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Abstract. In recent years the use of graph-cuts has become quite popular in com-
puter vision. However, researchers have repeatedly asked the question whether it
might be possible to compute a measure of uncertainty associated with the graph-
cut solutions. In this paper we answer this particular question by showing how the
min-marginals associated with the label assignments in a MRF can be efficiently
computed using a new algorithm based on dynamic graph cuts. We start by re-
porting the discovery of a novel relationship between the min-marginal energy
corresponding to a latent variable label assignment, and the flow potentials of
the node representing that variable in the graph used in the energy minimization
procedure. We then proceed to show how the min-marginal energy can be com-
puted by minimizing a projection of the energy function defined by the MRF.
We propose a fast and novel algorithm based on dynamic graph cuts to efficiently
minimize these energy projections. The min-marginal energies obtained by our
proposed algorithm are exact, as opposed to the ones obtained from other infer-
ence algorithms like loopy belief propagation and generalized belief propagation.
We conclude by showing how min-marginals can be used to compute a confidence
measure for label assignments in labelling problems such as image segmentation.

1 Introduction

Researchers in computer vision have extensively used graph cuts to compute the max-
imum a posteriori (MAP) solutions for various discrete pixel labelling problems such
as image restoration, segmentation and stereo. Graph cuts are preferred over other in-
ference algorithms like Loopy Belief Propagation (LBP), Generalized Belief Propaga-
tion (GBP) and the recently introduced Tree Re-weighted message passing (TRW) [1,
2] primarily because of their ability to find globally optimal solutions for an impor-
tant class of energy functions (sub-modular) in polynomial time [3]. Even in problems
where they do not guarantee globally optimal solutions, they can be used to find so-
lutions which are strong local minima of the energy [4]. These solutions for certain
problems have been shown to be better than the ones obtained by other methods [5].
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Graph cuts however do suffer from a big disadvantage. Unlike other inference algo-
rithms, they do not provide any uncertainty measure associated with the solution they
produce. This is a serious drawback since researchers do not have any information re-
garding the probability of a particular latent variable assignment in a graph cut solution.
Inference algorithms like LBP, GBP, and TRW provide the user with marginal or min-
marginal energies associated with each latent variable. However, these algorithms are
not exact. Note that for tree-structured graphs, the simple max-product belief propaga-
tion algorithm gives the exact max-marginal probabilities/min-marginal energies1 for
different label assignments in O(nl2) time where n is the number of latent variables,
and l is the number of labels a latent variable can take.

This paper addresses the problem of efficiently computing the min-marginals as-
sociated with the label assignments of any latent variable in a Markov Random Field
(MRF). Our method can work on all MRFs that can be solved using graph cuts. First,
we show how in the case of binary variables, the min-marginals associated with the
labellings of a latent variable are related to the flow-potentials (defined in section 3) of
the node representing that latent variable in the graph constructed in the energy mini-
mization procedure. The exact min-marginal energies can be found by computing these
flow-potentials. We then show how flow potential computation is equivalent to mini-
mizing projections of the original energy function2.

Minimizing a projection of an energy function is a computationally expensive op-
eration and requires a graph cut to be computed. In order to obtain the min-marginals
corresponding to all label assignments of all random variables, we need to compute
a graph cut O(nl) number of times. In this paper, we present an algorithm based on
dynamic graph cuts [6] which solves these O(nl) graph cuts extremely quickly. Our
experiments show that the running time of this algorithm i.e. the time taken for it to
compute the min-marginals corresponding to all latent variable label assignments is of
the same order of magnitude as the time taken to compute a single graph cut.

Overview of Dynamic Graph Cuts Dynamic computation is a paradigm that pre-
scribes solving a problem by dynamically updating the solution of the previous problem
instance. Its hope is to be more efficient than a computation of the solution from scratch
after every change in the problem. A considerable speedup in computation time can be
achieved by this procedure especially when the problem is large scale and changes are
few. Dynamic algorithms are not new to computer vision. They have been extensively
used in computational geometry for problems such as range searching, intersections,
point location, convex hull, proximity and many others [7].

Boykov and Jolly [8] were the first to use a partially dynamic st-mincut algorithm
in a vision application, by proposing a technique with which they could update capac-
ities of certain graph edges, and recompute the st-mincut dynamically. They used this

1 We will explain the relation between max-marginal probabilities and min-marginal energies
later in section 2. To make our notation consistent with recent work in graph cuts, we formu-
late the problem in terms of min-marginal energies (subsequently referred to as simply min
marginals).

2 A projection of the function f(x1, x2, ..., xn) can be obtained by fixing the values of some of
the variables in the function f(.). For instance f ′(x2, ..., xn) = f(0, x2, ..., xn) is a projection
of the function f(.).



method for performing interactive image segmentation, where the user could improve
segmentation results by giving additional segmentation cues (seeds) in an online fash-
ion. However, their scheme was restrictive and did not allow for general changes in the
graph. In one of our earlier papers, we proposed a new algorithm overcoming this re-
striction [6], which is faster and allows for arbitrary changes in the graph. The running
time of this new algorithm has been empirically shown to increase linearly with the
number of edge weights changed in the graph. In this paper, we will use this algorithm
to compute the exact min-marginals efficiently. To summarize, the key contributions of
this paper include:

– A novel relationship between min-marginal energies and node flow-potentials in
the residual graph obtained after the graph cut computation.

– A method to compute min-marginals by minimizing energy function projections.
– An extremely fast algorithm based on dynamic graph cuts for efficiently minimiz-

ing these energy projections.
– A method to obtain confidence maps for different assignments in labelling problems

such as image segmentation.

Organization of the Paper A brief outline of the paper is given next. We discuss
MRFs and min-marginal energies in section 2. In section 3, we formulate the st-mincut
problem, define terms that would be used in the paper, and describe how certain energy
functions can be minimized using graph cuts. In section 4, we show how min-marginals
can be found by minimizing projections of the original energy function. We then pro-
pose a novel algorithm based on dynamic graph cuts to efficiently compute the minima
of these energy projections. In section 5, we show some experimental results of our
algorithm.

2 Notation and Preliminaries

We will now describe the notation used in the paper. We will formulate our problem
in terms of a pairwise MRF3. Note that the pairwise assumption does not affect the
generality of our formulation since any MRF involving higher order interaction terms
can be converted to a pairwise MRF by addition of auxiliary variables in the MRF [9].

Consider a random field consisting of a set of discrete random variables {x1, . . . , xn}
defined on the set V , such that each variable xv takes values from the label set Xv. We
represent the set of all variables xv , ∀v ∈ V by the vector x which takes values from the
set X defined as X = X1 ×X2 × . . .× Xn. Unless noted otherwise, we use symbols
u and v to denote values in V , and i and j to denote particular values in Xu and Xv

respectively. Further, we use Nv to denote the set consisting of indices of all variables
which are neighbours of the random variable xv in the graphical model. The random
field is said to be a MRF with respect to a neighborhoodN = {Nv|v ∈ V} if and only
if it satisfies the positivity property Pr(x) > 0 ∀x ∈ X , and the Markovian property

Pr(xv |{xu : u ∈ V − {v}}) = Pr(xv |{xu : u ∈ Nv}) ∀v ∈ V . (1)

3 Pairwise MRFs have cliques of size at most two.



The MAP-MRF estimation problem can be formulated as an energy minimization
problem where the energy corresponding to the configuration x is the negative log like-
lihood of the joint posterior probability of a MRF configuration and is defined as

E(x|θ) = − log Pr(x|D) − const. (2)

Here θ is the energy parameter vector defining the MRF [1]. The energy of a configu-
ration for such a pairwise MRF can be written in terms of unary and pairwise energy
terms as:

E(x|θ) =
∑

v∈V

(

φ(xv) +
∑

u∈Nv

φ(xu,xv)

)

+ const. (3)

In the paper, ψ(θ) is used to denote the value of the energy of the MAP configuration
of the MRF and is defined as:

ψ(θ) = min
x∈X

E(x|θ). (4)

The term optimal solution will be used to refer to the MAP solution in the paper.

Min-marginal energies A min-marginal is a function that provides information about
the minimum values of the energyE under different constraints. Following the notation
of [1], we define the min-marginal energies ψv;j , ψuv;ij as:

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ), and ψuv;ij(θ) = min
x∈X ,xu=i,xv=j

E(x|θ). (5)

In words, given an energy functionE whose value depends on the variables (x1, . . . , xn),
ψv;j(θ) represents the minimum energy value obtained if we fix the value of variable
xv to j and minimize over all remaining variables. Similarly, ψuv;ij(θ) represents the
value of the minimum energy in the case when the values of variables xu and xv are
fixed to i and j respectively.

2.1 Computing the likelihood of a label assignment

Now we show how min-marginals can be used to compute a confidence measure for a
particular latent variable label assignment. Given the function Pr(x|D), which specifies
the probability of a configuration of the MRF, the max-marginal µv;j gives us the value
of the maximum probability over all possible configurations of the MRF in which xv =
j. Formally, it is defined as:

µv;j = max
x∈X ;xv=j

Pr(x|D) (6)

Inference algorithms like max-product belief propagation produce the max-marginals
along with the MAP solution. These max-marginals can be used to obtain a confidence
measure σ for any latent variable labelling as:

σv;j =
maxx∈X ,xv=j Pr(x|D)

∑

k∈Xv
maxx∈X ,xv=k Pr(x|D)

=
µv;j

∑

k∈Xv
µv;k

(7)



where σv;j is the confidence for the latent variable xv taking label j. This is the ratio
of the max-marginal corresponding to the label assignment xv = j to the sum of the
max-marginals for all possible label assignments.

We now proceed to show how these max-marginals can be obtained from the min-
marginal energies computed by our algorithm. Substituting the value of Pr(x|D) from
equation (2) in equation (6), we get µv;j = maxx∈X ;xv=j (exp (−E(x|θ) − const))
or µi;j = 1

Z
exp (−minx∈X ;xv=j E(x|θ)), where Z is the partition function. Combin-

ing this with equation (5a), we get µi;j = 1
Z

exp (−ψv;j(θ)). As an example consider
a binary label object-background image segmentation problem, where there are two
possible labels i.e. object (‘ob’) and background (‘bg’). The confidence measure σv;ob

associated with the pixel v being labelled as object can be computed as:

σv;ob =
µv;ob

µv;ob + µv;bg
=

1
Z

exp (−ψv;ob(θ))
1
Z

exp (−ψv;ob(θ)) + 1
Z

exp (−ψv;bg(θ))
, (8)

or σv;ob =
exp (−ψv;ob(θ))

exp (−ψv;ob(θ)) + exp (−ψv;bg(θ))
(9)

Note that the Z’s cancel and thus we can compute the confidence measure from the
min-marginal energies alone without knowledge of the partition function.

2.2 Computing the M most probable configurations
Another important use of min-marginals has been to find the M most probable con-
figurations (or labellings) for latent variables in a Bayesian network [10]. Dawid [11]
showed how min-marginals on junction trees can be computed, which was later used
by [12] to find the M most probable configurations of a probabilistic graphical network.
Note that the method of [11] is guaranteed to run in polynomial time for tree-structured
networks. However, for arbitrary graphs, its worst case complexity is exponential in the
number of the nodes in the graphical model.

3 The st-Minimum Cut Problem

In this section we will give a brief overview of graph cuts and show how they can
used to minimize energy functions such as the one defined in equation (3). A cut is
a partition of the node set V of a graph G into two parts S and S = V − S, and is
defined by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of a cut (S, S) is
equal to: C(S, S) =

∑

(i,j)∈E;i∈S;j∈S(cij) where cij is the cost associated with the
edge (i, j). For a weighted graph G(V,E) with two special nodes, namely the source s
and the sink t, collectively referred to as the terminals, the st-mincut problem is that of
finding a cut with the smallest cost satisfying the properties s ∈ S and t ∈ S.

By the Ford-Fulkerson theorem [13], the st-mincut problem is equivalent to comput-
ing the maximum flow from the source to the sink with the capacity of each edge equal
to cij . Specifically, while passing flow through the network, a number of edges become
saturated. When the maximum amount of flow is being passed in the network, there re-
mains no path from the source to the sink that does not have a saturated edge. In effect,
these saturated edges separate the source from the sink and thus by the Ford-Fulkerson
theorem, constitute the minimum cut.



Computing the Maximum Flow The Max-flow problem for a capacitated network
G(V,E) with a non-negative capacity cij associated with each edge is that of finding
the maximum flow f from the source node s to the sink node t subject to the edge
capacity and flow balance constraints:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (10)

∑

i∈N(v)

(fvi − fiv) = 0 ∀v ∈ V − {s, t} (11)

where fij is the flow from node i to node j, and N(v) is the neighbourhood of v.

Residual Graphs, Augmenting Paths and Flow Potentials Given a flow fij , the
residual capacity rij of an edge (i, j) ∈ E is the maximum additional flow that can
be sent from node i to node j using the edges (i, j) and (j, i). The residual capacity
rij has two components: the unused capacity of the edge (i, j): cij − fij and the cur-
rent flow fji from node j to node i which can be reduced to increase the flow from
i to j. A residual graph G(f) of a graph G consists of the node set V and the edges
with positive residual capacity (with respect to the flow f ). The topology of G(f) is
identical to G. G(f) differs only in the capacity of its edges and so for zero flow i.e.
fij = 0 ∀(i, j) ∈ E , G(f) is same as G.

An augmenting path is a path from the source to the sink along unsaturated edges of
the residual graph. Augmenting path based algorithms for solving the max-flow prob-
lem work by repeatedly finding augmenting paths in the residual graph and saturating
them. When no more augmenting paths can be found i.e. the source and sink are dis-
connected in the residual graph, the maximum flow is obtained.

We define the flow potentials of a graph node as the maximum amount of flow that
can be pumped between it and the two terminals without invalidating the flow balance
(11) and edge capacity (10) constraints of the weighted graph. For a node i, we refer
the maximum amount of flow that can be pumped from it is as the source flow potential
fs

i and that into it as the sink flow potential f t
i . The computation of flow potential is not

a trivial process and in essence requires a graph cut to be computed as shown in figure
2. The flow potentials of a particular graph node are shown in figure 1(a). Note that
in a residual graph G(fmax) where fmax is the maximum flow, all nodes on the sink
side of the st-mincut are disconnected from the source and thus have the source flow
potential equal to zero. Similarly, all nodes belonging to the source have the sink flow
potential equal to zero. We will show later that the flow-potentials we have just defined
are intimately linked to the min-marginals.

3.1 Minimizing Energies using Graph Cuts

The basic procedure for energy minimization using graph cuts comprises of building a
graph in which each cut defines a configuration x, and the cost of the cut is equal to the
energy value associated with x i.e. E(x|θ). Kolmogorov and Zabih [3] showed under
what conditions energies like (3) can be minimized exactly using st-mincuts. They also
described how to construct the graph for this particular class of energy functions. Their



work dealt with energy functions involving binary random variables. The conditions
and graph construction corresponding to the multiple label case was later given in [14].

The basic graph construction for the minimization procedure works by decompos-
ing the energy function into unary and pairwise energy terms. The MRF energy (3) can
be written as:

E(x|θ) = θconst+
∑

v∈V,i∈Xv

θv;iδi(xv)+
∑

(s,t)∈E,(j,k)∈(Xs,Xt)

θst;jkδj(xs)δk(xt), (12)

where θv;i is the penalty for assigning label i to latent variable xv , θst;ij is the penalty
for assigning labels i and j to the latent variables xs and xt, and each δj(xs) is an
indicator function which is defined as:

δj(xs) =

{

1 if xs = j, wherej ∈ Xs

0 otherwise ,

These individual energy terms are represented by weighted edges in the graph. Multiple
edges between the same nodes are merged into a single edge by adding their weights.
Finally, the st-mincut is found in this graph, which provides us with the MAP solution.
The cost of this cut corresponds to the energy of the MAP solution. The labelling of a
latent variable depends on the terminal it is disconnected from by the minimum cut. If
the node is disconnected from the source, we assign it the value zero and one otherwise.
The graph construction for a two node MRF is shown in figure 1(b).

4 Computing Min-marginals using Graph Cuts

We will now explain how min-marginal energies can be computed using graph cuts.
The total flow ftotal flowing from the source s to the sink t in a graph is equal to the
difference between the total amount of flow coming in to a terminal node and that going
out i.e.

ftotal =
∑

i∈N(s)

(fsi − fis) =
∑

i∈N(t)

(fit − fti). (13)

We know that the cost of the st-mincut in an energy representing graph is equal to
the energy of the optimal configuration. From the Ford-Fulkerson theorem, this is also
equal to the maximum amount of flow fmax that can be transferred from the source to
the sink. Hence from the minimum energy (4) and total flow equation (13) for a graph
in which maxflow has been achieved i.e. ftotal = fmax, we obtain:

ψ(θ) = min
x∈X

E(x|θ) = fmax =
∑

i∈N(s)

(fsi − fis). (14)

Note that flow cannot be pushed into the source i.e. fis = 0, ∀i ∈ V . Thus, we get
ψ(θ) =

∑

i∈N(s) fsi. The MAP configuration x
∗ of a MRF is the one having the least

energy and is defined as x
∗ = argminx∈X E(x|θ). The min-marginals corresponding

to the optimal label assignments for the latent variables are equal to the minimum en-
ergy i.e.

ψv;x∗

v
(θ) = min

x∈X ,xv=x∗

v

E(x|θ) = ψ(θ) (15)



Fig. 1. a) Illustrating the flow potentials of graph nodes. The figure shows a directed graph hav-
ing seven nodes, two of which are the terminal nodes, the source s and the sink t. The number
associated with each directed edge in this graph is a capacity which tells us the maximum amount
of flow that can be passed through it in the direction of the arrow. The flow potentials for node 4
in this graph when no flow is passing through any of the edges are f s

4 = 2 and f t
4 = 11. b) Energy

minimization using graph cuts. The figure shows how individual unary and pairwise terms of an
energy function taking two binary variables are represented and combined in the graph. The cost
of a st-cut in the final graph is equal to the energy E(x) of the configuration x the cut induces.
The minimum cost st-cut induces the least energy configuration x for the energy function.

where x∗v is the label given to the latent variable xv in the MAP configuration x
∗. Thus

the maximum flow equals the min-marginals for the case when the latent variables take
their respective MAP labels. The min-marginal energy ψv;x−

v

(θ) corresponding to a
non-optimal label x−v can be computed by finding the minimum value of the energy
function projectionE

′

obtained by constraining the value of xv to x−v as:

ψv;x−

v

(θ) = min
x∈X ,xv=x

−

v

E(x|θ) = min
(x−xv)∈(X−Xv)

E(x1, .., x
−
v , xv+1..xn|θ). (16)

In the next paragraph, we will show that this constraint can be enforced in the orig-
inal graph construction used for minimizingE(x|θ) by modifying certain edge weights
which make sure that the latent variable xv takes the label x−v . The exact modifications
needed in the graph for the binary label case are given first while those required in the
graph for the multi-label case are discussed later.

Min-marginals and Flow potentials We now show how in the case of binary variables,
flow-potentials in the residual graph G(fmax) are related to the min-marginal energy
values. We will use a and b to represent the MAP and non-MAP label respectively.

Theorem 1. The min-marginal energy of a binary latent variable xv is equal to the
sum of the max-flow and the flow-potential of the node representing it in the residual



Fig. 2. Computing min-marginals using graph cuts. In (a) we see the graph representing the
original energy function. This is used to compute the minimum value of the energy ψ(θ) which is
equal to the max-flow fmax = 8. The residual graph obtained after the computation of max-flow
is shown in (b). In (c) we show how the flow-potential f s

5 can be computed in the residual graph
by adding an infinite capacity edge between it and the sink and computing the max-flow again.
The addition of this new edge constrains node 5 to belong to sink side of the st-cut. A max-flow
computation in the graph (c) yields fs

5 = 4. This from theorem 1, we obtain the min-marginal
ψ5;c = 8 + 4 = 12, where T(c) = source(s).

graph corresponding to the max-flow solution G(fmax) i.e.

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ) = ψ(θ) + fT (j)
v = fmax + fT (j)

v (17)

where T (j) is the terminal corresponding to the label j, and fmax is the value of the
maximum flow in the graph G representing the energy function E(x|θ).

Proof The proof is trivial for the case where the latent variable takes the optimal label.
We already know that the value of the min-marginal ψv;a(θ) is equal to the lowest
energy ψ(θ). Further, the flow potential of the node for the terminal corresponding to
the label assignment is zero since the node is disconnected from the terminal T (a) by
the minimum cut4.

We already know from (16) that the min-marginalψv;b(θ) corresponding to the non-
optimal label b can be computed by finding the minimum value of the functionE under
the constraint xv = b. This constraint can be enforced in our original graph (used for
minimizing E(x|θ)) by adding an edge with infinite weight between the graph node
and the terminal corresponding to the label a, and then computing the st-mincut on this
updated graph5. It can be easily seen that the additional amount of flow that would now
flow from the source to the sink is equal to the flow potential fT (b)

v of the node. Thus the
4 The amount of flow that can be transferred from the node to the terminal T (a) in the residual

graph is zero since otherwise it would contradict our assumption that the max-flow solution
has been achieved.

5 Adding an infinite weight edge between the node and the terminal T (a) is equivalent to putting
a hard constraint on the variable xv to have the label b. Please note that the addition of an



Fig. 3. Graph construction for projections of energy functions involving multiple labels. The first
graph G shows the graph construction proposed by Ishikawa [14] for minimizing energy func-
tions representing MRFs involving latent variables which can take more than 2 labels. All the
label sets Xv ∀v ∈ V , consist of 4 labels namely l1, l2, l3 and l4. The MAP configuration of the
MRF induced by the st-mincut is found by observing which data edges are cut (data edges are
depicted as black arrows). Four of them are in the cut here (as seen in graph G), representing the
assignments x1 = l3, x2 = l2, x3 = l2, and x4 = l1. The graph G′ representing the projection
E′ = E(x1, x2, x3, l3) can be obtained by inserting infinite capacity edges from the source and
the sink to the tail and head node respectively of the edge representing the label l3 for latent
variable x4.

value of the max-flow now becomes equal to ψ(θ) + f
T (b)
v where T (b) is the terminal

corresponding to the label b. The whole process is shown graphically in figure 2.
We have shown how minimizing an energy function with constraints on the value

of a latent variable, is equivalent to computing the flow potentials of a node in the
residual graphG(fmax). Note that a similar procedure can be used to compute the min-
marginal ψuv;ij(θ) by taking the projection and enforcing hard constraints on pairs of
latent variables.

Extension to Multiple labels Graph cuts can also be used to optimize certain specific
energy functions which involve variables taking multiple labels [14]. Graphs represent-
ing the projections of such energy functions can be obtained by incorporating hard
constraints in a fashion analogous to the one used for binary variables. In the graph
construction for multiple labels proposed by Ishikawa [14], the label of a discrete latent
variable is found by observing which data edge is cut. The value of a variable can be
constrained or ‘fixed’ in this graph construction by making sure that the data edge cor-
responding to the particular label is cut. This can be realized by adding edges of infinite
capacity from the source and the sink to the tail and head node of the edge respectively

infinite weight edge can be realized by using an edge whose weight is more than the sum of all
other edges incident on the node. This condition would make sure that the edge is not saturated
during the max-flow computation



as shown in figure 3. The cost of the st-mincut in this modified graph will give the exact
value of min-marginal energy associated with that particular labelling.

4.1 Minimizing Energy Function Projections using Dynamic Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now explain
how this can be done efficiently. As explained in the proof of theorem 1, we can compute
min-marginals by minimizing projections of the energy function. It might be thought
that such a process is extremely computationally expensive as a graph cut has to be
computed for each min-marginal computation. While modifying the graph in order to
minimize the projection E

′

of the energy function, we observed that only a few edge
weights have to be changed in the original graph6 as seen in figure 2, where only one in-
finite capacity edge had to inserted in the graph. In our earlier work [6], we had showed
that the st-mincut can be recomputed rapidly for such minimal changes in the problem
by using the dynamic graph cut algorithm. The dynamic graph cut algorithm works
by updating the residual graph obtained from the previous minimization procedure to
reflect the changes in the problem. It then recomputes the st-mincut on this updated
residual graph. This scheme enables extremely fast computation of the st-mincut when
the number of changes in the problem are few. Our proposed algorithm is given in Table
1.

1. Construct graph G for minimizing the MRF energy E.
2. Compute the maximum s-t flow in the graph. This induces the residual graph Gr con-

sisting of unsaturated edges.
3. If a label assignment is included in the MAP solution obtained in step 2, then the corre-

sponding min-marginal is equal to the energy of the MAP solution.
4. For computing each remaining min-marginal, perform the following operations:

(a) Obtain the energy projection E′ corresponding to the latent variable assignment.
(b) Construct the graph G′ to minimize E′.
(c) Use dynamic updates as given in [6] to makeGr consistent withG′, thus obtaining

the new graph G
′

r .
(d) Compute the min-marginal by minimizing E′ using the dynamic st-mincut algo-

rithm [6] on G
′

r .

Table 1. Algorithm for computing min-marginal energies using dynamic graph cuts.

4.2 Algorithmic Complexity and Experimental Evaluation

We now discuss issues related to the complexity of the algorithm shown in Table 1. Note
that in step (4d) of the algorithm, the amount of flow computed is equal to the difference
in the min-marginalψv;j(θ) of the particular label assignment and the minimum energy
ψ(θ). Let Q be the set of all label assignments whose corresponding min-marginals
have to be computed. Then the number of augmenting paths to be found during the
whole algorithm is bounded from above by: U = ψ(θ)+

∑

q∈Q(ψq(θ)−ψ(θ)). For the

6 The exact number of edge weights that have to be changed is of the order of the number of
variables whose value is being fixed for obtaining the projection.



case of binary random variables, assuming that we want to compute all latent variable
min-marginals i.e. Q = {(u; i) : u ∈ V, i ∈ Xv} and qmax = maxq∈Q(ψq(θ) − ψ(θ)),
the complexity of the above algorithm becomes O((ψ(θ) + nqmax)T (n,m)), where
T (n,m) is the complexity of finding an augmenting path in the graph with n nodes
andm edges and pushing flow through it. Although the worst case complexity T (n,m)
of the augmentation operation is O(m), we observe experimentally that using the dual
search tree algorithm of [5], we can get a much better amortized time performance. The
average time taken by our algorithm for computing the min-marginals in random MRFs
of different sizes is shown in Table 2.

MRF size 105 2 × 105 4 × 105 8 × 105

4-neighbourhood 0.18, 0.70 0.46, 1.34 0.92, 3.156 2.17, 8.21
8-neighbourhood 0.40, 1.53 1.39, 3.59 2.42, 8.50 5.12, 15.61

Table 2. Times (in seconds) taken for min-marginal computation for binary random variables.
For a sequence of randomly generated MRFs of a particular size and neighbourhood system, a
pair of times is given in each cell of the table. On the left is the average time taken to compute the
MAP solution using a single graph cut while on the right is the average time taken to compute
the min-marginals corresponding to all latent variable label assignments.

5 Applications of Min-marginals

Min-marginal energies have been used for a number of different purposes. One of the
most important of these has been to compute the M most probable configurations of a
MRF [10]. Prior to this work, the use of min-marginals was severely restricted because
they were computationally expensive to compute for MRFs having a large number of
latent variables. However, our new algorithm is able to handle a MRF of far larger size
which opens up possibilities for many new applications. For instance, in the experi-
ments shown in figure 4, the time taken for all min-marginal computations for a MRF
consisting of 2×105 binary latent variables was 1.2 seconds which is roughly four times
the time taken for a single graph cut. Next, we show how min-marginals can be used
to obtain a confidence value for any pixel label assignment in the image segmentation
problem.

Min-marginals as a confidence measure We have shown in section 2.1 how min-
marginals can be used to compute a confidence measure for any latent variable assign-
ment in a MRF. Figure 4 shows the confidence values obtained for a MRF used for
modeling the two label (foreground and background) image-segmentation problem as
defined in [8]. Note that ideally we would like the confidence map to be black and white
showing extremely ‘low’ or ‘high’ confidence for a particular label assignment. How-
ever, as can be seen from the result, the confidence map contains regions of different
shades of grey. Such confidence maps can be used to direct user interaction in the con-
text of interactive image segmentation. In order to remove the ambiguity in the solution,
the user could give additional cues in the grey regions.

Recently, a number of image segmentation method have been proposed which cou-
ple MRFs with prior information about the shape of the object being segmented. In a



Fig. 4. Image segmentation with max-marginal probabilities. The first image is a frame of the
movie Run Lola Run. The second shows the binary foreground-background segmentation where
the aim was to segment out the human. The third and fourth images shows the confidence values
obtained by our algorithm for assigning pixels to be foreground and background respectively.
In the image, the max-marginal probability is represented in terms of decreasing intensity of the
pixel. Our algorithm took 1.2 seconds for computing the max-marginal probabilities for each
latent variable label assignment. The time taken to compute the MAP solution was 0.3 seconds.

separate work within this volume [15], we describe how a shape prior generated using
an articulated human model can be integrated with the MRF used to solve the image
segmentation problem. The effect of incorporating a shape prior on the confidence val-
ues of the pixels can be seen in figure 5. Our analysis of uncertainty shows that the
incorporation of the shape prior in the image segmentation problem gives better results,
and reduces the ambiguity in the solution.

6 Conclusions

In this paper we addressed the long-standing problem of computing the exact min-
marginals for graphs with arbitrary topology in polynomial time. We propose a novel
algorithm based on dynamic graph cuts [6] that computes the min-marginals extremely
efficiently. Our algorithm makes it feasible to compute exact min-marginals for MRFs
with large number of latent variables. This opens up many new applications for min-
marginals which were not feasible earlier. We have presented one such application in
the form of obtaining confidence values for pixel label assignments in the image seg-
mentation problem.
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