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Abstract: 

In this study, strongly nonlinear free vibration behaviour of a microbeam considering the structural 

damping effect is investigated analytically on the basis of modified couple stress theory. Employing Von 

Karman’s strain-displacement relations and implementing the Galerkin’s method, the governing nonlinear 

partial differential equation is reduced to a nonlinear ordinary differential equation which is related to the 

size effect of the beam. Because of large coefficient of nonlinear term and due to existence of the 

damping effect, none of the traditional perturbation methods leads to a valid solution. Also, there are 

many difficulties encountered in applying homotopy techniques when the damping effect is taken in to 

account in the strongly nonlinear damped system. To overcome these limitations, here, a new analytical 

method is presented which is based on classical perturbation methods and fundamentals of Fourier 

expansion with an embedding nondimensional parameter. To solve the equation, the nonlinear frequency 

is assumed to be time dependent. The comparison between time responses of the system obtained by the 

presented approach and numerical method indicates the high accuracy of the new method. To validate the 

results of the presented method with those available in the literatures which are obtained for a special case 

of an undamped system, the damping coefficient is set to zero. The comparison shows a good agreement 

between the results for a wide range of vibration amplitudes. 

Keywords: 

Damped microbeam; Strongly nonlinear vibration; New analytical approach; Size effect; Perturbation 

method. 

                                                           
*Corresponding Author: Email: ac.minaei@azaruniv.ac.ir ACCEPTE

D M
ANUSCRIPT



1. Introduction 

Nowadays micro-electromechanical systems (MEMS) are widely used in smart materials in various fields 

of technologies such as mechanical, civil, aerospace and bio-engineering [1]. Clamped–clamped 

microbeams are used numerously in MEMS as solo components in devices or as spring components to 

support and add stiffness to other microstructures [2, 3]. Vibration analysis of microbeams is an important 

issue in modern engineering applications such as arched beam structures, micro-machined mechanical 

resonators, vibration shock sensors, atomic force microscopes and many other industrial usages. As the 

amplitude of oscillation increases, these microstructures are subjected to nonlinear vibrations which often 

lead to material fatigue and structural damage. These effects become more significant around the 

resonance frequencies of the system [4]. Therefore, it is very important to provide an accurate method for 

investigating the nonlinear vibration behaviour of the microstructures. The nonlinear vibration of a 

microbeam is governed by a nonlinear partial differential equation in space and time. For this equation, it 

is very difficult to find an exact or closed form solution. The importance of nonlinear Duffing equation 

has been widely recognized by scientists, since it plays a key role in some important practical phenomena, 

such as periodic orbit extraction, non-uniformity caused by an infinite domain, nonlinear mechanical 

oscillators, prediction of disease and so on [5]. A full analytical solution has not been introduced so far for 

the damped Duffing equation with strong nonlinear coefficients. Therefore, considerable attention has 

been directed to study of the strongly nonlinear oscillators. Several methods have been used to find 

approximate analytical solutions for the Duffing equation, including the perturbation techniques [6, 7], 

homotopy analysis method [8], homotopy perturbation method [9-13], modified homotopy perturbation 

method [4, 14], frequency-amplitude formulation [15], harmonic balance method [16], modified 

variational approach [17], energy balance method [18], max-min approach [19], modified Lindstedt-

Poincare method [20], variational iteration method [21, 22], and some other techniques [23, 24]. Through 

these methodologies, there are many difficulties encountered in the application of perturbation techniques 

to solve the strongly nonlinear equations [4]. For example, one of the most frustrating is the fact that all 

classical perturbation techniques strongly rely on the assumption of a small parameter into the equation 

which might be artificial, and subsequent expansion of the solution through the perturbation series around 

this parameter. However, the solutions obtained by these methods may not be uniform, restricting the 

applicability of such perturbation methods [25].  

To overcome the above mentioned limitations of classical perturbation techniques, many novel techniques 

have been proposed in recent years. One of these new methods is the homotopy perturbation method 

which is applicable to strongly nonlinear systems. He [26] proposed a new perturbation technique to solve 

the nonlinear undamped Duffing equation in which the maximum relative error at the first order ACCEPTE
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approximation is less than 7%. However, the homotopy technique is not usually employed to solve a 

damped nonlinear equation, because it leads to equations that are too complicate to be solved analytically.  

Some researchers considered the damping effect in their studies. Recently two new methods, Laplace 

decomposition [27] and homotopy perturbation transform [28] are introduced for the solution of nonlinear 

and non-homogeneous differential equations which are capable of solving the damped Duffing equation. 

In decomposition based methods, obtaining Adomian polynomials is too complicated. Nonetheless, in 

homotopy perturbation transform method, this limitation is resolved using He polynomials. Therefore, to 

reach a valid solution, by implementing the homotopy perturbation transform method or the modified 

differential transform method, one must increase the power of the polynomials and this requires too 

cumbersome mathematical calculations. Nourazar and Mirzabeigy [29] applied the modified differential 

transform method to solve the nonlinear Duffing oscillator with damping effect, approximately. 

Following these descriptions, when the above mentioned methods are used to solve the nonlinear damped 

equation, one can only obtain the approximate response of the system with no elucidation about the 

nonlinear frequency.  

In this paper, strongly nonlinear free vibration behaviour of a microbeam considering the structural 

damping effect is investigated analytically on the basis of modified couple stress theory. Employing Von 

Karman’s strain-displacement relations and using the Hamilton’s principle, the beam governing equation 

of motion is derived. By implementing the Galerkin’s method and assuming the immovable clamped-

clamped boundary conditions, the partial differential equation is reduced to a nonlinear ODE which is 

related to the size effect of the beam. To solve this nonlinear equation, according to the mentioned 

justifications, neither the classical perturbation techniques nor the homotopy methods, are not suitable 

solution methods. Here, a new analytical approach is presented for solving the mentioned nonlinear 

damped equation. In this new approach using the basic concepts of the classical perturbation methods 

together with the fundamentals of Fourier expansion with an embedding parameter which is considered as 

a small parameter ( 0 1  ), and assuming the time dependent relation for the frequency, the strongly 

nonlinear damped equation of motion is solve. This presented analytical approach provides a valid 

asymptotic solution for any positive coefficients of the nonlinear terms, and it is the main advantage of 

this method over the other mentioned methods. For this damped strongly nonlinear system, comparing 

time responses obtained by the first order approximate solution of the new method and those obtained by 

the numerical technique, i. e. RK45, indicates the high accuracy of the new method for a wide range of 

vibration amplitudes. Since the studies about the strongly nonlinear vibration of microbeams are restricted 

to undamped cases, here in order to make it possible to validate the method, the comparisons are made for 

such cases. The comparisons show a good agreement for a wide range of the vibration amplitudes. ACCEPTE
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2. Equation of motion 

An Euler-Bernoulli microbeam with a length of L , cross-sectional area of A , density of  , cross 

sectional area moment of  inertia of I , the elasticity modulus of E and the shear modulus of G is shown 

in Fig. 1.  

L

b
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z

Cross Section  

Fig. 1. A clamped-clamped microbeam. 

 

The strain-displacement relations for a beam undergoing large deflections are as [30, 31]: 

(1) 
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where x is the axial strain at a generic point of the microbeam which is located at the mid-plane surface,

x  is the curvature of the beam, u  is the longitudinal displacement, w  is the lateral displacement and x

is the longitudinal coordinate, 

Neglecting the axial inertia and using the modified couple stress theory was presented by Yang et al. in 

2002, in which the strain energy density is a function of both strain tensor (conjugated with stress tensor) 

and curvature tensor (conjugated with couple stress tensor) [32, 33], the strain energy, U , and the kinetic 

energy, T , of the beam is given by [34]: 
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where l is a material length scale parameter and 2GAl is related to the modified couple stress theory [35]. 

It should be mentioned that the current model based on the modified couple stress theory contains only 

one additional material constant besides two classical material parameters. The presence of l enables the 

incorporation of the material size features in the new model and renders it possible to explain the size ACCEPTE
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effect. Furthermore, when the size effect is suppressed by letting 0l  , the new model will reduce to the 

classical beam model [33]. 

Including the effects of the mid-plane stretching and employing the Hamilton’s principle, one obtains the 

governing equations for Euler-Bernoulli microbeam as: 

(4) 
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where Q
 
is the non-conservative force due to the internal damping and is obtained as: 

(6) 
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where SC  represents the beam internal damping coefficient. 

Integrating Eq. (4) and substituting the result into Eq. (5), and using Eq. (6) leads to the following 

equation: 
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force.is the pretension  0Nwhere  

It is more convenient to work with dimensionless parameters. Here, the dimensionless parameters are as: 

(8) ˆ ˆ ˆ, ,
x w

t t x w
L L

   

  is the linear natural frequency of the microbeam with the value of: 
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where L  is the eigenvalue of the microbeam with doubly clamped boundary conditions. In Eq. (9) by 

letting 0l  , the system natural frequency computed by the new model reduces to that obtained by the 

classical beam model. 

Substituting Eqs. (7) and (8) into Eq. (6) and using the chain rule for differentiation, one obtains: 
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is the radius of gyration of the beam cross section. /r I Awhere  

The solution of Eq. (10) can be assumed as ˆ ˆˆ ˆ ˆ( , ) ( ) ( )w x t x q t  [36] where ˆ( )x is the first mode shape 

of the beam. For the clamped-clamped beam, ˆ( )x is as follows [37]: 
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Using the Galerkin’s method and multiplying both sides of Eq. (10) by ˆ( )x  and integrating over the 

interval of [0, 1] one reaches: 
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After some mathematical manipulations we have: 

(13)   
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and ̂  are defined as: 
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Eq. (13) is the differential equation of motion governing the nonlinear vibration of the microbeam. The 

initial conditions are assumed as:  

(16)    00 0 0maxW
q a , q

L
    

where maxW  is the microbeam maximum deflection. 

Using the change of variable 0
ˆt t  and applying in Eq. (13) one reaches: 

(17) 
3( ) ( ) ( ) ( ) 0q t q t q t q t      
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There are different methods to solve Eq. (17). However, most of these methods do not result in a valid 

solution for the strongly nonlinear cases  1  . The coefficient of the nonlinear term,  , is dependent ACCEPTE
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on the beam parameters as well as the boundary conditions [4]. The value of   for microbeams is very 

large compared with unity. As a case study, for the doubly microbeam, 1941.3  . Therefore, the 

classical perturbation approaches do not lead to a valid expansion for the solution.  

3. Introducing the new analytical method 

As mentioned before, the perturbation methods have many limitations for solving and analyzing the 

behavior of strongly nonlinear systems, i.e. to use perturbation techniques, the coefficient of the nonlinear 

term should be smaller than unity [4]. Recently, some methods such as homotopy techniques are proposed 

to overcome this limitation. However, the homotopy methods have some limitations, too. For instance, as 

the coefficient of the nonlinear term increases, the homotopy techniques need more iterations to obtain 

accurate results, and this procedure leads to complicated equations which cannot be simply solved. Here, 

a new analytical approach is presented for solving the governing strongly nonlinear damped equation. In 

this new approach using the basic concepts of the classical perturbation methods together with the 

fundamentals of Fourier expansion with an embedding parameter which is considered as a small 

parameter ( 0 1  ), and assuming the time dependent relation for the frequency, the strongly 

nonlinear damped equation is solved. This presented analytical approach provides a valid asymptotic 

solution for any positive coefficient of the nonlinear term, and this is the main advantage of the new 

method over the other available methods in the literature.  

By making the change of variable,   , Eq. (17) can be rewritten as below: 

(19) 
3( ) ( ) ( ) ( ) 0q t q t q t q t      

where   is the small embedding parameter ( 0 1  ). Just like the classical perturbation methods, the 

solution of Eq. (19) is considered as: 

(20) 
2

0 1( ) ( ) ( ) ( )q t q t q t O     

Substituting Eq. (20) into Eq. (19) and collecting coefficients of equal powers of   and setting each of 

the coefficients of like powers of   equal to zero, the differential equations for iq ’s , 0,1,2,i   

become: 

(21) 
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(22) 
1 3
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By solving Eq. (21), the main part of solution can be obtained as: 

(23) 0 ( ) cos( )q t A t     ACCEPTE
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Neglecting the homogenous solution of Eq. (22) and using truncated Fourier expansion, one reaches the 

following solution [38]: 

(24) 
1 0

2

( ) cos ( ) sin ( )
N

n n

n

q t A A n t B n t


      

In Eq. (19) the term 
3( ) ( )q t q t  is the restoring force, where   is always positive for a clamped-

clamped microbeam and the nonlinear term acts as a hardening spring. The assumed form for ( )q t can be 

simplified by considering the symmetry of the nonlinear restoring force. First, Hayashi [39] pointed out 

that under circumstances when the nonlinearity is symmetric, i.e. when the restoring force is odd, 0A  can 

be discarded. Second, it was demonstrated by Urabe [40], numerically and theoretically, that the even 

harmonic components in Eq. (24) are zero. Therefore, the approximate solution is simplified to: 

(25) 1

3,5,...

( ) cos ( )n

n

q t C n t 


    

Substituting Eqs. (23) and (24) into Eq. (20) and making the change of variable, t   , result in: 

(26)   2
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
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 
  

where   is a constant and 0 ( )O   . Since   is a small parameter, then the amplitude and the 

amplitude-dependent frequency will vary slowly with the time. Thus, the coefficients A  and nC  in Eq. 

(26), are functions of the time. 

Considering 3n  , one reaches: 

(27)   2

3cos( ) cos3( ) ( )q A C O            

As mentioned before, due to the damping effect, the nonlinear frequency will be time dependent. So, as a 

first approximation, let: 

(28) 
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Using the change of variables as below: 
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Also, for the second derivative: 
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Since the embedding parameter ( 0 1  ) and the damping coefficient ( 0 ( )O   ) are small 

parameters, the terms including  , 2  and 2( )O   will be negligible in comparison with the other terms. 

So: 
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Substituting Eqs. (33) to (36) into Eq. (17) and setting the coefficients of cos( )  , sin( )  , 

cos( )   , and cos3( )   to zero, a system of perturbed equations is obtained as: 
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(38) 
0

0 0

dd
sin( ) : 2 0

d d

A
A A 

 


      

(39) 
2

0 1 3cos( ) : 2 0A QA C         

(40)  2 2 3

0 3

1
cos3( ) : 1 9 2 0

3
QA C QA         

Eq. (37), leads to: ACCEPTE
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(41) 
2 2

0 1 QA    

From Eqs. (38) and (41), one obtains: 

(42) 
2

2 d
1

1 d

QA A

A QA 

 
   

 
  

By making the change of variable 2A  , and then integrating Eq. (42) yields: 

(43) 
3 2 21

0Me
Q

      

where M  is a constant to be determined from the initial conditions. 

Defining 3 227
1

2
Q Me     , it can be easily verified that Eq. (43) has one real root for 1     and 

one positive and two negative roots for 1 1   . For the case of 1     , i. e. when 

31 27
0 ln( )

2 4
t MQ


   , the real root is given by: 

(44) 
2 23 31

1 1 1
3Q

   
 

       
  

  

Also, for the case of 1 1    , i. e. when 31 27
ln( )

2 4
MQ t


    , the positive root is given by: 

(45) 

11 cos
2cos( ) 1

3 3Q

 
   

 
  

It is worth mentioning that when 0  , Eq. (44) is valid for 0t  . 

Eqs. (39), (40) and (41) lead to: 

(46) 
 

 
 

2
22 2
0

1 2 2

0 0 0 0

1

6 7 1 6 7 1

Q


 
  

     
  

and from Eqs. (41) and (42) one obtains: 

(47) 
 

2

0

2
0 0 0

3 1d

d 1

  
 

   
  

Hence: 
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(48) 

   

  
 

 

0

0

0

0

0

0

0 1 0 1 0
0 (0)

0

2 22
0 00

02 2 2(0)
0 0 0

02 2 2(0)
0 0 0

1 d
dt d

d

3 1 13 11
d

1 6 7 1

1 43 1 2 40
d

14 6 1 21 7 1

 
  



















        


     
    
      

 
      

      

 





  

therefore, 

(49) 

  

  

0 0

0 0

0 0

0 0

0 0

1 43 1 1 1
( (0) )

14 6 (0)

1 (0) 1 40
ln arctan( 7 ) arctan( 7 (0))

1 (0) 1 21 7




  
       

   

                   

  

From Eq. (42) we have: 

(50) 
2 2

0

3
(0) 1 (0) 1 (0)

4
Q A       

Integrating Eq. (21), neglecting 2( )O   in this equation and using Eq. (46), it should be noted that when 

0  , then: 

(51) 
 

 

2
2

0

0 2

0 0

(0) 1
(0)

6 (0) 7 (0) 1
t

  
   
   
 

  

To determine the constants (0)A and  , considering the initial conditions 0(0)q a  and (0) 0q  , and 

using the Eqs. (33) and (34), one reaches: 

(52) 3 0(0)cos (0)cos3 (0)A C q a      

(53) 
0 0 1 3 0

d
(0) (0)sin cos (0) (0)sin 3 (0) (0)sin 3 (0) 0

d

A
A A C q      


         

Where, 
0

d

d

A





and M  may be obtained through Eqs. (42) and (43), respectively, as: 

(54) 
 2

0 2

(0) 1 (0)d

d 2 3 (0)

A QAA

QA






 


  

(55)  

4
6 4 (0)
(0)

3

A
M A


   

So the first approximation will be: ACCEPTE
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(56) 

3
2

2
( ) cos( ) cos3( ) ( )

32 27

A
q t A O

A


    


    


  

where A  is obtained from Eq. (44) and/or Eq. (45), and   is obtained from Eq. (49).  

According to Eq. (49), the nonlinear natural frequency is a function of vibration amplitude and the 

damping of the system. 

 

4. Results and discussion 

For demonstrating the accuracy of the new approach, as a case study, the method is applied to the doubly 

clamped microbeam. The maximum value of 
2

0a  for which the beam does not exceed the linear elastic 

limit, depends on the beam characteristics, the boundary conditions, the mode shape and the initial 

conditions. It is worth noting that the bigger values of 
2

0a  may be occurred in some other nonlinear 

equations [4]. 

Since the studies about the strongly nonlinear vibration of microbeams are restricted to undamped cases, 

here in order to make it possible to validate the method, the comparison is made for such a case. Table 1 

summarizes the comparison between the results for the nondimensional nonlinear resonance frequency 

obtained through the new approach and the other methods reported in the literature for a wide range of 

vibration amplitudes. Table 1 shows an excellent agreement between the results obtained through the 

presented method and the exact solution. It is worth mentioning that by qualitative analysis of 

conservative systems and integrating the level curve in phase plane for a given total energy level, Nayfeh 

obtained the exact value for the system period. After some manipulations he reached the system period as 

[4, 7]: 

(57) 
2 2

0 0

4
( , )

2
exT F k

a



 



  

where ( , )
2

F k


 is called a complete elliptic integral of the first kind and its value is [4, 7]: 

(58) 2

0 2 2

d
( , )

2 1 sin

x
F k

k x







  

and 

(59) 
2

0

2 2

0 02( )

a
k

a



 



  

So, the exact frequency of the free oscillations reads: 
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(60) 
2

ex

exT


   

 

Table 1. Comparison of nonlinear frequencies obtained via different methods for small values of 

 
2

0a ; ( 0.25, 1, 2.25 ) 

2

0a 
The Solution Method 

2.25 1 0.25 

1.6257 1.3178 1.0892 The exact solution 

1.6240 1.3164 1.0889 The first order approximation of the new method 

1.6394 1.3229 1.0897 First order HPM  

1.6519 1.3278 1.0903 First order VIM 

1.6394 1.3229 1.0897 Azrar-Second order [41] 

1.6393 1.3228 1.0897 HAM [42] 

1.6394 1.3229 1.0897 Qaisi [43] 

1.6394 1.3229 1.0897 Ritz method [44] 

 

Table 2 indicates the nonlinear frequencies obtained by the new presented approach, the VIM, the HPM 

and the exact solution for different values of nondimensional vibration amplitudes. From Table 2 it can be 

seen that there is a good agreement between the results obtained from the new method and the exact 

solution for larger values of 
2

0a ,. 

 

Table 2. Nonlinear frequencies obtained by the new method, the VIM, the HPM and the exact solution for some 

large values of 
2

0a .  

Nondimensional Nonlinear Frequency 
2

0a First order of 

the new method 
First order HPM First Order VIM Exact solution 

1.316378979 1.322875656 1.327715663 1.317776065 1 

2.868818098 2.915475948 2.957903561 2.866640137 10 

8.553506457 8.717797888 8.873915594 8.533586191 100 

26.87909003 27.40437921 27.90602205 26.81073847 1000 

84.94536879 86.60831369 88.19719974 84.72747996 10000 

 

The maximum relative error of the system period,  %RE , is defined as [4, 45]: 

(57)                                                 % lim 100ex

ex

T T
RE

T


  

For an undamped system, as   approaches infinity, the maximum relative error for the first order 

approximation through the new approach and the first order approximation via VIM and HPM are ACCEPTE
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obtained 0.26% , 4.1%  and 2.22% , respectively. Consequently, the first order of the new method is 

more accurate than the others.  

 

 

Fig. 2. Comparison among the responses of the clamped-clamped microbeam for 0 0 05a . obtained by the new method, HPM 

and the numerical method.  

As mentioned before, the homotopy technique is not usually employed to solve a damped nonlinear 

equation, because it leads to equations that are too complicate to be solved analytically. So, in order to 

demonstrate the accuracy and the effectiveness of the new approach, the damping coefficient of the beam 

is set to zero and the beam response at its mid-span is obtained by the first order of the new method. Then 

the result is compared with that obtained by the first order of HPM and the fourth-order Runge–Kutta 

method. Fig. 2 illustrates the response of a clamped-clamped microbeam with a nondimensional 

amplitude of 0.05 and the pretension load of 0 0N  . For this case, 
2

0 1   and 1941.3  , ( 1  ). It 

can be readily deduced from Fig. 2 that the response obtained by the first order of the new method is more 

accurate than that obtained by the first order of HPM. Moreover, the figure reveals that the first order of 

the new method can follow the RK45 more accurate than the first order of HPM.  

According to Eqs. (28) and (49), the new method provides a relation which relates the system nonlinear 

frequency to the vibration amplitude and the time. Due to the damping effect, the vibration amplitude 

decreases by the time, so one can illustrate the variations of the nonlinear frequency, the vibration 

amplitude and the time as a three dimensional plot. Fig. 3 shows the variation of the frequency ratio, 

0 , against the nondimensional amplitude and time. As this figure indicates, for small values of t , 

due to the larger vibration amplitudes, the frequency ratio is high. As the time goes on, the vibration ACCEPTE
D M
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amplitude decreases and therefore, the nonlinear frequency tends to the linear one. In other words, at the 

larger amplitudes, the effect of nonlinearity has a significant influence on the vibration behaviour of the 

microbeam. 

 

Fig. 3. Variation of the frequency ratio versus the nondimensional vibration amplitude and time. 

To show both accuracy and effectiveness of the first order of the new approach, the damped responses of 

the system at the mid-span of the microbeam is obtained by the new method and the results are compared 

with those obtained by the fourth-order Runge–Kutta method. Figs. 4 (a) to 4 (c) show the free responses 

of a doubly clamped microbeam for various values of nondimensional amplitude in the absence of 0N . 

As it can be seen from these figures, for a wide range of vibration amplitudes, the responses obtained by 

the first order of the new method follow the responses obtained by the RK45 with a good accuracy. Also, 

these figures reveal that even the first order approximation of the presented approach is in excellent 

agreement with the numerical solution. 
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                                                    (a)                                                                                             (b) 

 
 (c) 

Fig. 4. Comparison between the responses of the clamped-clamped microbeam obtained by the first order of the new method and 

the numerical method for nondimensional vibration amplitudes of: (a) 0 0 04a .  (b) 0 0 06a .
 
(c) 0 0 08a . . 

Fig. 5 illustrates the effect of the beam internal damping coefficient,
 SC , on the frequency ratio of the 

clamped-clamped beam for various values of vibration amplitudes. It can be seen that by increasing the 

vibration amplitude, the frequency ratio, 0 ,  increases. Also, at the larger vibration amplitudes, the 

effect of the beam internal damping coefficient on the frequency ratio becomes more significant. 

Moreover, for a given vibration amplitude, all the curves start from a common point and as the time goes 

over, they move away from each other due to the damping effect. 

Fig. 6 shows the effect of the microbeam material length scale parameter,
 
l , on the frequency ratio of the 

clamped-clamped beam for various values of vibration amplitudes. The figure reveals that by increasing 

the vibration amplitude, the frequency ratio, 0 ,  increases. Moreover, the effect of the microbeam 

material length scale parameter on the frequency ratio is very considerable at the larger vibration 

amplitudes. 
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Fig. 5. Variation of the frequency ratio, 0 , versus time for various values of the microbeam structural damping, SC .  

 

Fig. 6. Variation of the frequency ratio, 0 , versus time for various values of the microbeam material length scale 

parameter, l . 
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5. Conclusion 

In this paper, strongly nonlinear free vibration behaviour of a microbeam considering the structural 

damping effect has been studied. The effect of mid-plane stretching of the microbeam on its nonlinear 

vibrational behaviour is considered on the basis of modified couple stress theory. Because of the large 

coefficient of the nonlinear term and due to existence of the damping effect, none of the traditional 

perturbation methods leads to a valid solution. Also, there are many difficulties encountered in the 

application of the homotopy techniques when the damping effect is taken in to account in the strongly 

nonlinear damped systems. To overcome these limitations, a new analytical approach is presented for 

solving the strongly nonlinear damped system. This new method is based on the classical perturbation 

methods and the fundamentals of the Fourier expansion with an embedding nondimensional parameter. 

To apply the method, it is assumed that the nonlinear frequency is time dependent. Despite the classical 

perturbation methods, the new approach does not depend upon the assumption of small parameter and it is 

applicable to a damped system for a wide range of vibration amplitudes. 

The comparison between the time responses of the system obtained by the first order approximate 

solution of the new method and the numerical technique demonstrates the high accuracy of the new 

method. Moreover, in order to demonstrate the capability of the method, the results are also compared 

with those obtained by the other recently introduced methods, e.g. HPM and VIM, as well as the 

numerical method. Finally, it is worth stating that the presented approach can help handle the situations of 

high nonlinearity occurring in the damped nonlinear systems.  
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