00:00:04 
Recursive adaptive 16.38 9.66 29.8 5.94 29.8 20.1 34.6 11.7 25.3 00:20:20 
Shiftable windows 16.75 9.58 14.4 9.66 16.5 23.6 31.2 24.4 33.6 00:00:05 
Multiple windows (5W) 16.88 7.62 27.2 7.55 37.2 17.4 39.7 11 27.8 00:00:02 
Multiple adaptive 17 11.7 27.3 11.9 13.7 20.4 31.8 15.8 25.3 02:08:17 
Multiple windows* (5W) 18.25 9.61 25.1 9.36 38.3 22.2 38 12.1 27.5 00:00:02 
Max connected 21 11.8 26.4 42.5 50.9 34.5 41 17.7 22.7 01:59:09 
Fixed Window (FW) 21.13 9.58 27.1 10.6 42.5 25.1 42.4 19.7 36 < 1 s 
Oriented rod* 22.25 18.6 31.1 20.3 26.6 30.7 41.8 37.8 47.3 00:17:19 
Oriented rod 22.5 14.2 25.8 21.9 29.8 37.5 48.6 48.5 55.5 00:17:00 
Radial adaptive 23 14.8 21.8 22.4 40.4 49.6 50.1 50.2 53.6 01:06:21 

Table available at: http://www.vision.deis.unibo.it/spe/SPEresults.aspx  



L. De-Maeztu, S. Mattoccia, A. Villanueva, R. Cabeza, "Linear stereo matching", ICCV 2011 

O(1) adaptive cost aggregation 

•  Symmetric cost aggregation inspired by guided filter 

•  Aggregation independent of the window size 

•  Can be applied to color images (differently by 
  integral histogram-based methods) 

•  Results comparable to state of the art 



Fast/simplified adaptive cost aggregation 

D. Min, J. Lu, and M. Do, �A revisit to cost aggregation in stereo matching: how far can we reduce its computational 
redundancy?�, ICCV 2011 
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•  Asymmetric cost aggregation 

•  Cost computed on a selected number of points 
  (determined by means of FW (5x5)) 

•  Matching cost computed on a subset of (fixed) points 
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Disparity computation/optimization (3) 

( ) ( )dEdEdE smoothdata +=)(

This step aims at finding the best disparity assignment 
(e.g. the best path/surface within the DSI) that minimizes a 
cost function over the whole* stereo pair.   
 
In many cases the energy function has two terms: 

* subset of the stereo pair 

•  The data term Edata measure how well the assignment fits to 
  the stereo pair (in terms of overall matching cost).  
  Several approaches rely on simple pixel-based cost functions  
  but effective support aggregation strategies have been 
  successfully adopted 
 
•  The smoothness/regularization Esmooth term explicitly 
  enforces piecewise assumptions (continuity) about the scene.  
  This term penalizes disparity variations and large 
  variation are allowed only at (unknown) depth borders. 
  Plausibility of depth border is often related to edges.    
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Since finding the best assignment that minimizes the energy 
function a NP-hard problem, approximated but effective energy 
minimization strategies have been proposed.  
 
Relevant approaches are: 
 

 - Graph Cuts [52] 
 

 - Belief Propagation [53] 
 

 - Cooperative optimization [54] 
 
A detailed comparison of relevant energy minimization methods 
can be found in [63]. 
 
An further and interesting class of approximated approaches 
minimizes the energy function on a subset of points of the 
stereo pair (typically along scanlines). In these cases the  
energy minimization problem is efficiently solved by means  
of Dynamic Programming (DP) or Scanline Optimization (SO) 
techniques.  
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Graph Cuts 

V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions using graph cuts, ICCV 2001  
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BP + segmentation 

A. Klaus, M. Sormann and K. Karner, Segment-based stereo matching using belief propagation and a  
self-adapting dissimilarity measure. ICPR 2006  



 
 

 
Stefano Mattoccia 

Cooperative + segmentation 

Z. Wang and Z. Zheng, A region based stereo matching algorithm using cooperative optimization, CVPR 2008  
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Dynamic Programming (DP) 

-  efficient (polynomial time) ≈ 1 sec 
 
- enforces the ordering constraint 
 
- accurate at depth borders and uniform regions  
 
- streaking effect (see next slide) 
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DP [11] 
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Scanline Optimization (SO) 

-  Efficient (polynomial time) ≈ few seconds 
 
- Cannot enforce the ordering constraint 
 
- accurate at depth borders and uniform regions 
 
- overcomes the streaking effect problem (see next slide) 
 
- high memory requirement 

H. Hirschmüller. Stereo vision in structured environments by consistent semi-global matching.  
CVPR 2006, PAMI 30(2):328-341, 2008 



In SO, the cost is defined as: 

L(x,y,d) = C(x,y,d) + min  {  L(x-1,y,d),  
           L(x-1,y,d-1)+ P1, 
           L(x-1,y,d+1)+ P1, 
             L(x-1,y,i)  + P2

x x-1 

L(x-1,y,i) 

L(x,y,d) 

0 

1 

5 

6 



L(x,y,4)= C(x,y,4)+ min 

L(x-1,y,4) 

L(x-1,y, 5) + P1 
L(x-1,y, 3) + P1 

L(x-1,y, 7) + P2  

L(x-1,y, 6) + P2  

L(x-1,y, 2) + P2  

L(x-1,y, 1) + P2  

L(x-1,y, 0) + P2  

-min L(x-1,y,k) 
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Scanline Optimization [30] 



Scanline Optimization: details 
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Scanline 2 
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Scanline 3 
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Scanline 4 
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Scanline 6 
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Scanline 7 
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SO + support aggregation 
This method combines an effective cost aggregation strategy 
with a SO based disparity computation framework.  
  
- costs are computed by means of an effective strategy 
  cost aggregation strategy (Segment Support)  
 
- disparity computation relies on SO 
 
- uses only 4 directions  
 
- excellent results 
 
- very slow (due to cost aggregation strategy) 
 
 
Using effective cost aggregation strategy within accurate 
disparity computation frameworks is an interesting trend 
successfully deployed also by other researchers [,].  

S. Mattoccia, F. Tombari, and L. Di Stefano, Stereo vision enabling precise border localization within a scanline  
optimization framework, ACCV 2007  
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SO + support aggregation [29] 
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S. Mattoccia, Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency  
of disparity fields, 3DPVT2010  

Enforcing local consistency of disparity  
fields in fast SO/DP based algorithms [67] 

This method aims at improving the accuracy of fast SO/DP 
based algorithms by enforcing the local consistency [66]  
of an initial disparity hypothesis. 
 
-  evaluated deploying the initial disparity hypotheses of 
  C-Semiglobal [30] and RealTimeGPU [70] 
 
-   dramatically improves the initial disparity field  
 
-   relatively fast, about 15 seconds on a standard PC with  
   a single core  
 
-   computational optimizations/simplifications [68] enable  
   us to obtain almost equivalent results in less than 2 
   seconds on a standard multicore PC (see next slides 
   concerned with paper[68])  

www.vision.deis.unibo.it/smatt//3DPVT2010.htm 
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This method: 
 
- deploys the initial dense disparity hypotheses provided by 
  a dense stereo algorithm (tested with fast and SO and DP 
  algorithms [30] and [70]) 
 
- enforces local consistency by means of the LC technique 
 [66] obtaining two independent disparity fields DR and DT 
 
- detects and interpolates uncertain disparity assignments 
  according to DR and DT 
 

PlausibilityR 

PlausibilityT 

LC DR 

DT 

cross-check Interpolation 

R 

T 
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Experimental results deploying the initial disparity hypotheses 
of C-Semiglobal [30] available on the Middlebury web site 

Experimental results according to the automatic evaluation procedure available at: 
http://vision.middlebury.edu/stereo/  

-12 
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C-Semiglobal [30]  

C-Semiglobal [30]  

LC 

LC 

LC(C-Semiglobal)[67]  

LC(C-Semiglobal) [67]  
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Experimental results deploying the initial disparity hypotheses 
of RealTimeGPU [70] available on the Middlebury web site 

Experimental results according to the automatic evaluation procedure available at: 
http://vision.middlebury.edu/stereo/  

-49 
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RealTimeGPU [70] 

RealTimeGPU [70] 
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LC(RealTimeGPU)[67]  

LC(RealTimeGPU)[67]  
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Fast dense stereo on multicore deploying  a 
relaxed local consistency constraint [68] 

The execution time of previously described method [67], can 
be dramatically reduced according to the methodologies 
proposed in [68]. 
 
Deploying the same initial disparity hypotheses (that is,  
C-Semiglobal and RealTimeGPU), this method enables us to 
obtain almost equivalent results (see [67] in previous page) 
in less than 2 seconds on a Core2 Quad CPU @ 2.49 GHz.  
 
This methods: 
 
- relies on a relaxed local consistency constraint 
 
- takes advantage of coarse-grained thread-level paralellism 
 

S. Mattoccia, Fast locally consistent dense stereo on multicore, Sixth IEEE Embedded Computer Vision Workshop 
(ECVW2010), CVPR workshop, June 13, 2010, San Francisco, USA  

www.vision.deis.unibo.it/smatt/RLC stereo.htm 



Original [67] 

Proposed [68] 

Measured speed-ups on a Core2 Quad CPU @ 2.49 GHz 

Measurements concerned with the Teddy stereo pair 
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C-Semiglobal [30]  

C-Semiglobal [30]  

RLC 

RLC 

RLC(C-Semiglobal)[68]  

RLC(C-Semiglobal) [68]  
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Constraining local consistency  
on superpixels [69] 

The effectiveness of the locally consistent technique [66]  
can be further improved by constraining its behavior on 
superpixels obtained by means of segmentation [50]. 
 
This method deploys a two stage strategy to constraint Local 
Consistency [66] on superpixels. 
During the first phase, we over-segment the reference image:  
 
- to detect uncertain disparity measurements  
- to regularize disparity within superpixels 
 
During the second phase we relax the segmentation constraint 
in order to propagate the regularized disparity assumptions. 
 
 
As for previous approaches, we start with an initial disparity 
hypothesis (C-Semiglobal algorithms [30] available on [15]) 

S. Mattoccia, Accurate dense stereo by constraining local consistency on superpixels, 20th International Conference on 
Pattern Recognition (ICPR2010), August 23-26, 2010, Istanbul, Turkey 



C-Semiglobal [30]  

[69] 

Phase 1 

Phase 2 

LC 
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Experimental results for [69] deploying the initial disparity  
hypotheses of C-Semiglobal [30] available on the Middlebury  
evaluation site 

Experimental results according to the automatic evaluation procedure available at: 
http://vision.middlebury.edu/stereo/  

-14 



 
 

 
Stefano Mattoccia 

Disparity refinement (4) 

•  Raw disparity maps computed by correspondence algorithms 
  contain outliers that must be identified and corrected 
 
•  Moreover, since the disparity maps are typically computed 
  at discrete pixel level more accurate disparity assignments 
  would b desirable 

•  Several approaches aimed at improving the raw disparity  
  maps computed by stereo correspondence algorithms have 
  been proposed  

•  In the next slides is provided a description of some (not 
  mutually exclusive) relevant approaches 
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Disparity refinement (4) 

•  Raw disparity maps computed by correspondence algorithms 
  contain outliers that must be identified and corrected 
 
•  Moreover, since the disparity maps are typically computed 
  at discrete pixel level more accurate disparity assignments 
  would b desirable 

•  Several approaches aimed at improving the raw disparity  
  maps computed by stereo correspondence algorithms have 
  been proposed  

•  A description of some (not mutually exclusive) relevant 
  approaches is provided in the next slides 
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0 13 

12 14 
12.8 dmax-1 

C(x,y,d) 

d 

Sub-pixel interpolation  

•  (Typically) sub-pixel disparity is obtained interpolating the 
  three matching costs with a second degree function (parabola) 

•  Computationally inexpensive and reasonably accurate  
 
•  In [55] proposed a floating-point free approach 

•  More accurate (and computational expensive) approaches 
  perform directly matching cost computation on sub-pixel basis 

L. Di Stefano, S. Mattoccia, Real-time stereo within the VIDET project  Real-Time Imaging, 8(5), pp. 439-453, Oct. 2002 
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Image filtering techniques 

•  Median filtering 

•  Morphological operators  

•  Bilateral filtering [51] 

Sometime the disparity maps are simply refined by means of 
image filtering techniques without (explicitly) enforcing 
any constraint about the underlining disparity maps. 

Common image filtering operators are:   
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Bidirectional Matching* 
Bidirectional matching (BM) is a widely used technique for 
detecting outliers [56] in stereo (local and global).  
 
The correspondence problem is solved two times  
 

 - assuming left image as reference (dLR(x,y)) 
 

 - assuming right image as reference (dRL(x,y))  
 

and the disparity values that are not consistent between the 
two maps are classified as outliers enforcing 

 
  |dLR(x,y) -dRL(x+dLR(x,y),y)|<T 

 

with threshold T typically set to 1 

* aka Left-Right (consistency) check 
P. Fua, Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities  
12th. Int. Joint Conf. on Artificial Intelligence, pp 1292–1298, 1993 
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|dLR(x,y) -dRL(x+dLR(x,y),y)|<T ? 

yes 

no dLR dRL 

Outliers detected by BM 
are encoded in white 
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- useful for detecting occlusions 
 
- preserves depth discontinuities  
 
- (partially) effective for detecting outliers  
  in ambiguous regions (see figure) 
 
- two matching phases 
 
- implicitly enforces the uniqueness constraint 
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Single Matching Phase (SMP) – Uniqueness+ 
The Single Matching Phase (SMP) approach [48] aims  
at detecting unreliable disparity assignments using  
a more computationally efficient technique. 

 - uses a single matching phase (1/2 vs BM) 

 - explicitly enforces the uniqueness constraint*  

 - dynamically updates the disparity map when the 
   uniqueness constraint is violated 

 - strengthened by additional constraints (next slides) 

 - effectiveness comparable to BM [] 
 
 - suitable for efficient SIMD implementation 

* Sometime violated (e.g. foreshortening) 
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The correspondences are dynamically evaluated and corrected 
within a single matching phase (dRT(x,y)).  

When two correspondences fall in the same point of  
the target image: 

   - the correspondence with the best score is kept 

   - the other correspondence is discarded 

R T 
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The basic SMP approach can be strengthened by means of two 
additional constraints: 

Example:  
repetitive pattern  

Example:  
uniform region 

0 13 
d 

? ? 
e(d) 

0 13 
d 

? ? ? 

e(d) 

a) Distinctiveness 

b) Sharpness 
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Example of reliable  
correspondence 

0 13 
d 

e(d) 

An exhaustive comparison between DM and SMP on stereo pairs 
with groundtruth can be found in [48]. 

Outliers are  
encoded in white 

SMP BM 
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Performance evaluation [48]: SMP vs BM (PIII 800 MHz) 
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Two fundamental assumptions:  
 

 1) disparity within each segment varies smoothly 
 

 2) each segment can be approximated with a plane 
 
Sometime 2) is not verified (below)⇒ over-segmentation 

Segmentation based outliers  
identification and replacement 
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Top view 

frontal 
parallel 

frontal 
parallel 

3D view 
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z 
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z 3 DOF 3 DOF 
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Each segment is modelled with a plane in the 3D space (3 DOF): 
 
    d(x,y) = α·x + β·y + γ
 
Robust plane fitting of disparity measurements: 
 

•  RANSAC [25] (iterative) 
 
•  Histogram Voting [54] (non iterative)  

 
The best performing algorithms on the Middlebury dataset cast 
robust plane fitting within a global energy minimization 
framework. 
 
The next slide shows robust plane fitting of disparity 
measurements computed by a local approach (WTA + BM + 
Histogram Voting). 
 
 
Interesting research activity: replacing planes with more 
complex surfaces 
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Example of robust plane fitting 

Local approach (FBS) + WTA + BM + robust plane fitting 
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Robust interpolation of noisy measurements 

•  Disparity maps always contain outliers 

•  Reliable fitting with planes requires interpolation 
  techniques robust to outliers 

Traditional approach 
(Least Square (LS)) 

Robust interpolation 

RANSAC and Histogram Voting are two techniques used in  
stereo for robust interpolation of noisy disparity  
measurements 
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Accurate localization of borders and occlusions 

[29] S. Mattoccia, F. Tombari, and L. Di Stefano, Stereo vision enabling precise border localization within a scanline  
optimization framework, ACCV 2007  

In [29] was proposed a method for accurate detection of 
depth borders and occlusions. 
 
•  This method uses the disparity maps (dLR and dRL) computed 
  by a (local or global) stereo correspondence algorithm 

•  Borders and occlusions are detected (without global 
  energy minimization frameworks) enforcing, along  
  scanlines, constraints between occlusions (in one  
  image) and discontinuities (in the other image) 
 
•  Accurate results (see the next slides) 

•  Evaluated with the disparity maps provided by the 
  algorithm described in [29] (SO + SegmentSupport) 
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Occlusions (yellow) Borders (red) 
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Occlusions (yellow) Borders (red) 
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Iterative approaches 

L. De-Maeztu, S. Mattoccia, A. Villanueva, R. Cabeza, "Efficient aggregation via iterative block-based 
adapting support weight", IC3D 2011 
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Computational Optimizations 
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Hardware implementation 



Open problem: radiometric variations 

Courtesy of IMRA Europe, Sophia Antipolis (FR) 



Left ILL(1)-EXP(0) Right ILL(3)-EXP(2) 

Groundtruth 



TAD 

ROBUST_COST_FUNCTION 



Groundtruth 

Left ILL(1)-EXP(0) Right ILL(3)-EXP(2) 



NCC 

ROBUST_COST_FUNCTION 
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Real-time applications based  
on our embedded 3D camera 

•  3D tracking 

•  SLAM 

•  Autonomous robot navigation 

•  Mobility aid for visually impaired 
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3D Tracking 1/2 

Applications:  

•  people counting (building, bus, train) 

•  monitoring trajectories (shopping, sport) 

•  safety 

•  surveillance and security 
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3D Tracking 2/2 

https://www.youtube.com/watch?v=2vorrRhBssQ 

•  Embedded computer + FPGA stereso camera 

•  20+ fps  



SLAM 1/2 

•  3D scanning at 5+ fps (with bundle adjustment) 



SLAM 2/2 



Autonomous robot navigation 

•  Real-time and reliable obstacle detection with 
  the 3D camera and an embedded computer at 20+ fps 

•  Battery powered 

www.youtube.com/watch?v=7rieq3wfGDo 



Mobility aid for visually impaired 1/4 

•  Wearable and lightweight (3D camera + computing 
  platform about 150 g) system for autonomous nav. 

•  Feedback: vibrotactile and audio (by means of 
  bone conductive headset) 

•  Enables hours of autonomous navigation with a 
  small battery (3200 mAh) at 15+ fps 



Mobility aid for visually impaired 2/4 

Pocket  
battery 
(3200 mA) 
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Mobility aid for visually impaired 3/4 
•  Real-time navigation example with obstacle 

•  Real-time navigation example without obstacles 

White: detected plane 
Black: obstacles 
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Current prototype (in the news): 
 
http://www.rai.tv/dl/RaiTV/programmi/media/ContentItem-
fbb80bea-9d96-44ea-ae62-1fa3b5e572a5-tgr.html?
refresh_ce#p=0 
 
https://www.youtube.com/watch?v=DQ7x3PtFkJw#t=1346 
 
http://www.corriere.it/salute/disabilita/
14_novembre_28/dal-video-telefono-sordociechi-all-app-
che-aiuta-
badante-393744a6-7701-11e4-90d4-0eff89180b47.shtml 
 
 
First prototype: 
 
www.youtube.com/watch?v=G1UIUXUu2wY 

Mobility aid for visually impaired 4/4 
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