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Abstract

How can I decompose a nonstationary signal? What are the advantages of using the most recent
methods available in the literature versus using classical methods like (short time) Fourier transform or
wavelet transform? This paper tries to address these and other questions providing the reader with a
brief and self contained survey on what and how to tackle the decomposition of nonstationary signals.

1 Introduction

Nonstationary signals are ubiquitous in real life. We can consider, for instance, a stock market index, the
ECG of a pregnant woman, or the terrestrial magnetic field measured by a magnetometer. For all these
signals there are two kind of problems we may want to address:

Q1 What are the active frequencies at each instant of time?
Q2 How to decompose such signals into simpler components?

We will see how these two questions, which may sound apparently unrelated, are indeed two sides of the
same medal: understanding the nonstationary behavior of the signal.

Before addressing the previous two questions it is important to review what are the instantaneous fre-
quency and the time frequency representation of a signal.

The idea of instantaneous frequency is natural. All of us know the basic sine function y = Asin(27¢t)
where A is the amplitude, 1/¢ the period and ¢ the frequency. What if these quantities vary over time? We
end up having what is called a amplitude modulated and frequency modulated (AM FM) signal z = A(t) sin(27)p(¢)t).
The intuition suggests to consider ¢(t) as the instantaneous frequency of z at the instant of time ¢. The
question now is how to compute such quantity when a closed form formula of the signal is not known.

Ideally we would like to generalize the definition of stationary frequency as reciprocal of the period to
the nonstationary case. However it becomes immediately clear that such generalization is, in most cases,
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not feasible. In Figure[it is shown an example of a nonstationary AM FM signal with a frequency which
increases over time. How to compute rigorously its instantaneous frequency? We cannot simply rely on
the periods which cannot be computed exactly at each instant of time. One possible approach, well known
and broadly diffused, is based on the evaluation of the Hilbert transform of the signal [I7, equation (3.4)].
Another way, recently proposed in [5, equation (34)], is based instead on the computation of the signal
derivative. Both approaches have their own advantages as well as limitations. On the one hand the one
based on the Hilbert transform, since it relies on integration, is inherently more stable, but at the same time
the integration implies that not only local information are used for the instantaneous frequency computation.
On the other hand the method based on derivation is less stable, but at the same time it is completely local
since only instantaneous information is used in its computation.
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Figure 1: Example of a nonstationary signal with instantaneous frequency which increases over time.

Once such information is made available we can represent it in a plot where the horizontal axis correspond
to the time and the vertical one to the frequencies. This is what we call a time frequency representation.

The aforementioned methods allow to compute the instantaneous frequency of a signal whose instanta-
neous frequency is unique at each instant of time. What about signals which contain two or more instanta-
neous frequencies? In this case these two methods will not work.

This is where the questions Q1 and Q2 arise. In fact we can address the problem of studying a nonstation-
ary signal in two ways. On the one hand we can try to compute directly its time frequency representation,
addressing Q1. On the other hand we can tackle Q2 by first decomposing the signal into simple components
each of which contains, ideally, a unique instantaneous frequency at each instant of time and then applying
the previously mentioned techniques to compute the instantaneous frequencies component by component.

Historically researchers have first tackled Q1. The first technique used was the standard Fourier transform
[2] which is, however, inherently unable to capture any non stationarity in the signal. For this reason the so
called short time Fourier transform was developed [3]. This last method allowed to produce a meaningful time
frequency representations of nonstationary signals. The continuous wavelet transform [9] allowed to improve
the accuracy of the time frequency representation, in fact, instead on relying on an orthonormal basis of sines
and cosines functions, it uses delation and translations of a mother wavelet. To further sharpen the time
frequency representation the so called synchrosqueezing trasform was proposed in [11} [10]. Synchrosqueezing
is a special kind of reassignment [12, [J.

All the aforementioned methods are linear: they treat signals as linear combinations of elements in a



preselected basis, sinusoidal or wavelet. There are also quadratic methods which are based instead on energy
and power distributions, like the spectrogram, the scalogram, and the Wigner—Ville distribution. We refer
the interested reader to the book [12].

It is important to remind at this point the so called Heisenberg uncertainty principle [3]. Based on
this principle the accuracy that it can be achieved in producing a time frequency representation is limited.
In particular the idea is that either we achive a good accuracy in assigning the frequency, but then the
corresponding time horizon is not well identified, or vice versa [13].

In 1998, meanwhile new methods for a more accurate then ever time frequency representations were
proposed, Huang and his research group at NASA devised the so called Empirical Mode Decomposition
(EMD) algorithm [I7]. This method is the first technique ever developed able to address Q2 without any
kind of a priori information and without making any a priori selection of a basis to be used. Furthermore,
in some sense, it allows to bypass the Heisenberg uncertainty principle. In fact, decomposing directly a
signal without any a priori information on its instantaneous frequencies allows to address Q2 avoiding the
limitations induced by the Heisenberg uncertainty principle.

Few years later it became clear that this method is unstable. In particular its sensitivity to noise was un-
raveled. For this reason Huang and his group devised the so called Ensemble Empirical Mode Decomposition
(EEMD) algorithm [23] which allows to overcome the sensitivity of the original EMD algorithm.

The publication of the EMD first and the EEMD after and their success inspired many other researchers to
work on alternative methods for the decomposition of a signal into a few simple and meaningful components.
All the alternative methods proposed so far are based on the minimization of some functional, like the
sparse time—frequency representation algorithm [16] [I5], and they require to make some assumption on the
signal under study. Only one of them, called Tterative Filtering (IF) method [19], and its generalization, the
Adaptive Local Tterative Filtering (ALIF) algorithm [5], are based on iterations like EMD and EEMD, and,
therefore, no assumptions are required on the kind of signal we want to decompose.

The rest of this paper focuses on decomposition methods based on iterations for 1D signals. In particular
we review the EEMD method, Section 2] and the IF algorithm, Section Bl The paper ends with concluding
remarks and an outlook to the main open problems in the field.

We point out here that both EEMD and IF have been generalized to 2D. See [24] and [7] for further
details.

2 The Ensemble Empirical Mode Decomposition algorithm

As we mentioned in the introduction, the goal of the EMD and EEMD methods is the decomposition of
a signal into simple components, called Intrinsic Mode Functions (IMFs), each of which with a unique
instantaneous frequency at every instant of time.

We start reviewing the EMD algorithm [I7], whose pseudocode is given in Algorithm [I

Algorithm 1 Empirical Mode Decomposition IMF = EMD(f)

IMF = {}
while the number of extrema of f > 2 do
51 =S8

while the stopping criterion is not satisfied do
compute the moving average M (s, (z))
Smi1(7) = 5m(@) = M (5 ()
m=m-++1
end while
IMF = IMF U {s,,}
§=8— Sm
end while
IMF = IMF U {s}




The key idea behind this method is what the authors called the sifting process: given a signal s we
capture its highest frequency oscillations by subtracting its moving average M (s) from the signal itself. To
do so we need to compute somehow the function M (s). Huang and his research group proposed to compute
first the upper and lower envelopes connecting the maxima and minima of the signal, respectively, by means
of cubic splines. Then we compute the moving average as mean between these two curves point by point.

Since the derived moving average is only an approximation of the exact one the idea is to iterate the
aforementioned calculation applying it to the new signal generated after the subtraction. In the end we
expect the method to converge to an IMF or, using a stopping criterion, we discontinue the calculations
when we are close in some sense to an IMF.

Using the approach just described, we compute the first IMF and we subtract it from the signal under
study. The remainder can be treated as a new signal to which we apply again the sifting process. In the end
we decompose the original signal into several IMFs and a remainder that cannot be decomposed anymore
because it does not contain any oscillations.

Everything works fine except that the EMD process proved to be sensitive to small perturbations. In
particular if we perturb a given signal with white noise, even if of small amplitude compared with the signal
itself, the EMD may end up providing a completely different decomposition.

To address this issue Huang and his collaborators proposed in [23] to add to the given signal hundreds of
white noise realizations. The final decomposition is then computed as the average of all these decompositions.

The EEMD Matlab implementation can be download from http://rcada.ncu.edu.tw/.

Besides the signal there are other two inputs that we need to pass to the EEMD Matlab function:

Nstd which represent the ratio between the standard deviation of the added noise and that of the signal
under study.

NE Number of noise realizations in the ensemble, id est the number of noise realizations to be added to the
given signal.

The authors of the EEMD suggest in [23] to set Nstd to 0.2. They also point out that if the data is
dominated by high-frequency signals, the noise amplitude may be smaller, and when the data is dominated
by low-frequency signals, the noise amplitude may be increased.

Furthermore they suggest to use ensembles of a few hundreds perturbations of a single signal. Based on
our experience setting NE to one hundred is enough in most cases.

2.1 Numerical examples

Following what has been done in [I8] we apply the EEMD algorithm available athttp://rcada.ncu.edu.tw/
to two well known geophysical nonstationary signals: the Vostok temperature derived from ice core signal
[20, 21] and the length—of-day data (LOD) [I4]. For a detailed description about these two datasets and the
meaning of their decompositions we refer the interested reader to [18].

We start with the Vostok temperature dataset. We focus, for simplicity, on the last 50 thousands years
sample values, Figure Ral Applying the EEMD method with Nstd = 0.2, and NE = 100 we obtain the
decomposition shown in Figures and 2d
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Figure 2: (@) Vostok temperature dataset of the last 50 thousands years. (b)) and (@ EEMD decomposition.

For the LOD dataset, instead, we consider the data from the beginning of 1983 to the end of 1986. The
signal is shown in Figure [3al

If we apply the EEMD method with Nstd set to 0.2, and NE set to 100, we obtain the decomposition
shown in Figures Bhl and Bd
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Figure 3: (@) length-of-day data from the beginning of 1983 to the end of 1986. (L) and (@ EEMD
decomposition.

3 The Iterative Filtering method

Inspired by the EMD algorithm, Lin et al proposed in 2009 an alternative method called Iterative Filtering
[19]. The structure is the very same as in EMD with the only difference that now the moving average is
computed as a local average of the values of the signal. This is achieved by integration of the signal itself
weighted using an a priori chosen mask with non zero values concentrated on a finite interval.

How to choose such mask function? Based on the theoretical results [B] [8 [4] [7] we know that to guarantee
the convergence and stability of the algorithm, which in turn guarantee the physical meaningfulness of the
decomposition, it is sufficient to consider a mask function which is generated as convolution with itself of
a function fulfilling the following properties: compactly supported (it is zero outside a closed and finite
set), nonnegative valued, with integral equal to 1, even (symmetric with respect to the vertical axis). In [5]
Fokker—Plank filters were proposed. They have the extra property of being infinitely smooth on the entire
real line. The only drawback of such filters is that they are not known in an explicit form. However it is
possible to compute them up to machine precision using numerical methods. One of such filters is available,
together with a Matlab version of Iterative Filtering, onlind].

www. cicone.com, GitHub and Mathworks
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Algorithm 2 Iterative Filtering IMF = IF(s)

IMF = {}
while the number of extrema of s > N > 2 do
1 =S8

while the stopping criterion is not satisfied do
compute the filter length [, for s,,(x)
Sm1(2) = sm(@) =[5 sm(@ + thw, ()dt
m=m-++1
end while
IMF = IMF U {s,,}
§=8— Sm
end while
IMF = IMF U {s}

The pseudocode of the IF algorithm is given in Algorithm B where w,, (¢) is the chosen mask function
whose support is in [—l,,, l,], and [, is called mask length which represents the half support length.

The current Matlab release of IF is IF_v6 and it requires as input the signal we want to decompose and,
optionally, a variable, generated using an extra function called Settings_IF, which contains all the tuning
parameters needed in the main algorithm. This implementation allows also the user to pass a third input, a
vector containing a priori determined mask length values, forcing the method to skip their computation.

As outputs the algorithm returns a matrix containing as rows the IMFs, that we recall are the simple
components in which the signal is decomposed, and a vector containing the values of mask length used to
decompose each IMF.

What are the tuning parameters that can be set in IF by means of the Matlab function Settings_IF?
Let us review them one by one.

delta In the IF algorithm we need to use a stopping criterion to discontinue the calculation for each IMF, as
pointed out in line four of the pseudocode. The one currently implemented, called delta, corresponds
to the ratio between the norm 2 of the moving average curve and the norm 2 of the signal. Since
the moving average curve converges towards a zero function we discontinue the calculations when the
aforementioned ratio is small enough. Default value is set to 0.001.

ExtPoints The algorithm iterates until the remainder has at most ExtPoints number of extrema. This
number corresponds to the value N in line two of the pseudocode. Default value is equal to 3.

NIMFs Maximal number of IMFs allowed in the decomposition, excluding the remainder. Default value is
set to 1.

extensionType The IF algorithm requires, as any other method in signal processing, to make an assumption
on how the signal extends outside the boundaries. Three options are given: constant, periodical, and
reflection. In the constant case the signal extends outside the boundaries with the last values achieved
at the boundaries. Whereas periodical implies that the signal is assumed to repeat infinitely many
times outside the boundaries. Finally reflection means that we extend the signal assuming symmetry
with respect to the vertical lines passing through the boundary points.

MaxInner Maximum number of iterations allowed for the computation of each IMF. Default value is set
to 200.

alpha Parameter used for the mask length computation. In particular the algorithm measures the distances
between subsequent extrema in the signal under study. It is up to the user to decide which value to be
used in the decomposition. In fact, if alpha is set to 0 the mask length is proportional to the minimum
distance between two subsequent extrema. If it is set to 1 then it is proportional to the maximum



distance. If we set it to ave the mask length equals to, as suggested in [19], the roundoff value of the
ratio %, where L is the length of the signal, Xi is defined in the following, and N, represents the
number of extrema in the signal. Finally if we set it to Almost_min the mask length is selected equal
to the round off value of 2 % Xi % Psg, where Psg represents the 30 percentile of the vector containing
all the distances between subsequent extrema of the signal. Default value set to ave.

We point out that the smaller is the mask length the higher is the number of IMFs produced in the
decomposition and the finer is the separation of two frequencies. Based on our experience the option
Almost_min allows to obtain a decomposition with a high number of components, but with IMFs which
have in unique instantaneous frequencies all the time. Higher values in the parameter alpha may lead,
in some cases, to components which show an intermittency in the frequency.

Xi This last parameter allows to tune the mask length. Depending on the chosen filter, in fact, we may
need to extend the filter length more or less due to its shape. In particular if we select a mask shape
with big values in the center, but which goes quickly to zero we may need to select Xi bigger than
2. Whereas if the mask shape is almost constant everywhere on its support then Xi may be selected
closer to 1. Based on the numerical analysis conducted in [8] we know that enlarging the mask function
support implies squeezing its fourier transform and in turn it allows to tune the sampled frequencies
that enter in the extracted IMF. Suggested values range in the interval [1.1, 3]. Default value is equal
to 1.6.

3.1 Numerical examples

We apply the IF_v6 to the Vostok temperature derived from ice core signal |20, 21] and the length—of-day
data (LOD) [14].
Regarding the Vostok temperature we set NIMF's to 100, for alpha we use the default value ave. If we
use the default value of Xi equal to 1.6 the method decomposes the low frequency component in several
IMFs. Therefore we increase Xi up to 3 using the script Settings_IF(’IF.NIMFs’,100,’IF.Xi’,3);. We
obtain a decomposition which contains 5 IMFs and a remainder, Figure [al
For the LOD data we use the Almost_min option for the parameter alpha and we set NIMF's to 100. Also in
this example we have to increase Xi up to 3. We use the script Settings_IF(’IF.NIMFs’,100,’IF.alpha’,’Almost_min’,’1I
We obtain a decomposition which contains 4 IMFs and a remainder, Figure Ehl
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Figure 4: @) Vostok temperature IF decomposition. (B length—of-day IF decomposition.



4 Conclusion and outlook

In this paper we provide the reader with a brief overview of methods for the decomposition of nonstationary
signals. We address more in details the question of how to decompose such signals into simpler components
using iterative methods which do not require any a priori assumptions.

From a research point of view, while the EEMD is still lacking a rigorous mathematical analysis, the IF
algorithm has been extensively studied and analyzed in 1D and higher dimensions [5] [7} B, [4]. However it
is important to point out that the Iterative Filtering method may fail to meaningfully decompose signals
whose instantaneous frequencies vary consistently over time like, for instance, in a chirp. For this reason the
Adaptive Local Tterative Filtering (ALIF) method has been proposed in [5]. It generalizes the IF algorithm
allowing for meaningful decompositions of any kind of nonstationary signals even with wide and quick changes
in the instantaneous frequencies, like chirps. However ALIF mathematical understanding is far from being
complete [4]. More research has to be done in this direction.
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