Parallel Mesh Algorithms

Reference : Horowitz, Sahni and
Rajasekaran, Computer Algorithms

CS535 Parallel Algorithms 1

Computation Model

* A mesh is an a x b grid in which there is a
processor at each grid point

» The edges are bi-directional communication
links, 1.e. two separated uni-directional links

» Each processor can be labeled with
a tuple (1, )

» Each processor has some local memory, and
can perform basic operations

CS535 Parallel Algorithms 2




 There is a global clock which synchronize all
processors

* We only consider square meshes here, 1.e. a = b,
and linear array

A 4 x 4 mesh (16 processors) A Linear array of p processors
(©) @ @ ©)
1 2 3 p-1 p
o o o (©)
0------ 0------ 0= o0oemm 0-----=- 0
o (©) (©) (©)
(@) @ @ o
CS535 Parallel Algorithms 3
Packet Routing

* Primitive Interprocessor Communication
Operation — packet routing

* A packet contains
data + source processor + destination processor
* A link can handle only one packet at one unit time

* A processor may receive multiple packets (from
different links) and send multiple packets (to
different links) at the same time

CS535 Parallel Algorithms 4




* A processor may queue some packets in its local
storage

» Each processor uses the same packet routing
algorithm

 Partial Permutation Routing (PPR) 1s a special
case of general routing problem. In PPR, cach
processor is the origin (and destination) of at most
one packet.

* The performance of an algorithm is measured by
run time, i.e. time to complete all operations, and
maximum queue length, 1.e. the maximum number
of packets in a processor queue.

CS535 Parallel Algorithms 5

» The time taken by any packet to reach its
destination is dictated by the distance of the
chosen path between the packet’s origin and
destination and the amount of time (referred to as
delay) the packet spends waiting in queues.

A Packet Routing Algorithm is specified by the
path to be taken by each packet and a priority
scheme.

 Run Time is the time taken by the last packet to reach its
destination

CS535 Parallel Algorithms 6




Example: Consider the packets a, b, ¢ and d in (i).
Final destinations are in (ii).
Each packet takes the shortest path to its destination.

(a) Use FIFO Priority Scheme (If two packets reached a node at
the same time, there is a tie. This can be broken arbitrary.)

(i) Run Time — the time (i)
d | taken by the last packet
to reach its destination

a
d
Try it out. c
What is your Run Time? @b
a
CS535 Parallel Algorithms 7

Example: Consider the packets a, b, ¢ and d in (1).
Final destinations are in (ii).
Each packet takes the shortest path to its destination.

(b) Use Farthest-destination-first Scheme (If two packets have the
same destination, there is a tie. This can be broken arbitrary.)

(i) Run Time — the time (ii)
d | taken by the last packet - Farthest-
hits destinati destination-first
a to reach its destination strategy : At each

time unit, each

most two packets
Try it out.
What is your Run Time?

S >ce

right (if any).

CS535 Parallel Algorithms 8

processor chooses at

from its queue, one to
farthest left (if any)
and one to farthest




» Packet routing on a linear array of p processors

Problem 1 : At most one packet originated from
each processor. (with arbitrary destinations)

Problem 1 can be solved in <=p — 1 steps.

Every processor starts to send packet using the
shortest route. There is no contention for any
link. The maximum distance is p — 1 links.

CS535 Parallel Algorithms 9

Packet routing on a linear array of p processors

Problem 2 : Each processor is the destination for
exactly one packet. (can have multiple packets
starting from a single origin)

Note : A processor may have multiple packets to
be routed to multiple processors.

 Farthest-destination-first strategy : At each
time unit, each processor chooses at most two
packets from its queue, one to farthest left (if
any) and one to farthest right (if any).

CS535 Parallel Algorithms 10




* By using the farthest-destination-first strategy, the time
needed for a packet stating at processor 1 to reach its
destination is no more than Max (p-1,i-1)

Informal Proof :
Just consider only packets that are moving from left to
right. (same for those moving from right to left)

(1) A packet to processor p cannot be delayed according to
the strategy, so, it will reach destination at p-i units.

(2) A packet to processor p-1 can only be delayed by
packet to p, so it will reach destination at p-1-1 units + 1
delayed unit <= p-i units

(3) and so on.

Problem 2 can be solved in <= p — 1 steps using the
farthest-destination-first strategy

CS535 Parallel Algorithms 11

 Packet routing (PPR) on a Mesh
(Assume p x p processors)

Algorithm PPR:

Let q be an arbitrary packet with (1)) as
its origin and (u,v) as its destination.

Phase 1 : Travel along column j to row u
Phase 2 : Travel along row u to its
destination (u,v)

CS535 Parallel Algorithms 12




Running time analysis for Algorithm PPR :

The lower bound is 2(p-1) steps, i.e. from
(1,1) to (p,p) (opposite corners)

Phase 1 can be done in (p-1) steps (by
problem 1 above)

Phase 2 can be done in (p-1) steps (by
problem 2 above)

Total : 2(p-1) steps = optimal algorithm

CS535 Parallel Algorithms 13

Problem : in the worst case, the queue size is p/2.

i.e. Ineach time unit, 2 packets arrive
and only one can be sent out

There are at most p packets in one column
- may need to queue up to p/2 packets

CS535 Parallel Algorithms 14




Fundamental Algorithms

» Broadcasting problem : To broadcast a
message to all processors

Assume a processor can duplicate message.

Phase 1 : Send the message along the row.

Phase 2 : For each processor in the row,
send message along its column.

Total time <= 2(p-1) = O(p)

CS535 Parallel Algorithms 15

* Prefix computation problem for p x p mesh; Total
time O(p)

Assume there is a number in each processor, i.e. p?
numbers {X; |, X, -+, Xy, X5 15 Xp g5 o5 gy -5

X_ 1, X . X

p,1> ©p,2> p.p

Phase 1 : Each row i, compute prefix

Xi> X 1D X0, -, X @ XD D x;

Phase 2 : Compute prefix for number in column p.

Assume final numbers in column p are

0Ly, Oy, ooy O

CS535 Parallel Algorithms 16




Phase 3 : For each processor (1,p) in column
p, broadcast the number o, to all other
elements in same row 1. The number o
will be added to each number in row 1i.

Example : (assume each small square is a
processor in 4 x 4 mesh)

0 |1 |1 |2 0 (1 |2 (4 0 (1 |2 (4 0 (1 |2 |4
1 {0 (2 |1 1 (1 (3 |4 1 (1 |3 |8 5|5 |7 |8
— —_—
1 (0 [0 (2 1 |1 (1|3 1 (1 |1 |11 9 (9 |9 (11
0 |1 |2 |3 0 (1 |3 |6 0 (1 |3 |17 11 (12 |14 |17
CS535 Parallel Algorithms 17

Merging

* Odd-Even Merge on a Linear Array

Assume two sorted lists with 2m numbers :

b

m-1 “m

a,a,a;a,..a ,a b bbb, ...b

Assume there are 2m processors and each processor has a
number.

15t m processors hold 1% list of m sorted numbers,

2" m processors hold 2" list of m sorted numbers.

CS535 Parallel Algorithms 18




Step 1:  Group odd part and even part of a,

(also, same for b,)

1.€la a,...a ,||a,a,...a, ||b by...b_,

b, b, ...b

m

Run time : O(m/2)

Step 2 : Group odd parts (and even parts) of
both lists

1.e/la,a;...a,||bby..b_,lll|la,a,...a,

Odd Parts
Run time : O(m/2)

CS535 Parallel Algorithms

Step 3: Odd parts (and even parts) are
merged recursively to get two
sorted lists

1.C. OI OZ "'Om—l Om

Run time : T(m/2)
Step 4 :  Shuffled odd and even numbers

1.e. 0,€,0,€,0;... 0,1 .

Run time : O(m)

CS535 Parallel Algorithms

20




Step 5 : Compare adjacent elements and
swap numbers if out of order

1.C. 0] 0, O, | ... 0

2 3.. m-1 m

Run time : O(1)
Total Run time T(m) = T(m/2)+2m+1= O(m)

Note : T(m) means running time to merge 2 sorted
lists, each with m elements

CS535 Parallel Algorithms

21

» Odd-Even Merge on a Mesh (O(p), use
snakelike ordering)

Listl List 2 E

5 6 2 3 5 6/ 2

s el g ‘ s 11 7

15 18 19 28 15 18, 19

257 20 31 m 20 25 32
SVYAP

CS535 Parallel Algorithms

8

G W VR W

37

22




SWAP 8

15

32

CS535 Parallel Algorithms

Sorting the
Odd group
and Even group

23

) 5 '3 6

8 7, 1 9

15 19 18 25

32 20 37 28

2 3 5 6

8 ‘11 7 9

15 18 19 25

32/ 37 20 28

CS535 Parallel Algorithms

SWAP
all four pairs

24




2 3 5 6
8/ 1 7 9
15 18 19 25
327 37 20 28
SWAP
all four pairs
2 3 5 6
11 8 9 7
15 18 19 25
37 32 28 20
C$535 Parallel Algorithms 25
Shuffle O and E
2 |13 5 6
s 9|’
15 118 19 |25
37 | 32 28 (20 For each pair,
Check and swap
) 3 5 6 if necessary
11 9 8 7
15 18 19 20
37 32 28 25

CS535 Parallel Algorithms

26




Sorting
* Odd-even transposition sort on linear array
Assume each processor 1 has a number x;

Algorithm Odd-even-transposition-sort
Fori=1topdo

Ifiis odd : compare keys at processors
2j-land 2j for all j

If11s even : compare keys at processors
2j and 2j+1 for all j

CS535 Parallel Algorithms 27

This can be done in O(p), (Skip the proof)
Example :

i=1:54|81]/26]37
1=2:4|51]82|/63]|7
i=3:41|52]83]|67
1=4:142/|53||86]|7
1=5:12]43[/56|87
1=6 : 12345678

CS535 Parallel Algorithms 28




 Shearsort on a Mesh(use snakelike order)
Assume each processor 1 has a number x,
Algorithm ShearSort
Fori=1 to log(p?) + 1 do

» Ifiis even : sort each columns in increasing
order from top to bottom

e Ifiis odd : sort each rows; alternate rows are
sorted in reverse order.

Use previous algorithm to sort p elements in O(p)

This can be done in O(p log p), skip the proof!

CS535 Parallel Algorithms 29
Example : i=1
15| 12| 8 | 32 8 |12 |15 | 32
7 13| 6 | 17 17 /1317 | 6
2 (162519 2 116 |19 | 25
18| 5 |11 ] 3 18 /11| 5 | 3
i=2 1i=3
2 | 11|53 23 5|11
8 |12 7| 6 128716
17|13 | 15| 25 13 | 15|17 | 25
1 |l |
18 | 16 [ 19 | 32, 321918 | 16

CS535 Parallel Algorithms 30




1287 |11 12.--11.....8...7

131517 | 16 | B.L1s. 16717
32 (19|18 25 32-1-25.1.19. |18

CS535 Parallel Algorithms




