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Broad Applications of 3D data

Augmented
Reality

 Aut nomous Medical Image
driving Processing



Traditional 3D Vision

Multi-view Geometry: Physics based
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3D Learning: Knowledge Based
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Acquire Knowledge of 3D World by Learning

A priori knowledge of
the 3D world



A New Rising Field

Machine Artificial

Learning Intelligence
Computer

Graphics Robotics

Topology 3D Corpputer
Understanding Vision

Differential Cognitive
Geometry Science
Functional

Analysis
Mathematics



The Representation Challenge
of 3D Deep Learning

Rasterized form Geometric form
(regular grids) (irregular)
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The Representation Challenge
of 3D Deep Learning
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Point Cloud Mesh (Graph CNN) Implicit Shape



The Richness of 3D Learning Tasks

3D Analysis

It is a chair!

Segmentation

Classification (object/scene)

Correspondence



The Richness of 3D Learning Tasks

3D Synthesis
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The Richness of 3D Learning Tasks

3D-based Knowledge Transportation

Natural language description
“A tall director’s chair with thin,
straight wooden legs that cross
diagonally in the middle. The seat amd,
backrest are made of black fabric.”

Rendered 2D views

Review | Ak the Tir
$989.99

Free Shipping
Genit .

o 15

RGB-D Scan




3D Learning Tasks

From static to dynamic

"Will it
fall?"




Speaker
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Zetian Jiang




Algorithms of 3D Deep Learning

Hao Su (UCSD)



Topics

 Classification

- Segmentation and Detection
* Reconstruction

« 3D Dataset

* 3D Few-shot Learning



Topics

« Classification



Task: 3D Classification

This is a chair!

Covered methods: Volumetric CNN, OctNet, O-CNN, SparseConvNet,
PointNet, PointNet++, RS CNN, DGCNN, Point ConvNet, KPConv,
Monte Carlo Point Convolution, PConv, Multi-View CNN, Spectral CNN,
Synchronized Spectral CNN, Spherical CNN



Multi-View CNN



Given an Input Shape

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition”, ICCV 2015



Render with Multiple Virtual Cameras

= view

| view

— | view

s |view N

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition”, ICCV 2015



The Rendered Images are Passed through CNN, for
Image Features

%%%% CNN,
%@%ﬁ%cm
g%%ﬁ% CNN,

: 4% [0 o,

CNN,: a ConvNet extracting
image features

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition”, ICCV 2015



All Image Features are Combined by View Pooling
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Wigiats

CNN,

View pooling: element-
wise max-pooling
across all views

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition”, ICCV 2015



. and then Passed through CNN, and to Generate Final
Predictions
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ConvNet producing
shape descriptors
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Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition”, ICCV 2015



Experiments — Classification & Retrieval

Classification Retrieval

Method

(Accuracy) (mAP)
SPH [16] 68.2% 33.3%
LFD [5] 75.5% 40.9%
3D ShapeNets [37] 77.3% 49.2%
FV, 12 views 84.8% 43.9%
CNN, 12 views 88.6% 62.8%
MVCNN;, 12 views 89.9% 70.1%
MVCNN+metric, 12 views 89.5% 80.2%
MVCNN, 80 views 90.1% 70.4%
MVCNN+metric, 80 views 90.1% 79.5%

On ModelNet40
[credit: Hang Su]



 Indeed gives good performance

« Can leverage vast literature of image classification
« Can use pertained features

* Need projection

* What if the input is noisy and/or incomplete? e.g.,
point cloud



Volumetric CNN



Can we use CNNs but avoid projecting the 3D
data to views first?

Straight-forward idea: Extend 2D grids 3D grids



Voxelization

Represent the occupancy of regular 3D grids




3D CNN on Volumetric Data

3D convolution uses 4D kernels

30

30

30

mlpconv
(48, 6, 2; 48; 48) (160, 5, 2; 160; 160) (512, 3, 2; 512; 512)



Complexity Issue

4000

object label 10 1200

[P
512 filters of

stride 1 4( 5

d 160 filters of A
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AlexNet, 2012 3DShapeNets,

Input resolution: 224x224 2015
224x224=50176 Input resolution: 30x30x30
224x224=27000
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Information loss in voxelization



Idea 1: Anisotropic Probing

Idea: “X-ray” rendering + Image (2D) CNNs
very low #param, very low computation

Anisotropic Probing
A

30, 30 30 30 (" )

Softmax
Loss

=y

Image-based CNN
e B B S Network In Network —
3 1@% EE (Network In Network)

30, 30 \ )

30 5 5

30

s{0_00

Su et al., “Volumetric and Multi-View CNNs for Object
Classification on 3D Data”, CVPR 2016



More Principled: Sparsity of 3D Shapes

#occupied grici " < BE
#total grid :
Occupancy: 10.41% 5.09% 241%

Resolution: 32 64 128




Store only the Occupied Grids

IS

 Store the sparse surface signa
iIn the computation near the surface

 Constra




Octree: Recursively Partition the Space

Each internal node has exactly eight children

e




Convolution on Octree

Neighborhood searching: Hash table

ullVoxel CTREE




Memory Efficiency

GPU Memory

Memory (GB)

-—

1673 3273 6473 12873
O-CNN
— Voxel CNN




Implementation

» SparseConvNet

* https://github.com/facebookresearch/

SparseConvNet
 Uses ResNet architecture

 State-of-the-art for 3D analysis
» Takes time to train

Graham et al., “Submanifold Sparse Convolutional
Networks”, arxiv


https://github.com/facebookresearch/SparseConvNet
https://github.com/facebookresearch/SparseConvNet

Point Networks



Point cloud

The most common 3D sensor data



Directly Process Point Cloud Data

End-to-end learning for unstructured,

unordered point data

o Object
1 > PointNet Classification
e |

A 4




Permutation invariance

Point cloud: N orderless points, each represented by a
D dim coordinate

D,
I
N

2D array representation



Permutation invariance

Point cloud: N orderless points, each represented by a
D dim coordinate
D,

N represents the same setas N

V_

— D,
.
N—

2D array representation



Construct a Symmetric Function

Observe:

S Xy 0x,) = 0 8(h(x,),...h(x,)) is symmetric if & is symmetric

il -




Construct a Symmetric Function

Observe:

S Xy 0x,) = 0 8(h(x,),...h(x,)) is symmetric if & is symmetric

h
(1 23)% simple symmetric function
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Construct a Symmetric Function

Observe:

S Xy 0x,) = 0 8(h(x,),...h(x,)) is symmetric if & is symmetric

h
(1,2,3) 1 simple symmetric function
PP
(2.3,2) - o CI
(2,3,4) -

PointNet (vanilla)



Visualize What is Learned by Reconstruction

Original Shape

Critical Point Sets

Salient points are discovered!



Limitations of PointNet

Hierarchical feature learning Global feature learning
Multiple levels of abstraction Either one point or all points
iz §3 &% (1,2,3) —| mrp

(2,3,4) —{ MLP
B S T s I 3 s .

(1,3,1) —>| MLP

mdur [ax0a ¢

o€

3D CNN (Wu et al.) PointNet (vanilla) (Qi et al.)

* No local context for each point!
* Global feature depends on absolute coordinate. Hard to
generalize to unseen scene configurations!



Points in Metric Space

Learn “kernels” in 3D space and conduct convolution
Kernels have compact spatial support

For convolution, we need to find neighboring points
Possible strategies for range query

 Ball query (results in more stable generally)
* K-NN query (faster)



PointNet v2.0: Multi-Scale PointNet

: . ; : .

Npoints i‘n N1 poiﬁts in N2 points in
(X,y) (X,yf) (x.y,F)
Repeat
« Sample anchor points
* Find neighborhood of anchor points
* Apply PointNet in each neighborhood to mimic convolution



Point Convolution As Graph Convolution

* Points -> Nodes
* Neighborhood -> Edges
« Graph CNN for point cloud processing

C”’

\ / EdgeConv
—_—

Wang et al., “Dynamic Graph CNN for Learning on Point Clouds”,
Transactions on Graphics, 2019

Liu et al., “Relation-Shape Convolutional Neural Network for Point
Cloud Analysis”, CVPR 2019



Issue

« Assume points are sampled from surfaces, the
sampling would affect feature extraction :(

* Rescue: Estimate the continuous kernel and point
density for continuous convolution



Interpolated Kernel for Convolution

» Continuous conv: (F x g)(z) = /g(y —z)f(y)dy

* Empirical conv:  (F x g)(z) = Z g(z; — ) f;




Interpolated Kernel for Convolution

» Continuous conv: (F x g)(z) = /g(y —z)f(y)dy

* Empirical conv:  (F x g)(z) = Z g(z; — ) f;
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* Interpolated cont. kerhel:

Atzmon et al., “Point Convolutional Neural Networks by
Kjm (2) = E Kijm® (lz — yi) Extension Operators”, Trans. on Graphics, 2018

Thomas et al., “KPConv: Flexible and Deformable
(I)' RBF kernel Convolution for Point Clouds”, ICCV 2019



Interpolated Kernel for Convolution

* Deformable point-based kernel

Local shifis
Rigid KPConv AT,
Input -» - \1 Output
,/ \\\\ ///
/ i
, I
; v
_______________________________________________________________ a
oo Tl
[0
R S ey
e
'\ /e
AN — N ARNNAR). S

Thomas et al., “KPConv: Flexible and Deformable Convolution for
Point Clouds”, ICCV 2019



Continuous Point Density Estimation
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Monte Carlo Integration:

3
Yjd — Yk,d
RBF Density Estimation: plyjlx) = IN(x )| IN(x)|o3 Z {nh( - )}
d=1

Hermosilla et al., “Monte Carlo Convolution for Learning on Non-
Uniformly Sampled Point Clouds”, Trans. on Graphics, 2018



Spectral Convolution



Shape Processing as Surface Conv

Shapes as surfaces
* Triangle/quad mesh: Piece-wise linear

« Coordinates and features as functions defined on
the surface (e.g., store at nodes and interpolate in-
between)



Fourier Analysis on Surfaces

 Convolution -> linear transformation in the functional
space defined on surface

» Bases of the functional space:

* Eigenfunctions from self-adjoint operators, e.g. Laplacian-Bertrami
or Dirac operator

“Fourier basis” of the graph: V' : Eigenvectors of A

4

T81 o oo oo 9@ O 06 004 006 008

Masci et al., “Geometric deep learning on graphs and
manifolds using mixture model CNNs”, CVPR 2017



Spectral CNN

« Convolution done in the spectral domain
« Kernels are also built in spectral domain

* Activation done in the spatial domain

Masci et al., “Geometric deep learning on graphs and
manifolds using mixture model CNNs”, CVPR 2017



Advantage of Spectral CNN

« Can compare shapes invariant to its embedding
(agnostic to rotation, translation, pose change)




Advantage of Spectral CNN

« Can compare shapes invariant to its embedding
(agnostic to rotation, translation, pose change)

geodesic = intrinsic

isometry = length-preserving transfor‘r/n\/l2



Advantage of Spectral CNN

» The functional space of a surface under isometric
transformation does not change

Visualization of the 5th basis
(Laplacian-Bertrami eigenfunction) at two poses

* As a consequence that the Laplacian-Bertrami operator is
intrinsic



Fundamental Challenge of Spectral CNN

* If the shapes are not isometric, their spectral domains
are not aligned

* Rescue: synchronize them by functional maps

Yi et al., “SyncSpecCNN: Synchronized Spectral CNN for 3D
Shape Segmentation”, CVPR 2017



A Special Case: Spherical CNN

* |f the surface is always a SPHERE, no worry about
the functional space alignment anymore

» Generate a spherical representation

- spherical
Inpu ' representation

* Do Spectral CNN

« Has numerical tricks exploiting the symmetry of
sphere

Cohen et al., “Spherical CNN”, ICLR 2018

Esteves et al., “Learning SO(3) Equivariant Representations with
Spherical CNNs”, ECCV 2018



A Special Case: Spherical CNN

 Rotation invariance guaranteed

Table 1: ModelNet40 classification accuracy per instance. Spherical CNNs are
robust to arbitrary rotations, even when not seen during training, while also
having one order of magnitude fewer parameters and faster training.

Method z/z SO3/SO3 z/SO3 params inp. size
PointNet [7] 89.2 83.6 14.7 3.5M 2048 x 3
PointNet++ [38] 89.3 85.0 28.6 1.7M 1024 x 3
VoxNet [29] 83.0 73.0 - 0.9M 30°
SubVolSup [&] 88.5 82.7 36.6 17M 30°
SubVolSup MO [g] 89.5 85.0 45.5 17M 20 x 30°
MVCNN 12x [9] 89.5 77.6 70.1 99M 12 x 2242
MVCNN 80x [9] 90.2 86.0 -2 99M 80 x 2242
RotationNet 20x [30] 92.4 80.0 20.2  58.9M 20 x 224°
Ours 88.9 86.9 78.6 0.5M 2 x 642

« Can be used to improve the rot. invariance of
MVCNN, as well

Esteves et al., “Learning SO(3) Equivariant Representations with Spherical
CNNs”, ECCV 2018

Esteves et al., “Equivariant Multi-View Networks”, ICCV 2019



Topics

- Segmentation and Detection



Task: 3D Segmentation &
Detection

Input

Object Detection

Object Segmentation

Part Segmentation

Covered methods: Sliding Shapes, Deep Sliding Shapes, PointRCNN,
VoteNet, GSPN, SGPN, Learning to Group



Sliding Shapes

0

Rendered Depth 3D Point Cloud Feature
£ = -
h -> > T PR L
- -
< .- Pk |
¥
"

RGB-D image 3D Point Cloud 3D Point Cloud RGB-D image

I:%I% g* 33?; 1] ‘Iismsml:m §ii
(AT T

Softmax

L1 Smooth

Song et al.,
Images”, ECCV 2014

Song et al., “Deep Sliding Shapes for Amodal 3D Object
Detection in RGB-D Images”, CVPR 2016

“Sliding Shapes for 3D Object Detection in Depth

Sliding window to walk over
the entire space

Expensive !



[ Sliding Window J

{Two-stage PipelineJ

First stage: Proposal
Second stage: Refinement



Early Attempt: View-based Proposal

Generate object proposals from a view (e.g., using SSD)

Qi et al., “Frustum PointNets for 3D Object
Detection from RGB-D Data”, CVPR 2018



Second-stage: Coordinate Normalization

Handle perspective variation in frustum point cloud
by a series of coordinates normalization

P ll " ,' P I o
)/ H / ! )/ . ’
7 1 ’ ' ’ ,'
7 ! / I /I » ’
/
I
’ f 7 ]
" ’ h I’ ~ . ” ’ ]
s 1/ frustum ro mask point | [
' rotation la/ centroid ':" 7 - i/
7/ I
—> M —> . !
,’ / 1, h /I
;' z
1 ,”
(a) camera (b) frustum (c) 3D mask (d) 3D object
coordinate coordinate coordinate coordinate

Qi et al., “Frustum PointNets for 3D Object
Detection from RGB-D Data”, CVPR 2018



Proposal from 3D FG/BG
Segmentation

Stage-1: Foreground/Background segmentation to
generate 3D proposals

Stage-2: Refine proposals in the canonical coordinates

Bin Based Box Representation

Shi et al., “PointRCNN: 3D Object Proposal Generation
and Detection from Point Cloud”, CVPR 2019



Proposal from Voting

Challenge: 3D object centroid can be far from any
surface point, thus hard to regress accurately

Voting from input point cloud

- Sample a set of seed
points and generate votes,
targeting at object centers

3D detection output

<0

- Vote clusters emerge near \/ﬂ x-
object centers : 7

Qi et al., “Deep Hough Voting for 3D Object Detection
in Point Clouds”, ICCV 2019



Proposal from Generative Network

 Randomly sample seeds points

 Take point cloud and a seed point as input, use
conditional VAE to generate a point cloud as proposal

» Convert the proposal to an ROI box
* R-PointNet (mask RCNN) to segment the object

Q" o

GSPN — Generative

- :“"_.
— g}fﬂ':‘ —
e G

Rol
eneration

> Point
» RolAlign

‘ Shape Proposal
Input Point loud f(:
Input Point Clou .
with a Seed Point Pomt'NeH—F
Semantic SegNet fsem

Yi et al., “GSPN: Generative Shape Proposal Network for 3D

Instance Segmentation in Point Cloud”, CVPR 2019

—»  Classification

—» Bbox Regression

—» Segmentation



Proposal from Bottom-up Clustering

 Learn a per-point embedding, so that points from the
same instance have similar embeddings

[Fsrar, — Fsrm 2 Cij =1
I(i,7) = § amax(0, Ky — ||[Fsinm, — Fsim,ll2) Cij =2

max(0, Ko — ||Fsram, — FSIM,-||2) Cij =3

* Clustering gives proposals

3 g R D NpX Np

o= E . 0 0 o —_—

s 2  Similarity Matrix :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - Group Proposals

PointNet /
PointNet++

Group
: Np x 1 “Pruning Merging
' _’|:|Semantic Prediction"g_. |:|
Input Points: Np x Nt SGPN =..H X FGroup class

i
Instance Segmentation

* The 3D version of “Associative Embedding”

Wang et al., “SGPN: Similarity Group Proposal Network for 3D Point
Cloud Instance Segmentation”, CVPR 2018



Few-shot Detection
(will be elaborated later)



Learning to Group

 Avoid including context information for generalizability
* Bottom up agglomerative clustering

Sub-Part Pool

{ ;}_ Merge > SN Merge If TI‘UP Finalﬂ_,n
o Pollcy e Verification | g

, / / r .
d } / i <




Topics

* Reconstruction

 Generation Model



Task

Conditional generation

Single-image

3D reconstruction Shape Completion

Free generation

A

Gaussian Noise




Metric

First of all,

how to evaluate the generated shapes?



Metric For Point Clouds

Chamfer Distance
e

dop($1,82) = ) | min|lz —y[3+ Y min [z —y|l3
x€S1y 2 246:’5’23c !

Earth Mover’s Distance

dop(S1,52) = pin, ), o= (@)l \

where ¢ : S; — S5 is a bijection. /

Fan et al., “A Point Set Generation Network for 3D Object
Reconstruction from a Single Image”, CVPR 2017



Metric For Surfaces

Light Field Descriptor (LFD)
 Extract features from orthogonal projections
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Chen et al., “On Visual Similarity Based 3D Model Retrieval”,
Computer graphics forum

Chen et al., “Learning Implicit Fields for Generative Shape
Modeling”, CVPR 2019



Algorithm for
Conditional Generation



From Single Image to Volume

Avoid O(n°) reconstruction
 Octree representation of shapes

» Generate the octree layer by layer

F K F
Octree Octree Octree
iy Raigbins b 4 level 1 level 2 level 3
d ( r more) HE i ]
| ] | ]
/ I [ | I
dy 13
l conv
[O propagated fea
OGNLoss [J empty
3
Ground truth Prediction ]‘ 28

Tatarchenko et al., “Octree Generating Networks: Efficient Convolutional
Architectures for High-resolution 3D Outputs”, ICCV 2017



From Single Image to Point Cloud

* It is possible to generate a set (permutation invariant)

Predicted set

(3717 Y1,21)
Deep Neural

Network

Point Set

Distance

Fan et al., “A Point Set Generation Network for 3D Object
Reconstruction from a Single Image”, CVPR 2017



From Image to Surface

- Learn to warp a plane to surface

Encoder

2 Image

—

Latent shape
representation

ot L/
2D point

Groueix et al., “AtlasNet: A Papier-Maché Approach to
Learning 3D Surface Generation”, CVPR 2018

MLP 1

MLP K

K generated
3D points

¢
-



From Image to Surface

Groueix et al., “AtlasNet: A Papier-Maché Approach to
Learning 3D Surface Generation”, CVPR 2018



Implicit Surface Reconstruction

- Implicit representation of a surface: F(x) =0

. Decision
___ boundary
e of implicit

° surface
L ] L ]

e o
e SDF >0

@ SDF<0°

Park et al., “DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation”, CVPR 2019

Other two similar paper on implicit representation:

Mescheder et al., “Occupancy Networks: Learning 3D Reconstruction in Function
Space”, CVPR 2019

Chen et al., “Learning Implicit Fields for Generative Shape Modeling”, CVPR 2019



* In general,
 First map the input to a shape embedding
* Then reconstruct by decoding

 Limitation (interpretability)
 Output is not explicitly grounded on the input
« Structures of 3D objects not explicitly leveraged



Visually Grounded Prediction: 2.5D to Bridge

2.5D
[ mage ] ( (depth/normal/...) H 3D )

Only for visible areas Hallucination




Visually Grounded Prediction: 2.5D to Bridge

2. 5D Sketches

‘ (c) Reprojection Consistency l
normal
- =)
l"j ~(|(¢-|=@E) KA
. depth - e o
? \ ' ' 3D Shape
2D Image
(a) 2.5D Sketch Estimation a..s.!.'.‘.‘.?!%?.‘.‘.‘f’._s (b) 3D Shape Estimation (@) Normal Ball

Wu et al., “MarrNet: 3D Shape Reconstruction via 2.5D Sketches”, NeurlPS 2017

mmm Geometric Projection
r \ === Network Module
—— b ? : ,ﬁ g Eii‘*‘ N C \|:.
| ’ : i I
RGB Image Depth Partial Inpainted Projected Voxels Final 3D Shape

Spherical Map  Spherical Map

Zhang et al., “Learning to Reconstruct Shapes from Unseen Classes”, NeurIPS 2018



Structured Prediction: Part-based

Recursive Network for Hierarchical Graph AE

encoder £ decoder £
t I
egmph dgraph
- - . - . . - ‘ - -
Qi Oi— O /d @ O O
- B o a _ gco ~ a a a B
A ® dl.du., d
egraph egraph egeo graph 'geo graph geo
L - ) Gy
‘ O Ta ;) Tt O b O Ta ?
e ¢ B LA \d
/geo \gmph a9 lgeo \gruph gso
o - ToTa O To ‘V) L - -
® 2T SR N
geo Ygeo geo geo geo Ygeo dgco dgco
v | \ Vo ' '
S N S ~
| N - N~ I I N - ~ I

Mo et al., “StructureNet, a hierarchical graph network for
learning PartNet shape generation”, Siggraph Asia 2019



Structured Prediction: Part-based
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Mo et al., “StructureNet, a hierarchical graph network for
learning PartNet shape generation”, Siggraph Asia 2019




Algorithm for
Free Generation (GAN)



Challenges

Similar challenges as GAN for images:

« Good by human eye v.s. Good by objective metric



Metrics

Geometry Quality of Generated Shape
* e.g., MMD for Chamfer/EMD distances

Coverage (COV)
¢ MOdel CO||apSG teSt (The fraction of the shapes in GT dataset that were matched to shapes in

generated shapes)

Perceptually Correct
¢ Feature d|Str|bUt|On diStance (e.g. Frechet Point Cloud Distance)

FPD(P, Q) = ||mp — mg|5 + Tr(Zp 4 Bq — 2(ZpZq)!

(][5

)

Achlioptas et al., “Learning Representations and Generative
Models for 3D Point Clouds”, ICML 2018

Shu et al., “3D Point Cloud Generative Adversarial Network
Based on Tree Structured Graph Convolutions”, ICCV 2019



Volumetric Generation

\
e e

- st
a@ 5020 A

256X8x8x8 20t S
128x16x16X16 rrCTVET—: -

G(z) in 3D Voxel Space
64x64x64

FIdFILf oS reen
A TR T

Wu et al., “Learning a Probabilistic Latent Space of Object Shapes
via 3D Generative-Adversarial Modeling”, NeurlPS 2016
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Point Cloud Generation

« FC as Generator

 PointNet as Discriminator

« WGAN

A=z ¢ L
\

)
DATA '

|

Achlioptas et al., “Learning Representations and Generative
Models for 3D Point Clouds”, ICML 2018



Hierarchical Generation

TreeGAN

. . qﬁ—l
* Hierarchical generator e
qj= - .‘/jzf.
 TreeGCN NN
dj=a '/ \./ 7’. @
I+1 . rl @ O
p,i+ =0 FIK (pi) + Z (/JI‘(]J‘ + b “ @
q;€A(p)
Ancestor term GCN TreeGCN
Generator Discriminator
— Tree {z} — Tree{z,p'} p Tree{zp',p*} > = Tree{z,p',p%...p. ....p" Y} Real
[ Branching ] ‘ Branching ] [ Branching 1 Branching ,;’:;.s
[ [ T | T | p— L7
z € RP°~N(0,1) GraphConv. GraphConv. GraphConv. GraphConv. o '—
p! p? p! pt € R¥x™ Fake

Shu et al., “3D Point Cloud Generative Adversarial Network
Based on Tree Structured Graph Convolutions”, ICCV 2019



Many Issues

- Still cannot generate high quality local details
- Still hard to generate complex structures

+ Use stronger classifiers (than PointNet) for

discriminator is highly tricky



Topics

* Reconstruction

 Multi-View Stereo



Task: Reconstruction

’ 1! »,
o
5 - -
. - -
* 2 B
-

[image: oswald]

Covered methods: SurfaceNet, LSM, GC-Net, MVSNet,
R-MVSNet, PointMVSNet, BA-Net



Surface Reconstruction as
Voxel Occupancy Prediction

Unprojection along viewing rays to build
colored voxel cubes.

>
7 Cc
ey vj = ,v/
I,
P,
j
N —~ vx - IC
. I PV,
V|

Ji et al., “SurfaceNet: An End-to-End 3D Neural Network for
Multiview Stereopsis”, ICCV 2017



Predict the surface confidence for each voxel:

L(IS, IS, 5€) =

- Z {ass logp, + (1 — a)(1 — 8;) log(1 — pe)}
zeC

Ji et al., “SurfaceNet: An End-to-End 3D Neural Network for
Multiview Stereopsis”, ICCV 2017



Limitations:

* Pre-computed grids can only take RGB colors at

coarse resolution

* Voxel binarization introduces quantization errors.



Learning-Based Stereopsis

« End-to-end learning of deep features for

each pixel.

— K

Image

| | Encoder _i

Kar et al., “Learning a Multi-View Stereo
Machine”, NeurlPS 2017

uornpalordun
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Projection




Still very coarse resolution (32x32x32)
due to volumetric representation.

Kar et al., “Learning a Multi-View Stereo
Machine”, NeurlPS 2017



Improve Output Resolution

» Differentiable soft-argmin to achieve sub-pixel accuracy.

. |
% * b 1
Shared Weights
’ T V4 S --‘

Input Stereo Images Cost Volum Multi-Scale 3D Convolution | 3D Deconvolution Soft ArgMax Disparities
Dma:l:
soft argmin := E dx o(—cq)
d=0

* View-aligned cost-volume construction.

Kendall et al., “End-to-End Learning of Geometry and Context for Deep
Stereo Regression”, ICCV 2017



Input Input Resolution

Idea 1: Slide-by-Slide Processing of Cost Volume
by Recurrent Neural Network

— | i Softmax
: 1 C0) C(1) C(2) C(D-1) 7 P
— ol sl )
Loss
C(0)

|
| o
Hl”ll ® ® @

=

GT Depth Map

Feature Extraction Recurrent Regularization Loss Computation
s Conv + BN + ReLU, stride = 1 W Conv, stride = 1 1 Cost Maps Differentiable Homography Warping
=== Conv + BN + ReLU, stride = 2 s GRU unit —— Regularized Cost Maps &Variance Cost Metric

The cost volume is sequentially regularized along the depth direction.

Yao et al., “MVSNet: Depth Inference for Unstructured Multi-view
Stereo”, ECCV 2018

Yao et al., “Recurrent MVSNet for High-resolution Multi-view Stereo
Depth Inference”, CVPR 2019



Input Input Resolution

Idea 2: Point-based MVS

* Point-based representation for computational efficiency.
* lteratively update the location of points and spawn more points.

* More flexible and accurate.

Coarse prediction Refined prediction Final prediction

® before flow @ after flow =) PointFlow

» Dynamic Feature Fetching

Chen et al., “Point-Based Multi-View Stereo Network”, ICCV 2019



lterative refinement:

>

Initial

Results on DTU benchmark

Iter. | Acc. (mm) Comp. (mm) Overall (mm) | 0.5mm f-score | Depth Map Res. Depth Interval (mm) | GPU Mem. (MB) Runtime (s)
- 0.693 0.758 0.726 47.95 160x 120 5.30 7219 0.34
1 0.674 0.750 0.712 48.63 160x 120 5.30 7221 0.61
2 0.448 0.487 0.468 76.08 320x240 4.00 7235 1.14
3 0.361 0.421 0.391 84.27 640 <480 0.80 8731 3.35
MVSNet[29] | 0.456 0.646 0.551 | 71.60 | 288x216 2.65 | 10805 1.05

Chen et al., “Point-Based Multi-View Stereo Network”, ICCV 2019



Learning for SfM

- Above learning-based MVS methods all assume
relative camera pose

- What if not?
- Classic 3D: Bundle Adjustment

* Learning-based bundle adjustment



BA-Net

End-to-end pipeline for SfM with differentiable
bundle adjustment.

Dense
Structure

: BA-Layer
(Differentiable LM) .
by T

I Ni @S Backbone (DRN-54) @R Basis Depth Maps Generator @S Feature Pyramid Constructor

Motion

Tang et al., “BA-Net: Dense Bundle Adjustment Network”, ICLR 2019



Differentiable LM algorithm:
* Iterative update as rollout of network layers

« Use network to predict the damping factor lambda.

1
: Jacobian Diagonal
Prew(_)us_> X Eq.(4) Matrix Matrix ()
Iteration E(X) () F—=l7)TI(x) > D(x)
BA-layer: 3 : ,
Global Avg. [ 8 8 8 +EA.(6)  Next
Pooling * |8 0 0 © " lteration

AX = (J(X)" J(X)+ ADX) ' J(x) E(X).

Tang et al., “BA-Net: Dense Bundle Adjustment Network”, ICLR 2019



Topics

3D Dataset



Datasets for 3D Scenes

Large-scale Synthetic Objects: ShapeNet

ARemMfaRARARESAR A L L T L LI DR PR Y

AEPRATEA A ex<stawseses JiaoUvvgaq

BAA-E ueuxy~s PGy 0 -
0

3DScan: Consumer-grade 3D scanning (click to open)

ModelNet: absorbed by ShapeNet

Chang et al., “ShapeNet: An Information-Rich 3D Model Repository” , arXiv
Wu et al., "3D ShapeNets: A deep representation for volumetric shapes", CVPR 2015
Choi et al., “A Large Dataset of Object Scans", arXiv


http://redwood-data.org/3dscan/

Datasets for 3D Scenes

Large-scale Synthetic Scenes: SceneNet

« 3D meshes
« 5M Photorealistic Images

Ankur et al., “Understanding RealWorld Indoor Scenes with Synthetic
Data”, CVPR 2016

McCormac et al., “SceneNet RGB-D: Can 5M Synthetic Images Beat
Generic ImageNet Pre-training on Indoor Segmentation?”, ICCV 2017



Datasets for 3D Scenes

Large-scale Scanned Real Scenes: ScanNet

2.5 M Views in 1500 RGBD scans

3D camera poses

surface reconstructions

Instance-level semantic segmentations

o Bedroom/HoteI |
Living room/Lounge
Bathroom
Office
Misc. I
Conference Room
Kitchen I—
Bookstore / Library
Lobby

Classroom

. Stairs
Dining Room

Laundry Room
Laundromat ®

Closet

Gvml

0 50 100 150 200 250

Dai et al., “ScanNet: Richly-annotated 3D
Reconstructions of Indoor Scenes”, CVPR 2017



Datasets for 3D Object Parts

Coarse-grained Part: ShapeNetPart2016

airplane (4027) earphone (73) cap (56) motorbike (336) guitar (793) knife (420) rocket (85) lamp (2308)
: ‘ body ‘ / fin
y i @ head & E?nddle body shade
Bwheel neck & AGE Wnose base
wings  body headband peak light " gas tank ¥ tube
tail engine earphone panel seat = handle o
bag (83) mug (213) laptop (452) table (8420) chair (6742) pistol (307) car (7496) skateboard
=2 iR — seat = (152)
back handle %8
/ = | marm /4 barrel
N— Hleg W Htrigger wheels
handle body handle keyboard top | leg ‘ roof  hood

Yi et al., “A Scalable Active Framework for Region Annotation
in 3D Shape Collections”, SIGGRAPH Asia 2016



Datasets for 3D Object Parts

Fine-grained Part: PartNet (ShapeNetPart2019)

 Fine-grained (towards mobility)
* Instance-level
« Hierarchical

IFel@imeIAs

Bowl Clock  Dishwasher  Display Door Earphone Faucet Hat Storage Furniture

QT@'U‘ . " TS ﬁli‘ M V'
Keyboard Knife  Laptop Lamp Microwave Mug Refrigerator Chau Scissors Table Trash Can ~ Vase Bottle

Mo et al., “PartNet: A Large-Scale Benchmark for Fine-Grained and
Hierarchical Part-Level 3D Object Understanding ”, CVPR 2019



Dataset for Object Part Motion

Shape2Motion Dataset

»

Mobility Analysis of 3D Shapes

Wang et al., “Shape2Motion: Joint Analysis of Motion Parts
and Attributes from 3D Shapes”, CVPR 2019



Topics

» 3D Few-shot/Zero-shot Learning



Why Few-shot/Zero-shot Learning by 3D?

« Can be a better platform than images

* Shapes are pure and complete

* No contamination by distortion, illumination,
viewpoint change, ...

If one image is more than a thousand words, then
one shape is more than one thousand pictures



Why Few-shot/Zero-shot Learning by 3D?

Algorithmically, 3D shapes are:
* easier to be compared
* easier to be related (correspondence)

e easier to abstracted



Task: Few-shot Structure Induction




Emergence of Structure by
Persistence

Capture re-occuring units!



Part Induction by Relating Shapes

Correspondence
Proposal Module

Yi et al., “Deep Part Induction from Articulated
Object Pairs”, SIGGRAPH Asia 2018



Part Induction by Relating Shapes

Segmentation
Module

Yi et al., “Deep Part Induction from Articulated
Object Pairs”, SIGGRAPH Asia 2018



Part Induction by Relating Shapes

Flow Module
Correspondence Segmentation
Proposal Module _ Module

Yi et al., “Deep Part Induction from Articulated
Object Pairs”, SIGGRAPH Asia 2018



Mobility Induction

Flow Module

™

Correspondence : Segmentation \ y :
Proposal Module \\ Module ) \\ j \\ ) \\ ‘\\

2" \ \\

Yi et al., “Deep Part Induction from Articulated
Object Pairs”, SIGGRAPH Asia 2018




Task: Zero-shot Part Discovery

Train set Test set
(]
< v

+H fﬁ&

SOTA of SOTA of
Deep Learning Classics
(PartNet) (WCSeg)

Ours



Learning to Group

Sub-Part Pool

-

4 4 f
’ ) I I

Merge
Verification

:

If True
>

Flnal

'D



Slides will be posted on
http://ai.ucsd.edu/~haosu/

(Homepage of Prof. Hao Su)


http://ai.ucsd.edu/~haosu/

