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Preface

The idea of building unimaginable small things at the atomic level is nothing

new. Already in 1959, R. Feynman, the 1965 Nobel prize winner in physics,

described during his famous dinner talk, “There’s plenty of room at the

bottom!” how it might be possible to print the whole 24 volumes of the

Encyclopedia Brittanica on the head of a stick pin. He even speculated on

how to store information at atomic levels or how to build molecular-sized

machines:

“I am not afraid to consider the final question as to whether, ultimately

in the great future we can arrange atoms the way we want; the very atoms,

all the way down! · · · The principles of physics, as far as I can see, do

not speak against the possibility of maneuvering things atom by atom. It

is not an attempt to violate any laws · · · but in practice, it has not been

done because we are too big · · · The problems of chemistry and biology can

be greatly helped if our ability to see what we are doing, and to do things

on an atomic level, is ultimately developed — a development which I think

cannot be avoided”. [Feynman, 1960]

Now, some decades later, new laboratory microscopes can not only visu-

alize but manipulate individual atoms. With this recently developed ability

to measure, manipulate and organize matter on the atomic scale, a revo-

lution seems to take place in science and technology. And unfortunately,

wherever structures smaller than one micrometer are considered the term

nanotechnology comes into play. But nanotechnology comprises more than

just another step toward miniaturization!

While nanotechnology may be simply defined as technology based on

the manipulation of individual atoms and molecules to build structures to

complex atomic specifications [Policy Research Project, 1989], one has to

v
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consider further that at the nanometer scale qualitatively new effects, prop-

erties and processes emerge which are dominated by quantum mechanics,

material confinement in small structures, interfacial volume fraction, and

other phenomena. In addition, many current theories of matter at the

micrometer scale have critical lengths of nanometer dimensions and there-

fore, these theories are not adequate to describe the new phenomena at the

nanometer scale.

Nevertheless, the concept of nanotechnology goes much further. It is an

anticipated manufacturing technology giving thorough, inexpensive control

of the structure of matter where other terms, such as molecular manufactur-

ing, nano-engineering, etc. are also often applied. In other words, the cen-

tral thesis of nanotechnology is that almost any chemically stable structure

that can be specified can in fact be built. Researchers hope to design and

program nano-machines that build large-scale objects atom by atom. With

enough of these assemblers to do the work, along with replicators to build

copies of themselves, we could manufacture objects of any size and in any

quantity using common materials like dirt, sand, and water [Drexler, 1981;

Drexler et. al, 1991; Regis, 1995; Merkle, 2001]. Computers 1000 times

faster and cheaper than current models; biological nano-robots that fix

cancerous cells; towers, bridges, and roads made of unbreakable diamond

strands; or buildings that can repair themselves or change shape on com-

mand might be futuristic but likely implications of nanotechnology.

Today, while nanotechnology is still in its infancy and while only rudi-

mentary nanostructures can be created with some control, this seems like

science fiction. But respected scientists agree that it is possible, and more

and more of the pieces needed to do it are falling into place. Nanotech-

nology has captured the imaginations of scientists, engineers and econo-

mists not only because of the explosion of discoveries at the nanometer

scale, but also because of the potential societal implications. A White

House letter (from the Office of Science and Technology Policy and Office

of Management and Budget) sent in the fall of 2000 to all Federal agen-

cies has placed nanotechnology at the top of the list of emerging fields of

research and development in the United States. The National Nanotech-

nology Initiative was approved by Congress in November 2000, providing

a total of $422 million spread over six departments and agencies [NNI;

Roco, Sims, 2001]. And this certainly doesn’t seem like science fiction!

Now, let us discuss nanotechnology from the educational point of view.

What might be the most important scientific branch with respect to the

development of nanotechnological applications?
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To apply nanotechnology, researchers have to understand biology, chem-

istry, physics, engineering, computer science, and a lot of other special top-

ics, such as protein engineering or surface physics. But the complexity of

modern science forces scientists to specialize and the exchange of informa-

tion between different disciplines is unfortunately not very common. So

the breadth is one of the reasons why nanotechnology proves so difficult to

develop.

But even today, one tendency is clearly visible: nanotechnology makes

design the most important part of any development process. If nanotech-

nology comes true, the traditional production costs would drop to almost

nothing, while the amount of design work would increase enormously due

to its complexity. Further, the field of engineering design will become much

more complex. Someone has to design these atomic-sized assemblers and

replicators as well as nano-materials and others. And if we can build any-

thing in any quantity, the practical question of “What can we build?” be-

comes a philosophical one: “What do we choose to build?”. And this in turn

is a design question. Answering it and planning for the widespread change

each nano design could bring makes design planning incredibly important
[Milanski, 2000].

As a conclusion, we may summarize: design will change radically under

nanotechnology and for nano-engineers or nano-designers, respectively, a

broad knowledge will become even more important in the future.

As long as we are still far away from the realization of complex

nanotechnological applications, nano-engineering and nano-design almost

exclusively take place on computers. Computational nano-engineering is

an important field of research aimed at the development of nanometer scale

modeling and simulation methods to enable and accelerate the design and

construction of realistic nanometer scale devices and systems. Comparable

to micro-fabrication which has led to the microelectronics revolution in the

20th century, nano-engineering and design will be a key to the nanotech-

nology revolution in the 21st century.

Therefore, the intention of this monograph is to give an introduction

into the procedures, techniques, problems and difficulties arising with com-

putational nano-engineering and design.

For the sake of simplicity, the focus is laid on the Molecular Dynamics

method which is well suited to explain the topic with just a basic knowledge

of physics. Of course, at some points we have to go further into detail, i.e.

quantum mechanics or statistical mechanics knowledge is needed. But such

subsections may be skipped without loosing the picture.
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Chapter 1

Introduction

Today, nanotechnology is still at the beginning, and only rudimentary

nanostructures can be created with some control. The science of atoms

and simple molecules, on one end, and the science of matter from micro-

structures to larger scales, on the other, are generally established. The

remaining size-related challenge is at the nanometer scale — roughly be-

tween 1 and 100 molecular diameters — where the fundamental properties

of materials are determined and can be engineered. A revolution has been

occurring in science and technology, based on the developed ability to mea-

sure, manipulate and organize matter on this scale. Recently discovered

organized structures of matter (such as carbon nano-tubes, molecular mo-

tors, DNA-based assemblies, quantum dots, and molecular switches) and

new phenomena (such as giant magnetoresistance, coulomb blockade, and

those caused by size confinement) are scientific breakthroughs that merely

hint at possible future developments [Roco, Sims, 2001].

More and more, small structures with dimensions in the nanometer

regime play an important role within molecular biology, chemistry, materi-

als science and solid-state physics.

Of particular interest in biology there is, for example, the replica-

tion of proteins, the functionality of special molecular mechanisms like

haemoglobin or even such seemingly simple structures like the flagella of

certain bacteria. Chemistry, on the other hand, deals with the synthesis —

and therefore also with an improvement — of these structures with which

nature solves so many problems. For example, the design of catalysts is a

considerable commercial factor within the chemical industry. Specific mod-

ifications of properties of well-known materials using small particles and the

development of fabrication processes of nano-particles are topics of modern

1
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material sciences. Self-cleaning surfaces as well as pigments are typical ex-

amples for applications of nanostructures where, interestingly, the latter

already led to some success within the cosmetic industry [Siegel, 1997].

But nanotechnology comprises more than just producing small

structures — the concept goes much further. Nanotechnology is an an-

ticipated manufacturing technology giving thorough, inexpensive control

of the structure of matter where other terms, such as molecular manufac-

turing, nano-engineering, etc. are also often applied. Researchers hope to

design and program nano-machines that build large-scale objects atom by

atom. With such self-replicating assemblers objects of any size and in any

quantity could be manufactured using common materials like dirt, sand,

and water. Computers 1000 times faster and cheaper than current devices;

biological nano-robots that fix cancerous cells; towers, bridges, and roads

made of unbreakable diamond strands; or buildings that can repair them-

selves or change shape on command might be future but likely implications

of nanotechnology.

What makes nanostructures different? They show significantly differ-

ent properties compared to the bulk material. As is known from quantum

mechanics the electronic states of nano-particles are considerably changed

compared to the bulk. This is due to quantization effects caused by the

spatial restriction. The electronic structure, on the other hand, is respon-

sible for all those material properties like electronic conductivity, optical

absorption, chemical reactivity or even the mechanical properties. There-

fore, these nanostructures appear as particles with new material properties
[Jena et. al, 1987].

The investigation of nanostructures is a highly topical field of solid state

physics and materials research. New, sophisticated characterization meth-

ods have been successfully developed during the last twenty years like the

scanning tunnelling microscope (STM), for example, which has been es-

tablished as standard instrument for scanning nanostructures on surfaces

or the transmission electron microscope (TEM) combined with theoretical

modeling for visualization of periodic structures. Even scattering methods

(ions, electrons, X-rays, neutrons) have been improved to an extend which

is hard to beat. Finally, spectroscopic information with high resolution has

become available through the use of synchrotron radiation sources of the

third generation [FZJ, 1998].

Beside all these experimental characterization techniques, which are

applicable to existing structures only and which are most often time

and cost intensive, computational methods for many-particle systems have
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made their entrance into all branches of science for which the term

nanotechnology has been established. Computer experiment, computer

chemistry, molecular design, nano-machinery, nano-manufacturing and

nano-computation are just a few subjects which have come up in connec-

tion with numerical calculations in the field of nanotechnology [Alig et. al,

2000].

Here, one tendency is clearly recognizable: nanotechnology makes design

the most important part of any development process. With nanotechnology

the amount of design work increases enormously due to its complexity.

Planning for the widespread change, each nano-design could make design

planning incredibly important [Milanski, 2000]. To summarize, design will

change radically under nanotechnology and for nano-engineers or nano-

designers, respectively, a broad knowledge will become even more important

in the future.

Trying to categorize the numerical solution techniques for many-particle

systems basically leads to four different topics: quantum theoretical

calculations (ab initio), molecular mechanics, Monte Carlo, and molecu-

lar dynamics methods.

While the solution of Schrödinger’s equation for many-particle systems

is inherently impossible — the calculation time increases exponentially

with the particle number — quantum theoretical calculation methods fo-

cus on approximation and separation approaches to simplify the calculation

scheme. Some of the most common ab initio methods are self-consistent

field methods, the linear combination of atomic orbitals or the density func-

tional method [Sauer, 2000].

In contrast to ab initio methods, molecular mechanics and molecular dy-

namics are based on classical mechanics. The particles are treated as mass

points interacting through force fields which in turn are derived from inter-

acting potentials. The goal of molecular mechanics (as well as of ab initio

calculations) is to find stable configurations for a set of particles, that is,

to determine saddle points (local minima) on the potential energy surface.

While quantum mechanical calculations lack an a priori concept of chem-

ical bonds, molecular mechanic methods use the approach, known from

traditional organic chemistry, where molecules are characterized by ball-

and-stick models in which each ball represents an atom and each stick

represents a bond. Depending on the kind of bond, appropriate interaction

potentials have to be chosen and, therefore, energy functions and param-

eters have to be tailored to specific local arrangements of atoms. In this

way molecular mechanics programs treat the potential energy as a sum of
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terms accounting chiefly for bond stretching, bending, torsion and for van-

der Waals , overlap and electrostatic interactions among non-bonded atoms.

Molecular mechanics systems have, however, been successfully applied to

just a narrow range of molecular structures in configurations not too far

from equilibrium [Drexler, 1992].

Similar considerations are valid for molecular dynamics calculations.

But in contrast to Monte Carlo methods where new particle configurations

are created randomly step by step, molecular dynamics works through the

solution of Newton’s equations of motion. Therefore, the evolution of a

many-particle system can be calculated in certain time steps where the total

information (particle positions, velocities, kinetic and potential energies,

etc.) of the system is available for each time step. All further properties

— like for example the temperature — can be determined without any

additional parameters.

This is not the case for Monte Carlo methods. Here one generally

samples system configurations according to a given statistical ensemble,

characterized by Boltzmann distributions which include the temperature

as external parameter and, therefore, such calculations are only applicable

for configurations near the equilibrium. Additional problems arise in the

attempt to assign time steps to the different configurations [Ciccotti et. al,

1986]. Ab initio calculations also lack the subject temperature by nature,

because there are no dynamic considerations involved.

Beside this, each of the four calculation techniques has its advantages as

well as limitations. When performing computational methods the results

should basically mirror reality as closely as possible. Ab initio calculations

work without additional a priori input like interaction potentials and —

depending on the degree of simplification used in the particular method —

the results include explicitly several different quantum effects. On the other

hand, the computational effort is enormous, i.e. usually the systems are

restricted to less than a few hundred atoms. Nevertheless, these methods

have revolutionized chemistry with the computer aided design of molecules

among many other applications.

While both, molecular mechanics and molecular dynamics methods, are

based on classical many-particle physics, there are no explicit results from

quantum effects available. Furthermore, these methods need a detailed

knowledge of the particle interactions before the numerical calculation can

be started, that is, specific models have to be established differing from case

to case and depending on the study. Here, quantum mechanics comes into

play implicitly with the use of interaction potentials, gained, for example,
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from ab initio calculations. Most often additional fits of such potentials to

experimental data are necessary to obtain realistic results.

However, the precision and validity of the interaction potentials within

molecular mechanics and molecular dynamics calculations restrict the field

of application of these methods. On the other hand, both methods are

able to handle large systems with about 105 to 107 atoms depending on the

study.

Most modern commercial molecular mechanics programs use libraries

of phenomenological potentials to describe all the different types of interac-

tions occurring in the field of organic chemistry. With these it is possible to

study minimum-energy configurations, stiffness, bearing and other proper-

ties of nanostructures (molecules), which are built largely of carbon atoms

joint by strong, directional, covalent bonds (single, double, triple, hybrid)

which in turn are often augmented with one or more different elements.

Due to the simplified description of the atomic interactions — aside from

the small inaccuracies found in all structures — standard molecular me-

chanic programs cannot realistically describe certain structures. For exam-

ple, they can model many stable structures, even when strained, but they

cannot describe chemical transformations or systems which are close to the

transformation point. Therefore, computational results must be examined

closely for such invalid conditions. However, studies for broad classes of

organic structures including large biomolecules as well as polymers are pos-

sible with a computation cost favor by a factor of more than 103 compared

to ab initio methods [Drexler, 1992].

Since molecular dynamics methods are more sensitive to inappropriate

forces — with respect to the validity of the results — it is even more impor-

tant to concentrate on the use of properly determined interaction potentials.

It is absolutely necessary to consider the range of validity, the applicability

as well as the accurateness of the underlying interaction potentials whenever

molecular dynamics methods are applied [Gehlen et. al, 1972].

While most works use either many-body forces (for the description of co-

valent bonds) or phenomenological inter-atomic potentials, in this book, in

contrast, we focus mainly on mono-atomic nanosystems for which reliable,

precise interaction forces are available within a wide range of applicability.

To be more specific, we restrict ourselves — as far as possible — to studies

using exclusively one of the two materials: a noble gas (krypton) and a

simple metal (aluminium).

At first glance, however, this seems not to promise spectacular results,

but — as will be shown later on — even seemingly simple nanostructures
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most often do not behave like they are assumed to do. While this is typical

for the whole field of nanotechnology, the focus within the present mono-

graph is laid on such basic “nano-effects” which can only be detected by

the use of realistic descriptions of the atomic interactions. On the other

hand, more complicated scenarios like nano-machines with metallic parts

will be outlined, too.

Finally, it should be emphasized that working within computational

nano-physics by means of molecular dynamics implies a combination of sev-

eral scientific fields like atomic interaction potential theory (which in turn is

a combination of several different branches of theoretical and experimental

physics), computer science and statistical mechanics.

Therefore, we start with a brief introduction into atomic potentials for

noble gases and simple metals and then continue with an excursus through

the field of molecular dynamics and nano-design which is followed by a re-

view of several characterization functions known from statistical mechanics.

Finally, these introducing chapters are succeeded by presentations and dis-

cussions of different application examples and studies which provide an

insight into the world of computational nano-engineering.
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Chapter 2

Interatomic Potentials

2.1 Quantum Mechanical Treatment of the Many-Particle

Problem

The quantum mechanical modeling of a system with N particles of masses

mi leads to the Hamiltonian

Ĥ =
N∑
i=1

[
− ~2

2mi
∇2
i + Vi(ri)

]
+

N∑
i,k=1
i6=k

Vik(ri, rk) . (2.1)

Here, Vi(ri) is an externally given potential in which the ith particle is

located and Vik(ri, rk) denotes the interaction potential between the two

particles i and k. To analyze or to describe its characteristics, one has to

solve the corresponding many-particle Schrödinger equation

ĤΨ = EΨ , (2.2)

where E is the total energy. The wave function Ψ depends on the 3N

co-ordinates (configuration space) of all particles:

Ψ = Ψ(x1, y1, z1, · · · , xi, yi, zi, · · · , xN , yN , zN ) . (2.3)

If we consider nanosystems, most often external potentials are not

present and the particles involved are atoms which in turn have to be

divided into nuclei (N) and electrons (e). In this case, the interaction

potential of Eq. 2.1 is given by the Coulomb potential

Vik(ri, rk) =
ZiZk e2

|rk − ri|
, (2.4)

where Z is the electron charge number including the sign of the charge.

7
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With a closer look at this many-particle problem, it becomes clear that

an exact quantum mechanical solution can probably never be achieved.

Here is an example: a relatively small nano-cluster of only 100 argon atoms

consists of 100 nuclei and 1800 electrons, which is a total of 1900 parti-

cles. In this case, the configuration space consists of 5700 dimensions. The

key point for numerical solutions of the Schrödinger equation is the spa-

tial integration. With the assumption that a division of each dimension

into 100 steps is sufficient for an accurate calculation, we would have to

compute the summation of 1011400 volume elements. It is needless to men-

tion that this is not possible without further intensive simplifications and

approximations.

Therefore, quantum theoretical calculation methods (ab initio or first

principle, respectively) mainly focus on approaches that reduce the dimen-

sions of the configuration space. One of the most common approaches

is valid under the condition that the electrons have a much higher ki-

netic energy than the nuclei. While that is certainly true for most nan-

otechnological considerations the procedure, known as Born–Oppenheimer
[Born, Oppenheimer, 1927] or adiabatic approximation [Messiah, 1990],

consists of separating the electron and nuclear motions (wave functions)

and treating each independently. Then the wave function (Eq. 2.3) can

be written in a slightly more manageable form (with m nuclei and n

electrons):

Ψ = φN ψe = φN (xN1, yN1, zN1, · · · , xNm, yNm, zNm) (2.5)

× ψe(xe1, ye1, ze1, · · · , xen, yen, zen) ,

where the electron wave function still depends on the nuclear positions.

A far more effective reduction of the problem can be achieved if all the

electrons are bound to a central field as is the case within a single atom.

Here one of the most important ab initio methods — the self-consistent

field method [Messiah, 1990; Greiner, 1993; Landau, Lifshitz, 1959] — goes

one step further. The idea of this method is to regard each electron of an

atom as being in motion in the combined field due to the nucleus together

with all the other electrons (self-consistent field). In this way, the central

Coulomb field of the nucleus appears as pseudo external potential within

the Hamiltonian and the highly dimensional combined wave function of

the electrons ψe is separable into the according single wave functions of
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just three spatial dimensions for each electron:

ψe = ψ1(x1, y1, z1) ψ2(x2, y2, z2) · · ·ψn(xn, yn, zn) . (2.6)

The method is named after Hartree [Hartree, 1955] and works by it-

erative calculation of the single electron Schrödinger equations and of the

medium field due to all electrons until self-consistency is reached. But de-

spite its simplicity the method has some disadvantages. The wave function

(Eq. 2.6) is not anti-symmetric, i.e. one has to take care of impossible con-

figurations, e.g. by putting each electron into another state to fulfill Pauli’s

principle. Another problem is the necessity of ortho-normalizing the wave

functions during the iteration loops.

With the Hartree–Fock method [Fock, 1930] proper anti-symmetric and

permanently ortho-normal wave functions have been introduced into the

Hartree scheme by arranging the single electron wave functions — including

electron spin s — in the way of Slater’s determinant:

ψe =
1√
n!

∣∣∣∣∣∣∣∣∣
ψ1(r1, s1) ψ2(r1, s1) · · · ψn(r1, s1)

ψ1(r2, s2) ψ2(r2, s2) · · · ψn(r2, s2)
...

...
...

ψ1(rn, sn) ψ2(rn, sn) · · · ψn(rn, sn)

∣∣∣∣∣∣∣∣∣ . (2.7)

The many-particle Schrödinger equation (Eq. 2.2) then becomes a sys-

tem of non-local Schrödinger equations for single electrons. Beside the

spin treatment, the Hartree–Fock method implicitly describes the exchange

effect too. But other effects, like the electron correlations, are not included.

Another method uses the fact that the total energy of an atom — in-

cluding the electron correlations — can be derived from the electron den-

sity. Mathematically, the spatial distribution of the electrons is far easier

to handle compared to the wave function. In this way, the energy can be

described as a density functional, which is the name of the method [Kohn,

Sham, 1965].

But despite the significant reduction of the high dimensionality of the

configuration space by these ab initio methods there are still lots of dif-

ficulties which have to be handled by further adaptations, simplifications,

and approximations. Going further into detail would exceed the frame of

this monograph. But after this brief explanation it should be clear that the

quantum mechanical formulation of the many-particle problem is relatively

simple, while its solution implies an enormous effort — even by restricting

on approximative results.
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2.2 Potential Energy Surface

Let us come back to the example with the nano-cluster of 100 argon atoms.

As it is well known, there is a mutual (attracting) interaction of noble gas

atoms due to the polarization of the “electron clouds” around the nuclei.

What is the principle of a quantum mechanical calculation, if we are inter-

ested in the stable configurations of these 100 argon atoms?

In this case, the Hamiltonian for the m = 100 nuclei and n = 1800

electrons is

Ĥ = T̂N + T̂e + VNN (R1, · · · ,Rm) + Vee(r1, · · · , rn) (2.8)

+ VeN (r1, · · · , rn,R1, · · · ,Rm) .

Here T̂N is the kinetic energy operator for the nuclei

T̂N = −
m∑
i=1

~2

2mN

∂2

∂R2
i

(2.9)

and T̂e is the kinetic energy operator for the electrons

T̂e = −
n∑
j=1

~2

2me

∂2

∂r2
j

. (2.10)

According to the Coulomb interaction (Eq. 2.4) VeN represents the at-

tractive electron-nucleus, Vee and VNN the repulsive electron–electron and

nucleus–nucleus interaction potential, respectively.

We now use the Born–Oppenheimer approximation (Eq. 2.5) to separate

the wave function into a part φ for the nuclei which we assume to be “frozen”

and a part ψ for the electrons:

Ψ(R1, · · · ,Rm, r1, · · · , rn) = ψ(R1, · · · ,Rm, r1, · · · , rn) φ(R1, · · · ,Rm) .

(2.11)

Therefore, the nuclear positions ~R = [R1, · · · ,Rm] within the electron

wave function ψ appear as parameters only. Further, by neglecting the

kinetic energy of the nuclei (Born–Oppenheimer approximation) we can

easily write down the Schrödinger equation for the electrons:[
T̂e + Vee(r1, · · · , rn) + VeN (r1, · · · , rn, ~R)

]
ψ(r1, · · · , rn, ~R) (2.12)

=
[
Ee(~R)− VNN (~R)

]
ψ(r1, · · · , rn, ~R) .
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For a given (fixed) nuclear configuration, Eq. 2.12 can be approximately

solved, for example, by the use of the self-consistent field or the density

functional methods, which in this general case have to be expanded further

to handle the “multi-central field” configuration (in the descriptions of the

preceding section we have considered the central field of just one nucleus).

In this way, in principle, it is possible to gain the energy Ee for all possible

configurations of the nuclei (here Ee is the electron energy plus Coulomb

potential VNN due to the nucleus–nucleus interaction).

For a better understanding of this result, Eqs. 2.8, 2.11 and 2.12 may

now be substituted into the Schrödinger equation of the complete system.

Performing the derivations and neglecting the mixed wave function terms —

which would give rise to electron transitions between states (i.e. electron–

phonon interaction) — leads by first approximation to the following equa-

tion:

[T̂N + Ee(~R)]φ(~R) = E φ(~R) . (2.13)

This is the Schrödinger equation for the nuclei where the energy of

the electron states Ee acts as an effective potential for the nuclei. The

interpretation with respect to our example is as follows: the 100 argon

nuclei are moving in a “medium” caused by the 1800 electrons. It acts like

a rubberband for the nuclei. Therefore, stable nuclear configurations can

only appear at those points where the potential energy surface Ee shows

minima (saddle points). Trying to find stable configurations for the argon

cluster means localizing the minima of Ee with respect to the m = 100

co-ordinates of the atoms.

However, this is a brief and simple representation of the ab initio treat-

ment of many-particle systems. There are so much different methods that

even to mention them all would exceed this monograph. But basically there

is one common principle as outlined above: (1) A calculation scheme for a

certain point of the potential energy surface with more or less approxima-

tions, simplifications and adaptations according to the underlying study,

and (2) an algorithm for localizing the minima. Due to their important

role within the field of computational chemistry, most of the methods are

available as commercial software packages [Clark, 1985] like, for example,

TURBOMOLE [Ahlrichs, von Arnim, 1995]. The limit of modern ab initio

methods combined with today’s computer technology varies in the range of

several hundred atoms strongly depending on the case of application. An

example for aluminium clusters is given in [Ahlrichs, Elliott, 1999].
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2.3 Pair Potential Approximation

As has just been shown for the example of an argon cluster (100 atoms),

the according quantum mechanical many-particle problem can be reduced

— with the help of the Born–Oppenheimer approximation — from 5700

dimensions (configuration space) into two parts of 5400 (electron wave

function) and 300 (potential energy surface) dimensions, respectively. The

electron wave function within the electron Schrödinger equation can be

handled by a further reduction to a set of 1800 single electron wave func-

tions, each with 3 spatial co-ordinates (without spin). This reductions are

possible with the approximations that are based on the self-consistent field

or density functional methods.

However, there is still the potential energy surface with 300 dimensions

which cannot be calculated as a whole. But by looking for stable configu-

rations only, the problem is reduced to the localization of its saddle points

(minima). The faster a method is in homing in on a minimum, the less

calculations of configuration points of the potential surface are necessary,

and the more effective the underlying method is working.

But still, for calculations of larger systems a further reduction —

comparable to that of the electron wave function with help of the Hartree–

Fock method — is absolutely necessary. How can this be achieved?

Under the assumption that the change of the electronic arrangement

around each atom may be considered as negligibly small within the consid-

ered system conditions, an expansion of the potential (energy surface) for

N atoms can be applied:

Ee(~R) = U(R1, · · · ,RN ) =
1

2

N∑
i,j=1
i6=j

uij +
1

6

N∑
i,j,k=1
i6=j 6=k

uijk + · · · . (2.14)

Here the terms on the right in Eq. 2.14 represent pair, triplet and many-

body contributions of the interatomic interactions. For neutral atoms, it is

well known that the long-ranged parts of these interactions can be under-

stood in terms of the resulting weakly attractive time averages of fluctuating

and induced dipoles (van-der Waals or dispersion forces), whereas at short

range the potentials tend to be quite strongly repulsive as a consequence

mainly of the exclusion principle.

If the electron orbitals of the atoms are not easily polarizable, then,

compared with the pair terms, the triplet and higher terms diminish rapidly

in significance. The next step of approximation is to neglect them entirely.
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This is called the pair potential approximation:

U(R1, · · · ,RN ) =
1

2

N∑
i,j=1
i6=j

uij =
1

2

N∑
i,j=1
i6=j

υ(|Ri −Rj|) . (2.15)

Referring to our example (100 argon atoms), with Eq. 2.15, the problem

with the remaining 300 dimensions of the potential energy surface has been

reduced to a 9900-fold sum of values from one pair potential function with

only one dimension, which is the distance of two atoms. This simplification

expands the calculability of the many-particle problem with today’s com-

puter power up to millions of particles — at least under certain conditions.

Following Neil Armstrong, one could say: “That’s one simple approxima-

tive step· · · but one giant leap for the calculability of many-particle systems

or nanostructures, respectively”. On the other hand, such a far-reaching, if

not to say brute simplification has a strong influence on the applicability,

as can be easily imagined.

2.4 Advantages and Limitations of the Pair Potential

Approximation

With the use of the pair potential concept the field of basic quantum me-

chanics is left very often, because it is rather difficult or even impossible

to derive appropriate potential functions on the basis of ab initio methods.

That’s why most pair potentials are derived in a phenomenological way

including, of course, quantum mechanical effects. Sometimes, as is the case

for pseudo potentials, some parts are based on quantum mechanical consid-

erations, others are fitted to experimental data. While ab initio methods

can generally be applied without any additional a priori knowledge, working

with pair potentials always implies the consideration of the specific condi-

tions of the underlying study. Here the most critical and, of course, time

consuming part is the derivation of a suitable pair potential function by

using all the available data. On the other hand, if an appropriate function

is at hand, the pair potential approximation considerably expands the area

of applications. The calculability of the potential energy surface for thou-

sands or even millions of particles opens the field for molecular mechanics

as well as molecular dynamics.

Since the present monograph deals almost entirely with pairwise inter-

atomic potentials, the fundamental question in this connection is that of
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the validity of the assumption that an assembly of atoms, be it solid, liq-

uid, or gas, may be described in terms of two-body forces acting on pairs

of atoms. From the quantum mechanical point of view, it would be of

importance whether the wave functions of the atoms in the assembly are

greatly altered by the interaction from their isolated values, or whether the

modification may be considered as the result of a small perturbation of the

free-atom function. In the latter case, the pair potential approximation is

valid, whereas the former poses problems in the calculation of interaction

potential energies [Torrens, 1972].

In general, atoms whose electron orbitals are saturated are not greatly

disturbed when they approach each other up to the point of interpenetra-

tion. Unsaturated units, on the other hand, have their electronic structure

substantially altered when they are mutually approaching. This would

at first glance seem to limit the two-body potential model to a very nar-

row range of substances such as ionic crystals and van-der Waals solids.

However, various approximations exist for dealing with metals (see pseudo

potentials) and to some extent with covalent materials, which yield pair

potentials valid under certain conditions [Torrens, 1972].

As mentioned above, if we are assuming a certain analytical form of in-

teratomic potential and wish to obtain parameter values from experiments

it is important to bear in mind the extent to which the pairwise interac-

tion is valid in describing the physical phenomenon involved. The simple

example of the use of experimental elastic constants serves to illustrate this

point.

For the normal (simple) metals with small ion cores the ion–electron–

ion interaction is predominant, while for noble or transition metals there

is a significant repulsive force due to closed shell overlap in the solid. Nev-

ertheless, in both cases there is a contribution to the elastic constants due

to the conduction electron gas, which is volume-dependent and may not be

completely described in terms of purely two-body forces [Torrens, 1972].

On the other hand, there are cases, in which certain three-body (dipole–

dipole–dipole) terms in Eq. 2.14 can be incorporated into effective two-body

terms, which as a result may become volume and temperature dependent
[Casanova, 1970; Schommers, 1977, 1980]. In this case, the resulting po-

tentials are referred to as effective pair potentials.

In connection with studies of metallic nanostructured systems, two ad-

ditional considerations come into play:

(1) At free metal surfaces the local background electron density is differ-

ent from its bulk value, and because the pair potential between the metal
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ions depends critically on the electron density, the pair potential at the

surface is different from that in the bulk of the crystal [von Blanckenhagen,

Schommers, 1987]. But for clusters of a few nanometers in size the structure

and dynamics of the atoms are dominated by surface atoms, i.e. interactions

at the surface play a significant role. Therefore, an accurate description of

metallic nanosystems by means of pair potentials necessitates the consid-

eration of the electron density within the surface region and has to be

described further in temperature dependent terms.

(2) Another basic question has to be answered prior to the use of pair

potentials in connection with small metallic clusters. When at all does

metallic behavior occur? In other words, how large has the cluster to

be to show properties comparable to those in the solid bulk? It seems

that clusters with at least 50 atoms can be considered as an approximate

limit for the occurrence of metallic behavior [Eberhardt, 1998], i.e. this

is a fundamental change in the pair potentials, which has to be kept in

mind.

In conclusion, we may summarize that the pair potential concept works

best in connection with noble gas solids. This is the only group of materials

for which the pair potential functions are well known and at the same time

are valid for a broad range of application. In contrast to other substances,

the potential functions of noble gas solids do not depend on temperature

and they are the same at the surface as well as in the bulk of the crys-

tal. Therefore, parameters can be fitted by bulk properties derived from

experimental results and the resulting phenomenological potential functions

can be applied to both, surface and bulk area, without further adaptations.

2.5 Phenomenological Potentials

The present state of theoretical knowledge of pair potentials is such that

phenomenologically derived potential functions often present a more real-

istic view of atomic interactions than potentials derived exclusively and

usually with much efforts from purely theoretical considerations, which are

themselves approximative in nature. Phenomenological atomic interactions

are in most cases based on a simple analytical expression which may or may

not be justifiable from theory and which contains one or more parameters

adjusted to experimental results. By strict definition almost all forms of

interatomic pair potentials which exist at present have to be described as

effective phenomenological potentials due to the approximations necessary
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to overcome the many-body problem involved in the interaction [Torrens,

1972].

2.5.1 Buckingham Potentials

The original version of the Buckingham potential [Buckingham, 1938] has

the form

υ(r) = A e−α
r
rm − λ

r6
− λ′

r8
, (2.16)

where

A =
[
−ε+ (1 + β) λ

r6
m

]
eα

λ =
ε α r6

m

α(1+β)−8β−6

λ′ = β r6
mλ


(2.17)

with ε as the depth of the energy minimum and rm as the corresponding

value of the distance r between two atoms. The steepness of the expo-

nential is measured by α, while β is the ratio of the inverse 8th to 6th

power contributions at r = rm. There are four independent constant pa-

rameters, which may be adjusted to experimental data. This potential,

however, has the rather unphysical property of being negatively infinite at

zero separation. Therefore, a variation known as the Buckingham–Corner

potential eliminated the unrealistic behavior at the origin by postulating a

more complicated form [Torrens, 1972; Buckingham, 1961].

A further variation, where the inverse 8th power term has been dropped,

has led to a simpler form and is known as the modified Buckingham or

exponential-6 potential:

υ(r) =
ε

1− 6
α

[
6

α
eα(1− r

rm
) −

(
r

rm

)−6
]
. (2.18)

There are three independent parameters (ε, rm and α) which have the

same significance to those of Eqs. 2.16 and 2.17. In connection with this

potential there is one point which has to be considered: spuriously there is

a maximum, usually for a very small separation r = rmax. Therefore the

modified Buckingham potential should only be applied to such calculations,

where the energies are sufficiently small enough to avoid the region r ≤ rmax

[Torrens, 1972].
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Table 2.1 Modified Buckingham potential parameter set for different non-bonded ma-
terials. The units are 10−7 kg, 10−21 J, and 10−10 m.

Symbol Type Mass ε α rm

C sp, sp2 19.925 0.357 12.5 3.88
C sp3, cycloprp. 19.925 0.357 12.5 3.80
H hydrocarbon 1.674 0.382 12.5 3.00
H alcohol 1.674 0.292 12.5 2.40
O C–O–[H,C] 26.565 0.406 12.5 3.48
O carbonyl 26.565 0.536 12.5 3.48
N sp3 23.251 0.447 12.5 3.64
F fluoride 31.545 0.634 12.5 3.30
Cl chloride 58.064 1.950 12.5 4.06
Br bromide 131.038 2.599 12.5 4.36
I iodide 210.709 3.444 12.5 4.64
S sulphide 53.087 1.641 12.5 4.22
Si silane 46.454 1.137 12.5 4.50
P phosphine 51.464 1.365 12.5 4.36
Ne noble gas 33.51 0.525 14.5 3.147
Ar noble gas 66.34 1.701 14.0 3.866
Kr noble gas 139.16 2.185 12.3 4.056

This potential is often used to describe the attractive and repulsive

forces experienced by pairs of uncharged, non-bonded atoms. Table 2.1

shows a set of parameters for different atoms (the table is extracted from
[Drexler, 1992], which in turn is a short version of [Burkert, Allinger, 1982],

the noble gas parameters are from [Hirschfelder et. al, 1954]).

Further, a simple interpolation for the interaction of atoms from dif-

ferent materials can be applied by using the mean values of the according

parameters:

ε12 =
ε1 + ε2

2
, rm12 =

rm1 + rm2

2
. (2.19)

2.5.2 Morse Potentials

Morse proposed an interatomic potential without power law dependence in

order to calculate the energy levels of diatomic molecules [Morse, 1929],

wherein the potential should satisfy the following conditions [Torrens,

1972]:

(1) υ(r)→ 0 as r →∞
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(2) υ(r) has a minimum for r = rm (rm represents the intermolecular

separation)

(3) υ(r)→∞ as r→ 0

(4) υ(r) should have the same allowed energy levels as those given by

En = −ε+ ~ω0

[(
n+

1

2

)
− x

(
n+

1

2

)2
]
, (2.20)

which describes the spectroscopic data of molecules.

Morse chose the following form for his potential:

υ(r) = ε
[
e−2α(r−rm) − 2e−α(r−rm)

]
, (2.21)

for which a solution of the radial part of the Schrödinger equation yields

energy levels of the type given by Eq. 2.20. However, the Morse poten-

tial is not exclusively used for molecular energy level applications. It has

been further extensively used in the study of lattice dynamics, the defect

structure in metals, the inert gases in metals, the equation of state, elastic

properties of metals, and the interaction between gas atoms and crystal

surfaces, among many others. Table 2.2 shows a parameter set for several

metals [Torrens, 1972; Girifalco, Weizer, 1959]. Since the minimum of these

potentials are too deep for some considerations an additional row with a

corrected value for ε according to the melting temperature (εc = Tm kb)

has been inserted.

But due to the charge redistribution at metal surfaces, it is doubtful

whether the Morse potential, as well as other phenomenological potentials,

can describe surface properties or nanostructures. Here, the pseudo poten-

tial theory seems to be a much better approach.

2.5.3 Lennard–Jones Potentials

The general form of the Lennard–Jones potential is [Torrens, 1972]:

υ(r) =
λn

rn
− λm

rm
. (2.22)

Originally, it was developed to treat noble gases, but it is often used to

describe metals and other forms of solids and liquids. The most commonly

form, however, is the so-called Lennard–Jones (6–12) potential, with n = 12
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Table 2.2 Morse potential parameter set for different metals. The units are 10−7 kg,
10−21 J, and 10−10 m.

Symbol Mass ε εc rm α

Al 44.806 43.31 12.881 3.253 1.1646
Ni 97.464 67.37 23.829 2.780 1.4199
Cu 105.52 54.94 18.721 2.866 1.3588
Ag 179.13 53.24 17.034 3.115 1.3690
Pb 344.07 37.62 8.289 3.733 1.1836
Ca 66.553 26.00 15.338 4.569 0.80535
Sr 145.50 24.24 14.372 4.998 0.73776
Cr 86.343 70.72 29.655 2.754 1.5721
Fe 92.735 66.88 24.975 2.845 1.3885
Mo 159.32 128.69 39.802 2.976 1.5079
W 305.28 158.71 50.847 3.032 1.4116
Na 38.177 10.15 13.392 5.336 0.58993
K 64.925 8.690 11.873 6.369 0.49767
Rb 141.93 7.441 4.306 7.207 0.42981
Cs 220.71 7.186 4.165 7.557 0.41569
Ba 228.05 22.69 13.626 5.373 0.65698

and m = 6:

υ(r) = 4 ε

[(σ
r

)12

−
(σ
r

)6
]
. (2.23)

This potential has its minimum υmin = −ε at a distance r = 21/6σ.

Due to its simple form — there are just two parameters — it is often used

to describe the cross-interaction of two different materials. Therefore, the

interaction potentials of materials a and b are first fitted to Lennard–Jones

potentials, then the cross-interaction Lennard–Jones parameters εab and

σab can be calculated using the Lorenz–Berthelot mixing rules

εab =
√
εaεb , σab =

σa + σb

2
, (2.24)

where εa, σa and εb, σb are the Lennard–Jones parameters for interac-

tions occurring within materials a and b, respectively [Alvarez et. al, 1995;

Komvopoulos, Yan, 1997; Dawid, Gburski, 1998]. Cross-interactions can

be treated by applying the mixing rules on Morse potentials too. Then the

mean values for rm and α have to be used.

Table 2.3 shows a compilation of Lennard–Jones parameters for noble

gases, copper and silver. While the properties of the noble gases can be
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Table 2.3 Lennard–Jones potential parameter set for different materials. The
parameters for Argon are from [Verlet, 1967], those for the other noble gases are from
[della Valle, Venuti, 1998], and those for metals are from [Halicioglu, Pound, 1975]. The
units are 10−7 kg, 10−21 J, and 10−10 m.

Symbol Mass ε σ

Ne 33.51 0.5315 2.786
Ar 66.34 1.6539 3.405
Kr 139.16 2.2075 3.639
Xe 218.02 3.0497 3.962
Cu 105.52 65.626 2.338
Ag 179.13 55.276 2.644

relatively well derived with these potentials (e.g. the accuracy of the melting

points varies around 10%) one cannot expect to Lennard–Jones potentials

describe metallic systems adequately (see notes of the preceding section).

2.5.4 Barker Potentials for Krypton and Xenon

Barker [Barker et. al, 1974] determined potentials for ground-state krypton–

krypton and xenon–xenon interactions, which are as near as possible

consistent with a wide range of experimental data including second virial

coefficients, gas transport properties, solid-state data, known long-range

interactions, spectroscopic information on dimers and measurements of dif-

ferential scattering cross sections.

While the overlap-dependent many-body interactions have been ne-

glected, the third-order triple dipole three-body interactions have been in-

cluded. Therefore, the Barker potentials must be considered as effective

pair potentials. Due to the fits to experimental data the analytical form of

these potentials is rather complex:

υ(r) = ε[υ0(r) + υ1(r) + υ2(r)] , (2.25)

where

υ0 = eα(1− r
rm

)
5∑
i=0

Ai

(
r

rm
− 1

)i
−

2∑
i=0

C2i+6(
r
rm

)2i+6

+ δ

, (2.26)
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υ1(r) =

 eβ(1− r
rm

)
[
P
(
r
rm
− 1
)4

+Q
(
r
rm
− 1
)5
]

r ≥ rm
0 r < rm

, (2.27)

υ2(r) =

 eγ(1− r
rm

)2
[
R
(
r
rm
− 1
)2

+ S
(
r
rm
− 1
)3
]

r ≥ rm
0 r < rm

. (2.28)

Again, ε is the depth of the potential at its minimum, where the value

of the inter-nuclear distance is r = rm. Parameters for krypton and xenon

are listed in Table 2.4.

In Fig. 2.1, the Barker potential for krypton is compared with the corre-

sponding Lennard–Jones and Buckingham potential. While the Lennard–

Jones matches nearly perfect those of Buckingham, the Barker potential

shows a deeper minimum. In [Schommers, 1986] the effect of this difference

on the structure and surface properties of krypton has been calculated and

discussed.

Table 2.4 Barker potential parameter set for krypton and xenon. The units are 10−7 kg
and 10−10 m.

Parameter Krypton Xenon

ε 2.787 3.898
rm 4.0067 4.3623
α 12.5 12.5
A0 0.23526 0.2402
A1 −4.78686 −4.8169
A2 −9.2 −10.9
A3 −8 −25
A4 −30 −50.7
A5 −205.8 −200
C6 1.0632 1.0544
C8 0.1701 0.1660
C10 0.0143 0.0323
δ 0.01 0.01
β 12.5 12.5
P −9 59.3
Q 68.67 71.1
γ 0 −50
R 0 2.08
S 0 −6.24
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Fig. 2.1 A comparison between the Lennard–Jones, modified Buckingham and Barker
potentials for krypton. The parameters are taken from Tables 2.1, 2.3 and 2.4.

In conclusion, of all the mentioned pair potentials in the present chapter

the Barker potentials are the most accurate ones with the broadest range

of validity. Especially the independence of temperature predestines these

functions as model potentials within molecular dynamics calculations for

nanosystems.

2.6 Pseudo Potentials

In this section, we have a look on the development of the pseudo potential

approach, which as a result yields two-body interatomic potentials for sim-

ple metals. Due to the complexity of the theory it is not possible within

the frame of the present monograph, however, to outline all the calcula-

tion details, tricks, and fine-tuning features. The following explanations

are closely related to those in [Torrens, 1972], which — as could already

be seen by the numerous preceding citations — is an extraordinary useful

compilation of all topics in the field of pair potentials.

What does the term pseudo potential mean? Basically, in the neighbor-

hood of a metal ion an electron experiences two forces:
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(1) The strong Coulomb attraction of the bare ion that is opposed by

the repulsion due to the operation of the Pauli principle for the electrons

of the closed shells (core electrons).

(2) In the crystal the accumulation of conduction electrons forms a

screening charge which in turn balances the ionic charge.

The net effective interaction, experienced by an electron as a result of

the cancellation of the two principal contributions, is quite small and is

known as pseudo potential .

The starting point of the theory is the small core approximation, i.e. the

ion cores do not touch or overlap in the solid, and their wavefunctions are

not altered by going from the free atom to the metal. This assumption

restricts the metals to which the pseudo potential theory can be applied.

The small core hypothesis leads directly to the exclusion of the conduction

electrons from the region of the core, which in turn enables the use of

the orthogonalized plane waves (OPW) method to describe the conduction

electron–ion system. The conduction electrons are assumed to be described

by plane waves — orthogonalized to the core functions — as in the free

electron theory:

OPWk = |k〉 −
∑
α

|α〉 〈α|k〉 =
(

1− P̂
)
|k〉 , (2.29)

|k〉 = Ω−
1
2 eikr , (2.30)

|α〉 = ψα(r) , (2.31)

P̂ =
∑
α

|α〉 〈α| , (2.32)

where |k〉 represents the free electron wave function and |α〉 a core state, Ω

being the volume of the metal. Introducing the projection operator P̂ leads

to simpler notations. Now the conduction band state may be expanded in

terms of a general linear combination of OPWs based on the reciprocal

lattice vectors q:

ψk =
∑
q

αq(k) ·
(

1− P̂
)
|k + q〉 . (2.33)
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When the OPWs ψk are substituted into the Schrödinger equation of

the system

Ĥψk =
[
T̂ + V (r)

]
ψk = Ekψk (2.34)

an equivalent equation results with the strong original potential energy

term replaced by the much weaker pseudo potential Ŵ :[
T̂ + Ŵ

]
φk = Ekφk , (2.35)

Ŵ = V (r) +
∑
α

(Ek − Eα) |α〉 〈α| = V (r) +
(
Ek − Ĥ

)
P̂ . (2.36)

The according pseudo wave function φk is defined by

φk =
∑
q

αq(k) |k + q〉 . (2.37)

In the exact theory the pseudo potential is an energy-dependent op-

erator, but often a more convenient and reasonable approximation is to

substitute a simple non-operator term Vp for (Ek − Ĥ)P̂ . This is known as

local pseudo potential:

W (r) = V (r) + Vp . (2.38)

The next step is the division of the pseudo potential of the system

(Eq. 2.38) into individual ion pseudo potentials wi and factorization of its

matrix elements into a form factor w(q) (independent of the ion positions)

and a structure factor S(q) depending on the ion positions only: if there

are N ions at the positions ri, i = 1, . . . , N , then an electron at r will have

the pseudo potential energy given by

W (r) =

N∑
i=1

w (|r− ri|) , (2.39)

and the matrix elements (in the local approximation) are

〈k + q|W (r)|k〉 = W (q) = S(q)w(q) , (2.40)

S(q) =
1

N

N∑
j=1

eiqrj , (2.41)
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w(q) =
N

Ω

∫
w(r)e−iqrdτ . (2.42)

This form factor — derived from Fourier transformation of the individ-

ual ion pseudo potential in Eq. 2.39 — is a simplified one based on a local

pseudo potential. In the non-local operator form it would be energy depen-

dent and it could be calculated from first principles (perturbation theory) for

matrix elements between states on the Fermi surface (|k| = |k + q| = kF ).

Known as OPW form factors several of these, together with the calcu-

lation method, are given in [Harrison, 1966]. In addition, there are dif-

ferent semi-local and local approaches where a certain form for the bare

ion potential is assumed and then transformed [Heine, Abarenkov, 1964;

Animalu, Heine, 1965; Ashcroft, 1966; Shaw, Harrison, 1967; Shaw, 1968].

Such potentials are known as model potentials and are usually of simple

form. The final potential, however, is sensitive to the exact form of the

core potential only when the separation between core and conduction elec-

tron states is small.

The next step after determining the bare ion form factor, which theo-

retically contains all the information necessary to describe the ion, is the

consideration of the screening by the conduction electrons. This is achieved

in the linear approximation where the bare ion and screened ion form factors

(wb and ws) are related by a dielectric function ε(q):

〈k + q|ws(r)|k〉 =
〈k + q|wb(r)|k〉

ε(q)
(2.43)

or in the simpler case of the local pseudo potential

ws(q) =
wb(q)

ε(q)
. (2.44)

For metals — compared to an electron gas — the dielectric formula-

tion is an approximation. Depending on how or whether exchange and

correlation between the conduction electrons are included, the dielectric

function may take several forms [Heine, Abarenkov, 1964; Hubbard, 1958;

Geldart, Vosko, 1966; Sham, 1965; Shaw, Pynn, 1969; Singwi et. al, 1970].

An example for a simple but frequently used expression of ε(q) is the Hartree

dielectric function for the electron gas without any interactions between the

electrons:

ε(q) = 1 +
2kFm e2

π~2q2

(
1 +

4k2
F − q2

4kF q
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣) . (2.45)
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Here it is important to note that most forms of the dielectric function

contain a logarithmic singularity which gives rise to oscillations in the real-

space potential after the Fourier transformation. In addition, the dielectric

function may contain one or more parameters adjustable to experiment.

The total energy of the ion–electron system may now be found to the

second order using perturbation theory. The energy of the eigenstate of

wave number k is given by the equation

Ek =
~k2

2m
+ 〈k|Ws(r)|k〉 +

~2

2m

∑
q 6=0

〈k + q|Ws(r)|k〉 〈k|Wb(r)|k + q〉
k2 − |k + q|2 .

(2.46)

For further considerations, only the third term is relevant since the first

and second term do not influence the ion–electron–ion interaction under

constant volume conditions (the first term is just the kinetic energy of

the electrons if there were no ions present, while the second concerns the

ions but assumes that the electrons are completely free). Now the electron

energy can be derived by integrating the third term of Eq. 2.46 up to the

Fermi wave number kF and by factorizing into structure and form factors.

This is known as the band structure energy per ion:

Ebs =
∑
q 6=0

S∗(q)S(q)F (q) , (2.47)

where F (q) is the so-called energy-wave number characteristic

F (q) =
Ω

4π3N

~2

2m

∫
|k|<kF

〈k|Wb(r)|k + q〉 〈k + q|Ws(r)|k〉
k2 − |k + q|2 d3k (2.48)

with

kF =

(
3π2N Z

Ω

) 1
3

. (2.49)

Finally, the interaction potential between two ions of the ion–electron

system may now be divided into the direct Coulomb interaction, unaffected

by the intervening electrons and most often approximated by point charges

with the effective valency Z∗, and the indirect ion–electron–ion interaction:

υ(r) = υd(r) + υind(r) , (2.50)

υd(r) =
Z∗2e2

r
. (2.51)
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The indirect interaction can be obtained directly from the band struc-

ture energy. Using the structure factor notation of Eq. 2.41 within Eq. 2.47

leads to

Ebs =
1

N2

∑
q 6=0

∑
r

F (q)e−iqr =
1

N2

∑
q 6=0

F (q) +
1

N

∑
r 6=0

υind(r) , (2.52)

where

υind(r) =
1

N

∑
q,r6=0

F (q)e−iqr =
Ω

π2

∫ ∞
0

F (q)
sin qr

qr
q2dq . (2.53)

In conclusion, the validity of this pseudo potential is restricted by reason

of the basic assumptions to non-overlapping ion cores and constant volume

in the system. Further, evidently this potential is useful only in describing

the interactions near the equilibrium separation in the crystal as well as in

situations where the distribution of conduction electrons in the region of

an ion resembles that in the case of a perfect crystal.

2.6.1 Schommers Potential for Aluminium

With respect to a higher degree of accuracy and a broader range of validity

(surface studies and nanostructure applications) Schommers developed a

pair potential for aluminium on the basis of pseudo potential theory com-

bined with phenomenological approaches as well as effective pair potential

considerations.

The latter has been introduced into the description of the direct ion in-

teraction (Eq. 2.51) by adding an additional van-der Waals type interaction

f(r) [Schommers, 1976] to the Coulomb term

f(r) = −α1

r6
− 2Z∗

α2

r4
. (2.54)

This considers dipole–dipole and monopole–dipole interactions that re-

sult from the finite extension of the ion cores.

Within the derivation of the pseudo potential a similar expression h(r)

has been added to the bare ion potential w(r) to consider monopole–

multipole interactions between the conduction electron and the ion core
[Schommers, 1976]:

h(r) = −α2

r4
+ · · · , (2.55)

where the first term describes the monopole–dipole interaction.
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Further, for the derivation of the screened ion form factor the static

Hartree dielectric function (Eq. 2.45) has been replaced by a more detailed

expression.

While it is a very good approximation to treat the core contributions

independent of the temperature, the long-range part of pseudo potentials

depend critically on the electronic arrangement which is sensitive to tem-

perature variations, i.e. an interaction potential for metals generally has

to be temperature dependent. Therefore, the description of the Schom-

mers potential for aluminium has been performed in dependency of the

(temperature dependent) material density or lattice constant, respectively
[Schommers et. al, 1995].

The Schommers pair potential for aluminium is shown in Fig. 2.2 for

two different temperatures in comparison with the according Morse poten-

tial from Table 2.2 (with the corrected value εc) and an additional Morse

potential, that is fitted to the Schommers potential.

Fig. 2.2 A comparison of the Schommers and Morse pair potential for aluminium. The
Schommers potential is plotted for 300 K and 1000 K. The parameters of the Morse
potential fitted to the Schommers potential are ε = 14.5, rm = 2.75, α = 2.5 in the same
units as given in Table 2.2. The melting temperature of aluminium is 933 K.
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The differences can be seen quite clearly: beside the deviations in depth

and location of the minimum the Morse potential completely lacks the

long-range oscillations due to the ion–electron–ion interactions in the metal-

lic crystal. This is the reason why the use of phenomenological potentials,

such as those from Morse, Lennard–Jones or Buckingham, for the descrip-

tion of metallic interactions is rather questionable.

Due to the additional fitting of free parameters of the Schommers po-

tential to numerous experimental data it describes a lot of basic aluminium

properties accurately within a wide temperature range [Schommers et. al,

1995; Rieth et. al, 1999], e.g. melting point, diffusion constant of the liquid

phase, structure of solid and liquid bulk, phonon density of state, mean

square displacements at the surface, onset of pre-melting, etc.

Since all of these are critical properties with respect to the behavior

of nanosystems and since the Schommers potential for aluminium is able

to describe them with sufficient accuracy and dependent on temperature,

this potential has been chosen for most of the molecular dynamic studies

presented within the present monograph.

2.7 Many-Body Potentials

Though many-body potentials are of minor relevance for the present work

— since they have to be used mainly for the description of interactions

within covalent bonded materials or for phenomena at higher energy levels

— we would like to outline at least some common approaches.

Allinger developed widely used models (MM2, MM3) for a broad range

of organic structures [Burkert, Allinger, 1982; Allinger et. al, 1989] which

are based on the separation of the total interaction between particles, that

are significant for a bond, into a sum of single potentials with respect to

bond stretching, bond angle bending, bond torsion and non-bonded inter-

action. The latter is described in terms of modified Buckingham potentials

with parameters listed in Table 2.1. Bond stretching is treated with cubic

pair potentials, whereas bond angle bending is modeled in form of sex-

tic three-body potentials dependent on the angle between two bonds to a

shared atom. Finally, the description of bond torsion follows an expression

depending on the torsion angle between two bonds within the same plane

and a third one, thus acting as a four-body potential.

For the development of such models a lot of a priori knowledge is nec-

essary to classify all the different bond types and to treat the special cases.
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The MM2 and MM3 (molecular mechanics) models are used to character-

ize the minimum energy configurations of structures, their stiffness, bearing

properties and the like [Drexler, 1992], and they have become standards in

the chemical literature.

Due to their complexity and difficult derivation, there are basically just a

few different three-body potentials available which are well suited for molec-

ular dynamics calculations. A comparative study and discussion of some

of these empirical potentials, which have been applied mainly to carbon,

silicon and other semiconductor materials, is given in [Balamane, 1992].

Another special type of potential that describes metallic interactions is

derived from the Embedded Atom Method (EAM ) [Daw, Baskes 1983]. It is

a generalization of the quasi-atom theory [Stott, Zaremba, 1980] that treats

all atoms in a unified way. Its name comes from the fact, that it views each

atom as embedded in a host lattice consisting of all other atoms. Here, the

total energy of a system with N atoms is given by

Etot =
N∑
i=1

Fi(%̄i) +
1

2

N∑
j=1
j 6=i

uij(rij)

 , (2.56)

where Fi(%̄i) is the energy required to embed atom i into the background

electron density %̄i at site i, and uij(rij) is the core–core pair interaction

potential between atoms i and j separated by the distance rij .

The host electron density %̄i is approximated by a linear superposition

of the spherically averaged electron densities of the ni atoms neighboring

atom i:

%̄i =

ni∑
j=1
j 6=i

%(rij) , (2.57)

where %(rij) is the electron density of atom j at a distance rij from the

nucleus of atom i. If the atomic densities %(r) and the pair interaction

u(r) are both known, the embedding energy F can be uniquely defined

by matching a certain equation for the cohesive energy of the metal as a

function of the lattice constant. This can be used to fit F (%̄) to experimental

results. Different approaches and fits to the fcc metals — Ni, Pd, Cu, Ag,

and Au can be found, for example in [Foiles et. al, 1986; Voter, Chen, 1987;

Rey et. al, 1993].
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In contrast to pair potentials which depend on the interatomic distance

only, the according EAM potentials have an additional term that depends

on the background electron density. This in turn is defined by the positions

of the ni next neighbor atoms (Eq. 2.57) which act indirectly as n-body

contributions.
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Chapter 3

Molecular Dynamics

As has already been shown, the problem of ab initio methods consists in the

derivation of the potential energy surface (Eq. 2.12) and finding its local

minima dependent on the 3N co-ordinates of the N nuclei. Using the pair

potential approximation or even many-body potentials with the molecular

mechanics method significantly reduces the effort for obtaining the potential

energy surface, while the problem of detecting the saddle points still remains

the same. Though there are a lot of different strategies available, there are

no (or at least very few) systematic algorithms that localize the energetically

best fitting configurations within an acceptable time.

However, while molecular mechanics as well as ab initio methods are

very popular and successful in the description of more or less complex

systems (molecules, clusters, etc.) — most often known from organic chem-

istry — the treatment of the many-particle problem is handled, neverthe-

less, in a static way, i.e. the results are only valid for temperatures equal to

zero. Even by including temperature dependent potentials molecular me-

chanics calculations can never deliver dynamic values. But especially with

respect to nanostructures consisting of non-bonded materials or metals,

such dynamic effects are of considerable interest.

Since the harmonic approximation for crystalline solids — known from

solid state physics — is not well suited for an adequate description of sur-

face phenomena at higher temperatures either [Schommers, 1986], the only

method at disposal is the classical solution of Hamilton’s equations of mo-

tion for N particles

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, · · · , N , (3.1)

where qi and pi are a set of generalized co-ordinates and momenta.

33
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There are two different ways for the calculation of the according forces:

one can choose either the potential energy surface determined by quantum

mechanics, or one uses pair (or many-body) potentials.

The first method — known as quantum molecular dynamics [Seifert,

1998] — is involved with the same problems already discussed in connection

with the ab initio methods, i.e. it is only applicable with the restriction to

a very small number of atoms, whereas the limitation of the latter — the

“classical” molecular dynamics (MD) — is related to the validity of the pair

potential approximation.

In the frame of this monograph, we consider nanostructures consisting

of either krypton or aluminium atoms, which interact through effective

pair potentials without any further outer forces. In this case the Hamilton

function in Cartesian co-ordinates r = [x, y, z] reads

H(pi, ri) =

N∑
i=1

p2
i

2mi
+ U(r1, · · · , rN ) (3.2)

from which we obtain Newton’s equations of motion

ṙi = vi , (3.3)

v̇i = r̈i =
Fi
mi

, (3.4)

where Fi = [Fx, Fy, Fz ]i is the force acting on the ith atom of mass mi and

vi = [vx, vy, vz]i is its velocity according to vi = pi/mi. The forces are

derived from the potential U as follows

Fi = − ∂

∂ri
U(r1, · · · , rN ) , (3.5)

and since U corresponds to the pair potential υ according to Eq. 2.15 (to be

more specific, for krypton we use the Barker potential with Eqs. 2.25–2.28

and for aluminium the Schommers potential as plotted in Fig. 2.2), we can

express the magnitude of the interacting force fij

fij = |Fij | = −
∂

∂r
υ(r)

∣∣∣∣
r=rij

, (3.6)

with rij being the distance between two atoms i and j

rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 . (3.7)
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With this the total force for particle i can be easily obtained by the

expression

Fi =
N∑
j=1
j 6=i

ri − rj
rij

∂

∂r
υ(r)

∣∣∣∣
r=rij

(3.8)

=
N∑
j=1
j 6=i

(rj − ri)fij√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

.

After setting the initial values — positions and velocities — for all

atoms, with help of Eq. 3.8, first, the forces are calculated, then the set of

first-order differential equations (Eqs. 3.3 and 3.4) is solved numerically for

a certain time step with the new positions and velocities — which are saved

— as a result. Then the new forces are obtained to solve the equations of

motion for the next time step, and so on.

Basically, molecular dynamics is as simple as that. But, going into de-

tail, the implementation of a state-of-the-art MD software includes a lot of

further considerations which are connected to the field of numerics as well

as computer science. Due to the large number of different applications re-

lated to nanostructured systems, an universal MD software is not available

and, therefore, such topics as model formation, integration and differen-

tiation algorithms, effective force interaction computation and graphical

presentation have to be discussed in order to assemble an optimal program

package for each specific case.

3.1 Models for Molecular Dynamics Calculations

If the assumption of two-body interactions leads to a reasonable descrip-

tion of specific system properties, MD calculations can be considered as

perfect computer experiments, since the total information of the system

(position and velocity of all particles) is available for each time step.

From this, further characteristics can be derived without any additional

parameters.

While real experiments are most often complex, time consuming and

therefore very expensive, it is reasonable to simulate such experimental

studies. Moreover, it is rather tempting to verify ideas or to perform hypo-

thetical experiments that in reality still cannot be carried out, but might

possibly gain some relevance in the near future.
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Depending on the system, there has to be built more or less complicated

models as an input to MD calculations. In the case of (metallic) nanosys-

tems, it is easy to imagine many different scenarios as, for example, inter-

actions of nanostructures with surfaces (liquid or solid) or nano-machines,

both in combination with specific environments depending on temperature,

pressure, mechanical load, vacuum or gas atmosphere, to name just a few.

3.1.1 Initial Values

The first step of setting up a model is to define the initial position and

velocity for each atom. In the case of liquids or gases, the distribution of the

particles can be chosen randomly with the appropriate density. Sometimes

this may lead to substantial overlaps. In these cases, a minimum value for

the interatomic distance has to be set and verified.

In the case of crystals, the initial positions are given by the perfect lattice

structure according to the system under investigation. Here, aluminium as

well as krypton show a face-centered cubic (fcc) lattice (the lattice constant

L is 4.03 Å for Al at 50 K and 5.73 Å for Kr at 70 K).

It is relatively easy to accomplish clusters, structured in the shape of

a cuboid, either by assembling unit cells in rows and columns or by piling

up one layer after the other. When surfaces are of interest the co-ordinates

of the unit cell have to be transformed into the according orientation. The

geometry for the construction of fcc crystals with (001), (011) and (111)

surfaces are given in Figs. 3.1–3.3.

The initial velocities for the particles of resting objects have to meet

the conservation law of momentum, i.e. the velocities have to be chosen so

that there is no overall momentum

P =

N∑
i=1

mivi = 0 . (3.9)

In thermal equilibrium, the velocities would be distributed according to

the Maxwell distribution.

Since most programming languages do only support uniformly dis-

tributed random numbers but no Maxwell distributions, it is easier, faster

and, however, sufficient to start the MD calculations with a simple initial

velocity distribution and to continue until equilibrium is established due to

the particle collisions.
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Fig. 3.1 Geometry of (001) planes for face-centered cubic crystals. Cuboids with (001)
surfaces can be assembled layer by layer.

A simple possibility is to choose the same magnitude vm of the velocities

for all particles according to

|vi| = vm =

√
3kBT

mi
(3.10)

where mi is the mass of particle i, kB is the Boltzmann constant and T is

the kinetic temperature.

After the determination of the magnitudes of the particle velocities,

one still needs the uniformly distributed velocity directions, which can be

produced by a number of methods. The simplest method for generating
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Fig. 3.2 Geometry of (011) planes for face-centered cubic crystals.

a random (unit) vector eu on the surface of a sphere is the acceptance–

rejection technique of [von Neumann, 1951] with

eu = 1
n [1− 2n1, 1− 2n2, 1− 2n3]

n =
√
n2

1 + n2
2 + n2

3 , n < 1

 (3.11)

or an improved version [Allen, Tildesley, 1990; Marsaglia, 1972] with

eu =
[
2(1− 2n1)

√
1− n2, 2(1− 2n2)

√
1− n2, 1− 2n2

]
n =

√
n2

1 + n2
2 , n < 1

 (3.12)
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Fig. 3.3 Geometry of (111) planes for face-centered cubic crystals.

where n1, n2, n3 are uniformly distributed values in the range [0, 1] which

can be easily obtained from any common random number generator. If n

is smaller than one, the unit vector is accepted, otherwise the procedure is

repeated.

Now, the easiest way to ensure the conservation law (Eq. 3.9) is to

generate a velocity vector vi = |vi|eu as outlined above and set the initial

velocity vector and its opposite (−vi), respectively, for a pair of particles.

If the model contains an odd number of particles the initial velocity of the

remaining particle is simply set to zero.

Another possibility is to choose the components vx, vy, vz of the ve-

locity vectors vi = [vx, vy, vz ]i randomly from the Gaussian parts ρx,y,z of
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Maxwell’s distribution ρM

ρM (v) = ρx(vx)ρy(vy)ρz(vz) , (3.13)

where

ρx,y,z(vx,y,z) =
1√

2πσ2
e−

(vx,y,z−vcm)2

2σ2 (3.14)

with the variance

σ2 =
kBT

mi
(3.15)

and the mean velocity component (in one dimension) vcm according to the

kinetic temperature T

vcm =

√
kBT

mi
. (3.16)

Now, sampling from a Gaussian distribution can be reduced to sampling

from a normal distribution (zero mean and unit variance):

vx,y,z = vcm + σxn , (3.17)

where vx,y,z are the desired vector components according to the Gaussian

distributions ρx,y,z (Eq. 3.14) and xn is a normal distributed value, which in

turn can be obtained from a common (uniform) random number generator

either by [Box, Muller, 1958]

xn =
√
−2 lnn1 cos 2πn2 , (3.18)

or

xn =
√
−2 lnn2 sin 2πn1 , (3.19)

or approximately by [Allen, Tildesley, 1990]

xn =

12∑
k=1

nk − 6 , (3.20)

where n1 · · ·n12 are uniformly distributed values in the range [0, 1].

In conclusion, derived from random numbers, the initial velocities

could be set approximately according to the thermal equilibrium (Maxwell

distribution), whereas for a large number of particles the overall momentum

(Eq. 3.9) should nearly be zero. For smaller particle numbers, however, it

is better to cancel the momenta pairwise, as mentioned above.



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

Models for Molecular Dynamics Calculations 41

3.1.2 Isothermal Equilibration

Independent of the methods chosen to set the initial values the system

is not exactly in equilibrium, therefore, the model has to be equilibrated

simply by performing MD calculations for a sufficient number of time steps.

Usually the equilibrium is established very quickly, i.e. after several hundred

calculation steps at most. But how can this be verified?

For this an useful function is given in [Schommers, 1986]. With help of

the velocity vectors vi obtained from the MD calculation for the N particles

α(t) =

〈
v2(t)v2(t)

〉
〈v2(t)〉 〈v2(t)〉 =

1
N

∑N
i=1

[
v2
i (t)

]2[
1
N

∑N
i=1 v2

i (t)
]2 (3.21)

gives a time-dependent measure for the degree of distribution. If the mag-

nitudes of all particle velocities are the same, α(t) = 1, for Maxwell dis-

tributed velocities — and therefore in thermal equilibrium — α(t) takes the

value of 5/3. As can be seen from Fig. 3.4, the equilibration process takes a

relatively short time and after that α(t) fluctuates around the equilibrium

Fig. 3.4 The velocity distribution of a cubic nano-cluster consisting of 4000 aluminium
atoms characterized by means of the function α(t). The positions have been set accord-
ing to the perfect crystal lattice with (001) surfaces and the magnitudes of the initial
velocities are the same for all atoms, therefore α(t) starts with the value 1. After 0.3 ps
(300 time steps) the model is in thermal equilibrium (Maxwell distribution of the veloc-
ities) and due to the finite number of atoms α(t) fluctuates around the according value
of 5/3.
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value of 5/3, whereas this fluctuations are due to the finite number of

particles.

The temperature of the model expressed by the mean-square velocities

of the N particles is given by

T (t) =
1

N

mi

3kB

N∑
i=1

v2
i (t) (3.22)

and plotted as a function of time shows a similar behavior as α(t), i.e. the

system temperature starts with a value specified by the initial velocities

(Eqs. 3.10 or 3.15 and 3.16) and frequently changes until equilibrium is

established.

But most often the equilibrium temperature is an important system

parameter, according to which the model has to be designed, that is, one

wants to prescribe a certain value for the equilibrium temperature in ad-

vance. Though a crude but sufficient way, this can be done by re-scaling

the velocities according to

vi(t) :=

√
Td

T
vi(t) , i = 1, · · · , N , (3.23)

where Td is the desired model temperature, and T and vi are the current

temperature and velocity vectors. During such an isothermal equilibration

phase this method needs to be applied after about each tenth time step

only.

The re-scaling of velocities is not only useful for the equilibration of

a MD model, but can be applied during MD calculations too, where a

variation of Td with time leads to artificial tempering or cooling processes.

In this way, it is possible to determine stable configurations of clusters as an

alternative to the molecular mechanics methods [Kirkpatrick et. al, 1983].

It should be noted that there are more elegant methods to keep the tem-

perature constant (e.g. [Andersen, 1980; Andersen et. al, 1984]). Most of

them use an additional velocity-dependent term in the equations of motion

to prescribe the system temperature. This is called isothermal or constant

NVT molecular dynamics (or the use of canonical ensembles in terms of

statistical mechanics). But for the equilibration phase the simple re-scaling

of the velocities according to Eq. 3.23 is sufficient.
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3.1.3 Boundaries

When performing MD calculations with free nano-clusters of moderate tem-

perature there is no need for a limitation of the simulation space. But as

soon as liquid or gaseous fractions are involved the whole system expands

into all directions with increasing time. Therefore, sometimes it may be

appropriate to limit the simulation area by introducing spatial boundaries.

The simplest case of a boundary is a reflecting box. Whenever a particle

reaches the surface of this box during the MD calculations its perpendicular

velocity component is reverted. By applying such a boundary condition the

energy is conserved and the volume as well as the particle number is kept

constant (isolated system, micro-canonical ensemble).

Another application, for instance, could be to make the reflection depen-

dent on the particle momentum, i.e. if the perpendicular velocity exceeds a

certain value it can leave the box and is removed from the MD calculation,

or even more elegantly, the box is replaced by a spherical potential barrier

(in addition to the interatomic interactions) which a particle can overcome

only with sufficient kinetic energy. Such a model could be applied, for ex-

ample, on the simulation of membranes, where the boundary potential acts

as the so-called chemical potential (grand canonical ensemble).

Since boundary conditions define the thermodynamic environment, they

are a substantial part of MD models. Here, the application of periodic

boundary conditions are one of the most important techniques. The idea

arose from the question of how to simulate, for instance, the crystal or

liquid bulk with just a few hundred or thousand particles, while in nature

such structures are built of several 1023 atoms at least.

The trick is again to restrict the simulation space to a cubical box, that

the particles cannot leave. Then — instead of total reflection — a particle

that exits the box from one face re-enters the box from its opposite face

without changing the velocity vector as is illustrated in Fig. 3.5.

Such a treatment of the particle positions ensures the constancy of en-

ergy, particle number and volume. But the computation of the particle

interactions has to be expanded according to these boundary conditions.

Therefore, the boundary box including all particles (simulation space)

has to be surrounded by 26 virtual copies (see Fig. 3.6). Then the inter-

atomic forces are computed not only for the atoms within the simulation

space, but by including all the particles of its virtual images. These images

can be easily created by adding or subtracting the according box length

from the co-ordinates of the particle position vectors.
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Fig. 3.5 Periodic boundary conditions: When a particle is going to leave the simulation
box its position is set immediately to the opposite face and the velocity vector remains
unchanged.

Fig. 3.6 Periodic boundary conditions: In order to simulate an infinite system the
computation of particle interactions is extended to virtual copies of the calculation space.
For bulk models it needs 26 of these images to cover all directions. To model free surfaces
the calculation box is surrounded by 8 of its images.

Due to its periodic repetitions into all directions such a model simu-

lates an infinite extended system (bulk) on the basis of a finite number of

particles.

Another important MD model is that for free surfaces. This can be de-

rived from the model for the bulk simply by applying the periodic boundary

conditions in two dimensions only (Fig. 3.6).
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Fig. 3.7 A two-dimensional illustration of the effect of periodic boundary conditions.
The positions of the particles of the simulation box (black circles) are mirrored into all
directions to compute the interactions. Therefore, the resulting structures (in this case)
are rows of clusters (enclosed in dotted lines).

The application of periodic boundary conditions (the effect is illustrated

in Fig. 3.7) implies a further restriction with respect to the interaction

potential. If the range of the potential was longer than the box length, a

particle would interact with itself. Since such nonsense must be avoided, it

is necessary to limit the range of the potentials.

This is only one of several reasons to introduce the so-called cut-off

radius rc which is the maximum interaction distance. The easiest method

is literally to cut the potential function off, i.e. for distances greater than

rc the interaction is set to zero.

A more elegant approach is the use of a cut-off function that pushes the

values of the potential or force function smoothly to zero, like for example

fc(r) =


1 for r ≤ rsc

1
2

(
1 + cos r−rcs

rc−rcsπ
)

for rcs < r < rc

0 for r ≥ rc
, (3.24)

where rcs denotes the onset of the fitting zone.
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Further, in the case of crystals one has to pay attention to the initial

positions of the atoms. The positions have to be set according to the perfect

lattice, but with respect to a continuous repetition at the boundaries (an

example that illustrates the continuation effect is given in Fig. 3.7).

3.1.4 Nano-Design and Nano-Construction

So far the general procedures and different elements of MD models have

been discussed. As long as there are just single and simple shaped objects

of interest, like cubical nano-clusters, the set-up of an appropriate MD

model is relatively easy.

Since the initial positions are given by the perfect lattice structure such

objects can be built by using any programming language to implement the

according algorithms. Depending on the variety of materials, character-

ized by the lattice constant and structure (fcc, bcc, hexagonal, etc.), and

depending on the possible orientations ((001), (011), (111) and so on) the

software development is more or less extensive. Further, for the generation

of surface and bulk models the additional treatment of periodic boundary

conditions is necessary.

But obviously, such simple objects are only of minor interest within

the field of nano-engineering, where either structures with complex shapes

or interactions (cluster–cluster or surface-cluster) under various conditions

play an important role. Especially for studies of nano-machines (but for

others too) the MD models have to contain moving parts in addition to

objects of miscellaneous materials, and therefore, the software should be

able to combine single structures, each with different initial values.

Quite clearly, the development of a computer program that can generate

MD models for all the above mentioned topics is rather extensive. While

usually there is no way to avoid programming at least for simple structures

(cuboids, spheres, surfaces), for the set-up of the initial values according to

rotational or transitional movements and for the construction (positioning,

centering, adjusting) of individual objects, the nano-designing part may be

accomplished by a common ploy: the “abuse” of commercial software.

The idea arose from the fact that for metallic nanostructures — unlike

covalent bonded materials — there are basically no restrictions concerning

their initial shapes, i.e. in this case a MD model can be built first by defin-

ing the outer shape and then by filling it up with atoms according to the

crystal lattice. Since the design of three-dimensional shapes is a very com-

mon topic within mechanical engineering — the so-called computer aided
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design (CAD) — one can use a suitable CAD software with a programming

interface to perform such a task.

For the present work the choice fell on the commercial software package

Genius Desktop [Autodesk, 1998] (in combination with Mechanical Desktop
[Autodesk, 1998]) that includes a LISP derivative [Autodesk, 1998] as pro-

grammable interface. At first, two additional system functions have been

developed, one to compute the outer limits of a 3d–CAD object, the other

to determine whether a given spatial point lays within a selected object or

not. Then, with the help of these functions, the implementation of var-

ious filling, scaling and storage algorithms for different lattice structures

has been performed. An example for such a nano-design is illustrated in

Fig. 3.8.

Fig. 3.8 Computer aided nano-design: The left picture shows an object (CAD model) as
produced by a common mechanical engineering software. On the right side the according
nanostructure is illustrated. It has been created first by filling the hull of the CAD
model with (111) oriented aluminium layers, and then by equilibrating the structure at
300 K. The final MD model consists of 16074 aluminium atoms and its height is about
19 nanometer.
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Due to the procedure outlined above one could be tempted to the imagi-

nation that there is no difference between mechanical engineering and nano-

design except the different scale units (millimeters or micrometers compared

to nanometers), but this would be definitely a fallacy.

While in mechanical engineering edges or surfaces of any shape and

continuous calibrations are common, nano-design is limited to certain posi-

tions of single atoms, i.e. the shape of structures is restricted to certain

measures dependent on the material. Moreover, the initial shape of a

nano-model which may have more or less pronounced edges, can change

considerably during the equilibration phase (as well as later on during the

MD calculation) and, therefore, the layout of the model often has to be

re-designed until it meets the given design criteria.

In conclusion, building MD models or performing nano-engineering is

an iterative process of nano-design (set-up of initial values), equilibration

or MD calculation and re-design, and there is almost nothing common with

mechanical engineering. More details are illustrated especially in connec-

tion with functional nanostructures and nano-machines in Secs. 5.1 and 5.2.

3.2 Visualization Techniques

After the set-up of suitable models (nano-design), MD calculations usually

produce huge amounts of data, i.e. both, position as well as velocity compo-

nents are available for thousands of atoms and for thousands of time steps.

Though one can apply numerical analysis methods on the MD data, it is

far more instructive to visualize the particles.

During the design and construction phase of MD models, it is helpful to

get an overview of the boundaries and the different object positions therein.

This task can be managed by a more or less simple algorithm that plots the

particles as colored circles and transforms the positions orthographically.

For more “realistic” representations rendering (ray tracing) software is the

better choice.

Therefore, within the present work a script generator has been im-

plemented that translates the particle positions into a virtual three-

dimensional scene description, compatible to the free available ray trac-

ing program POV–Ray [Young, 1997; Young, Wells, 1994], according to

user specifications. With this, it is possible to define the positions and

directions of the camera and light sources to create pictures that convey

three-dimensional impressions.



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

Visualization Techniques 49

As is well known, single atoms show neither definite surfaces nor colors,

their shape, however, might be considered as a cloud resulting from the

probability density of the electron positions (orbitals). Since MD treats

the atoms as mass points with certain positions and velocities, but with-

out further information about the electrons, it is sufficient to depict the

particles in form of colored spheres. It makes sense to adjust the size of

the spheres to the “outermost closed electron shell” of the atoms, i.e. to

take the value of the atomic or ionic radius (as illustrated in Fig. 3.8 for

example), but sometimes it may be more instructive to use smaller spheres

and therefore let the structures appear to be porous and transparent. Fur-

ther, dullness, reflection and transparency of the surfaces of the spheres

can be altered — beside colors and a lot of other parameters — by the

rendering software. With this, each user has the freedom to realize his

subjective imaginations of the atomic representation and to adjust it to his

own needs.

The colors may be set either according to distinguish different structure

components such as layers, parts of nano-machines, etc. or dependent on

the particle velocity to indicate temperature distributions or to visualize

the momentum propagation. The latter may be helpful, for example, to

analyze impact processes (see Fig. 3.9).

Other important features of the script generator are the ability to per-

form user-defined cross sections and the selection of certain layers or parts

of the simulation space for the representation. This is especially useful to

study surface or internal processes which are obscured by the surrounding

particles. An example is given in Fig. 3.9.

Applying the rendering technique delivers snapshots of selected MD

calculation steps as a result. A further improvement of the visualization is

to combine sequences of such snapshots to a movie which can be done easily

with the help of numerous free available software tools. In the frame of this

work DTA [Mason, 1993; Mason, Enzmann, 1993], for example, has been

proven as a small, fast and reliable program. The resulting MD movies can

be watched with the AAPlayer [Autodesk, 1992] that has a lot of additional

useful features.

It is clear, but it has to be emphasized: there is nothing that is better

suited to understand the huge amount of MD data than a movie. Trans-

lations, wave propagation, oscillations, ordering and disordering processes,

scattering, generation of dislocations and other defects as well as structural

changes or anomalies can be acquired rather by view than by numerical

analysis.
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Fig. 3.9 Cluster impact on an aluminium (001) surface: A cross section of the simulation
space (periodic boundary conditions) is illustrated. The atoms are colored according to
their velocity (from high to low speed: yellow, orange, red, magenta, blue), where yellow
corresponds to 20 km/s and blue to room temperature (0.5 km/s). It can be seen quite
clearly, that after the penetration of the surface a supersonic shock wave is triggered off
which propagates preferably along the (0 ± 1± 1) directions.

The ultimate visualization technique, however, is to produce pictures

that convey a real spatial feeling like that in three-dimensional cinemas.

Most often such techniques are connected with more or less extensive hard-

ware such as shutter glasses and special screens or other equipment. But

there is a relatively simple method that works with color glasses, e.g. red

for the left and blue for the right eye. Watching stereoscopic pictures or

anaglyphs through such glasses evokes the impression of spatial perception.

The production of anaglyphs is based on pictures taken from two different

positions like, for example, one from the left and one from the right eye.

Such pictures can be easily produced from the MD data with the above men-

tioned rendering software, while the merging procedure into stereoscopic

pictures is performed by an anaglyph generator (e.g. [SOFTreat, 2001]).



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

Solution of the Equations of Motion 51

Finally a complete sequence of anaglyphs may then be combined to a real

three-dimensional movie.

3.3 Solution of the Equations of Motion

Numerical integration methods to solve sets of differential equations can be

found in almost any general textbook on applied mathematics and in the

more specialized literature on computer simulation or even MD methods

(a very small selection is [Allen, Tildesley, 1990; Dahlquist, Björck, 1974;

Lapidus, Seinfeld, 1971; Hofer, Lunderstädt, 1975; Hamming, 1973; Gear,

1971; Ralston, Wilf, 1967; Koonin, Meredith, 1990; Haug, 1991; Berendsen,

van Gunsteren, 1986; Beeler, Kulcinski, 1972]). All methods are based on

finite differences, i.e. the equations are solved step by step in time, where

most often the step size 4t is taken to be constant.

Now, out of the large class of integration methods we have to select

the best fitting algorithm for MD calculations according to the four ba-

sic criteria of numerical computation: effectiveness, efficiency, accurate-

ness and stability. But how important are these points for molecular

dynamics?

An effective algorithm proves to be fast and requires little memory. In

connection with large scale MD studies memory usage may be a limit for the

model size depending on the available hardware. Since force computation

is by far the most time-consuming part of MD calculations (see following

section), the raw speed of an integration algorithm is not an important

argument.

But efficiency in the case of MD — defined by the applicable step size

4t and by the number of force calculations necessary per time step — takes

a key position. First, this means that any integration method that involves

more than one force evaluation per step should be excluded. This rules out,

for example, all the common Runge–Kutta variants. Then, the remaining

algorithms should be evaluated according to the size of time steps they are

able to employ. In this way, an intended simulation period can be covered

in a modest number of integration steps. This in turn leads to acceptable

amounts of computation time.

On the other hand, accuracy and stability of a simulation algorithm are

measured by its local and global truncation errors, and clearly, the larger

4t, the less accurate will the MD results follow the classical trajectory (see

Fig. 3.10).
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(a)

(b) (c)

Fig. 3.10 A simple testing model for the accuracy and stability of the integration
algorithm. (a): A particle can oscillate between two fixed atoms with respect to the
applied potential. The trajectories in the case of krypton are plotted for an initial ve-
locity of 173 m/s (according to 100 K). (b): If the step size 4t is chosen to be too large,
the computer-generated phase space trajectory (plotted for 2000 steps) diverges from
the exact classical one and the total energy is not conserved. (c): With smaller time
steps there is no difference between the simulated and classical trajectory, even though
here the simulation period has been increased to 10000 steps. In general, the choice for
the step size 4t strongly depends on the MD model, especially on the particle mass,
temperature and interaction potential.

If MD calculations are performed to generate states sampled from an

statistical ensemble (micro-canonical , canonical or grand canonical), one

does not need the exact classical trajectories, but great emphasis has to

be laid on the performance of the conservation laws. Energy conservation,

for example, is degraded as the time step is increased. Further, due to

its limited stability no integration method will provide an essentially exact

solution for an infinite or at least very long time. Compared to the simula-

tion of celestial objects, MD calculations fortunately most often do not need

this. Here, in many cases, exact solutions of the equation set of motion are

interesting only for periods comparable with the correlation times which, of

course, depend on the system under investigation but which usually are not
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too long. In this sense, the choice of an appropriate integration algorithm

involves a trade-off between efficiency and accuracy or stability.

Taking all the above mentioned criteria into account, just a few inte-

gration methods remain, because very simple algorithms like Euler’s and

derivatives [Berendsen, van Gunsteren, 1986; Beeler, Kulcinski, 1972] are

far too inaccurate. On the other hand, complex methods such as Runge–

Kutta versions need numerous force calculations per time step.

3.3.1 Verlet Algorithms

As a direct solution of the second order equation (Eq. 3.4), the Verlet

algorithm [Verlet, 1967] is a widely used method to solve the equations of

motion. It uses the current position rn and acceleration an as well as the

previous position rn−1 of an atom to calculate the position rn+1 for the

next time step in the following way:

rn+1 = 2rn − rn−1 +4t2an , (3.25)

with

rn = r(tn) , an =
F(tn)

m
, tn = n 4t , n = 0, 1, 2, · · · , (3.26)

where the interaction forces F have to be computed for each particle ac-

cording to Eq. 3.8. Since the velocities do not appear directly they may be

obtained by applying the central difference method:

vn =
rn+1 − rn−1

24t . (3.27)

Modifications have been proposed to improve the numerical imprecision

of the basic Verlet algorithm [Allen, Tildesley, 1990; Dahlquist, Björck,

1974]. One of these is the so-called half-step leap-frog scheme [Berendsen,

van Gunsteren, 1986; Hockney, 1970]:

vn+1/2 = vn−1/2 +4t an ,

rn+1 = rn +4t vn+1/2 .
(3.28)

Here the current velocities have to be calculated as mean from the mid-

step values

vn =
1

2

[
vn−1/2 + vn+1/2

]
. (3.29)
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Though at half-steps only, in the leap-frog method the velocities appear

explicitly. This is necessary in order to perform isothermal equilibration

or to sample from canonical ensembles which is not possible with the basic

form of the Verlet algorithm.

Another derivative, the velocity Verlet algorithm [Swope et. al, 1982],

works without mid-steps at the cost of additional storage for an:

rn+1 = rn +4t vn + 1
24t2an ,

vn+1 = vn + 1
24t [an + an+1] .

(3.30)

There are still further derivatives [Allen, Tildesley, 1990; Berendsen,

van Gunsteren, 1986; Beeman, 1976], but basically all Verlet methods pro-

duce the same global error and generate identical position trajectories. So

there seems to be no need to implement a more complex Verlet algorithm

than is given by Eq. 3.30.

3.3.2 Nordsieck/Gear Predictor-Corrector

Nordsieck [Nordsieck, 1962] and Gear [Gear, 1971; Gear, 1966] developed

an integration scheme on the basis of Taylor expansions of the positions,

velocities, accelerations and further derivatives:

r(t+4t) = r(t) +4t v(t) + 1
24t2a(t) + 1

64t3q3(t)

+ 1
244t4q4(t) + 1

1204t5q5(t) + · · ·+ 1
k!4tkqk(t) + · · · ,

(3.31)

v(t +4t) = v(t) +4t a(t) + 1
2
4t2q3(t) + 1

6
4t3q4(t)

+ 1
24
4t4q5(t) + · · ·+ 1

(k−1)!
4tk−1qk(t) + · · · ,

(3.32)

a(t+4t) = a(t) +4t q3(t) + 1
24t2q4(t) + 1

64t3q5(t)

+ · · ·+ 1
(k−2)!4tk−2qk(t) + · · · ,

(3.33)

qi(t+4t) = qi(t) +4t qi+1(t) + 1
24t2qi+2(t)

+ · · ·+ 1
(k−i)!4tk−iqk(t) + · · ·

i = 3, 4, 5, · · · ,

(3.34)
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where

qk(t) =
∂k

∂tk
r(t) . (3.35)

Now for the position r(0) and its scaled derivatives r(k) with

r(0) = r, r(1) = 4t v, r(2) = 1
2
4t2a,

r(3) = 1
6
4t3 ∂3r

∂t3
, r(k) = 1

k!
4tkq

(3.36)

a simple Taylor series predictor becomes
r̃

(0)
n+1

r̃
(1)
n+1

r̃
(2)
n+1

...

 = P


r

(0)
n

r
(1)
n

r
(2)
n

...

 , (3.37)

where P is the Pascal triangle matrix with the binomial coefficients in its

columns:

P =



1 1 1 1 1 1 · · ·
0 1 2 3 4 5 · · ·
0 0 1 3 6 10 · · ·
0 0 0 1 4 10 · · ·
0 0 0 0 1 5 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .


. (3.38)

Due to the missing introduction of the equations of motion, the predictor

generates not the exact values for the position and its derivatives. But now,

with help of the predicted position r̃
(0)
n+1 the forces of the time step n+1 can

be calculated, and hence the correct accelerations an+1. The comparison

with the predicted (scaled) accelerations r̃
(2)
n+1 from Eq. 3.37 gives a measure

for the error of the predictor step:

~εn+1 =
1

2
4t2an+1 − r̃

(2)
n+1 . (3.39)
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Then this error is used to improve the predicted values in a corrector

step which reads:
r

(0)
n+1

r
(1)
n+1

r
(2)
n+1

...

 =


r̃

(0)
n+1

r̃
(1)
n+1

r̃
(2)
n+1

...

+


c0
c1
c2
...

 ~εn+1 . (3.40)

The values for the corrector vector have to be chosen according to the ex-

pansion i of the Taylor series in Eqs. 3.31–3.34. Usually the Nordsieck/Gear

algorithm works with i = 3, · · · , 8 values for which the corrector vectors can

be found, e.g. in [Allen, Tildesley, 1990; Berendsen, van Gunsteren, 1986;

Beeler, Kulcinski, 1972; van Gunsteren, 1977]. A compilation is given in

Tables 3.1 and 3.2.

Further representations of this scheme, where the higher derivatives are

replaced by the accelerations of prior steps, can be found in [Berendsen,

van Gunsteren, 1986; van Gunsteren, 1977].

Table 3.1 Nordsieck/Gear corrector vectors [Allen, Tildesley, 1990; Berendsen,
van Gunsteren, 1986].

i c0 c1 c2 c3

3 0 1 1
4 1/6 5/6 1 1/3
5 19/120 3/4 1 1/2
6 3/20 251/360 1 11/18
7 863/6048 665/1008 1 25/36
8 275/2016 19087/30240 1 137/180

Table 3.2 Nordsieck/Gear corrector vectors (continued).

i c4 c5 c6 c7

5 1/12
6 1/6 1/60
7 35/144 1/24 1/360
8 5/16 17/240 1/120 1/2520
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Basically, within predictor-corrector methods the corrector step may

be repeated to refine the results. Fortunately, due to its accuracy this is

not necessary for the Nordsieck/Gear algorithm. In this way, as already

mentioned, the huge effort of an additional force computation is avoided.

To gain the real velocities vn+1 — for example to calculate the

temperature — the according part of Eq. 3.36 has to be reversed:

vn+1 =
r

(1)
n+1

4t . (3.41)

Further, it is worth to mention that the Nordsieck/Gear scheme is a

self-starting algorithm, i.e. it is sufficient to give the initial positions and

velocities and set the higher derivatives to zero at the beginning.

3.3.3 Assessment of the Integration Algorithms

The most favorable algorithm with respect to the required memory stor-

age is the leap-frog scheme with three storage vectors, followed by the

velocity Verlet with four and the k-value Nordsieck/Gear algorithm with

k + 1 vectors. This may become important for studies of large-scale MD

models.

In [Berendsen, van Gunsteren, 1986] a comparison of accuracy, energy

drift and mean square fluctuations dependent on the step size 4t for the

case of the harmonic oscillator potential has been illustrated. Though a

simple model, the results in principle show the behavior of the different in-

tegration algorithms, where for all step sizes the Nordsieck/Gear algorithm

clearly has shown the highest accuracy with respect to deviations from the

exact trajectory.

Considering the conservation or fluctuations of the total energy leads

to mixed results. Especially with real models, i.e. simulations of complex

systems, there is an upper limit for the step size above which the Verlet

methods are superior to the Nordsieck/Gear algorithms [Allen, Tildesley,

1990]. Further, the latter reach an optimum with respect to energy fluctu-

ations for k = 6 or 7. Actually, there is just a very small difference between

k = 6 and 7.

While speed of the integration schemes generally plays a minor role, this

leads to two conclusions:

(1) If accuracy and long periods are not important for the simulations,

the Verlet algorithms have to be preferred.
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(2) For high-accuracy problems or long-time simulations the 6-value

Nordsieck/Gear predictor-corrector yields better results, though at

the cost of decreased step sizes.

Therefore, the MD calculations of the current work most often have

been performed using the 6-value Nordsieck/Gear algorithm.

3.3.4 Other Methods

Though the described methods (including their derivatives) are the most

frequently used and appropriate ones, we would like to mention at least

Rahman, who — to our knowledge — has performed the earliest real-

istic MD study with continuous potentials for the example of liquid ar-

gon [Rahman, 1964]. In this work he utilized a simple predictor-corrector

method that has the disadvantage, in that it needs several corrector passes

to provide accurate solutions of the equations of motion. In his later works,

he switched over to Nordsieck/Gear algorithms [Rahman, Stillinger, 1971].

Still, there are several other methods that claim an improved behavior

with respect to the one or other characteristic, for which [Fincham, Heyes,

1982; Heyes, Singer, 1982] include some examples.

3.3.5 Normalized Quantities

When performing numerical calculations usually the use of normalized

quantities is handier compared to standard unit systems like, for exam-

ple, the cgs or mks system [Physikalisch Technische Bundesanstalt, 1985].

A normalized quantity x̂ is derived from the real value x by a scaling factor

x0: x̂ = x/x0. There are a lot of scaling possibilities (e.g. the application

of atomic units), but due to the special characteristics of MD models we

have chosen the unit system as given in Table 3.3.

Table 3.3 Units and scaling factors for normalized quantities.

Mass Time Distance Velocity Force Energy
m0 t0 r0 v0 F0 E0

10−25 kg 10−14 s 10−10 m 104 m/s 10−7 N 10−17 J
60.22 a.m. 10 fs 1 Å 10 Å/ps 0.1 µN 62.41 eV
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3.4 Efficient Force Field Computation

Without question, the most time-consuming part of MD simulations is

the computation of the particle interactions. Obviously, when considering

Eq. 3.8, the reason for this are the numerous summations over all two-body

forces fij that are necessary to yield the resulting force Fi for the ith par-

ticle. For a system of N atoms the number of single summation steps is

N(N−1). Using the fact, fij = fji halves this number (Newton’s third law).

Software algorithms handle the force computation with the help of two

nested loops, where the outer loop counts over all atoms while the inner one

considers the interacting particles only. In this way the necessary pairs of

indices ij are available to calculate the particle distances, pair potentials,

resulting forces, directions and vector components.

Thus, designing an efficient — and therefore fast — algorithm for the

computation of the N -body force field in any case means to reduce the

instructions of the inner loop to a minimum. Since that mainly concerns

the derivation of particle acceleration components from a given pair poten-

tial, the subject will be discussed next.

Beside this, there are some sophisticated techniques that reduce the

number of passes through the inner loop significantly. Basing on the finite

range of the interactions, these methods are the key to large-scale MD

simulations.

3.4.1 Force Derivation

If a pair potential is given analytically, then the according interaction force

can be easily derived analytically (Eq. 3.6). But, however simple the re-

sulting expression may be (in the case of a Barker or Schommers potential

it is rather complex), its application leads not exactly to a reduction of the

evaluations necessary within the inner loop.

A common procedure within numerical algorithms is to trade memory

for speed. Here this means that the computation speed can be increased by

the storage of the pair interaction force as a function of particle distance:

fk = f(rk) = − ∂υ(r)

∂r

∣∣∣∣
r=rk

, rk = r0 + k 4r , k = 0, 1, 2, · · · , (3.42)

where r0 is the minimum distance and 4r is the table spacing.

Such a force table fk is prepared in advance, either according to an

analytical expression or numerically, which can be used further during the
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MD calculation. Usually a spacing of 4r = 10−3 Å is sufficient to avoid

an interpolation of values lying between those of the table. A numerical

derivation of the force table from the potential υ may be performed by the

simple central difference method:

fk =
υ(rk−1)− υ(rk+1)

24r , rk = r0 + k 4r , k = 0, 1, 2, · · · . (3.43)

There is still room for further fine tuning. An example is to avoid the

square root, necessary to obtain the particle distance, which is relatively

time consuming on several computers. This can be done by scaling the force

with r1/2 and storing the table as a function of r2. Then the square root

in the Eq. 3.8 vanishes. Another, if slighter improvement is to work with

an acceleration table by scaling the force table with the inverse particle

mass. This makes the according division operations obsolete within the

integration algorithm.

3.4.2 List Method

However, the most sophisticated algorithms with respect to a significant

reduction of the passes through the inner force computation loop are based

on the artificial restriction of the interaction range. Therefore, the pair

potential or the force table has to be multiplied with a cut-off function as,

for example, that given in Eq. 3.24 in connection with periodic boundary

conditions. Here in addition, cutting-off is necessary to avoid numerical

instabilities as well as to increase the energy conservation behavior. Alter-

native approaches are given in [Allen, Tildesley, 1990; Streett et. al, 1978;

Stoddard et. al, 1973; Powles et. al, 1982].

Now, using potentials with a maximum range of rc during the (N − 1)

passes through the inner loop, force computations can be restricted to those

particles that are within the interaction range, i.e. forces are calculated only,

if the particle distance is smaller than rc. Though this doesn’t reduce the

number of loop passes but further needs a condition command, the total

number of executed instructions is much smaller depending on the cut-off

radius rc.

The list method [Allen, Tildesley, 1990; Verlet, 1967] goes one step fur-

ther, again, trading memory for speed. Here, for each particle a list is stored

that contains its neighbors within a sphere of radius rl > rc. That is, the in-

ner loop treats just these particles which are about within interaction range.

Due to the particle motion the neighbor lists have to be updated from time
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to time, where the interval depends on the MD model as well as on the

list sphere radius rl. But usually, after about each 20 calculation steps an

update should be performed. Another possibility is to make the update

interval dependent on the particle displacements [Fincham, Ralston, 1981;

Thompson, 1983].

However, compared to the standard procedure the list method reduces

the number of force computations nF significantly (see Fig. 3.13):

nF ≈
N2

24s +NlN , (3.44)

where 4s denotes the number of calculation steps of the update interval

and Nl is the average number of particles within the neighbor list.

3.4.3 Cell Algorithms

As the system size increases, the memory usage of the list method may

become too large, and the update procedure — depending on N2 — needs

too much time.

In this case cell algorithms are even more efficient. Here, the simulation

space first is divided equally into cubical cells (see Fig. 3.11). Then the

particles are assigned to the single cells according to their positions, where

the assignments are stored in a list for each cell. Here, it is important to

Fig. 3.11 The cell algorithm bases on the division of the simulation space into small cells
with side lengths greater than the cut-off distance rc. Different examples for possible
arrangements are illustrated.



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

62 Molecular Dynamics

choose the side lengths of the cells slightly greater than the cut-off distance

rc of the interaction potential.

With such a cell arrangement the force computation has to be per-

formed in two steps. First, the interactions of particles within the same

cell are considered, followed by the force computation for atoms located in

neighboring cells, where the number of direct cell neighbors nn depends on

the cell arrangement and on the location (boundary cells have less neigh-

bors, see Fig. 3.11). However, neglecting cells located at the boundary, for

(large) two-dimensional arrays nn = 8, for two-layer structures nn = 17,

and for three-dimensional arrangements nn = 26. Therefore, using the cell

algorithm the total number of force computations nF is given by:

nF ≈ (nn + 1)NcN , (3.45)

where Nc is the average number of particles per cell.

The assignment of the particles to the according cell lists is easy to

implement, needs less computation time and, therefore, may be performed

after each MD calculation step.

3.4.4 SPSM Procedure

When it comes to periodic boundary conditions and/or parallel computing,

the cell algorithms are superior to all the other methods.

The virtual mirroring into the according spatial directions of all par-

ticles, as described in a previous section, now is reduced just to particles

within boundary cells. That is, for the interaction of a boundary cell not

only the direct neighbor cells are taken into account, but all its counter-

parts on the opposing sides of the simulation box. In this way, in a two-

dimensional and three-dimensional array each cell has 8 and 26 neighbors,

respectively, i.e. cell algorithms provide periodic boundary conditions with-

out further effort.

One of the most sophisticated cell algorithm is the SPSM (Scalable

Parallel Short-Range Molecular Dynamics) method [Lomdahl et. al, 1993;

Beazley, Lomdahl, 1994]. It is tailored for the use of parallel computers

since its code scales linearly with the number of processors and particles,

while the parallel efficiency (with respect to minimal processor communi-

cation rates) ranges on a very high level.

In contrast to the standard cell algorithm, the application of the SPSM

method bases on a division of the simulation space into rectangular sub-

spaces, prior to the further subdivision into cells. The subspaces are
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Fig. 3.12 Applying Newton’s third law on the computation of particle interactions
between neighboring cells reduces the number of force calculations. Instead of considering
all, it is sufficient to include just one half of the direct cell neighbors which can be
determined by following specific interaction paths. The most obvious choices for such
interaction paths are illustrated (see [Lomdahl et. al, 1993; Beazley, Lomdahl, 1994]),
others are possible, too.

assigned to the processing nodes of a parallel machine, where the arrange-

ment of the subspaces plays no major role (a subspace may differ in its

length, height and depth).

The force computation is basically the same like that described above,

but for a further reduction of runs through the inner loop, Newton’s third

law (in this context fij = fji) is applied to the interactions of neighboring

cells. In the case of a cell structured calculation space this means, that only

one half of the cell neighbors have to be considered. These neighbors are

selected by following a specific “interaction path” (see Fig 3.12). The inter-

actions resulting from the other, missing half of neighbors are considered

when the path is followed starting from such a neighbor.

With that, the SPSM scheme works as follows. First all interactions of

particles within the same cell are computed. Then, forces between parti-

cles in neighboring cells are calculated following the interaction path. In

this way, the accelerations are accumulated by the original cell and each

“visited” cell. In order to calculate all forces (including those resulting from

neighbors that are not on the interaction path) this procedure is carried out

on all cells and simultaneously on all processor nodes.

Whenever the interaction path crosses a processor boundary, message

passing is used to communicate particle data. Here it is the main advan-

tage of the SPSM scheme that it can be translated into a very efficient

code, where each processor node simultaneously manages its own cells

as well as those received from its neighbor nodes. Moreover, the use of



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

64 Molecular Dynamics

appropriate data structures combined with modern message passing tech-

niques makes the SPSM algorithm without competition. The total number

of force calculations (including periodic boundary conditions) is given by

nF ≈
1

2
N [(nn + 1)Nc − 1] . (3.46)

3.4.5 Discussion

In Fig. 3.13, the approximate number of force calculations is plotted for

each method as a function of the particle number. As can be seen quite

clearly, the standard “brute force” method should never be used. For MD

models consisting of particles in the range of up to several ten-thousands the

Fig. 3.13 Comparison of different force computation methods. The approximate num-
bers of force calculations for a system of N particles are illustrated as functions of N .
The parameters of the list method have been chosen to be 4s = 10 (update interval)
and Nl = 60 (average number per neighbor list). For the cell algorithm and SPSM
method the average particle number per cell Nc is 70 and the next neighbor number
nn is 26 according to a three-dimensional cell arrangement. All parameters represent
approximately a bulk model for aluminium. The overall timing of real algorithm im-
plementations may differ from the plot, but basically the dependence on the particle
number is the same.
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list method performs best. Above this range — it depends strongly on the

MD model, on the implementation of the algorithms, and on the computer

hardware — the SPSM procedure is unbeatable. Though the standard cell

algorithm too performs well for large-scale simulations, it is always worth

to spend the additional effort, necessary to implement the SPSM scheme.

3.5 Implementation

For the MD studies, performed in the frame of this monograph, it was

necessary to develop a rather complex software system (see Fig. 3.14). The

basic concept — to be as flexible as possible — consists of the integration

of the modeling and visualization modules in a common PC program, while

the MD calculation and analysis algorithms have been separated for the use

on different computer platforms.

The PC modules (nano-engineering, potential generator, visualization)

Fig. 3.14 Schematic drawing of the developed MD software system: The essential fea-
tures have been integrated in a PC based software. The algorithms for MD calculation
and analysis are implemented on super computers and on workstations. A common file
system is the interface for distributed MD computing via LAN/WAN or for the graphical
processing with the various external software systems.
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have been developed with the Microsoft Visual Studio, and a window based

user interface allows for easy set-ups of different MD models and for a

graphical processing of the MD data.

The MD and analysis algorithm developments have been performed

using the FORTRAN90 programming language with the additional MPI

library for parallel computing. Therefore, the same code could be used

for compilations on various platforms. Several MD algorithms (Verlet,

Nordsieck/Gear and Rahman integration methods combined with list, cell

and SPSM force calculation schemes) have been implemented on PC and

UNIX workstations, on a SNI VPP300-32 vector parallel machine and on

an IBM SP2-256 massive parallel computer.

Since all interfaces have been designed in the form of a common file

system, the communication and data transfer can be handled either via

the Local or Wide Area Network (LAN/WAN) to perform distributed

computations.
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Characterization of Nano-Systems

Just a few years ago, materials research had mainly to do with macroscopic

systems. The situation changed fundamentally with the rise of nanotech-

nology. Now properties which could have been well defined and clearly fixed

for macroscopic (bulk) systems no longer can be assigned to nanostructures

— at least not in the same simple way.

In this section, we would like to discuss this problematic nature con-

nected to the characterization of nanosystems. First, the difficulties are

outlined at the example of the thermal stability of nanostructures, then

we go further into detail considering other basic material properties. In

this context, it will become apparent that the standard model of solid-state

physics fails at the nanometer level, that is, characterization of nanostruc-

tures has to be performed by other means. The alternatives, arising from

the analysis of MD calculations, are compiled in the final section, and wher-

ever possible, we illustrate the topics with exemplary MD studies.

4.1 Thermal Stability

Melting temperature and thermal stability of nanosystems are examples for

such properties which may change extremely when we go from the macro-

scopic to the microscopic realm, i.e. when we consider nanometer-scale

properties. The melting temperature of macroscopic systems is well de-

fined and the structures of these systems are thermally stable up to the

melting point. Of course, phase transitions may occur, but the various

phases define stable configurations as well.

In contrast to macroscopic systems, the melting temperature of nanosys-

tems depends on the particle number and is also a function of the shape of

67
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the system. As will be demonstrated, the melting temperature of certain

nanosystems is not defined and not clearly fixed, respectively. Especially

in connection with materials research, this is a completely new situation.

Let us demonstrate this point by means of an example: the melting

temperature of aluminium (Al) is 933 K and the microscopic structure and

outer shape of macroscopic Al-systems are stable up to 933 K. Typically,

this is not the case for Al-systems of nanometer-size.

We performed MD calculations, as has been shown in the prior sections,

on the basis of the realistic Schommers pair potential. Here, the following

results are of particular interest [Rieth et. al, 2000; Rieth et. al, 2001]:

The thermal stability of structures on the surface — as, for example, the

three-dimensional object in Fig. 4.1 — in general will only be weakly cor-

related with the melting temperature. The structures are usually unstable

below the melting point and may even dissolve.

In Fig. 4.1, a three-dimensional “F”-shaped structure consisting of alu-

minium atoms is shown. Though the melting point of Al is 933 K, it can

be clearly seen from Part (4) of the figure that this configuration is struc-

turally disturbed already at T = 270 K, which is significantly below the

melting temperature.

The system develops as follows: Part (1) of Fig. 4.1 represents the initial

configuration. It corresponds to the crystalline structure of aluminium at

zero temperature. The time step used in the calculations is 5 · 10−15 sec;

the particle number of the nanosystem is N = 1660 (without substrate).

After 2000 time steps the system has reached a temperature of 250 K [Part

(2) of Fig. 4.1]. After 6000 time steps [Part (3) of Fig. 4.1] the tempera-

ture is 270 K, and the system remains at this temperature, but there are

still changes in connection with the shape of the system. After 104 time

steps the outer form remains constant too, as is shown by Part (4) of the

figure.

It is typical for the behavior of such nanostructures that a tiny variation

of the initial conditions leads to different final shapes. Two further examples

are illustrated in Fig. 4.2.

In connection with the studies in Figs. 4.1 and 4.2, the following is

essential: the thermal behavior is not entirely determined by the number

of particles, but also by the outer form of the nanosystem.

In order to investigate the melting process of the structure given in

Figs. 4.1 and 4.2, the temperature has been increased (see Fig. 4.3). It

turned out that a melting temperature is not or just hardly definable, be-

cause the onset of sublimation is prior to the melting process, that is, the
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Fig. 4.1 A MD study of a nanosystem with the shape of a three-dimensional “F” resting
on a substrate. Both the nanostructure and the substrate consist of aluminium. The
“F” is built up with 1660 atoms. Starting from 0 K [Part (1)] the temperature rises
continuously up to 270 K [Part (3)], whereas the change of the outer shape still continues.

Part (4) shows the point at which the system reaches an equilibrium.

melting process is “overtaken” by the sublimation process and, therefore,

melting does not take place.

In conclusion, specific material properties of nanosystems may differ

essentially from the corresponding properties of macroscopic systems. This

has been demonstrated in connection with the thermal stability and the

melting temperature of the nanostructure shown in Fig. 4.1.

The main reason for this tendency is the fact that a great fraction

of the particles (atoms, molecules) of such small systems belongs to the

surface region. Since the surface particles are less bonded than the particles

in the bulk, this leads to relatively strong anharmonicities already at low

temperatures, that is, far below the melting temperature.
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Fig. 4.2 Tiny variations of the initial conditions lead to different final shapes of the
nanostructure. In the case of Part (1), the temperature reaches 400 K after 104 time
steps. In Part (2), the temperature is 500 K after 5000 time steps.

Even the melting process takes place far below the bulk melting tem-

perature or is simply not defined as has been demonstrated in connection

with the “F”-shaped nanosystem. The thermal behavior of such systems

is a complex function of the particle number as well as of the outer shape.

This must have consequences for the theoretical description of the material

properties for systems of nanometer-size as we will show in the following

section.

4.2 Basic Material Properties

In modern materials research solid state physics became more and more

relevant, in particular, the microscopic structure and dynamics. For suf-

ficiently large systems the standard model of solid state physics is in most

cases adequate for the description of material properties. The standard

model of solid state physics bases on the ordered structure and on the as-

sumption that the vibrational amplitudes of the atoms are sufficiently small,

so that it can work within the harmonic approximation. In other words, the

dynamics is expressed by phonons. For example, the specific heat at con-

stant volume is expressed in terms of phonons by the following expression
[Allen, de Wette, 1969; Maradudin et. al, 1967]:

cV = kB
∑
p,q

α2eα

(eα − 1)2
(4.1)
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Fig. 4.3 An investigation of the melting process of the nanostructure given in Figs. 4.1
and 4.2: Starting point is the configuration as illustrated in Part (2) of Fig. 4.2. First
the temperature has been increased to 600 K. The result after 5000 time steps is shown
in Part (1). There is no significant change to recognize. The second attempt consists of
an increase to 750 K. The development of the nanostructure after 1000 calculation steps
is shown in Part (2). After 4000 time steps the temperature is still at 750 K and the
onset of sublimation can be clearly seen [Part (3)]; the melting process is overtaken by
the sublimation and a melting temperature for the nanostructure is not definable.

with

α =
~ωp(q)
kBT

, (4.2)

where ωp(q) are the phonon frequencies, q is the wave vector and p labels

the phonon branches.

Of course, electronic properties too are essential. An example is the

understanding of superconductivity, where the electron–phonon interaction

is important.
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In conclusion, within conventional materials research the basis of the

microscopic description of the material properties is the ordered structure

and the harmonic approximation. Properties of a solid are given in terms of

phonons, where the phonon frequencies ωp(q) are dependent on the crystal

structure and the electronic properties.

That is the situation in connection with macroscopic systems, but this

can no longer be the basis for materials research in nanotechnology.

As we have seen above, nanosystems do not behave in such a simple way.

In most cases, they are neither ordered nor can the dynamics be approxi-

mated by phonons, because the harmonic approximation is not applicable.

Even the melting temperature is no longer a fixed material property, as

we demonstrated in connection with the nanostructure on a substrate in

Fig 3.1. Therefore, at the nanometer level materials research gets a new

dimension.

Nanosystems are disordered already at relatively low temperatures and

the harmonic approximation breaks down completely, that is, even at

relatively low temperatures phonons are no longer definable since the an-

harmonicities can no longer be considered as small perturbations.

In other words, at the nanometer scale the standard model of solid state

physics breaks down in many cases and we have to introduce other methods

and quantities for the description of material properties. This is the case

for any anharmonic and disordered system, as for example, liquids in the

bulk. For simplicity, we would like to explain the principal points by means

of a bulk liquid.

In the case of liquids the usual crystallography and the phonons are not

relevant. The structure has to be described rather by statistical mechanics,

that is, in terms of correlation functions, as for example, the pair correlation

function g(r) which can be measured (r is the relative distance between two

particles). Furthermore, we have to know the interaction potential between

the atoms and molecules, respectively. In the case of metals, the interaction

is given by the pair potential υ(r), where again r is the relative distance

between two particles.

In conclusion, instead of the phonons ωp(q), correlation functions (g(r)

etc.) and the interaction potential υ(r) become the relevant quantities:

ωp(q) 7→ g(r), υ(r).
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For example, the isothermal compressibility χT is defined by the follow-

ing equation [March, 1968]:

1

χT
= −V

(
∂p

∂V

)
T

. (4.3)

Now we need an expression for the pressure p (V is the volume), that

is, we need the equation of state, which can be formulated in terms of g(r)

and υ(r) as follows:

p = ρkBT −
ρ2

6

∫
r
∂υ(r)

∂r
g(r)dr . (4.4)

If Eq. 4.4 is applied on Eq. 4.3, the isothermal compressibility χT can

be expressed in terms of g(r) and υ(r): g(r), υ(r) 7→ χT .

As already mentioned, in the case of nanosystems the anharmonicities

are very strong. Moreover, a great fraction of the atoms belongs to the

surface region and it turned out that the thermal expansion at the surface

is distinctly larger than in the bulk. Therefore, the thermal expansion too

becomes a relevant quantity and the theoretical picture should be able to

describe it.

The thermal expansion coefficient αp can be expressed by the isothermal

compressibility χT and the thermal pressure coefficient γV :

αp = χT γV . (4.5)

In order to get the thermal expansion coefficient αp we just have to

calculate γV , since χT is already given by Eq. 4.3:

γV =

(
∂p

∂T

)
V

. (4.6)

In addition, we need the equation of state for the pressure p which

is given for the bulk by Eq. 4.4. In other words, the thermal expansion

coefficient αp too can be expressed in terms of g(r) and υ(r): g(r), υ(r) 7→
αp.

Basically, this is the case for all material properties except that in some

cases higher order correlation functions are needed.

It should be mentioned that the thermal expansion is zero for the har-

monic case, that is, within the phonon picture the thermal expansion cannot

be described.

In conclusion, in the case of disordered systems with strong anharmoni-

cities like, for example, liquids in the bulk, phonons are not suitable for an
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adequate description, but the according expressions have to be formulated

in terms of g(r) and υ(r).

Since in the case of nanosystems, a great fraction of particles belongs to

the surface regions, here the quantities g(r) and υ(r) are not only dependent

on the relative particle distance r. In addition, the distance of particles from

the surface has to be taken into account. Usually there is more than one

surface in the vicinity of a particle (see, for example, Figs. 4.1–4.3), so the

situation may become rather complex.

Even for systems with one surface only — for example, a semi-infinite

liquid — the situation is already complicated. In this case, the surface

(defining the x, y-plane) separates the liquid from the vapor phase and

the density ρ varies along the z-axis (the co-ordinate perpendicular to the

surface), so that we have ρ = ρ(z).

Since p is neither a constant nor independent on the coordinates in the

liquid–vapour transition zone, the pressure cannot be described by Eq. 4.4.

Here p is an anisotropic quantity [Schommers, 1987], that is, at any point

z in the transition zone we have a normal pressure component pn and a

tangential component pt. Both are different from each other in the transi-

tion zone (of course, they are identical in the isotropic bulk phase). With

r = (x12, y12, z12), the statistical mechanical expressions for pn and pt take

the form [Schommers, 1987; Croxton, 1980]

pn = ρ(z)kBT −
1

2

∫
ρ2(z)ρ(2)(r, z)

∂υ(r)

∂r

z2
12

r
dr , (4.7)

pt = ρ(z)kBT −
1

2

∫
ρ2(z)ρ(2)(r, z)

∂υ(r)

∂r

x2
12

r
dr . (4.8)

Here, for simplicity, it is assumed that the pair potential at the surface

is the same as in the bulk and instead of the correlation function g(r, z) in

Eqs. 4.7 and 4.8, the two-particle distribution function ρ(2) is used.

With the pressure components pn and pt, the surface tension γ may be

determined by

γ(T ) =

∫ ∞
−∞
|pn − pt(z)|dz , (4.9)

and using Eqs. 4.7 and 4.8, the statistical mechanical expression becomes

γ(T ) =
1

2

∫ ∞
−∞

ρ(2)(r, z)
∂υ(r)

∂r

x12 − z12

r
dr dz . (4.10)
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The surface tension and its temperature dependence is of particular

interest in the description of thermodynamic properties [Schommers, 1987].

In the case of nanosystems, like those given in Fig. 4.1, the situation

with respect to statistical mechanical descriptions is more complex than

that for semi-infinite systems. This is due to the fact that here various

surfaces have to be considered which are closely arranged in the form of

more or less complicated geometries. Therefore, the statistical mechanical

expressions (in analogy to Eqs. 4.7, 4.8 and 4.10) will hardly be relevant in

connection with numerical calculations. The more direct way is to perform

molecular dynamics calculations.

4.3 Wear at the Nanometer Level

Within the frame of such molecular dynamics systems, friction in the macro-

scopic sense is not defined. At the microscopic molecular dynamics level the

forces are formulated as quantities which are dependent on the structural

configuration (particle positions) but not on the particle velocities. There-

fore, a force which is proportional to the velocity cannot be introduced at

the microscopic level and therefore, a friction constant in the macroscopic

sense is not definable at the microscopic level in modern materials research;

at this level wear is described by specific complex processes. This point may

be discussed best by means of an example:

Figure 4.4 shows a molecular dynamics model for a spinning wheel mov-

ing towards a thin film. The wheel rotates with about 1012 revolutions per

second, has a temperature of 300 K and its diameter is approximately

10 nm. When the wheel contacts the surface, friction-effects emerge and

according to the magnitude of the vertically applied force the wheel may

even be destroyed as is illustrated in Fig. 4.4.

In conclusion, friction at the microscopic level is a complex process and

cannot be characterized by one constant only as is the case for macroscopic

friction. In the example of Fig. 4.4, wear is dependent on the specific

structure of the surface and additionally on the shape and motion of the

wheel.

4.4 Mean Values and Correlation Functions

As has been shown, materials research at the nanometer level must not be

restricted to conventional solid state physics which is based on an ordered
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Fig. 4.4 A MD model for a spinning wheel moving towards the surface of a thin film.
Both the film and the wheel consist of aluminium atoms. The wheel rotates at room
temperature with about 1012 revolutions per second. It can be clearly seen that friction
effects emerge in form of complex processes as soon as the wheel contacts the surface.
In this case, it leads to the destruction of the wheel.

structure and on the harmonic approximation. Due to the considerable an-

harmonicities and the strongly disturbed structure of nanosystems — even

far below the melting temperature — statistical mechanics and the theory

of liquids [Rice, Gray, 1965; Lucas, 1991] are also of particular interest. In

this context, MD calculations play a major role and, obviously, up to now

there is no alternative to this method.

Though visualization is an important analysis instrument, numerical

methods are still needed in many cases for quantitative characterizations

of the huge amount of MD data. Here, the following sections provide

a compilation — including brief derivations — of the most important

quantities.
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4.4.1 Ensemble Theory

The dynamic state of a classical mechanical many-particle system is com-

pletely defined, if the generalized co-ordinates qi(t) and momenta pi(t) are

known at a specific time t. Therefore, the set (qi, pi), i = 1, · · · , 3N can be

considered as micro-state of the system. This is a point in a 6N–dimensional

space which is the so-called classical phase space. The evolution with time

of the system follows a curve (qi(t), pi(t)) in the phase space (the phase

space trajectory) that is determined by the Hamiltonian equations of motion

(Eq. 3.1). A simple example for a trajectory has already been illustrated

in Fig. 3.10.

But there is an alternative point of view: instead of considering one

system which changes from microstate to microstate, it is possible to

consider many systems at the same time, all corresponding to the same

Hamiltonian but each to a different microstate. Such collections of sys-

tems are called statistical ensembles [Schommers, 1986; Friedman, 1985;

Greiner et. al, 1993].

In general, the probability for finding a macroscopic system in a certain

microstate is not equally distributed. Therefore, the states have to be

weighted by a probability density function ρ(qi, pi) — the so-called phase

space density. Since this density strongly depends on the environment or

boundary conditions, respectively, there are different expressions according

to the specific situations which are classified in Table 4.1.

Table 4.1 Statistical ensembles and phase space densities [Schommers, 1986; Greiner
et. al, 1993].

Ensemble Density Conditions

Micro-canonical ρ(qi, pi) =

{
ρ0 E ≤ H(qi, pi) ≤ E +4E
0 otherwise

isolated system
N,V,E = const.

Canonical ρ(qi, pi) =
exp

(
−H(qi,pi)

kBT

)
∫

exp
(
−H(qi,pi)

kBT

)
d3N q d3Np

closed, isothermal
system

N,V, T = const.

Grand
Canonical

ρ(qi, pi) =
exp

(
−H(qi,pi)−µN

kBT

)
∫

exp
(
−H(qi,pi)−µN

kBT

)
d3N q d3Np

open, isothermal
system

V, T, µ = const.
(µ is the chemical

potential)
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Now, the basis of the ensemble theory is the assumption that any mea-

surable thermodynamic quantity of state f of a macroscopic system can

be described by mean values of the according statistical ensemble quantity

f(qi, pi):

〈f〉e =

∫
f(qi, pi)ρ(qi, pi) d

3N q d3Np∫
ρ(qi, pi) d3Nq d3Np

. (4.11)

As can be clearly seen from Eq. 4.11 in connection with Table 4.1, in

most cases the expression for the mean values of interest becomes rather

complicated unless far-reaching approximations are applied. MD calcula-

tions, however, enable the direct determination of measurable quantities

without approximations in a simple way. This is due to the fact that the

MD data automatically represents a statistical ensemble according to the

model design. As already described in the previous chapter, most often this

is a micro-canonical ensemble, but canonical or grand canonical ensembles

may be generated as well. Thus, with the help of MD calculations, Eq. 4.11

takes the simple form:

〈f〉 = 〈f〉e =
1

N

N∑
i=1

f(ri,vi) . (4.12)

In Eqs. 3.21 and 3.22, for example, this has already been used without

discussion.

To average an ensemble, the time dependency of the trajectory plays

no role. Instead, each point in phase space is weighted with the density

function according to the probability of the occurrence of the specific mi-

crostate. Since macroscopic quantities are independent of time in thermo-

dynamic equilibrium, they could be expressed in principle as time averages

of single particle quantities along the trajectory by

〈f〉t = f̄ = lim
τ→∞

1

τ − τ0

∫ τ

τ0

f (qi(t), pi(t)) dt . (4.13)

In theory, the time average f̄ would be identical, for example, to the

micro-canonical ensemble average 〈f〉e, if the trajectory passes each point of

the energy surfaceH(qi, pi) = E at least once, but in equal numbers of time.

This is the so-called ergodic hypothesis [Farquhar, 1964]. Though never

exactly fulfilled within complex systems, it may be used for an alternative

computation of mean values (quasi ergodic hypothesis).
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Again, in contrast to theoretical considerations the application of time

averages in the case of MD calculations is easy, because time-dependent so-

lutions of the Hamiltonian are available for each particle. It has been shown
[Schommers, 1986] that the quasi ergodic hypothesis is fulfilled in a good

approximation already for a few thousand calculation steps, and therefore,

within MD calculations the infinite limit in Eq. 4.13 can be replaced by

τ → τe, where τe varies between 10−12 and 10−11 seconds depending on the

MD model.

4.4.2 Pair Correlation Function

Within statistical mechanics molecular distribution functions describe the

probability of the occurrence of a particular arrangement of atoms in equi-

librium. In a statistical ensemble of N particles the pair distribution g2(r1,

r2) dr1dr2 is proportional to the probability of finding a particle at r2 in

a volume element dr2, if, at the same time, there is a particle at r1 in the

volume element dr1 (independent of where the remaining N − 2 molecules

are located).

For a homogeneous liquid in thermal equilibrium g2(r1, r2) dr1dr2 can-

not depend on the choice of r1 and therefore, it depends on the difference

r = r1 − r2 alone. Further, since the liquid is macroscopically an isotropic

body, the direction of r is unimportant. Thus, g2 depends only on the

magnitude of the distance r = |r|. In this way the pair correlation func-

tion g(r) = g2(r) is defined as the probability of finding a particle at the

distance r, if there is a particle at the origin. Usually the pair correlation

function is normalized to unity at large r.

In a mono-atomic system with particle interactions described by a pair

potential υ(r), the statistical mechanics expression for g(r) is given by
[Schommers, 1986]:

g(r) = V 2

∫
dr3 · · ·

∫
drN exp

[
− 1
kBT

1
2

∑N
i,j=1
i6=j

υ (|ri − rj |)
]

∫
dr1 · · ·

∫
drN exp

[
− 1
kBT

1
2

∑N
i,j=1
i6=j

υ (|ri − rj |)
] . (4.14)

As can be seen clearly, the determination of the pair correlation function

g(r) from the pair potential υ(r) by Eq. 4.14 is only possible, if simplifying

assumptions are applied on the solution of the N and (N − 2)-fold inte-

grals. The approximations, produced by such assumptions, are more or

less uncontrolled and lead to no reliable results. On the other hand, the

determination of g(r) — based on results of MD calculations — can be
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done without any uncertainty. The above mentioned probability meaning

of g(r) is directly converted into an algorithm which is formally given by

g(r) =
1

%

n(r,4r)
4πr24r , (4.15)

where % is the macroscopic density (N/V ) and n(r,4r) is the number of

particles within the spherical shell that is given by the radii r and r +4r
around an arbitrary particle. The pair correlation function may be applied

to surface structures, too.

Then Eq. 4.15 changes to

g2d(r) =
1

σ

n2d(r,4r)
2πr4r , (4.16)

where σ is the two-dimensional macroscopic density in a layer and

n2d(r,4r) denotes the number of particles in the annulus (radii r and

r +4r) around an arbitrary particle within the considered plane.

Typical forms of the pair correlation function are illustrated in Figs. 4.5

and 4.6 for the example of bulk melting and the pre-melting effect

on surfaces [von Blanckenhagen, Schommers, 1987; Schommers, 1986;

Schommers et. al, 1995].

Fig. 4.5 Bulk study with 864 aluminium atoms: The pair correlation function is plotted
for different temperatures. The transition from solid to liquid state can be clearly seen
(the melting temperature of aluminium is 933 K).
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(a) (b)

(c) (d)

Fig. 4.6 Pre-melting effect on (001) aluminium surfaces: In the present case, the model
consists of 2400 atoms arranged in 12 layers. Figures (a) and (b) show the temperature
and density profiles perpendicular to the surface (along the z-axis) for mean temperatures
of 600 K and 800 K, respectively. The layers are numbered from 1 to 6 starting with
the outermost. As can be seen, the temperature fluctuations are stronger in the case
of the 800 K study [Fig. (b)], but remain below the melting point of aluminium. The
two-dimensional pair correlation functions are plotted in Fig. (c) for the first four layers
(800 K study). Obviously, the surface layer shows liquid behavior well below the melting
point (pre-melting effect). To verify the result, the pair correlation functions of the
surface layers of the 600 K and 800 K studies are compared with a bulk layer [Fig. (d)].

4.4.3 Mean-Square Displacement

Characterization of diffusion processes necessitates the determination of the

diffusion coefficient D. One possibility to deriveD is the computation of the

mean-square displacement 〈r2(t)〉 as a function of time. The mean-square

displacement is a measure for the particle mobility and it is calculated by
[Schommers, 1986; Egelstaff, 1967]

〈
r2(t)

〉
=

1

N

N∑
i=1

[ri(t)− ri(0)] . (4.17)
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Fig. 4.7 Bulk study with 864 aluminium atoms: The mean-square displacement is
plotted for 800 K (solid) and 1100 K (liquid). (The melting temperature of aluminium
is 933 K).

With the relation

lim
t→∞

〈
r2(t)

〉
= 2nd t+ const. (4.18)

the diffusion constant D can be determined with help of MD calculations

over a sufficiently long time period.

For the calculation with Eq. 4.17 particles may be selected from specific

regions like planes on or near the surface, and further, by the use of only

specific components of the particle co-ordinates r = [x, y, z] the mean-square

displacement as well as D may be calculated parallel or perpendicular to a

considered direction. In such cases the constant nd in front of t in Eq. 4.18

has to be adapted according to the dimensionality, e.g. in two dimensions

the constant is 2 in three dimensions, it is 3 [Boisvert, Lewis, 1997].

Figure 4.7 shows the results of a liquid (1100 K) and solid (800 K)

aluminium bulk study. While the mean-square displacement of the solid

takes a horizontal course, the slope of the liquid leads to a diffusion coeffi-

cient — according to Eq. 4.18 — of about 2.9·10−5 cm2/s. The experimental

value is 3 · 10−5 cm2/s [Ludwig, 1969].

In [Schommers et. al, 1995], the pre-melting effect on (110) aluminium

surfaces has been discussed. Here, the diffusion constant parallel to the

outermost layer at 810 K has been determined to be 9.6 ·10−5 cm2/s, which
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Fig. 4.8 Pre-melting effect on (001) aluminium surfaces. In the present case, the model
consists of 2400 atoms arranged in 12 layers. The mean-square displacements parallel
and perpendicular to the outermost layer are plotted for 600 K and 800 K.

is distinctly larger than that of the liquid aluminium. Figure 4.8 illustrates

the results for (001) surfaces. At 600 K, the mean-square displacements

parallel as well as perpendicular to the outermost layer (layer 1) take the

form of a solid. At 800 K, however, one can see quite clearly that the

outermost layer shows the characteristics of a liquid. The diffusion constant

parallel to the surface is 9.65 · 10−5 cm2/s and the perpendicular one is

2.5 · 10−5 cm2/s.

4.4.4 Velocity Auto-Correlation Function

Another possibility to derive the diffusion constant D comes by the ap-

plication of the velocity auto-correlation function ψ(t). The velocity auto-

correlation function is defined by [Schommers, 1986; Egelstaff, 1967]

ψ(t) =
〈v(0)v(t)〉
〈v(0)2〉 . (4.19)

With the velocities vi(t), i = 1, · · · , N, calculated by MD, ψ(t) can be

computed simply by

ψ(t) =

∑N
i=1 vi(0)vi(t)∑N
i=1 vi(0)2

. (4.20)
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The mean-square displacement can be expressed by the velocity auto-

correlation function in the following way:

〈
r2(t)

〉
=

2ndkBT

m

∫ t

0

(t− τ)ψ(τ) dτ . (4.21)

Then, with Eq. 4.18 the diffusion constant D may be derived alterna-

tively by

D =
kBT

m

∫ ∞
0

ψ(t) dt , (4.22)

but it should be noted that the numerical determination of D according to

Eq. 4.18 is more precise.

Here again, with the MD data, it is easy to determine direction-

dependent diffusion constants simply by selecting the particles within a

desired area, e.g. in a certain layer, and by using the specific vector compo-

nents of the particle velocities v = [vx, vy , vz] or by transformation of the

co-ordinate system [Schommers, 1986; Schommers, 1987].

Figure 4.9 shows the velocity auto-correlation functions for solid (800 K)

and liquid (1100 K) aluminium. The minimum of ψ(t) in the case of the

solid is clearly more pronounced compared to the liquid.

Fig. 4.9 Bulk study with 864 aluminium atoms: The velocity auto-correlation function
is plotted for 800 K (solid) and 1100 K (liquid). (The melting temperature of aluminium
is 933 K).
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Fig. 4.10 Pre-melting effect on (001) aluminium surfaces: In the present case, the model
consists of 2400 atoms arranged in 12 layers. The velocity auto-correlation functions
parallel and perpendicular to the outermost layer are plotted for 600 K and 800 K.

The pre-melting effect is illustrated in Fig. 4.10 for the outermost layer

(layer 1) at 600 K and 800 K of a (001) aluminium surface.

4.4.5 Generalized Phonon Density of States

The Fourier transform of ψ(t) leads to a frequency spectrum f(ω) which,

in the case of harmonic solids, represents the frequency spectrum g(ω) of

the normal modes, i.e. the phonons. Thus, for anharmonic systems, like

nano-clusters or surfaces, the Fourier transform f(ω) of the velocity auto-

correlation function can be considered as the generalized phonon density of

states [Schommers, 1986]

f(ω) =
1

Nn

2

π

∫ ∞
0

ψ(t) cosωt dt , (4.23)

where Nn is used for the normalization to unity and is given by

Nn =
2

π

∫ ∞
0

∫ ∞
0

ψ(t) cosωt dt dω = 1 . (4.24)
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Fig. 4.11 Bulk study with 864 aluminium atoms: The generalized phonon density of
state is plotted for 800 K (solid) and 1100 K (liquid). (The melting temperature of
aluminium is 933 K).

The comparison of the Eqs. 4.22 and 4.23 finally leads to the following

formulation for the diffusion constant D:

D = Nn
π

2

kBT

m
f(ω = 0) , (4.25)

which is equivalent to Eq. 4.22.

Figure 4.11 shows the generalized phonon density of states for solid

(800 K) and liquid (1100 K) aluminium. It can be seen that the max-

imum of the frequency spectrum is more pronounced in the case of the

solid.

The results for the pre-melting effect of the outermost layer (layer 1)

are illustrated in Fig. 4.12. The phonon densities of state of the solid

(001) aluminium surface (600 K) show well pronounced maxima, whereas

the spectrum of the phonon density perpendicular to the surface is shifted

toward lower frequencies by about 0.7 THz.

In the case of pre-melting (at 800 K) only the spectrum perpendicular

to the surface shows a recognizable maximum at an even lower frequency.
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Fig. 4.12 Pre-melting effect on (001) aluminium surfaces: In the present case, the model
consists of 2400 atoms arranged in 12 layers. The generalized phonon densities of state
parallel and perpendicular to the outermost layer are plotted for 600 K and 800 K.

4.4.6 Structure Factor

The structure factor S(q) is defined by [Egelstaff, 1967]

S(q) = 1 + ρ

∫
V

eiqr [g(r)− 1]dr , (4.26)

and for q 6= 0 S(q) is proportional to the neutron cross-section. In isotropic

materials, e.g. liquids, it is a function of the magnitude of q only, since

rotation of the target does not alter the intensity of scattered radiation.

Thus, S(q) can be derived in principle by Fourier transform of the pair

correlation function g(r). But due to cut-off effects in the calculation of

S(q) by Eq. 4.26, the direct numerical Fourier transform is not appropriate

for the determination of S(q). One possibility to improve the application of

Eq. 4.26 is to apply a smoothing algorithm on g(r). Another method is the

approach from the intermediate scattering function [Salacuse et. al, 1986].

The intermediate scattering function I(q, t) is defined as the self-

correlation of the Fourier transform ρ(q, t) of the microscopic number den-

sity ρ(r, t). Considering a system of N particles with the positions ri(t),
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i = 1, · · · , N, the relations are

ρ(r, t) =

N∑
i=1

δ [r− ri(t)] , (4.27)

ρ(q, t) =

N∑
i=1

exp [iqri(t)] , (4.28)

I(r, t) =
1

N
〈ρ(−q, 0)ρ(q, t)〉 (4.29)

=
1

N

〈
N∑
k=1

N∑
i=1
i6=k

exp [iq {ri(t)− rk(0)}]
〉
,

where 〈· · ·〉 represents the equilibrium ensemble average. I(q, t) is related

to the dynamic structure factor S(q, ω) by Fourier transformation:

S(q, ω) = F{I(q, t)} , (4.30)

which can be measured directly by neutron scattering experiments.

Then, S(q, ω) is related to S(q) by [Egelstaff, 1967]

S(q) =

∫ ∞
0

S(q, ω) dω . (4.31)

While MD calculations take place within a simulation space of box

lengths Lx, Ly, Lz the non-zero q values are restricted to

q =

[
lx

Lx
,
ly

Ly
,
lz

Lz

]
, (4.32)

where lx, ly, lz = 0,±1,±2, · · · .
Now, with the restriction of Eq. 4.32, a set of q values, which magnitudes

q = |q| are in the range [q, q + dq], can be determined numerically.

Finally S(q) = I(q, t = 0) = 〈I(q, t = 0)〉q can be obtained by use of

Eq. 4.29 as an average over all q values from the according sets.

The analytically performed averaging over the sets of q values in Eq. 4.29

leads to the following expression for the structure factor, which can be used

alternatively [Salacuse et. al, 1986]:

S(q) =
1

N

N∑
k=1

N∑
i=1
i6=k

sin [iq |ri − rk|]
q |ri − rk |

. (4.33)
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Fig. 4.13 Bulk study with 864 aluminium atoms: The structure factor is plotted for
800 K (solid) and 1100 K (liquid). (The melting temperature of aluminium is 933 K).

Figure 4.13 shows the structure factors derived according to the

Eqs. 4.31 and 4.32 for solid (800 K) and liquid (1100 K) aluminium. The

structure factor of the solid shows two peaks, one at 2.6 Å−1 and a smaller

one at 3.1 Å−1. Such double peaks are typical for fcc structured crystals.

In the liquid state, the structure factor has the form of a rather broad

peak with a maximum at 2.8 Å−1.

Figure 4.14 illustrates the situation for a (001) aluminium surface. The

two-dimensional structure factors are plotted for the first three layers at

800 K and for the outermost layer at 600 K.

As can be seen, crystalline structures are indicated by double peaks of

the structure factor. Compared to the three-dimensional case, here the first

peak appears already at 2.2 Å−1.

At 600 K, the outermost layer is still in crystalline state and at 800 K

the structure factors of the third and second layer show double peaks which

indicates crystalline structure too. But the outermost layer is in a liquid

state at 800 K. This can be clearly seen from the flat form of the structure

factor where only the former first peak is weakly recognizable.
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Fig. 4.14 Pre-melting effect on (001) aluminium surfaces: In the present case, the model
consists of 2400 atoms arranged in 12 layers. The two-dimensional structure factors are
plotted for the first three layers (800 K study). Obviously, the surface layer shows liquid
behavior well below the melting point (pre-melting effect). To verify the result, the
structure factor of the surface layers of the 600 K study is plotted in addition.

4.4.7 Additional Remarks

To reduce the fluctuations occurring with the calculation of the above men-

tioned time-dependent correlation functions, it is necessary to take the time

average for several calculation steps. In most cases, the average over about

100 time steps is a sufficiently exact representation of the ensemble average.

Then, with nt being the number of time averages, e.g. Eqs. 4.17 and

4.20 — for the mean-square displacement and the velocity auto-correlation

function take the form

〈
r2(t)

〉
=

1

nt

1

N

nt∑
j=1

[ri(t+ tj)− ri(tj)]
2

(4.34)

and

ψ(t) =
1

nt

1

N

nt∑
j=1

∑N
i=1 vi(tj)vi(tj + t)∑N

i=1 v2
i (tj)

. (4.35)
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Chapter 5

Nano-Engineering — Studies and
Conclusions

In general, nano-machines can be defined as systems in the nanometer

realm with moving parts. [Drexler, 1992], and others too (e.g. [Han et. al,

1997]), have already shown numerous designs of nano-machines that are

exclusively based on carbon structures. Due to their covalent bonds, the

benefit of such organic compounds is a rather high stability — especially

with diamondoid structures or arrangements similar to fullerenes (typical

forms are C60-balls or nano-tubes). To determine stable configurations of

such structures an extensive use of molecular mechanics or even ab initio

methods is necessary.

In the frame of the present monograph, however, we would like to con-

sider nano-machines that consist at least partly of metallic compounds.

There are several reasons to do this.

First of all, the functionality of nano-machines can be extended signifi-

cantly due to the electronic properties of metals.

Further, metallic compounds allow complex shaped parts for which

models can be set up in a relatively simple way by using computer aided

nano-design software as outlined in Sec. 3.1.4 (see, for example, Fig. 3.8).

And finally, in contrast to the anisotropic, covalent bonded organic

structures which have to be described by two-, three- and even four-body

potentials, we have shown that aluminium (as a representative for a metal-

lic compound) can be modeled with high precision by an isotropic pair

potential.

Whether metallic or carbon based structures, the synthesis of real nano-

machines has not yet been performed and it is needless to discuss which

one is more appropriate to do so. But it is a most interesting topic to

perform molecular dynamics studies and, therefore, to determine how and

91
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under which conditions nano-machines could be working — regardless of

the question of how to assemble them experimentally.

5.1 Functional Nanostructures

Before we go into the details of assembling nano-machines, let us first con-

sider design examples of some more or less complex but motionless nano-

structures.

As outlined in Sec. 3.1, nano-designing metallic structures may start

with a continuous CAD model. Then it is filled up, atom by atom, with

the material of choice — in our case with aluminium — according to the

perfect lattice structure. The resulting nano-object can be considered as

MD model for 0 K, because the atoms are not in motion. Therefore, we

have to perform an isothermal equilibration process with a specific temper-

ature according to our design prescriptions. Now, the resulting (isolated)

nanostructure is in thermal equilibrium and we should check whether the

structure remains stable (it might be melting or dissolve). This can be

done by a sufficient number of MD calculation steps, i.e. we have to trace

the temporal development of the nanostructure until no further change is

detectable. In this way — which can be considered as computational nano-

engineering procedure — we gain a realistic representation of our initial

nano-model.

Figure 5.1 illustrates an arbitrary nano-design example. Here, the MD

model at 0 K matches perfectly the shape of the initial CAD model. But,

as becomes clear after the equilibration phase, this is not a stable struc-

ture at room temperature. During equilibration the atoms have changed

their positions at several locations within the structure and as a result

the shape of the final stable design is somewhat different from that of the

original model. Compared to the strictly cubical shape of the MD model

the resulting stable structure now shows bent bars. At the same time, it

seems, that the edges are denser and therefore, the side length are slightly

shorter.

At this stage, a nano-engineer has to decide whether the nanostructure

still meets the design criteria. If this is not the case, he has to redesign the

model.

Further nano-designs are shown in Figs. 5.2 and 5.3. In principle, such

strange or probably even more complex shaped structures, might play a

decisive role in the development of future medical care strategies. To
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Fig. 5.1 The three steps of nano-design. A continuous CAD model is used to construct
the according MD model. After a suitable isothermal equilibration process (in this case
at 300 K) the final stable configuration is at disposal. It can be seen quite clearly, that at
room temperature the outer shape of the stable structure differs from the initial model.
Here, the nanostructure consists of 6820 aluminium atoms.

understand the basic idea, we have to make a short excursus through molec-

ular biology.

Generally, human cells may be considered as egg-shaped objects with

a medium size of roughly 100 µm (of course, cell shape as well as cell

size depend strongly on the cell type, but for the following this simple

picture is sufficient for our considerations). The cell surface is covered

by “docking stations” (receptors) for a lot of quite different purposes, for

example, to control the cell division or for the inter-cell communication, to

name only two. Each type of receptor has a specific complex shape which

allows only certain specific complex shaped counterparts to dock with. The

growth factor molecule, for example, is such a counterpart. It consists of

191 amino chains (the simplest form of amino acid is H2N–CH2–COOH).

The length of another rather complex molecule that plays a role in cell–

cell adhesion and signal transduction (E-cadherin) is more than 550 amino
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Fig. 5.2 Nano-design for a prototype structure which could be used to perform specific
medical tasks. Obviously, at room temperature the stable structure differs somewhat
from the original design (both “feet” are bent outward). Depending on the importance
of the exact geometrical shape for the work, the structure has to be redesigned. The
model consists of 1958 aluminium atoms.

Fig. 5.3 Another model of a prototype nanostructure with possible medical operations.
In comparison to the model of Fig. 5.2, the design is larger in size and consists of more
rounded parts. Therefore, the final stable structure — which consists of 14235 aluminium
atoms — meets the design criteria nearly perfect.
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acids. For a comparison, one winding of the DNA strand has a length of

3.4 nm, a diameter of 1 nm, and contains 10 base pairs plus the according

polymerized nucleotids of the double helix structure. Each docking process

triggers a complicated chain reaction within the cells through enzymes and

other signalling molecules which finally cause actions like cell division or

cell destruction.

In this way, a lot of important cellular mechanisms are controlled. Un-

fortunately, there are diseases like cancer and certain kinds of virus infec-

tions that interrupt or alter this mechanisms and therefore, uncontrolled

cell growth may be enabled or the immune system can be prevented from

detecting malfunctioning cells.

During the last decade, a lot of progress has been made in understand-

ing the special mechanisms of such diseases. And in some rare cases this

knowledge has even led to the synthesis of artificial tailor-made molecules

that can take decisive action against certain miscontrolled cells.

In this context, the nano-designs of Figs. 5.2 and 5.3 may be understood

as inorganic prototypes for a specific interaction with the cell control and

communication system. Of course, these are rather basic and simplified

models. A more realistic design should at least consider the oxidation of

the aluminium surfaces and the embedding of some functional organic com-

pounds at the ends of the structures to find out whether metallic structures

are suitable at all to perform such tasks.

However, as can be seen clearly, the stability of a nanostructure depends

strongly on the size and its outer shape. In the case of the larger design

with more rounded parts (Fig. 5.3), the deviations from the MD model are

rather small compared to those of the stable structure of Fig. 5.2.

Thinking of today’s chip technology, the following question might arise:

where is the lower limit of miniaturization in connection with electronic

signal processing? Or, in other words, how stable are metallic wires of

nanometer size?

The according design example is illustrated in Fig. 5.4. Again, as a first

step a very simple model is set up to show the principle. Here, bar shaped

wires are arranged horizontally to address matrix points which are located

at a (virtual) surface. The connection to the surface is implemented by

vertically arranged wires. However, the nano-design for room temperature

shows that metallic aluminium structures with quadratic cross-sections of

about 1–2 nm2 can be stable.

As already mentioned, nano-engineering is an iterative process. In the

examples given so far, only the structural stability without any interaction
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Fig. 5.4 A simplified nano-design of an array of conducting wires. The horizontally
arranged wires may be used for (x, y)-addressing a certain point at the surface of the
structure (the vertical wires are the connection to the surface). Embedded in an isolated
environment such arrays could be used either as a sensor or — in combination with
quantum dots — as memory chip or similar electronic device. The model consists of
13304 aluminium atoms.

with the environment has been considered, i.e. the nanostructures has been

designed as isolated objects in vacuum. Now, if the (isolated) design meets

the prescribed criteria in vacuum, the next engineering step could be, for

example, to implement interactions with other structures. In the case of

the nano-array in Fig. 5.4, the gaps between the wires could be filled with

another material that acts as isolator. In the case of the medical prototypes

of Figs. 5.2 and 5.3, the structures could be embedded in an organic liquid

to simulate the biological environment of the human organism.

5.2 Nano-Machines

Now we would like to focus on nano-machines. In this case, the use of

at least two different materials is unavoidable because we have to deal
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with movable parts. In our macroscopic world, the design of a simple

bearing (which basically can be a drill-hole) and an axle (that can be a

cylindrical rod) is not difficult. Both, bearing and axle may consist of the

same material. Even if the rod has nearly the same diameter as the drill-

hole, the axle is still movable due to the presence of a film of lubricant

(water, dirt, air, grease, etc.). If we imagine the same situation at the

nanometer realm, both parts would merge together forever.

But there are still other difficulties. Due to the atomic structure, contin-

uous surfaces and shapes are not possible at the nanometer level. Figure 5.5

shows the situation for simple bearings and axles of different diameters.

Fig. 5.5 Nano-designing bearings and axles. Tolerances may be kept in a rather narrow
range with mechanical engineering, but nano-design allows measures only in certain steps
where the step width depends on the according material. Therefore, designing ideal
cylindrical shapes and exact fits of axle and bearing is not possible in the nanometer
realm.
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That is, fits for nano-parts, made of crystalline structured materials, like

metals or carbon (diamond), have to be designed rather loose.

Rotating parts are of particular interest in connection with nano-

machines. The simulation of a rotating nano-structure is quite simple: the

first design step is to create a motionless structure as outlined in the preced-

ing section, then velocity vectors — according to the prescribed revolution

speed — are added to each atom before the MD calculation is continued.

In this way, centrifugal forces appear automatically as a consequence of the

equations of motion — they must not be added to the calculation.

Figure 5.6 shows an example for a nano-wheel of krypton. Here, the

structure disintegrates because the appearing centrifugal forces are too

strong.

Another, more complex example of such an integrity study is illustrated

in Fig. 5.7. This is a model of a simple nano-turbine that consists of a

paddle-wheel with an axle and two bearings, resting on a substrate. Here,

the propulsion of the turbine could be established by a particle or laser

beam.

(a) (b) (c)

(d) (e)

Fig. 5.6 Stability of rotating nanostructures. To test the influence of the revolution
velocity ω on the integrity, the structure is set in motion after equilibration. If the
resulting centrifugal forces are too large, the structure disintegrates as illustrated in the
Parts (a)–(e).
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(a)

(b)

(c)

Fig. 5.7 Nano-design of a simple turbine consisting of a paddle-wheel with an axle
and two bearings: (a) Mechanical engineering model build with common CAD software.
(b) Perspective view and cross-section of the MD model. The paddle-wheel rotates
with 5 · 1010 revolutions per second. (c) The paddle-wheel ruptures, if the number
of revolutions is increased to 1011 per second. The bearings consist of 4592 silicon
atoms, each with ideal shaped surfaces. Due to the strong covalent bonds of silicon the
bearings have been treated as rigid objects within the MD calculations. The axle with
the paddle-wheel has been assembled with 5226 aluminium atoms and the substrate
consists of krypton. Within the MD studies Al–Al interactions have been described
by the Schommers potential. For the Al–Si interaction, Eq. 2.19 has been applied.
Therefore, the Al–Al potential has been fitted to Buckingham form (Eq. 2.18) and the
parameters for silicon have been taken from Table 2.1.
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(a)

(b)

Fig. 5.8 Nano-generator for electric power: (a) Single parts: Winding with axles, iso-
lating rotor kernel, bearings and substrate. (b) The assembled nano-generator rotating
with 5 · 109 revolutions per second. The winding consists of 25433 aluminium atoms
and the rotor kernel consists of 11341 krypton atoms. The bearings have been treated
as rigid objects (silicon) and the interaction potentials for different materials have been
derived as described in Fig. 5.7.
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When comparing Fig. 5.7(a) with Fig. 5.7(b), the differences between

common mechanical engineering and nano-design become obvious again.

While mechanical engineering usually works with sharp edges and smooth

surfaces, nano-design is restricted to the use of single atoms which leads

to the typical “grainy” appearance of nanostructures. Moreover, tolerances

may be kept very small with mechanical engineering, but nano-design allows

measures only in certain steps where the step sizes depend on the according

material. Therefore, the fit of axle and bearing is rather loose, as can be

seen in the cross-sections of Fig. 5.7. However, the MD studies have shown

that such nano-turbines could be working stable for revolutions of up to

about 5 · 1010 per second.

The MD model of another principle study is illustrated in Fig. 5.8. It

is a simple electric power generator consisting of one winding, stabilized by

an isolating kernel which rotates between two bearings. It could be driven

Fig. 5.9 For a better imagination of the proportions, the nano-generator of Fig. 5.8 is
illustrated together with a human hair. Since it has a diameter of 80 µm, there could be
lined up about 12000 nano-generators around the hair.
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either by a nano-turbine similar to that of Fig. 5.7 or by attached paddles

to the rotor kernel. MD studies have shown that a stable operation with

about 5 ·109 revolutions per second would be possible. Due to the magnetic

field of the earth, an electrical voltage of about 10−11 V between the axles

would be induced.

By a closer look at the surface of the winding and rotor kernel the main

problem that occurs by using metals or non-bonded materials for nano-

machines becomes obvious. Due to the small size of these parts in addition

with temperature effects and/or external forces, there are distortions and

dislocations of the perfect crystal lattice structure. This in turn causes

slight deformations of the outer shapes. Such structural transformations

will be discussed in detail in the following section.

However, in future, nano-machines of any kind could play a major role

within many fields of application. Since it is rather difficult to realize the

magnitude of nano-scaled objects, Fig. 5.9 tries to illustrate the situation

with the help of several magnification steps.

5.3 Nano-Clusters

The following considerations are based on MD calculations for aluminium

clusters consisting of 500 atoms [Schommers, Rieth, 1997; Rieth et. al,

2001]. The initial values for the positions have been chosen to be those

of the bulk structure and the outer shape of the clusters has the form

of a cube with (001) oriented surfaces. The inter-atomic interactions

have been modeled with the Schommers potential using a cut-off radius

of 7.35 Å which coincides approximately with the six nearest neighbor

distance.

To gain a high accuracy for rather long time periods with respect to

the trajectories the 6-value Nordsieck/Gear predictor-corrector integration

algorithm has been used with a step width of 10−15 s. The initial velocities

have been set according to a temperature of 50 K followed by an equili-

bration phase of 2000 time steps (2 ps). In the following, t = 0 refers to

the end of the equilibration phase, i.e. the time at which the system has

reached thermal equilibrium. Figure 5.10 shows the cluster temperature T

and the α-function (see Eq. 3.21) as a function of time t.

As can be seen quite clearly, there are three different phases:

(1) In the interval 0 ≤ t ≤ 1 ps, the cluster stays in thermal equilibrium

(α = 5/3) at a mean temperature of 50 K (with the usual, stable

fluctuations).
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Fig. 5.10 Temporal development of the temperature and α-function for a cubic Al500

cluster with (001) surfaces: Initially, the cluster remains in thermal equilibrium at about
50 K for 1 ps (α = 5/3 indicates Maxwellian distribution). Then, during a transition
phase the cluster temperature increases up to 160 K. During the transition phase of 1 ps
the cluster leaves the equilibrium. After this, the mean temperature remains at 160 K
for all times and in thermal equilibrium. However, it has to be mentioned that there is
no external influence causing the transition.

(2) Within the following interval 1 ps ≤ t ≤ 2 ps and without external

influence a transition takes place during which the temperature

rises up to 160 K. Here, the cluster is not in thermal equilibrium

(α > 5/3).

(3) Finally, for t > 2 ps, the cluster temperature remains at a mean

value of 160 K, again, in thermal equilibrium.

How can this interesting behavior be interpreted? What is the driving

force behind the phenomenon? And, under which conditions does it occur?

5.3.1 Structural Examinations

Obviously, the cluster is in a meta-stable state within the first phase (T =

50 K) and in a stable state within the third phase (T = 160 K). Further,

due to the energy conservation of the system the potential cluster energy

in the stable state has to be smaller compared to that in the meta-stable
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Fig. 5.11 Structure factor S(q) of a cubic Al500 cluster in the meta-stable and stable
state compared with S(q) of a perfect fcc structured Al500 cluster with (001) surfaces:
The dark grey bars indicate peaks which are common for all phases. They are typical
for fcc structured aluminium. The light grey bar emphasizes the well pronounced peak
at 3.4 Å−1 that appears only in the meta-stable state. This could be a hint for a
superstructure.
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state. Therefore, the structure of the meta-stable state should be different

from that of the stable state, since the potential energy depends on the

relative distances between the atoms.

For verification, the different cluster states have been investigated by

means of the structure factor S(q) (see Eqs. 4.29–4.32). Figure 5.11 illus-

trates the results for the meta-stable and stable state in addition to the

solid bulk. As can be seen, the typical double peak of fcc structured crys-

tals at about 2.7 Å−1 and 3.1 Å−1 appears clearly for all states (indicated

by dark grey bars). A similar result has already been presented in Fig. 4.13

for solid aluminium at 800 K. But the meta-stable cluster state additionally

exhibits a well pronounced peak at about 3.4 Å−1 which is missing in the

stable state as well as in the bulk (indicated by the light grey bar). This

peak can be interpreted as a superstructure that has been formed within

the meta-stable cluster due to a periodical particle shift.

A further conclusion can be drawn from the rather broad peaks in the

structure factor of the stable cluster. These indicate that the structure of

the stable cluster is no longer that of a perfect fcc crystal, but obviously,

there are disordered components superimposed.

In Fig. 5.12, the various phases of an Al500 cluster are presented in front

and cross-section view. The first row shows the initial cubic cluster before

equilibration with the perfect fcc structure according to the bulk at 50 K.

The second row shows the cluster in the meta-stable state. Compared to

the perfect crystal there are two obvious differences: the fcc structure is dis-

torted at the edges and the volume of the cluster has decreased which leads

to a higher density within the meta-stable state. Additional investigations

using the pair correlation function g(r) have shown that the positions of the

peaks (which mainly result from neighboring atoms) have been shifted by

about 0.3 Å compared to the bulk. The superstructure which has been rec-

ognizable from the structure factor S(q) (Fig. 5.11), however, might result

from this denser configuration.

The third and fourth row in Fig. 5.12 illustrate the cluster during the

transition phase with temperatures of 100 K and 135 K. There is a struc-

tural change that starts from the faces of the cube. Some are bent inward

and others belly out. This process continues step by step from the outside

to inside until the stable state is reached after about 1 ps from the start of

the transition (see Fig. 5.10).

The final structure of the stable state is presented in the last row of

Fig. 5.12. The outer shape of the cluster has changed from a cube to a

polyhedron. In addition, the hexagonal outline of the cross-section leads to
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Fig. 5.12 Different phases of the Al500 cluster (the view directions are indicated by
arrows in the upper left drawing as well as the orientation of the cross-section). The
atoms of the initial layers are shaded different for a better understanding of the structural
changes.
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Fig. 5.13 Front and top view of the Al500 cluster in the stable state at 160 K. The
atomic radii have been enlarged for a better visualization of the surface. In this way the
resemblance to a dodecahedron (blue) can be seen quite clearly, even though the outer
shape of the cluster is not perfect. There are dislocations near the edges that result from
the multi-crystalline cluster composition.

the assumption that it could be a dodecahedron. And indeed, by looking

from different directions onto the cluster — like in Fig. 5.13 — the sup-

position is confirmed. Further, the former (001) structured surfaces of the

meta-stable cluster have been transformed into (111) structured faces of the

dodecahedron. From the cross-section as well as from the outside, one can

recognize dislocations. The stable cluster has no perfect crystalline struc-

ture. It is composed of various single crystals, i.e. it has a multi-crystalline

structure.

From all these observations, we can draw the following conclusion: the

stability of an Al500 cluster depends on its outer shape and structure, i.e.

dodecahedral arranged (111) faces lead to a higher stability compared to

(001) oriented cubic clusters.

This result fits nicely with [Ahlrichs, Elliott, 1999], where the stability

of aluminium clusters with up to 153 atoms at 0 K have been studied using

the density functional method. Here, the results have shown that clusters
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larger than Al55 are most stable if they are fcc packed and if their surfaces

are (111) structured. In other words, clusters with a maximum number

of nearest neighbor atoms are energetically preferred. In the case of Al500

clusters the average number of nearest neighbor atoms is 9.7 in the meta-

stable state and 10.0 in the stable state (for the fcc structured bulk it is

12) which supports the result of [Ahlrichs, Elliott, 1999].

With this, the structural transformation of the initial Al500 cluster is

reasonable. The driving force results from the difference of the potential

energy between the meta-stable and stable cluster state. But which mech-

anism initiates the transition?

5.3.2 Dynamics of the Al500 States

When considering any meta-stable state the according potential energy

surface U(R1, · · · , RN) (see Eq. 2.14) moves on a high level and prior to

the decrease to the lower energy level of a stable state there has to be a more

or less extended barrier which “keeps” the system at this higher level — at

least for a while. In other words, a meta-stable state is given, if there is a

local minimum (saddle point) on the potential energy surface neighbored

by a even deeper minimum, and to transit from the higher to the lower level

the system first has to overcome the local maximum that separates them.

In the case of the considered Al500 cluster this means that the meta-

stable configuration remains in such a local minimum of the potential energy

surface for about 1 ps. Then, without any external stimulation, it overcomes

the existing energy barrier, leaves this state and transits into the stable

configuration. To find the trigger of the transition we have to investigate

the cluster dynamics by means of the generalized phonon density of states

(PDOS).

Figure 5.14 shows the generalized PDOS f(ν) for the meta-stable and

stable cluster state. Obviously, there is a significant difference between the

frequency spectra: the distinctive peak at about 2 THz of the meta-stable

cluster is not recognizable in the stable state (indicated by the light grey

bar). Further, this peak is completely missing in the spectrum of the solid

as well as in that of the liquid bulk (see Fig. 4.11).

In summary, only the meta-stable state is accompanied with the ap-

pearance of a pronounced low frequency oscillation mode at 2 THz. Tak-

ing into account that the velocity of sound in aluminium is 3130 m/s (at

room temperature) [Wirdelius, 2000], then, at a rough estimate, transversal

sound waves lead to resonance oscillations in the meta-stable Al500 cluster
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Fig. 5.14 Generalized phonon density of states f(ν) of a cubic Al500 cluster in the meta-
stable and stable state: The well pronounced peak at 2 THz in the frequency spectrum
(indicated by the light grey bar) of the meta-stable state is recognizable to some extent
only in the stable state. This peak results from surface oscillations at the meta-stable
cluster.

(side length 17 Å) with a frequency in the range of 1.84 THz. So the

suspicion arises whether the 2 THz peak in the generalized PDOS of the

meta-stable cluster could be due to surface oscillations.

To support this assumption digital movies have been prepared. Watch-

ing the sequence of the meta-stable period one can clearly see the oscil-

lations. By a further look on the sequence of the equilibration phase it

becomes obvious where the oscillations result from. As has already been

mentioned in connection with Fig. 5.12, the outer dimensions of the meta-

stable cluster are smaller compared to the initial bulk-structured cluster.
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Therefore, during equilibration the whole cluster passes through a

“shrinking process”. Even if the temperature control steps are chosen to

be rather small, there remains always an opposite momentum — compa-

rable to the recoil after an implosion — which is directed outward. With

increasing time the “shrinking and recoiling” behavior diminishes, but de-

pending at which point the equilibration is stopped, it results in a more or

less violent excitation of surface waves.

Now let us come back to the potential barrier that prevents the meta-

stable cluster from an immediate transit to the stable state. Obviously, with

the above mentioned pronounced surface oscillations it is only a question of

time until a fitting configuration has established by chance which yields an

energy high enough to overcome the barrier in the potential energy surface.

In the following, the influence of several parameters on the meta-stable

period are investigated.

5.3.3 Influence of the Initial Conditions

At first, the structural cluster transformation has been studied using dif-

ferent random velocity distributions for the MD models. There was no

significant influence on the meta-stable period recognizable, the deviations

from the above mentioned case have been about ±0.3 ps. While in all stud-

ies the transitions into the stable states have led to dodecahedral structured

clusters, the orientation of the final shapes have been different. Randomly,

some looked like that illustrated in Fig. 5.13, the others like those presented

in Fig. 5.15.

Fig. 5.15 Front and top view of an Al500 cluster: The initial velocity distribution
has been chosen to be different from those of the cluster illustrated in Fig. 5.13. The
comparison shows that the clusters differ in their spatial orientation. The dodecahedral
axis are turned by 90o.
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Other studies have been performed always using the same initial velocity

distribution, but varying both equilibration parameters, the equilibration

period and the number of temperature control steps (refer to section —

Isothermal Equilibration).

Since the state transitions take place even under constant temperature

conditions (isothermal, canonical ensemble) it is rather difficult to decide at

which point to start the measurement for the meta-stable period. However,

if equilibration is performed for times in the range of 0.5 to 2 ps, then the

meta-stable period varies from about 0.5 to 2.5 ps. In addition, there is no

systematic correlation with the number of equilibration steps, too.

In Fig. 5.16, typical temperature curves of cluster transitions are pre-

sented. As can be seen, all curves start at 50 K and end — after a more

or less extended meta-stable period and after quite different transition

behaviors — in the temperature range of 150 to 160 K. The meta-stable

period is not definitely correlated to the kind of equilibration.

Fig. 5.16 Temperature transition curves from the meta-stable to stable state of the
same Al500 cluster with different prior equilibration phases: (A) TE = 2 ps, nE = 20,
(B) TE1 = 0.5 ps, nE1 = 5 followed by TE2 = 1.5 ps, nE2 = 15, (C) TE = 1 ps, nE = 10,
(D) TE = 1.1 ps, nE = 10. (TE : equilibration period, nE : number of time steps after
which temperature control is performed.)
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5.3.4 Influence of the Initial Temperature

When raising the initial cluster temperature, well extended meta-stable

phases — the period varies around 1.5 ps — can be observed for at least

up to 200 K. But for initial temperatures of about 250 K and above, the

transition takes place nearly immediately (about 0.3 ps) after the end of

equilibration with a preceding drop of the cluster temperature before its

raise to a significantly higher stable level. It seems, that due to higher

initial temperatures the potential energy barrier can be overcome easily

and, therefore, meta-stable states cannot establish.

On the other hand, there is an additional interesting effect observed,

for example, for an initial temperature of 350 K. While most transitions

— even at higher temperatures — result in dodecahedral shaped clusters

as illustrated in Figs. 5.13 and 5.15, there are cases deviating from this

behavior. Figures 5.17(b), (c) and (d) show the resulting structure from

different viewing points. At 430 K, this stable configuration has the shape

of a cuboid where four surfaces are (111) and the other two are (001)

structured.

Beside this, there are still other cases in which the structural transfor-

mation takes place only partly. This has been observed, for instance, for

an initial temperature of 450 K which ended at 530 K in the stable state.

Here, the resulting clusters consist of dodecahedral as well as of rectangular

shaped parts. In these cases (001) and (111) surfaces are mixed by chance.

Mainly, such partial transformations are also observed with larger clusters

at low temperatures as will be discussed later on.

5.3.5 Influence of the Crystalline Structure

Depending on the alignment of a cube within the fcc bulk structure the

resulting cluster is composed of a pile of layers with a specific orientation.

In the case of the above mentioned studies the orientation of these layers

has been (001) with an alignment parallel and perpendicular to the unit

cell. If the alignment of a cube is rotated around one axis by 45◦ (refer to

Fig. 3.2), the resulting initial cluster looks like illustrated at the left side of

Fig. 5.18(a). It consists of four (011) and two (001) structured faces.

As can be seen, the cluster corresponds not exactly to a close packed

configuration. That’s why such clusters are not stable. They transform into

another structure immediately after the end of equilibration without any

hint of a growing meta-stable state. The resulting structure (Fig. 5.18(a),

right side) completely consists of (001) surfaces with 45◦ alignment.
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(a) (b)

(c) (d)

Fig. 5.17 Al500 cluster at 430 K: (a) The initial temperature is 350 K, the cluster
shape is cubic with (001) surfaces. After equilibration for 1 ps, the cluster transforms
immediately into a stable configuration: (b) Front view, (c) side view, (d) top view.
Here the shape of the stable configuration corresponds to a cuboid with (001) structured
front and back sides and four (111) structured faces.

Figure 5.18(b) presents an Al474 cluster consisting of (111) layers. Dur-

ing the equilibration process a slight increase in density is observed (like

the above mentioned shrinking of Al500 clusters), but no structural trans-

formation is taking place.

Without any question, the cluster state is strongly influenced by the

crystalline structure. Depending on the orientation of the surface layers the

considered cubic aluminium clusters are either totally stable ((111) surfaces

and (001) surfaces with a 45◦ alignment) or unstable ((011) surfaces). Only

in the case of (001) structured surfaces with 90◦ alignment, meta-stable

states have been detected under the above mentioned conditions.

5.3.6 Influence of the Outer Shape and Cluster Size

The prior investigations lead to the reasonable assumption that the outer

shape has a lasting influence on the cluster state. Examples already have
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(a)

(b)

Fig. 5.18 The initial and final structures of Al490 and Al474 clusters: (a) The initial
Al490 cluster is assembled with (011) layers and, therefore, its surface consists of four
(011) and two (001) structured faces. Since that is not a close packed configuration,
the cluster immediately transforms into a denser state with (001) oriented planes and
surfaces only. (b) The Al474 cluster is composed of (111) layers. This is a very stable
configuration and its structure does not change further.

been given in Fig. 4.1. Depending on the kind and complexity of the clus-

ter shape the structures should be more or less stable. With respect to the

previous studies, cluster shapes that primarily lead to (111) surfaces should

be most stable. Therefore, spherically shaped nanostructures show no ten-

dency of transformation and rectangular shaped clusters are seemingly the

least stable ones. The stability of all other cluster shapes varies between

those two opposites. Since it makes no sense to sample through all possible

cluster shapes, the following MD studies focus on the influence of the size

of cubical clusters on their stability.

It has been already discussed that the larger the cluster the smaller the

influence of the surface, since with increasing cluster size the ratio of surface

to core atom numbers decreases. So, this should significantly influence

the meta-stable states. Following the examples of the Al500 clusters, the

appearance of meta-stable states and structural transformations have been

investigated for initially cubical clusters in the range of less than 256 and
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Fig. 5.19 Stable configurations of aluminium clusters: The initial positions of the atoms
have been chosen to be those of the fcc bulk structure of aluminium and the outer shapes
have been cubic with (001) oriented surfaces. The Schommers potential with a cut-off
radius of 7.35 Å has been used to describe the inter-atomic interactions. After the end of
an equilibration phase all clusters have entered a meta-stable state at 40–50 K prior to
transitions into the final stable configurations that are illustrated from different viewing

directions.

up to 4000 aluminium atoms. Depending on the equilibration procedure,

the initial temperatures have been 40–50 K.

Figures 5.19 and 5.20 give an overview of the finally stable configura-

tions that have been preceded by meta-stable states. Though using a lot

of different models, meta-stable states could not be detected for Al-clusters
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Fig. 5.20 Stable configurations of aluminium clusters (continuation from Fig. 5.19).

smaller than 256 atoms, here transitions into stable states took place

immediately.

On the other hand, clusters larger than 2748 atoms, e.g. Al2916 or

Al4000, have been proven stable (at least for 150 ps). Such large clusters

remain in the “meta-stable” state without transition.

All other clusters from Al256 to Al2746 show more or less extended meta-

stable periods. A systematic correlation between meta-stable period and

cluster size is nearly impossible, since the meta-stable states depend on the
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initial conditions and, therefore, one never can be sure whether or not there

are still other initial configurations that lead to more extended meta-stable

periods. Nevertheless, a division into three categories seems to be feasible.

The first group of clusters (Al256, Al365, Al666) remain in meta-stable

states for a maximum of about 2–3 ps. The meta-stable period of the

second group (Al864, Al1099) reaches values of 7 ps at least. And clusters of

the third group (Al1372 to Al2746) have been observed to be in meta-stable

states for at least 20 ps.

Again, it has to be emphasized that this division bases on the result

of “only” fifty different MD models, while for a precise analysis, billions of

MD calculations would be necessary. Even though the given division may

be improved, the tendency is reasonable: the larger the clusters, the higher

the probability for more extended meta-stable periods.

There is still another reason that supports the division of the clus-

ters into three groups. The surfaces of the clusters of the first group

(Al256, Al365, Al666) are exclusively (111) structured and the outer shape

is dodecahedral (or at least close to a dodecahedron).

The structures of the second group (Al864, Al1099) look like a mixture of

dodecahedral and cubical parts. Their surfaces show (111) as well as (001)

structured areas.

And the third group (Al1372 to Al2746) consists of more or less perfect cu-

bically shaped clusters with four (111) and two (001) oriented faces. These

observations coincide well with the length of the according meta-stable

cluster state period: the larger the initial cluster cubes the less the proba-

bility for a transformation into an energetically favorable configuration (the

free energy shows a minimum) with overall (111) oriented surfaces and the

longer, the possible meta-stable period.

The only exception is the Al2016 cluster for which intentionally a sta-

ble configuration with overall (111) surfaces has been selected to be shown

within Fig. 5.20. This should emphasize the probability aspect of the con-

sidered cluster transformations. The large clusters of the third group most

often transform into a cuboid-like form, but in some cases — depending on

the initial configuration — they take quite a different shape.

This random behavior is demonstrated in Fig. 5.21 for initially cubic

Al2048 clusters. At the beginning the atomic positions have been identical,

but for each cluster different velocity distributions have been used (either

by the random generator or by different equilibration parameters) in or-

der to create dissimilar equilibrated configurations. As can be clearly seen,

depending on randomly selected initial configurations the shape as well as
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Fig. 5.21 Examples for stable Al2048 cluster configurations: The initial atomic positions
are identical, but the velocity distributions have been chosen to be different. The MD
parameters match those of Figs. 5.19 and 5.20.

the poly-crystalline arrangement of the final stable clusters diverge signifi-

cantly. The duration of the meta-stable states too varies between 15 ps and

immediate transition (0 ps) depending on the initial cluster configuration.

In summary, the MD studies have shown that the occurrence of meta-

stable states is determined by the cluster size. Further, the transition into a

stable configuration is a random event. Depending on the initial conditions

the meta-stable periods may vary within a broad range — a prediction is

not possible. But the mean duration of the meta-stable states seems to be
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dependent on the cluster size, since the MD results allow for a division of

cubic aluminium clusters into three size categories which, in addition, are

correlated to the most probable outer shapes.

5.3.7 Influence of the Interaction Potential (Material)

With respect to the oscillating form of the temperature dependent Schom-

mers potential for aluminium (see Fig. 2.2), the question arises whether

the investigated structural transformation of nano-clusters is restricted to

this specific interaction potential or material, respectively. Though a lot of

important parameters and properties have been described correctly using

the Schommers potential, there might be, nevertheless, small inaccuracies

that artificially lead to the described structural transformation effect for

aluminium.

Therefore, extensive investigations have been performed to find a sim-

ilar behavior with krypton clusters using the Barker potential (Table 2.4,

Fig. 2.1). Since this effective pair potential is one of the most accurate

ones and, in addition, temperature independent, it may be considered as

model potential for MD calculations. If meta-stable states and structure

transformations could be found with krypton clusters using the Barker po-

tential, this certainly had to be regarded as proof for their occurrence with

aluminium and possibly with other materials, too.

The investigations have been started for cubical Kr500 clusters at 10–

50 K without positive result: the clusters have been extremely stable.

Smaller cubical clusters of different sizes too have led to no result, although

the according structure factors contain additional peaks which cannot be

observed in the bulk. Further, the distinct low frequency peak within the

generalized phonon density of state function — which has been typical for

the meta-stable aluminium clusters — is only weakly pronounced with these

small cubical krypton clusters.

But finally, cuboidal or, more precise, bar shaped clusters have shown

the same behavior like that of cubical aluminium clusters. Figure 5.22 illus-

trates a representative example of the meta-stable state and the transition

into the stable configuration of a Kr313 cluster.

As can be suspected from Fig. 5.22, the meta-stable state is accom-

panied by cluster oscillations. For some clusters, this has been confirmed

by the appearance of well pronounced low frequency peaks (0.3–1.2 THz)

in the generalized phonon density of state function which coincides with

the observations made with aluminium clusters. Due to the weaker Kr–Kr
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Fig. 5.22 Temporal development of the temperature and α-function for a bar shaped
Kr313 cluster with (001) surfaces (the initial, meta-stable and stable configurations are
illustrated within the graph): Initially, the cluster remains in thermal equilibrium at
about 20 K for 33 ps (α = 5/3 indicates Maxwellian distribution). Then, during a
transition phase the cluster temperature increases up to about 31 K. The MD calcu-
lations have been performed using the Barker potential with a cut-off radius of 10 Å.
Equilibration has been performed for 2 ps.

bonds the increase in temperature during the transition phase is less and

the meta-stable period is longer compared to aluminium clusters.

The structural transformation is based on a contraction of the krypton

cluster which finally results in (111) oriented surfaces, again, comparable

to Al-clusters.

In summary, the MD studies with krypton clusters give rise to the as-

sumption that meta-stable states and structural transformations are not

restricted to certain elements only. Within a more or less narrow range of

parameters these phenomena should be observable for many (maybe all)

materials with van-der Waals or metallic bonds.

5.3.8 Conclusions

Regardless of the lattice structure of the bulk, small nano-clusters try to

form such configurations for which the potential cluster energy takes a min-

imum value. Since these configurations coincide with a maximum number
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Fig. 5.23 Schematic drawing of a two-dimensional projection of the potential cluster
energy surface U(R): If an Al500 cluster takes a configuration near the point Rm of
the configuration space R = [R1, · · · ,R500], it is locked up within the surroundings
of the local minimum (saddle point) of the potential cluster energy U . Due to energy
fluctuations — caused by the statistical temperature movements of the atoms, enhanced
by surface or body oscillations — after some time the cluster configuration by chance
may take a point at which the energy barrier 4Ub has been overcome. At this point,
the cluster transforms into the configuration Rs — the stable state.

of nearest neighbor atoms, the cluster structure often deviates significantly

from that of the bulk, i.e. structurally disturbed clusters are the rule.

However, depending on size, shape and material, local minima (saddle

points) of different depth may appear in the potential cluster energy surface.

Under certain conditions, a cluster configuration can be “locked up” in a

local minimum that is surrounded by even deeper minima (see Fig. 5.23).

In this case the cluster takes a meta-stable state.

Due to the temperature fluctuations of the atoms, sometimes enhanced

by oscillations, the cluster configuration permanently fluctuates around the

configuration point Rm. Depending on the height of the energy barrier4Ub
and the distance between the minima, it takes some time — the meta-stable

period — after which a configuration point is reached by chance that enables

the cluster to overcome the barrier. After that, the cluster transforms into

the stable configuration Rs and the decrease of potential energy goes with

an increase of temperature.

Using this picture, a plausible interpretation of the results from the

previous MD studies is possible:
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• The initial conditions of the MD calculation determine the configuration

point. It can be located near the barrier, then the meta-stable period is

very short. Or it may be far away, then the duration of the meta-stable

state is rather long. This is the explanation for the probability aspect of

the meta-stable period.

• The same applies to the final cluster shape. It is a matter of chance into

which neighboring local minimum the transition takes place. Clearly, the

initial configuration has an impact on the final shape.

• At high temperatures, the energy fluctuations are larger than the poten-

tial barrier. This, on the other hand, prevents the cluster from remaining

within the meta-stable state.

• For very small clusters there are no local minima available in the potential

energy surface that could provide meta-stable states. The same applies

to cluster configurations with (011) surfaces.

• Cluster configurations with (111) surfaces are already near a deep mini-

mum. In this case, a transition cannot take place.

• For very large clusters the barrier between the local minima is too high,

and in addition, the temperature fluctuations are getting smaller with

increasing particle numbers. Then the cluster remains in the “meta-

stable” state forever (at least without external influence).

The last point is very interesting. The MD studies with cubic aluminium

clusters containing more than 2746 atoms have not led to the observation

of state transitions. However, the above mentioned conclusion might be

proofed, if one of these large aluminium clusters could be stimulated to per-

form a structure transformation. This is the topic of the following section.

5.4 Stimulated Nano-Cluster Transformations

It has already been discussed that large cubic aluminium clusters with

(001) oriented surfaces build a rather stable phase while smaller cubes with

the same face orientation show more or less extended meta-stable states

which finally transit into stable configurations with mainly (111) structured

surfaces.

As an example, without external influence an Al2916 cluster (upper most

picture of Fig. 5.24) does never leave such a “stable” state. This has been

proofed for several initial conditions and periods of up to 150 ps. Since the

considered MD models mirror ideal situations only, where no interactions

with the environment take place (absolute vacuum), the question arises,
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(a)

(b)

(c)

Fig. 5.24 The upper most picture shows a “pseudo stable” state of an Al2916 cluster
(the layers are colored red and green for a more instructive visualization of the structure)
that can be stimulated to transit into finally stable states by a collision with another
cluster (in this case an Al63 cube which is colored blue). The final structure strongly
depends on the impact parameters. Several cases are illustrated, each from three different
viewing angles (front, top and impact direction), about 3 ps after the cluster collision:
(a) The impact velocity of the Al63 cluster is 1000 m/s. (b) The impact velocity is
2000 m/s with the same impact target as in (b). (c) The impact velocity is 2000 m/s
but the target has been slightly shifted by about 0.2 nm to the upper left side.

whether an external stimulation can trigger a structural transformation in

the same way as has been observed for smaller clusters without external

influence.

An obvious method to induce a perturbation of the Al2916 cluster con-

figuration is to use another cluster for a collision. Figures 5.24(a)–(c) show
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three final structures 3 ps after the collision with an Al63 cluster with

different impact velocities and slightly different impact targets. It can be

seen quite clearly that in all cases structural transformations have taken

place.

The final configurations are comparable to the stable cluster states of

the previous section (Figs. 5.20 and 5.21). In all cases, there are four (111)

and two (001) structured surfaces and the outer shape has changed from

a cube to more or less cuboid forms. Dislocations and multi-crystalline

structures are recognizable too.

Further, the probabilistic character of the transformation — due to

different initial conditions — mirrors in the observation of clearly different

final structures, though the only difference has been a slight deviation of

the impact target in the case of the MD models illustrated in Figs. 5.24(b)

and (c).

As a result, even seemingly stable cluster configurations may be stim-

ulated to structural transformations by an external intervention, i.e. in

reality these clusters too are in “pseudo” or meta-stable states.

Since cluster collisions with impact velocities in the range of several

1000 m/s are rather “crude” interventions, for the following MD models

“softer” methods have been used to investigate the sensitivity. Therefore,

an Al63 cluster has been heated up and positioned within reach of the

“pseudo stable” Al2916 cluster. In this way, the larger cluster is heated

locally at the contact spot which may be considered as local perturbation

of the surface structure.

As can be seen from Fig. 5.25, even such small perturbations are suffi-

cient to trigger phase transitions. Again, the final structures have the form

of cuboids with four (111) and two (001) oriented surfaces. Here too, the

totally different final structures [Figs. 5.25(a) and (b)] — due to the just

slightly different temperatures of the Al63 cluster only — demonstrate the

random nature of the transformation process.

The investigations of the previous sections have shown that the clus-

ter stability improves with increasing cluster size. Therefore, it has to be

suspected that there is a limit above which the configurations are globally

stable, independent of cluster collisions or other perturbations. Of course,

this limit still has to be within the nanometer scale, because macroscopic

single crystals are definitely stable.

However, large-scale MD studies could be performed to find such limits.

Since this would exceed the frame of the current monograph, it will be left

for future investigations.
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(a)

(b)

Fig. 5.25 Initially, a heated Al63 cluster (blue) has been positioned within reach of an
Al2916 cluster (the same as in Fig. 5.24) at a temperature of 40 K. After contact has been
established, the surface structure of the large cluster is perturbed locally. This initiates
a structure transformation. Depending on the initial conditions — here the temperature
Ti of the Al63 cluster — the final shapes and structures of the Al2916 cluster deviate
significantly from each other. (a) Ti = 350 K, (b) Ti = 400 K. (The viewing angles and
colors have been chosen to be the same as those in Fig. 5.24.)

5.5 Analogy Considerations

After all these investigations of the influence of certain parameters on meta-

stable cluster states it might be helpful to build some vivid connections.

Looking through the previous MD results, a certain analogy can be

drawn between the meta-stable cluster states and the excited states of

atoms (see Fig. 5.26):

• The potential energies of the meta-stable (excited) states are larger than

those of the stable (ground) state.

• After a certain period the clusters (atoms) transit from their meta-stable

(excited) states into the stable (ground) state without external influ-

ence, the atoms by emitting photons, the clusters by increasing their

temperature.

• The period (lifetime) of the meta-stable (excited) states is not constant,

but probability distributed. More or less, all intervals are possible, but

the values with maximum probability are most likely to appear.

• The transition from meta-stable (excited) to the stable (ground) state

can be triggered by an appropriate stimulation, the electrons by photons
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Fig. 5.26 The analogy between nano-clusters and atoms: The potential energy of both,
the meta-stable cluster state and the excited state of atoms, is on a higher level than the
according stable state and ground state, respectively. After a certain time (meta-stable
period for clusters and lifetime for excited atoms, respectively) transitions into the lower
energy states take place without external influence. The atoms emit photons, the clusters
increase their temperature. (More details are given in the text.) Further, the transition
of meta-stable to stable cluster states as well as excited atoms can be triggered by an
appropriate stimulation. The values for both, the meta-stable period and the lifetime,
are probability distributed.
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of certain wave lengths, the clusters by a local perturbation of the

surface.

While the lifetime of the atomic excited states lasts for about 10 ns, the

magnitude of the meta-stable periods of aluminium cluster configurations

is 10 ps. Compared to the lifetime of excited atoms this seems to be rather

short. But with respect to the time interval, a sound wave needs to propa-

gate across a nano-cluster (for an Al2048 this is about 0.5 ps) which it is a

considerably long period.

However, there is at least one point for which the analogy considera-

tions with the atomic states fails: for nano-clusters there is a huge number

of stable configurations (for an example, see Fig. 5.21), but atoms have

only one ground state. This fact leads to another analogy, the bifurcation

phenomenon.

5.6 The Bifurcation Phenomenon at the Nanometer Scale

In connection with meta-stable states of small clusters as well as with

“pseudo stable” states of larger clusters the following effect (which has

already been discussed in the previous sections) is of particular interest.

When a cluster makes the transition from a meta-stable or pseudo stable

state to a stable state, there are several possibilities. In other words, the

local minimum (saddle point) in the potential energy surface correlated to

the meta-stable or pseudo stable state is surrounded by numerous deeper

minima which correspond to the stable states. Which of these stable states

the cluster will finally take cannot be predicted in principle. Due to the

unavoidable energy fluctuations of nanosystems, it is completely a matter

of chance.

That is, a cluster state transition is a bifurcation in the sense of chaos

theory (see Fig. 5.27). Metaphorically speaking, at the bifurcation point

nature plays dice to decide on which of the various branches (stable states)

the cluster will finally rest.

The numerous MD studies presented in the previous sections have shown

that stable cluster configurations may differ in both the inner structure as

well as the outer shape. In general, the structures show multi-crystalline

compositions, i.e. there are grain boundaries, dislocations and other lattice

defects. And finally, the outer shape strongly depends on the arrangement

of these lattice defects.

With respect to the structure transformations of nano-clusters the bifur-

cation phenomenon has no counterpart, neither at the micrometer scale nor
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Fig. 5.27 A vivid illustration of the bifurcation phenomenon: The stable state into
which a meta-stable cluster will finally transit cannot be predicted. Metaphorically
speaking, at the bifurcation point nature plays dice to decide on which of the various
branches the cluster will finally rest.

within the macroscopic bounds. If this would not be the case, any object

which was in a meta-stable state could transform randomly into another

shape, e.g. after some time a meta-stable beer can could transform into a

cookie box or into a fork or into something completely different. But, as

we know, in reality the only transitions of macroscopic objects result from

interactions with the environment — signs of wear — which finally lead to

their destruction.

For nano-clusters the situation is completely different: the transition at

the bifurcation point is constructive (Fig. 5.27), since the cluster is not to

be destroyed, but transforms into a new shape that is clearly more complex

than the initial meta-stable cube.

This behavior of single clusters, resulting from the mutual influence of

temperature and particle interaction, mirrors a certain kind of independent

creativity which is an inherent characteristic of the nanosystem itself.

5.7 Analogies to Biology

Although aluminium clusters represent inorganic structures there are sev-

eral analogies to biological systems [Rieth, Schommers, 2002]:
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• A nanosystem may be creative, i.e. it can take individual decisions which

cannot be influenced from the outside. This is an interpretation of the

bifurcation phenomenon.

• Nanosystems are able to transform spontaneously, either stimulated by

a random perturbation or even without any external influence. Such a

behavior is also known from biological systems: spontaneous transforma-

tions are typical phenomena within the field of embryology [Beloussov,

2000, 2002].

• The state transition is accompanied by a structural transformation where

new shapes are created. Also within the field of embryology new forms

appear which have not existed before.

• Simple shaped meta-stable nano-cluster transform into more complex

configurations. This behavior too is typical for biological systems — it

is a feature of the evolution.

5.8 Final Considerations

As has already been emphasized, the key element in molecular dynamics is

the interaction potential. Even if a considerable amount of work is spent to

establish a potential function that is able to reproduce all known experimen-

tal results within acceptable accuracy, there always remains an uncertainty,

since small deviations in the potential may lead to substantial differences

in the MD results. But now, of all things, the use of different cut-off radii

for the potential function — which is a necessary and common technique

of MD calculations — leads to such deviations.

For asymptotically vanishing functions like that for krypton there is no

problem: to be on the sure side one just has to increase the cut-off distance

to a value where the potential is negligible. But for metallic bonds the

according pseudo potentials show rather far-reaching oscillations that are

only negligible for long distances. On the one hand, to consider all these

oscillations would lead to ineffective MD algorithms. On the other hand,

it is questionable at all whether the real nuclear interactions are this far-

reaching. In the case of the Schommers potential for aluminium, the use

of a cut-off radius in the range of the six nearest atomic neighbor distance

(7.35 Å at 50 K) has delivered all the important characteristics and effects

in good agreement with experiments.

Another point to discuss is the practical relevance of the observed

cluster state transitions. Since standard mass production techniques for
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Fig. 5.28 Cluster deposition on the (001) surface of a thin aluminium film at 300 K (the

left row shows the situation from the front, the right row illustrates the middle layer):
Initially a stable Al500 cluster (the same as shown in Figs. 5.12 and 5.13) is put within
reach of a (001) structured aluminium surface. After 2 ps the cluster has established full
contact with the surface. The initially poly-crystalline structure which can be clearly
recognized from the atomic arrangement of the middle layer starts to recrystallize from
the bottom. This process continues with time and after 15 ps the former dodecahedral
shaped poly-crystalline Al500 cluster has the form of a cuboid. The front, back, left
and right faces are (111), the bottom and top surfaces are (001) structured. This is
due to a lattice contraction along the vertically axis. The final cluster structure meets
those of a perfect single crystal with several vacancies and ad-atoms at the surface. The
poly-crystalline structure has completely vanished.
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nanostructured materials work at rather high temperatures [FZJ, 1998]

and, in addition, cause a lot of cluster collisions, formations of meta-stable

and pseudo stable clusters are not expected to be common products of to-

day’s materials synthesis. Therefore, at first glance, the considered MD

studies of the bifurcation phenomenon for the example of single isolated

nano-clusters seems to be of academic interest only. But in Figs. 4.1 and

4.2, it has already been demonstrated that nano-clusters which interact

with surfaces show structure transformations too.

An additional example is given in Fig. 5.28. It demonstrates the recrys-

tallization process of a multi-crystalline Al500 cluster in the stable state (it

is the same as shown in Figs. 5.12 and 5.13) due to the interaction with an

Al (001) surface at 300 K.

Furthermore, the synthesis of nanostructured materials (e.g. by cluster

compression and sintering) is dominated by cluster–cluster interactions. In

this connection, recrystallization effects and stability considerations play a

major role. The MD study illustrated in Fig. 5.29 gives some impressions

to this topic.

In this way molecular dynamic investigations of basic cluster

characteristics — like the considered bifurcation phenomenon — in com-

bination with more complex material models might give fresh stimulus to

material science.
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Fig. 5.29 Eight free Al500 clusters symmetrically arranged merge to a single Al4000

structure at 50 K (the clusters are colored different for a better relation of the particles):

This is a simple model to simulate the process that takes place during the synthesis of
nanostructured materials. As can be seen, the poly-crystalline structures vanish due to
a re-crystallization process. But this does not lead to a perfect structure. Though the
outer shape is similar to the Al2048 clusters of Fig. 5.21, there are significant irregularities
at the surface as well as in the inner lattice structure. The pictures of the middle layers
clearly show vacancies and dislocations.
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W. Schommers (eds.), Series on the Foundations of Natural Science and
Technology, Vol. 4, World Scientific.

Roco, M. C., and Sims, W. (ed.) (2001),“Societal Implications of Nanoscience and
Nanotechnology”, NSET Workshop Report, Bainbridge National Science
Foundation, Arlington, Virginia.

Salacuse, J. J., Schommers, W., and Egelstaff, P. A. (1986), Phys. Rev. A 34,
1516.

Sauer, J. (2000), “Chemie aus dem Computer”, in: Spektrum der Wissenschaft
— Digest: Moderne Chemie II.

Schommers, W. (1976), Z. Phys. B 24, 171–175.
Schommers, W. (1977), Phys. Rev. Lett. 38, 1536;

(1980), Phys. Rev. B 21, 847;
(1980), Phys. Rev. B 22, 1058.

Schommers, W. (1986), in: “Structures and Dynamics of Surfaces I”, Topics in
Current Physics, Vol. 41, W. Schommers and P. von Blanckenhagen (eds.),
Springer-Verlag, Berlin, Heidelberg.

Schommers, W. (1987), in: “Structures and Dynamics of Surfaces II”, Topics in
Current Physics, Vol. 43, W. Schommers and P. von Blanckenhagen (eds.),
Springer-Verlag,
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acceleration, 53, 54
acceleration table, 60
acceptance–rejection technique,
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accuracy, 52, 53, 57, 129
accurateness, 5, 51
ad-atom, 130
adiabatic approximation, 8
Ag, 19, 20, 30
air, 97
Al, 19
alcohol, 17
algorithm, 11, 33, 46, 48, 51, 53, 57,

59, 60, 65, 80
aluminium, 5, 27–29, 34, 36, 41, 47,

64, 68, 69, 76, 80, 82–87, 89–96, 99,
100, 104, 105, 108, 113, 115, 116,
119, 120, 122, 127–130

aluminium cluster, 11, 102
aluminium structure, 95
aluminium surface, 81
amino acid, 93
amino chain, 93

anaglyph generator, 50
anaglyph, 50, 51
analogy consideration, 125–127
analysis algorithm, 65

anharmonic and disordered system,
72, 85

anharmonicity, 69, 72, 73, 76
anisotropic quantity, 74
anomaly, 49
anti-symmetric, 9
applicability, 5
Argon, 17, 20, 58
argon cluster, 12
assembler, vi, vii, 2
atomic density, 30
atomic interaction, 5, 6, 15
atomic potential, 6
atomic radius, 107
Au, 30
axle, 97–102

Ba, 19
bacterium, 1
ball-and-stick model, 3
band structure energy, 26, 27
bar shaped cluster, 119
bare ion, 23
bare ion potential, 25, 27
Barker potential, 20–22, 34, 59, 119,

120
barrier, 108, 110, 122
basic material property, 67
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bending, 4
bifurcation, 127–129, 131
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binomial coefficient, 55
biological environment, 96
biological system, 129
biomolecule, 5
body oscillation, 121
Boltzmann constant, 37
Boltzmann distribution, 4
bond angle bending, 29
bond stretching, 4, 29
bond torsion, 29
Born–Oppenheimer approximation, 8,

10, 12
boundary, 43, 48
boundary cell, 62
boundary condition, 43, 77
Br, 17
Buckingham–Corner potential, 16
Buckingham potential, 16, 21
bulk, 2, 14, 15, 44, 67, 69, 73, 80–82,

86, 89, 105, 119–121
bulk material, 2
bulk melting, 80
bulk model, 44, 46, 64
bulk structure, 102, 112

C, 17
Ca, 19
CAD model, 47, 92, 93
CAD software, 47
calculability, 13
calculation box, 44
calculation space, 44
calculation step, 61, 90, 92
camera, 48
cancer, 95
cancerous cell, vi, 2
canonical ensemble, 42, 52, 54, 77, 78
carbon, 30, 98
carbon structure, 91
carbonyl, 17
cartesian co-ordinates, 34
catalyst, 1
celestial object, 52
cell, 61–63
cell algorithm, 61, 62, 64, 65

cell arrangement, 62
cell control, 95
cell destruction, 95
cell division, 93, 95
cell growth, 95
cell–cell adhesion, 93
cellular mechanism, 95
centering, 46
central field, 8
central difference method, 53, 60
centrifugal force, 98
cgs units, 58
chaos theory, 127
characterization function, 6
characterization method, 2
characterization of nanostructures, 67
characterization of nanosystems, 67
characterization technique, 2
chemical bond, 3
chemical potential, 43, 77
chemical reactivity, 2
chemical transformation, 5
chip technology, 95
chloride, 17
Cl, 17
classical mechanics, 3
classical trajectory, 51, 52
close packed configuration, 112
closed shell overlap, 14
closed shell, 23
closed, isothermal system, 77
cluster, 15, 33, 36, 42, 45, 103–132
cluster collision, 124, 131
cluster compression, 131
cluster configuration, 127
cluster deposition, 130
cluster dynamics, 108
cluster energy surface, 121
cluster oscillation, 119
cluster shape, 113, 114, 122
cluster size, 113, 116, 118, 119, 124
cluster stability, 124
cluster state, 105, 113, 125
cluster temperature, 102, 112
cluster transformation, 110, 117
cluster transition, 111
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commercial software, 46
communication system, 95
complex shape, 46
computation speed, 59
computation time, 51
computational chemistry, 11
computational method, 2, 4
computational nano-engineering, vii,

6
computational nano-engineering

procedure, 92
computational nano-physics, 6
computer aided design, 47
computer aided design of molecules, 4
computer aided nano-design, 47, 91
computer chemistry, 3
computer experiment, 3, 35
computer science, vii, 6, 35
computer simulation, 51
computer technology, 11
conducting wire, 96
conduction band, 23
conduction electron, 23, 25, 27
conduction electron gas, 14
configuration point, 12
configuration space, 7, 8, 12
conservation law, 39, 52
conservation law of momentum, 36
constant NVT molecular dynamics,

42
construction phase, 48
cooling process, 42
core electron, 23
corrector, 56
correlation function, 74, 90
correlation time, 52
cosmetic industry, 2
Coulomb attraction, 23
Coulomb blockade, 1
Coulomb field, 8
Coulomb interaction, 10, 26
Coulomb potential, 7, 11
covalent bonded material, 29, 46
covalent bond, 5, 91, 99

Cr, 19
cross section, 49
cross-interaction, 19
crystal lattice, 46, 102
crystal structure, 72
crystalline solid, 33
crystalline structure, 68, 89, 107, 112,

113
crystallography, 72
crystal, 23, 36, 43, 46, 89, 105
Cs, 19
Cu, 19, 20, 30
cubical cluster, 114
cuboid, 112, 124
cut-off distance, 61, 62
cut-off function, 45, 60
cut-off radius, 45, 60, 102, 115, 120,

129
cylindrical rod, 97
cylindrical shape, 97

data transfer, 66
defect structure, 18
deformation, 102
density, 74, 113
density function, 78
density functional method, 3, 9, 11,

12, 107
density profile, 81
derivative, 54, 57
design, vii, 3, 48, 92, 91, 94, 95, 97
design criterium, 48, 92, 94
design prescription, 92
design step, 98
diamond, 98
diamondoid structure, 91
diatomic molecule, 17
dielectric function, 25, 26
differential equation, 51
differentiation algorithm, 35
diffusion coefficient, 81, 82
diffusion constant, 29, 82–84, 86
diffusion processe, 81
dimer, 20
dirt, 97
dislocation, 102, 107, 124, 127, 132
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disordering processe, 49
dispersion force, 12
distortion, 102
distributed computation, 66
distribution, 36
distribution function, 79
DNA strand, 95
docking process, 95
dodecahedral, 110
dodecahedron, 107, 117
double helix structure, 95
double peak, 105
drill-hole, 97
dynamic effect, 33
dynamic state, 77
dynamic structure factor, 88

E-cadherin, 93
EAM potential, 31
effective algorithm, 51
effective force interaction

computation, 35
effective pair potential, 14, 20, 27, 34,

119
effective phenomenological potential,

15
effective potential, 11
effective two-body term, 14
effective valency, 26
effectiveness, 51
efficiency, 51, 53
efficient code, 63
elastic constant, 14
electric power, 100
electric power generator, 101
electron, 7–10, 22, 23, 26
electron charge number, 8
electron cloud, 10
electron density, 9, 14, 15, 30, 31
electron gas, 25
electron orbital, 12, 14
electron spin, 9
electron wave function, 12
electron–phonon interaction, 11, 71
electronic conductivity, 2

electronic device, 96
electronic property, 71, 72, 91
electronic signal processing, 95
electronic states, 2
electronic structure, 2, 14
electrostatic interaction, 4
embedded atom method, 30
embedding energy, 30
embryology, 129
energy barrier, 108, 121
energy conservation, 52, 60, 103
energy drift, 57
energy fluctuation, 57, 121, 122, 127
energy surface, 78
energy-wave number characteristic, 26
engineering design, vii
ensemble average, 78, 88, 90
ensemble theory, 77, 78
environment, 36, 77, 122
enzyme, 95
equation of state, 18, 73
equations of motion, 52, 53, 55, 98
equilibration, 42, 47, 92, 98, 105,

110–113, 120
equilibration parameter, 117
equilibration period, 111
equilibration phase, 42, 48, 92, 102,

109, 115
equilibration procedure, 115
equilibration process, 41, 113
equilibrium, 36, 41, 42, 69, 78, 79, 88
equilibrium temperature, 42
ergodic hypothesis, 78
evolution, 129
exchange effect, 9
excited state, 125–127
exclusion principle, 12
experiment, 14, 26, 35, 129
experimental data, 5, 13, 16, 20, 29
experimental physics, 6
experimental result, 15, 30, 129
exponential-6 potential, 16
external force, 102
external influence, 103, 122, 123, 125,

126, 129
external potential, 7
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F, 17
face-centered cubic (fcc) lattice, 36

face-centered cubic crystals, 37–39
Fe, 19

Fermi surface, 25
Fermi wave number, 26

final configuration, 124
final shape, 68, 70, 110, 122, 125

final structure, 124

finite difference, 51
finite number of particles, 44

first principle, 8, 25
first-order differential equation, 35

fit, 98, 101
flagella, 1

fluctuation, 90
fluoride, 17

force calculation, 51, 53, 63, 64
force computation, 51, 57, 59, 61–63

force computation method, 64
force derivation, 59

force evaluation, 51
force field computation, 59

force field, 3

force table, 59, 60
form factor, 24–26, 28

four-body potential, 29
Fourier transform, 25, 26, 85, 87, 88

free electron theory, 23
free energy, 117

free metal surface, 14
free surface, 44

frequency spectrum, 85, 86, 108, 109
friction, 75, 76

friction constant, 75
friction-effect, 75

fullerene, 91
functional nanostructure, 48, 92

gas transport property, 20

gas, 36
Gaussian distribution, 40

generalized co-ordinates, 33, 77

generalized phonon density of state,
85–87, 108, 109, 119

generation of dislocations, 49
giant magnetoresistance, 1
global error, 54
grain boundary, 127
grand canonical ensemble, 43, 87
grand canonical, 52, 77
graphical presentation, 35
graphical processing, 66
grease, 97
ground state, 20, 125–127
growth factor molecule, 93

H, 17
haemoglobin, 1
half-step leap-frog scheme, 53
half-step, 54
Hamilton’s equations of motion, 33,

77
Hamiltonian, 7, 8, 10, 77, 79
Hamilton function, 34
Hartree dielectric function, 25, 28
Hartree–Fock method, 9, 12
harmonic approximation, 33, 70, 72,

76
harmonic oscillator potential, 57
harmonic solid, 85
high resolution, 2
higher order correlation function, 73
homogeneous liquid, 79
human cell, 93
human hair, 101
human organism, 96

I, 17
immune system, 95
impact, 123
impact process, 49
impact velocity, 123, 124
independent creativity, 128
induced dipole, 12
infinite extended system, 44
initial cluster configuration, 118
initial condition, 68, 70, 110, 117,

118, 124, 125
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initial configuration, 122
initial position, 36, 46, 57, 115
initial shape, 46
initial temperature, 112, 113, 115
initial value, 35, 36, 41, 46, 102
initial velocity, 39–42, 52
inner structure, 127
inorganic prototype, 95
integration algorithm, 51–53, 57, 60,

102
integration method, 51–53
integration step, 51
inter-cell communication, 93
interacting force, 34
interaction distance, 45
interaction force, 5, 53
interaction path, 63
interaction potential, 3–5, 7, 10, 14,

26, 28, 45, 52, 72, 129
interaction range, 60
interatomic distance, 36
interatomic force, 43
interatomic interaction, 12, 43
interatomic potential, 7, 14, 17
internal process, 49
interpenetration, 14
interpolation, 17, 60
ion core, 14, 27
ionic charge, 23
ionic crystal, 14
ionic radius, 49
inorganic structure, 128
intermediate scattering function, 87
isolated system, 43, 77
isolating rotor kernel, 100
isolator, 96
isothermal, 42
isothermal canonical ensemble, 111
isothermal compressibility, 73
isothermal equilibration, 41, 42, 54
isothermal equilibration process, 92,

93

K, 19
kinetic, 4
kinetic energy, 10, 26, 43

kinetic energy operator, 10
kinetic temperature, 37, 40
krypton, 5, 17, 20, 21, 34, 36, 52,

98–100, 119

large-scale MD model, 57
large-scale MD simulation, 59, 65
large-scale MD study, 124
laser beam, 98
lattice, 92
lattice constant, 28, 30, 36, 46
lattice defect, 127
lattice dynamics, 18
lattice structure, 120
layer, 36, 49, 80–90, 112
leap-frog scheme, 57
leap-frog method, 54
Lennard–Jones potential, 18–21
lifetime, 126, 127
light source, 48
linear approximation, 25
linear combination of atomic orbitals,

3
linear superposition, 30
liquid bulk, 43, 108
liquid state, 80, 89
liquid, 36
liquid in the bulk, 72
list method, 60, 61, 64, 65
local maximum, 108
local minimum, 3, 33, 108, 121, 122,

127
local perturbation, 124
logarithmic singularity, 26
logical system, 128
long-range interaction, 20
long-range oscillation, 29
long-time simulation, 58
Lorenz–Berthelot mixing rule, 19
lubricant, 97

macroscopic density, 80
macroscopic quantity, 78
macroscopic system, 67
magnetic field, 102
many-body contribution, 12
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many-body force, 5
many-body interaction, 20
many-body potential, 29, 33, 34
many-body problem, 16
many-particle problem, 7–9, 13, 33
many-particle system, 3, 4, 11, 77
many-particle Schrödinger equation,

7, 9
mass point, 3
massive parallel computer, 66
material confinement, vi
material density, 28
material property, 70, 72
material property of nanosystems, 69
materials research, 68
materials research in nanotechnology,

72
materials science, 1, 2, 131
Maxwell distribution, 36, 40, 41, 103,

120
Maxwell distributed velocity, 41
MD algorithm, 66, 129
MD calculation, 36, 41–43, 48, 51, 52,

65, 67, 68, 76, 78, 79, 82, 88, 98,
99, 102, 117, 119, 120, 122

MD calculation step, 49, 62
MD data, 48, 50, 66, 76, 78, 84
MD model, 42, 43, 44, 46–48, 52, 61,

65, 76, 79, 92, 93, 95, 99, 101, 110,
117, 122, 124

MD movie, 49
MD result, 125, 129
MD simulation, 59
MD study, 99, 101, 102, 114, 118,

120, 121, 127, 131
mean-square fluctuation, 57
mean-square displacement, 29, 81–84,

90
mean-square velocity, 42
mechanical engineering, 46, 48, 97,

101
mechanical engineering model, 99
mechanical property, 2
medical care, 92
medical operation, 94
medical prototype, 96

medical task, 94
medium field, 9
melting point, 29, 68, 81, 90
melting process, 68–71
melting temperature, 28, 67–72, 76,

80, 82, 86, 89
melting temperature of nanosystems,

67
membrane, 43
memory, 59, 61
memory chip, 96
memory storage, 57
message passing, 63, 64
meta-stable, 104, 108, 109
meta-stable cluster, 107, 110, 125, 128
meta-stable cluster state, 126
meta-stable period, 110, 111,

116–118, 120–122, 127
meta-stable state, 103, 105, 109, 112,

114–116, 118, 119, 121, 122, 128
metallic behavior, 15
metallic bond, 129
metallic cluster, 15
metallic compound, 91
metallic crystal, 29
metallic interaction, 29, 30
metallic nanostructured system, 14
metallic nanostructure, 46
metallic nanosystem, 15
metallic structure, 92, 95
metallic wire, 95
metal, 18, 98
micro-canonical ensemble, 43
micro-canonical, 52, 77, 78
micro-fabrication, vii
micro-state, 77
microelectronics revolution, vii
microscope, v
microscopic description of material

properties, 72
microscopic number density, 87
microscopic structure, 68, 70
mid-step value, 53
miniaturization, v, 95
minimum energy configuration, 5, 30
miscontrolled cell, 95
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mks system, 58
Mo, 19
model, 4, 35, 36, 42, 52, 57, 83, 85,

87, 90, 94, 95, 132
model design, 78
model formation, 35
model potential, 22, 25, 119
model size, 51
model temperature, 42
modified Buckingham potential, 16,

17, 29
molecular biology, 1, 93
molecular design, 3
molecular dynamics, 6, 13, 34, 35, 91,

129
molecular dynamics calculation, 4, 5,

22, 30, 75
molecular dynamics method, vii, 3, 5
molecular dynamics model, 75
molecular manufacturing, vi, 2
molecular mechanics, 3–5, 13, 30, 91
molecular mechanics method, 33, 42
molecular mechanisms, 1
molecular motor, 1
molecular switch, 1
molecular-sized machine, v
molecule, 3
momentum, 33
momentum propagation, 49
mono-atomic nanosystem, 5
mono-atomic system, 79
Monte Carlo method, 3, 4
Morse potential, 17–19, 28, 29
movie, 49, 109
moving part, 46, 97
multi-central field, 11
multi-crystalline composition, 127
multi-crystalline structure, 107, 124

N-body force field, 59
N, 17
Na, 19
nano design, vii
nano-array, 96
nano-cluster, 10, 41, 43, 46, 85, 119,

120, 126, 127, 131

nano-computation, 3
nano-construction, 46
nano-design, vii, 3, 6, 46–48, 92–97,

99, 101
nano-designer, vii, 3
nano-effect, 6
nano-engineering, vi, vii, 2, 46, 48,

65, 95
nano-engineer, vii, 3
nano-generator, 100, 101
nano-machine, vi, 2, 6, 36, 46, 48, 49,

91, 92, 96, 98, 102
nano-manufacturing, 3
nano-material, vii
nano-model, 48, 92
nano-object, 92
nano-particle, 1, 2
nano-part, 98
nano-robot, vi, 2
nano-tube, 1
nano-turbine, 98, 101, 102
nano-wheel, 98
nanometer scale device, vii
nanometer scale modeling, vii
nanostructure, vi, 1, 2, 5, 18, 27, 33,

34, 36, 47, 67, 69–72, 92, 93, 95, 96,
98, 101, 114

nanostructured material, 131, 132
nanostructured system, 35
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127–129
nanotechnology, v–vii, 1–3, 6, 67
National Nanotechnology Initiative,

vi
Ne, 17, 20
nearest neighbor atom, 108, 121
neighbor cell, 62, 63
neighbor list, 60, 61
Neil Armstrong, 13
nested loop, 59
neutron cross-section, 87
neutron scattering, 88
Newton’s equations of motion, 4, 34
Newton’s third law, 59, 63
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noble gas, 6, 10, 15, 17–19
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noble metal, 14
non-bonded atom, 4, 17

non-bonded interaction, 29

non-bonded material, 33, 102
non-local Schrödinger equation, 9

non-overlapping ion core, 27

Nordsieck/Gear algorithm, 56–58
Nordsieck/Gear predictor-corrector,

54, 58, 102
normal distribution, 40

normal mode, 85

normalized quantity, 58
nucleotids, 95

nucleus, 7, 8, 10, 11, 30, 33

numerical algorithm, 59
numerical analysis, 48, 49

numerical calculation, 3, 4, 58, 75
numerical instability, 60

numerical integration, 51

numerical method, 76
numerical solution, 8

numerics, 35

O, 17

open isothermal system, 77
optical absorption, 2

orbital, 49

ordered structure, 70
ordering, 49

organic chemistry, 3, 5, 33

organic compound, 91, 95
organic liquid, 96

organic structure, 5, 29, 91
orientation, 36, 46, 112, 113

orthogonalized plane wave, 23

oscillation mode, 108
oscillation, 26, 49, 109, 121, 129

outer shape, 70, 95, 102, 105, 107,
113, 115, 119, 124, 127, 132

overlap, 4

oxidation, 95

P, 17
paddle-wheel, 98, 99

paddle, 102

pair correlation function, 72, 79, 80,
81, 87, 105

pair distribution, 79
pair interaction, 30
pair interaction force, 59
pair interaction potential, 30
pair potential, 13–15, 22, 27, 29, 34,

59, 60, 72, 79, 91
pair potential approximation, 13, 14,

33, 34
pair potential concept, 13
parallel computing, 62, 66
parallel efficiency, 62
parallel machine, 63
particle collision, 36
particle displacement, 61
particle distance, 59, 60, 74
particle interaction, 4, 44, 59, 63
particle mass, 52
particle mobility, 81
particle number, 64, 67, 70
particle position, 4, 43, 75
particle velocity, 37, 49, 75, 84
Pascal triangle, 55
Pauli principle, 9, 23
Pb, 19
Pd, 30
perfect crystal, 105
perfect crystal lattice, 41
perfect lattice, 36, 46
periodic boundary, 46
periodic boundary condition, 43–45,

60, 62, 64
periodical particle shift, 105
perturbation, 14, 72, 123, 124, 129
perturbation theory, 25, 26
phase space trajectory, 52, 77
phase transition, 67, 124
phenomenological potential, 5, 15, 18,
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phonon branch, 71
phonon density of state, 29, 86
phonon frequency, 71, 72
phonon, 70, 72, 85
photon, 125, 126
pigment, 2
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polarization, 10

poly-crystalline structure, 130, 132
polyhedron, 105

polymer, 5

position, 35, 48, 49, 53, 54, 102
positioning, 46

potential barrier, 43, 110, 112, 122

potential cluster energy, 121
potential energy, 3, 4, 24, 103, 105,

108, 121, 125, 126
potential energy surface, 3, 12, 13, 33,

34, 108, 110, 122, 127

potential function, 13
potential generator, 65

pre-melting effect, 80–83, 85–87, 90

predictor, 55
predictor-corrector method, 57, 58

pressure, 73, 74

probability, 78, 79
probability aspect, 117

probability density, 77

processor boundary, 63

processor communication, 62
processor node, 63

programming language, 46

projection operator, 23
properties of macroscopic systems, 69

propulsion, 98

protein engineering, vii

prototype nanostructure, 94
prototype structure, 94

pseudo potential, 13, 14, 22–24, 28,
27, 129

pseudo potential theory, 18

pseudo stable clusters, 131
pseudo stable state, 123, 127

quantitative characterization, 76

quantity of state, 78

quantization effects, 2

quantum dots, 1, 96
quantum effect, 4

quantum mechanical calculation, 3,
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quantum mechanical effect, 13

quantum mechanical many-particle
problem, 12

quantum mechanical modeling, 7
quantum mechanics, vi, vii, 2, 4, 13,

34
quantum molecular dynamics, 34
quantum theoretical calculation

method, 8
quantum theoretical calculation (ab

initio), 3
quasi ergodic hypothesis, 78, 79
quasi–atom theory, 30

R. Feynman, v
random number, 39, 40
range of applicability, 5
range of the potential, 45
range of validity, 5
ray tracing, 48
Rb, 19
re-crystallization process, 132
re-design, 48
re-scaling of velocity, 42
receptor, 93
reciprocal lattice vector, 23
recrystallization effect, 131
recrystallization process, 131
redesign, 92, 94
reflecting box, 43
reflection, 49
relative distance, 72, 105
rendering, 48
rendering software, 49, 50
replication of protein, 1
replicator, vi, vii
resonance oscillation, 108
resulting force, 59
rotating nanostructure, 98
rotating part, 98
rotor kernel, 100, 102
Runge–Kutta, 53
Runge–Kutta variant, 51

S, 17
saddle point, 3, 12, 33, 108, 121, 127
scaled derivative, 55



November 14, 2002 13:55 WorldScientific/ws-b9x6-0 nest

Index 149

scaling factor, 58
scanning tunnelling microscope

(STM), 2
scattering, 49
scattering cross section, 20
scattering method, 2
Schommers potential, 27–29, 34, 59,

99, 102, 115, 119, 129
Schrödinger equation, 3, 8–12, 18, 24
screening, 25
screening charge, 23
second order equation, 53
second virial coefficient, 20
self-cleaning surface, 2
self-consistency, 9
self-consistent field, 11, 12
self-consistent field method, 3, 8
self-starting algorithm, 57
semi-infinite liquid, 74
semi-infinite system, 75
semiconductor, 30
sensor, 96
shape, 67, 68, 92, 93, 97
Si, 17
signal transduction, 93
signalling molecule, 95
silicon, 30, 99, 100
simple metal, 6, 14, 22
simulation algorithm, 51
simulation box, 45, 62
simulation method, vii
simulation period, 51, 52
simulation space, 43, 49, 61, 62, 88
single crystal, 107, 130
single electron wave function, 9
sintering, 131
Slater’s determinant, 9
small core approximation, 23
smoothing algorithm, 87
solid state physics, 1, 33, 67, 70, 75
solid-state data, 20
solution of the equations of motion,

51
sound wave, 108, 127
specific heat, 70
spectroscopic data, 18

spectroscopic information, 2, 20

spontaneous transformation, 129

SPSM method, 62, 64, 65

Sr, 19
stability, 51–53, 95, 98, 107, 114, 131

stable cluster, 105, 107, 118, 124

stable configuration, 3, 10–12, 42, 67,
91, 93, 113, 115–117, 120–122

stable design, 92

stable fluctuation, 102

stable nuclear configuration, 11

stable operation, 102

stable phase, 122

stable state, 103, 104, 107, 109, 110,
112, 123, 126–128, 131

stable structure, 5, 92–95

standard model, 67

standard model of solid state physics,
70, 72

state transition, 111, 122, 129

statistical ensemble, 4, 52, 77–79

statistical mechanics, vii, 6, 42, 72,
76, 79

step size, 51, 52, 57, 58

stereoscopic picture, 50

stiffness, 5, 30

stimulated nano-cluster
transformation, 122

stimulation, 125, 126

storage, 59

structural change, 49, 105, 106

structural stability, 95

structural transformation, 102, 108,
112–114, 119, 120, 123, 124, 129

structure, 45–47, 98, 107

structure factor, 24, 27, 87–90, 104,
105

structure transformation, 119, 122,
125, 127, 131

sublimation, 68, 71

sublimation process, 69

substrate, 69, 72, 98–100

summation step, 59

superconductivity, 71

superstructure, 104, 105
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surface, 36, 46, 69, 73–76, 82, 83, 85,
87, 89, 90, 95, 96, 102, 103, 107,
113, 121, 130, 131

surface atom, 15

surface oscillation, 109, 110

surface particle, 69
surface phenomenon, 33

surface physics, vii

surface property, 18, 21
surface structure, 80, 124

surface study, 27

surface wave, 110

synchrotron radiation, 2
system temperature, 42

tailor-made molecule, 95

Taylor expansion, 54–56

temperature, 4, 52
temperature control, 110, 111

temperature distribution, 49

temperature fluctuation, 81, 121, 122
tempering, 42

theory of liquids, 76

thermal equilibrium, 36, 40, 41, 79,
92, 102, 103, 120

thermal expansion coefficient, 73

thermal stability, 67–69
thermodynamic environment, 43

thermodynamic property, 75

thin film, 75, 76, 130
three-body interaction, 14, 20

three-body potential, 30

three-dimensional movie, 51

time average, 78, 79, 90
time step, 4, 35, 51, 52, 53, 68

tolerance, 97, 101

torsion, 4
total energy, 7, 52, 57

trajectory, 52, 54, 57, 77, 78, 102

transformation, 112, 114, 117, 124

transformation process, 124
transition, 103, 105, 108, 110, 112,

116, 118, 119, 122, 126, 127
transition phase, 103, 105, 120
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