
doi: 10.1016/j.procs.2015.11.058

Platform for parallel processing of intense
experimental data flow on remote supercomputers

Vladislav Shchapov1,2 and Grigoriy Masich2,1 and Alexey Masich2
1Perm National Research Polytechnic University, Perm, Russia

2Institute of Continuous Media Mechanics UB RAS, Perm, Russia
shchapov@icmm.ru, masich@icmm.ru, mag@icmm.ru

Abstract
Modern experimental facilities generate large amounts of data that should be processed, saved to hard
disk and presented to the user as fast as possible. However, in-situ data analysis requires technical
resources which are often not available. The existence of accessible high-speed networks allows to
forward data processing and storage to a remote supercomputer centers and datacenters. These
capabilities can be realized through the development of architectural solutions for effective data
transmission trough a long-distance high-speed networks, data input/output and data distribution over
computers and data storage systems. In this paper, we describe the results of investigations into the
development of a software platform for parallel processing of intense experimental data-streams on
ICMM UB RAS (Perm) and IMM UB RAS (Yekaterinburg) supercomputers, interconnected by a
high-speed network. The reported studies was partially supported by RFBR, research project No. 14-
07-96001-r_ural_a and by Program of UD RAS, project No 15-7-1-25.

Keywords: Long fat network, Supercomputer, Parallel data processing, Middleware, Distributed system

1 Introduction
Recently, well-known projects in the field of e-Science have touched upon processing of larger and

larger data sets received from remote experimental setups (e.g., the CERN LHC in high energy
physics and the Dutch LOFAR project in astronomy). Initially, almost all distributed computing were
based on widespread among users Internet TCP/IP networks. The current stage of distributed
computing technologies development is focused on using national and regional research and
educational optical networks (e.g., Geant2 in Europe, Internet2 in the United States and Initiative
GIGA UrB RAS in Russia). The trend of increasing network bandwidth and reducing delay in data
transmission (Rumble, Ongaro, & Stutsman, 2011) made it possible to build distributed systems where
the data sources and the processing supercomputers can be located in different locations.

Procedia Computer Science

Volume 66, 2015, Pages 515–524

YSC 2015. 4th International Young Scientists Conference on
Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of YSC 2015
c© The Authors. Published by Elsevier B.V.

515

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.11.058&domain=pdf

In this context, current research and development efforts are aimed at solving two related
problems: (1) effective use of high-speed (10-100Gbps) and long (thousands kilometers) telecom
links; (2) methods of organization a high-speed input/output of data into a supercomputer (Yildirim,
Arslan, Kim, & Kosar, 2015). For example, Pittsburgh Supercomputer Center projects (Advanced
Networking, Three Rivers Optical Exchange, Web10G) aimed at increasing data storages access speed
and tuning TCP protocol (Pittsburgh Supercomputing Center, 2015). Among the specialized protocol
for data transmission over high-speed long fat networks can be noted UDT protocol (Gu & Grossman,
2007).

This paper describes platform for experimental data-intensive flow parallel processing, created in
UB RAS. Platform is based on high-speed optical DWDM-backbone interconnecting the
Supercomputing Center of IMM UB RAS (Yekaterinburg) and data center ICMM UB RAS (Perm).
Infrastructure and middleware of this platform implemented as a classical model of interaction
between supercomputers and experimental setups, as well as developed model of direct dataflow input
into computing nodes of supercomputers for parallel processing. An example of the practical use of
this platform is the project “Distributed PIV”, the essence of which lies in the processing of the flow
measurements, obtained by PIV-method, on a remote supercomputer in real time to provide feedback
and control of the experiment (Stepanov, Masich, & Masich, 2009).

2 Components of the distributed computing environment of
UB RAS

Distributed computing environment of UB RAS is based in two data centers, which are located in
ICMM (Perm), PSC (Perm) and IMM (Yekaterinburg). Supercomputer “URAN” with peak
performance of 225.85 teraflops and three servers of Supermicro dCache distributed data storage
system (DSS) are located in the IMM data center. Computing cluster “Triton” with peak performance
of 4.5 teraflops and one server of Supermicro dCache distributed data storage are located in ICMM
data center.

Communication environment of the distributed system, as shown in Figure 1, is formed by
Ethernet switches, connected to the regional R&E DWDM backbone called “GIGA URAL” through
direct Perm-Yekaterinburg 30Gbps link (Masich & Masich, 2009). The 40Gbps “ICMM-PSC”
CWDM metro network in Perm interconnects computing resources of ICMM and DWDM backbone.
For greater flexibility of studies, ECI AS9215 L2-switches and Extreme Summit X670-48x L3-
switches are placed in IMM, ICMM and PSC and forming together with Ethernet ports of DWDM
multiplexers guaranteed and not guaranteed 1-10 Gbps links.

3 Architecture of the data network platform
“TRITON” computing cluster consists of three HP BladeSystem c7000 enclosures. Each enclosure

includes 16 HP Proliant BL 460c servers. There are two networks used for data transfer between
computing nodes of the cluster. The first one is main MPI interconnect which operates on InfiniBand
4xDDR 20 Gbps. The second one is an additional 1 Gbps Ethernet network, which is used for the task
flow control and distributed between computing nodes network file system. Each enclosure is
equipped with a built-in 1 Gbps Ethernet switch. These built-in switches are connected to an external
AS9215 switch by four aggregated 1 Gbps links using Link Aggregation Control Protocol (LACP).
The AS9215 switch is connected to the backbone by 10 Gbps link.

“URAN” supercomputer has similar architecture. The backbone network provide Ethernet
communication between interconnect of the “URAN” supercomputer and dCache servers located in

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

516

IMM and interconnect of the “TRITON” computing cluster and dCache server located in ICMM by
two 10Gbps links. “TRITON” and dCache servers operates in the same L2-network segment, but
“URAN” interconnect has its own. IP-traffic between segments is routed through master node of the
“URAN” with a 1Gbps limited throughput.

Figure 1: The architecture of the distributed computing environment of UB RAS

4 Models of parallel processing of data flows
Usually, supercomputer’s storage system is being used as a source of big data for future

processing. In this "classic mode" processing occurs in three phases, as shown in Figure 2:

1. Data download into the supercomputer’s local storage.
2. Data processing on a supercomputer.
3. Upload data processing results to the supercomputer’s local storage.

Data upload/download to/from the storage (steps 1 and 3) and data processing (step 2) associated
with intermediate read/write operations on storage.

The most common way to exchange data with storage is to use file transfer protocols such as
FTP/GridFTP and SCP. Another direction of this approach is direct access to the data storage by using
network file system protocols, such as CIFS and NFS/pNFS. This method allows connecting
supercomputer’s storage to the data source as a remote file system and performing record data without
using any specialized software. However, these solutions are not good enough for a long fat network
(Hildebrand, Eshel, Haskin, Kovatch, & Andr, 2008), (Weikuan Yu, 2008). At the same time,
performance degradation of geographically distributed applications occurs due to insufficient
efficiency of TCP protocol in long fat networks.

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

517

The second approach, which was developed in our laboratory, assumes that the elements of the
dataflow are transmitted directly to the memory of computing nodes (“Memory to Memory” method,
as shown in Figure 2). In this case, the necessity for ensuring an effective data transmission to the
computing nodes of the supercomputer and finding solution to the problem of dataflow elements
distribution between computing nodes, comes to the foreground. The prototype of the proposed data
processing model is data queue concept. It allows to implement parallelism on the data processing and
transmission level and to perform distribution of dataflow elements between computing nodes by a
separate component of the system – queue manager.

Figure 2: Existing (classic mode) and developed (memory to memory) architectural design of the data

processing on the supercomputer

This approach has the following distinctive features:

 avoid using of interim storage;
 direct data input into computing nodes;
 parallelism of data transfer connections between end systems.

Parallelism of connections fixes above-mentioned problem of efficient use of reliable transport
protocols in long fat network. Thus, it is possible to use standard TCP and new protocols e.g. UDT, as
the transport protocol (OSI RM L4).

5 “Memory-to-Memory” dataflow model
There are many tasks requiring dataflow processing, including dataflow processing of PIV

experiment. The raw dataflow can be represented as a sequence of individual messages
(measurements), which can be processed by applied algorithms independently. So, we proposed a
dataflow model as shown in Figure 3 (Shchapov, Masich, & Masich, A model of stream processing of
experimental data in distributed systems, 2012):

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

518

Figure 3: Dataflow processing model

 there are three consecutive stages of dataflow processing (levels):
1. Source data generation;
2. Source data distribution by handlers;
3. Data processing by applied algorithms.

 queue manager represents dataflow from the source as the unified queue of messages;
 messages are distributed between computing nodes by their request to the queue manager

in the FIFO (First In, First Out) order.

There are some features and flexibilities of the proposed model. Dataflow is always one-sided.
Data comes from generation level through distribution level to processing level. In the general case,
same device or processing application can be simultaneously placed on the generation level as well as
on the processing. For example, in terms of raw data, processing application belongs to processing
level, but in terms of transmitting of processed data application belongs to generation level.

When new data appears on the generation level then these data have to be processed. It may be an
experimental setup that generates experimental data or results of calculation algorithm, which must be
saved.

Processing level is responsible for the raw data calculation using applied complicated algorithms,
storing data in high-performance storages or in a large number of local hard drive disks and so on.

Distribution level performs data transfer from generation level into the one or several queues of the
queue manager and performs data transfer from queues of the queue manager to the applications of
processing level in response to their queries. Ability of placing data into multiple queues
simultaneously allows to solve the problem of saving the transmitted data, while one queue is used by
calculating applications another one is used by application for saving data on storages, as shown in
Figure 3 (b).

In this model, the queue manager must be placed as close to the data source as possible (10-
1000m) to eliminate the problems of transport protocols. The efficiency of data transfer between

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

519

manager and processing level, which is a supercomputer with a number of nodes, is achieved in the
following ways.

1. Parallelism in data transfer (Figure 4) for better long fat network bandwidth utilization.
2. Automatic load balancing of computing nodes becomes possible by the dataflow element

distribution algorithm.
3. Tuning operating system’s network stack for optimum performance.

Figure 4: Data transfer parallelism in high-speed long fat networks

6 “Memory-to-Memory” software infrastructure model
Analysis of existing queuing technologies in distributed systems (ZeroMQ, AMQP protocol and it

implementation RabbitMQ) shows that they are not satisfies the requirements in full (performance,
ease of use, third-party transport protocols support).

ZeroMQ library does not provide control of system resources, used by the application (basically
RAM), and does not provide access to the system socket for the network stack parameters control and
does not support third-party transport protocols (e.g., UDT).

Ready to use queue managers, such as RabbitMQ, does not allow using third-party transport
protocols for the investigation of their impact on the system capacity. Also, existing solutions system
requirements exceeds available system resources in the beginning of the study. Thus, data distribution
was performed by the PIV experiment setup control machine or by the server SUN Fire X2100M2
(Dual-Core AMD Opteron (tm) Processor 1214, 2.2 GHz, 2 GB RAM), where dataflow rate was less
than 800 Mbps.

So we decided to develop our own data transfer protocol (SciMP) and middleware (SciMQ) for
data transmission between levels of the system.

6.1 SciMP protocol
The designed SciMP protocol is an application layer protocol (Figure 5) and it works by request-

response scheme (Shchapov & Masich, 2012). Any reliable transport level protocol can be used by
SciMP. Current version supports TCP and UDT protocols. SciMP designed for transfer of named
blocks of binary data. One data packet, as shown in Figure 6, can contain up to 65,535 blocks up to
4 Gbyte each, without guarantee of proper block order preservation. Names of blocks are 32-bit
integers.

The reason of our own application layer protocol development is the need for operation at more
than 10Gbps data rates. Under these conditions, the time spent on the analysis of complicated
protocols formats, is a substantial and can lead to increased system requirements.

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

520

Figure 5: Position of the SciMP protocol in stack

of network protocols

Figure 6: The SciMP protocol packet format

Proposed protocol is focused on the possibility of a single-pass parsing data packing format. It
allows to reduce time for service header field’s manipulation and to reduce the number of operations
of memory allocation. Also, it allows avoiding data copy between memory buffers in a user space. Flat
structure of protocol format, where the large blocks of data are sequentially arranged, allows using
Zero-Copy technology for the communication between software application and operating system
network subsystem.

6.2 Middleware
The proposed model of dataflow processing in distributed systems is implemented as the SciMQ

middleware (Shchapov V. A., Programmnaja arhitektura sistemy peredachi intensivnogo potoka
dannyh v raspredelennyh sistemah, 2013). Interaction of the middleware components logic scheme is
shown in Figure 7.

Figure 7: The logic scheme of the middleware components interaction

The main part of middleware is distribution level software called queue server, which is
communicated with generation and processing levels applications (end systems). Queue server is
controlled by WEB and Command Line interfaces. All components of the software complex are
written in C++ programming language, using the Boost libraries.

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

521

End-system applications interact with queue server using SciMP protocol. These applications can
independently implement SciMP protocol or use C ++ API client libraries to communicate with the
queue server. API library hides from end-user SciMP protocol implementation and network
operations, thereby allows focusing on the development of a complicated computing algorithm, rather
than the implementation of the SciMP protocol.

The queue server is the core of software complex and implements basic functionality of the whole
middleware. Queue server’s main task is to manage messages in the queues, including their temporary
storing, distribution upon requests and reception/transmission from/to external systems.

The operating software is designed to perform administration and testing software. It allows also
performing operations on the creation, deletion and modification of queues and on generation,
reception or redirection dataflow between queues, that allow to do load testing of the software
complex for optimization and tuning network stack of the server that is used for software components.

7 Measurements

7.1 Testing TCP congestion control strategies
TCP congestion control strategies efficiency research was made by using bash-scripts and Iperf

application. Tests were performed using 1Gbps dedicated and 1Gbps common network links. In case
of common link, up to 100 Mbps of Internet traffic was transmitting at the same time. Testing results
are shown in Figure 8 and Figure 9. The graphs show that the presence of even a small amount (about
10%) of third-party traffic substantially reduces the effectiveness of many TCP congestion control
algorithms. However, most of the algorithms reach the aggregate data transfer rate close to the
maximum link bandwidth when the number of parallel streams in the range of from 4 to 16. Therefore,
it is reasonable to improve data transmission efficiency for the infrastructure with great outgoing
traffic by selecting optimal TCP congestion control algorithm and tuning buffers size, providing TCP
window size parameter not less than BDP (Bandwidth Delay Product). The effect of TCP Slow Start
was also confirmed, so that the dynamics enhancing of transmission speed restrains the input of
intensive dataflow to computing nodes.

Figure 8: The comparison of effectiveness of TCP
congestion control algorithms on the Perm -

Yekaterinburg 1 Gbps common channel with Internet
traffic (0,1 Gbps) and the number of parallel flows

(1, 4, 16, 64)

Figure 9: The comparison of effectiveness of TCP
congestion control algorithms on the dedicated Perm -

Yekaterinburg 1 Gbps dedicated channel with the number
of parallel flows (1, 4, 16, 64)

Measurements made using “TRITON” supercomputer, showed that the optimal number of parallel
TCP connections in the range of from 8 to 10 for each 1 Gbps physical channel in the LACP, which is

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

522

an bottleneck of supercomputer’s network. Also, it is important to monitor the uniformity of the traffic
distribution between physical channels in the LACP. Using L2-balancing implemented in ECI, in case
of consecutive MAC addresses, gives more uniformity. In this case, the total bandwidth used by
LACP depends on the active at the moment computing nodes location. It is clear, that L2-balancing
effectively works only when all computing nodes from one aggregation is being actively used. It
should be noted, that the available in Extreme switches L3/L4-balancing feature is able to solve this
problem, because the outgoing TCP connections ports are chosen randomly, that provides a uniform
channel loading and increases network bandwidth utilization.

7.2 Performance testing of the developed software
The performance testing of the developed software was performed using two HP ProLiant DL360p

Gen8 servers (2x Intel Xeon CPU E5-2660, 2.20 GHz, 16 threads; RAM 128 Gb; operating system
CentOS 6.5), interconnected by 10 Gbps and 10 meters length dedicated link.

Figure 10 shows the dependencies of the developed SciMQ and third-party RabbitMQ queue
server’s performance on the message size and the number of parallel requests to the server. The
frame_max RabbitMQ configuration parameter was set to the default value. The graph shows that in
case of message sizes 2-22 Mbyte, network performance is limited by the available bandwidth for
SciMQ software. Comparing results of SciMQ and RabbitMQ testing we can say that SciMQ allows
to process messages above 1 Mbyte 3-4 times faster than RabbitMQ.

Figure 10: Testing results of the RabbitMQ and SciMQ queue servers performance

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

523

8 Conclusion
Proposed solution provides fundamentally new instrument for unique physical research in research

labs and industry. It becomes possible to perform complicated experiments with intensive dataflow
online processing. High-speed network links allows interconnecting the place of measurement with
remote supercomputers, eliminating local computational resources upgrade costs. The application area
of proposed solution is a new generation of distributed measuring systems, including high-tech
measuring equipment in situ and high-performance computing facilities at the supercomputer centers.

References
Gu, Y., & Grossman, R. L. (2007). UDT: UDP-based data transfer for high-speed wide area

networks //. Computer Networks , 51 (7), 1777-1799.
Hildebrand, D., Eshel, M., Haskin, R., Kovatch, P., & Andr, P. (2008). Deploying pNFS across the

WAN: First Steps in HPC Grid Computing. in Proceedings of the 9th LCI International Conference
on High-Performance Clustered Computing.

Masich, G. F., & Masich, A. G. (2009). Ot «Iniciativy GIGA UrB RAS» k Kiberinfrastrukture
UrO RAN. Vestnik Permskogo nauchnogo centra UrO RAN (4), 41-56.

Pittsburgh Supercomputing Center. (2015). Advanced Networking. Retrieved 2015 йил 27-07 from
http://www.psc.edu/index.php/research-programs/advanced-networking

Rumble, S. M., Ongaro, D., & Stutsman, R. (2011). It’s time for low latency. Proceedings of the
13th USENIX conference on Hot topics in operating systems. HotOS’13 (pp. 11-11). Berkeley, CA,
USA: USENIX Association.

Shchapov, V. A. (2013). Programmnaja arhitektura sistemy peredachi intensivnogo potoka dannyh
v raspredelennyh sistemah. Parallel'nye vychislitel'nye tehnologii (PaVT’2013): trudy
mezhdunarodnoj nauchnoj konferencii (g. Cheljabinsk, 1–5 aprelja 2013 g.) (pp. 566–576).
Cheljabinsk: Izdatel'skij centr JuUrGU.

Shchapov, V. A., & Masich, A. G. (2012). Protocol of High Speed Data Transfer from Particle
Image Velocimetry System to Supercomputer. Proc. of The 7th International Forum on Strategic
Technology (IFOST 2012) September 18-21. 2, pp. 653-657. Tomsk: Tomsk Polytechnic University.

Shchapov, V. A., Masich, A. G., & Masich, G. F. (2012). A model of stream processing of
experimental data in distributed systems. Vychisl. Metody Programm , 13, 139-145.

Stepanov, R. A., Masich, A. G., & Masich, G. F. (2009). Iniciativnyj proekt «Raspredelennyj
PIV». Nauchnyj servis v seti Internet: masshtabiruemost', parallel'nost', jeffektivnost': trudy
Vserossijskoj superkomp'juternoj konferencii (pp. 360-363). M.: Izd-vo MGU.

Weikuan Yu, R. N. (2008). Performance of RDMA-capable storage protocols on wide-area
network. Petascale Data Storage Workshop, 2008. PDSW '08., (pp. 1-5).

Yildirim, E., Arslan, E., Kim, J., & Kosar, T. (2015). Application-Level Optimization of Big Data
Transfers Through Pipelining, Parallelism and Concurrency. Cloud Computing, IEEE Transactions on
, PP (99).

Platform for parallel processing of intense experimental data flow V. Shchapov, G. Masich, A. Masich

524

