

2019 Tutorial on 3D Deep Learning

Hao Su (UCSD)

Augmented Reality

Robotics

Augmented Reality

Autonomous driving

Robotics

Autonomous driving

Medical Image Processing

Traditional 3D Vision

Multi-view Geometry: Physics based

3D Learning: Knowledge Based

Acquire Knowledge of 3D World by Learning

A New Rising Field

The Representation Challenge of 3D Deep Learning

Rasterized form (regular grids)

Geometric form (irregular)

The Representation Challenge of 3D Deep Learning

Multi-view

Point Cloud

Volumetric

Mesh (Graph CNN)

Part Assembly

$$F(x) = 0$$

Implicit Shape

The Richness of 3D Learning Tasks

3D Analysis

Detection

Classification

(object/scene)

Correspondence

The Richness of 3D Learning Tasks

3D Synthesis

Monocular 3D reconstruction

Shape completion

Shape modeling

The Richness of 3D Learning Tasks

3D-based Knowledge Transportation

3D Learning Tasks

From static to dynamic

Speaker

Team Members

Shuo Cheng

Siyu Hu

Zetian Jiang

Algorithms of 3D Deep Learning

Hao Su (UCSD)

Topics

- Classification
- Segmentation and Detection
- Reconstruction
- 3D Dataset
- 3D Few-shot Learning

Topics

- Classification
- Segmentation and Detection
- Reconstruction
- 3D Dataset
- 3D Few-shot Learning

Task: 3D Classification

This is a chair!

Covered methods: Volumetric CNN, OctNet, O-CNN, SparseConvNet, PointNet, PointNet++, RS CNN, DGCNN, Point ConvNet, KPConv, Monte Carlo Point Convolution, PConv, Multi-View CNN, Spectral CNN, Synchronized Spectral CNN, Spherical CNN

Multi-View CNN

Given an Input Shape

Render with Multiple Virtual Cameras

The Rendered Images are Passed through CNN₁ for Image Features

All Image Features are Combined by View Pooling

... and then Passed through CNN₂ and to Generate Final Predictions

Experiments – Classification & Retrieval

Method	Classification (Accuracy)	Retrieval (mAP)
SPH [16]	68.2%	33.3%
LFD [5]	75.5%	40.9%
3D ShapeNets [37]	77.3%	49.2%
FV, 12 views	84.8%	43.9%
CNN, 12 views	88.6%	62.8%
MVCNN, 12 views	89.9%	70.1%
MVCNN+metric, 12 views	89.5%	80.2%
MVCNN, 80 views	90.1%	70.4%
MVCNN+metric, 80 views	90.1%	79.5%

On ModelNet40

[credit: Hang Su]

- Indeed gives good performance
- Can leverage vast literature of image classification
- Can use pertained features
- Need projection
- What if the input is noisy and/or incomplete? e.g., point cloud

Volumetric CNN

Can we use CNNs but avoid projecting the 3D data to views first?

Straight-forward idea: Extend 2D grids 3D grids

Voxelization

Represent the occupancy of regular 3D grids

3D CNN on Volumetric Data

3D convolution uses 4D kernels

Complexity Issue

48 filters of stride 2

3D voxel input

DShapeNet

4000

object label 10

512 filters of stride 1 160 filters of

AlexNet, 2012

Input resolution: 224x224

224x224=50176

3DShapeNets, 2015

Input resolution: 30x30x30

224x224=27000

Complexity Issue

Information loss in voxelization

Idea 1: Anisotropic Probing

Idea: "X-ray" rendering + Image (2D) CNNs very low #param, very low computation

More Principled: Sparsity of 3D Shapes

Store only the Occupied Grids

- Store the sparse surface signals
- Constrain the computation near the surface

Octree: Recursively Partition the Space

Each internal node has exactly eight children

Convolution on Octree

Neighborhood searching: Hash table

Memory Efficiency

Implementation

- SparseConvNet
 - https://github.com/facebookresearch/
 SparseConvNet
 - Uses ResNet architecture
 - State-of-the-art for 3D analysis
 - Takes time to train

Point Networks

Point cloud
(The most common 3D sensor data)

Directly Process Point Cloud Data

End-to-end learning for **unstructured**, **unordered** point data

Permutation invariance

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

h

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

 $f(x_1,x_2,...,x_n) = \gamma \circ g(h(x_1),...,h(x_n))$ is symmetric if g is symmetric

Visualize What is Learned by Reconstruction

Salient points are discovered!

Limitations of PointNet

<u>Hierarchical</u> feature learning <u>Multiple levels</u> of abstraction

3D CNN (Wu et al.)

Global feature learning Either one point or all points

PointNet (vanilla) (Qi et al.)

- No local context for each point!
- Global feature depends on absolute coordinate. Hard to generalize to unseen scene configurations!

Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution
- Kernels have compact spatial support
- For convolution, we need to find neighboring points
- Possible strategies for range query
 - Ball query (results in more stable generally)
 - k-NN query (faster)

PointNet v2.0: Multi-Scale PointNet

Repeat

- Sample anchor points
- Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution

Point Convolution As Graph Convolution

- Points -> Nodes
- Neighborhood -> Edges
- Graph CNN for point cloud processing

Wang et al., "Dynamic Graph CNN for Learning on Point Clouds", *Transactions on Graphics, 2019*

Issue

- Assume points are sampled from surfaces, the sampling would affect feature extraction:(
- Rescue: Estimate the continuous kernel and point density for continuous convolution

Interpolated Kernel for Convolution

- Continuous conv: $(\mathcal{F} * g)(x) = \int g(y-x)f(y)dy$
- Empirical conv: $(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g(x_i x) f_i$

Interpolated Kernel for Convolution

• Continuous conv:
$$(\mathcal{F} * g)(x) = \int g(y-x)f(y)dy$$

• Empirical conv: $(\mathcal{F} * g)(x) = \sum_{i=1}^{n} g(x_i - x)f_i$ $x_i \in \mathcal{N}_x$

$$\kappa_{jm}(z) = \sum_{l} k_{ljm} \Phi(|z-y_l|)$$

Φ: RBF kernel

Atzmon et al., "Point Convolutional Neural Networks by Extension Operators", Trans. on Graphics, 2018

Thomas et al., "KPConv: Flexible and Deformable Convolution for Point Clouds", ICCV 2019

Interpolated Kernel for Convolution

Deformable point-based kernel

Continuous Point Density Estimation

Monte Carlo Integration:

$$\left(\frac{\delta f * g}{\delta \omega_l}\right)(\mathbf{x}) = \frac{1}{|\mathcal{N}(\mathbf{x})|} \sum_{j \in \mathcal{N}(\mathbf{x})} \frac{f(\mathbf{y}_j)}{p(\mathbf{y}_j | \mathbf{x})} \frac{\delta g\left(\frac{\mathbf{x} - y_j}{r}\right)}{\delta \omega_l}$$

RBF Density Estimation:

$$p(\mathbf{y}_j|\mathbf{x}) \approx \frac{1}{|\mathcal{N}(\mathbf{x})|\sigma^3} \sum_{k \in \mathcal{N}(\mathbf{x})} \left\{ \prod_{d=1}^3 h\left(\frac{\mathbf{y}_{j,d} - \mathbf{y}_{k,d}}{\sigma}\right) \right\}$$

Spectral Convolution

Shape Processing as Surface Conv

Shapes as surfaces

Triangle/quad mesh: Piece-wise linear

 Coordinates and features as functions defined on the surface (e.g., store at nodes and interpolate inbetween)

Fourier Analysis on Surfaces

- Convolution -> linear transformation in the functional space defined on surface
- Bases of the functional space:
 - Eigenfunctions from self-adjoint operators, e.g. Laplacian-Bertrami or Dirac operator

Spectral CNN

- Convolution done in the spectral domain
- Kernels are also built in spectral domain
- Activation done in the spatial domain

Advantage of Spectral CNN

 Can compare shapes invariant to its embedding (agnostic to rotation, translation, pose change)

Advantage of Spectral CNN

 Can compare shapes invariant to its embedding (agnostic to rotation, translation, pose change)

Advantage of Spectral CNN

 The functional space of a surface under isometric transformation does not change

Visualization of the 5th basis (Laplacian-Bertrami eigenfunction) at two poses

As a consequence that the Laplacian-Bertrami operator is intrinsic

Fundamental Challenge of Spectral CNN

 If the shapes are not isometric, their spectral domains are not aligned

Rescue: synchronize them by functional maps

A Special Case: Spherical CNN

- If the surface is always a SPHERE, no worry about the functional space alignment anymore
- Generate a spherical representation

- Do Spectral CNN
 - Has numerical tricks exploiting the symmetry of sphere

A Special Case: Spherical CNN

Rotation invariance guaranteed

Table 1: ModelNet40 classification accuracy per instance. Spherical CNNs are robust to arbitrary rotations, even when not seen during training, while also having one order of magnitude fewer parameters and faster training.

9		-			0
Method	z/z	SO3/SO3	z/SO3	params	inp. size
PointNet [7]	89.2	83.6	14.7	3.5M	2048 x 3
PointNet++ [38]	89.3	85.0	28.6	1.7M	1024 ± 3
VoxNet [29]	83.0	73.0	-	0.9M	30^{3}
SubVolSup [8]	88.5	82.7	36.6	17M	30^{3}
SubVolSup MO [8]	89.5	85.0	45.5	17M	20×30^3
MVCNN 12x [9]	89.5	77.6	70.1	99M	12×224^2
MVCNN 80x [9]	90.2	86.0	_ 2	99M	80×224^2
RotationNet 20x [30]	92.4	80.0	20.2	58.9M	20×224^2
Ours	88.9	86.9	78.6	0.5M	$2 \times \mathbf{64^2}$

 Can be used to improve the rot. invariance of MVCNN, as well

Topics

- Classification
- Segmentation and Detection
- Reconstruction
- 3D Dataset
- 3D Few-shot Learning

Task: 3D Segmentation & Detection

Input Output table **Object Detection Object Segmentation** Part Segmentation

Covered methods: Sliding Shapes, Deep Sliding Shapes, PointRCNN, VoteNet, GSPN, SGPN, Learning to Group

Sliding Shapes

Sliding window to walk over the entire space

Expensive!

Song et al., "Sliding Shapes for 3D Object Detection in Depth Images", ECCV 2014

Song et al., "Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images", CVPR 2016

First stage: Proposal

Second stage: Refinement

Early Attempt: View-based Proposal

Generate object proposals from a view (e.g., using SSD)

Second-stage: Coordinate Normalization

Handle perspective variation in frustum point cloud by a series of coordinates normalization

Proposal from 3D FG/BG Segmentation

Stage-1: Foreground/Background segmentation to generate 3D proposals

Stage-2: Refine proposals in the canonical coordinates

Bin Based Box Representation

Proposal from Voting

Challenge: 3D object centroid can be far from any surface point, thus hard to regress accurately

 Sample a set of seed points and generate votes, targeting at object centers

 Vote clusters emerge near object centers

3D detection output

Proposal from Generative Network

- Randomly sample seeds points
- Take point cloud and a seed point as input, use conditional VAE to generate a point cloud as proposal
- Convert the proposal to an ROI box
- R-PointNet (mask RCNN) to segment the object

Proposal from Bottom-up Clustering

 Learn a per-point embedding, so that points from the same instance have similar embeddings

$$l(i,j) = \begin{cases} ||F_{SIM_i} - F_{SIM_j}||_2 & C_{ij} = 1\\ \alpha \max(0, K_1 - ||F_{SIM_i} - F_{SIM_j}||_2) & C_{ij} = 2\\ \max(0, K_2 - ||F_{SIM_i} - F_{SIM_j}||_2) & C_{ij} = 3 \end{cases}$$

Clustering gives proposals

The 3D version of "Associative Embedding"

Few-shot Detection (will be elaborated later)

Learning to Group

- Avoid including context information for generalizability
- Bottom up agglomerative clustering

Sub-Part Pool

Topics

- Classification
- Segmentation and Detection
- Reconstruction
 - Generation Model
 - Multi-View Stereo
- 3D Dataset
- 3D Few-shot/Zero-shot Learning

Task

Conditional generation

Single-image
3D reconstruction

Shape Completion

Free generation

Metric

First of all,

how to evaluate the generated shapes?

Metric For Point Clouds

Chamfer Distance

Earth Mover's Distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection.

Metric For Surfaces

Light Field Descriptor (LFD)

Extract features from orthogonal projections

Chen et al., "On Visual Similarity Based 3D Model Retrieval", Computer graphics forum Chen et al., "Learning Implicit Fields for Generative Shape Modeling", CVPR 2019

Algorithm for Conditional Generation

From Single Image to Volume

Avoid $\mathcal{O}(n^3)$ reconstruction

- Octree representation of shapes
- Generate the octree layer by layer

From Single Image to Point Cloud

It is possible to generate a set (permutation invariant)

From Image to Surface

Learn to warp a plane to surface

From Image to Surface

Implicit Surface Reconstruction

• Implicit representation of a surface: F(x) = 0

Park et al., "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation", CVPR 2019

Other two similar paper on implicit representation:

Mescheder et al., "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Chen et al., "Learning Implicit Fields for Generative Shape Modeling", CVPR 2019

- In general,
 - First map the input to a shape embedding
 - Then reconstruct by decoding

- Limitation (interpretability)
 - Output is not explicitly grounded on the input
 - Structures of 3D objects not explicitly leveraged

Visually Grounded Prediction: 2.5D to Bridge

Visually Grounded Prediction: 2.5D to Bridge

Wu et al., "MarrNet: 3D Shape Reconstruction via 2.5D Sketches", NeurIPS 2017

Zhang et al., "Learning to Reconstruct Shapes from Unseen Classes", NeurIPS 2018

Structured Prediction: Part-based

Recursive Network for Hierarchical Graph AE

Structured Prediction: Part-based

Mo et al., "StructureNet, a hierarchical graph network for learning PartNet shape generation", Siggraph Asia 2019

Algorithm for Free Generation (GAN)

Challenges

Similar challenges as GAN for images:

Good by human eye v.s. Good by objective metric

Metrics

Geometry Quality of Generated Shape

e.g., MMD for Chamfer/EMD distances

Coverage (COV)

• Model collapse test (The fraction of the shapes in GT dataset that were matched to shapes in generated shapes)

Perceptually Correct

• Feature distribution distance (e.g. Frechet Point Cloud Distance)

$$FPD(\mathbb{P}, \mathbb{Q}) = \|\mathbf{m}_{\mathbb{P}} - \mathbf{m}_{\mathbb{Q}}\|_{2}^{2} + Tr(\Sigma_{\mathbb{P}} + \Sigma_{\mathbb{Q}} - 2(\Sigma_{\mathbb{P}}\Sigma_{\mathbb{Q}})^{\frac{1}{2}})$$

Volumetric Generation

Point Cloud Generation

- FC as Generator
- PointNet as Discriminator
- WGAN

Hierarchical Generation

TreeGAN

- Hierarchical generator
- TreeGCN

$$p_i^{l+1} = \sigma \left(\mathbf{F}_K^l(p_i^l) + \sum_{q_j \in A(p_i^l)} U_j^l q_j + b^l \right)$$

Ancestor term

GCN TreeGCN

Many Issues

- Still cannot generate high quality local details
- Still hard to generate complex structures
- Use stronger classifiers (than PointNet) for discriminator is highly tricky

Topics

- Classification
- Segmentation and Detection
- Reconstruction
 - Generation Model
 - Multi-View Stereo
- 3D Dataset
- 3D Few-shot/Zero-shot Learning

Task: Reconstruction

Covered methods: SurfaceNet, LSM, GC-Net, MVSNet, R-MVSNet, PointMVSNet, BA-Net

Surface Reconstruction as Voxel Occupancy Prediction

Unprojection along viewing rays to build colored voxel cubes.

Predict the surface confidence for each voxel:

$$L(I_{v_i}^C, I_{v_j}^C, \hat{S}^C) = -\sum_{x \in C} \{\alpha \hat{s}_x \log p_x + (1 - \alpha)(1 - \hat{s}_x) \log(1 - p_x)\}$$

Limitations:

- Pre-computed grids can only take RGB colors at coarse resolution
- Voxel binarization introduces quantization errors.

Learning-Based Stereopsis

 End-to-end learning of deep features for each pixel.

Still very coarse resolution (32x32x32) due to volumetric representation.

Improve Output Resolution

Differentiable soft-argmin to achieve sub-pixel accuracy.

$$soft\ argmin := \sum_{d=0}^{D_{max}} d imes \sigma(-c_d)$$

View-aligned cost-volume construction.

Input Input Resolution

Idea 1: Slide-by-Slide Processing of Cost Volume by Recurrent Neural Network

The cost volume is sequentially regularized along the depth direction.

Yao et al., "MVSNet: Depth Inference for Unstructured Multi-view Stereo", ECCV 2018

Yao et al., "Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference", CVPR 2019

Input Input Resolution

Idea 2: Point-based MVS

- Point-based representation for computational efficiency.
- Iteratively update the location of points and spawn more points.
- More flexible and accurate.

Iterative refinement:

Results on DTU benchmark

_	Iter.	Acc. (mm)	Comp. (mm)	Overall (mm)	0.5mm f-score	Depth Map Res.	Depth Interval (mm)	GPU Mem. (MB)	Runtime (s)
	-	0.693	0.758	0.726	47.95	160×120	5.30	7219	0.34
	1	0.674	0.750	0.712	48.63	160×120	5.30	7221	0.61
	2	0.448	0.487	0.468	76.08	320×240	4.00	7235	1.14
	3	0.361	0.421	0.391	84.27	640×480	0.80	8731	3.35
N	IVSNet[29]	0.456	0.646	0.551	71.60	288×216	2.65	10805	1.05

Learning for SfM

 Above learning-based MVS methods all assume relative camera pose

- What if not?
 - Classic 3D: Bundle Adjustment
- Learning-based bundle adjustment

BA-Net

End-to-end pipeline for SfM with differentiable bundle adjustment.

Differentiable LM algorithm:

- Iterative update as rollout of network layers
- Use network to predict the damping factor lambda.

BA-layer:

$$\Delta \mathcal{X} = (J(\mathcal{X})^{\top} J(\mathcal{X}) + \lambda D(\mathcal{X}))^{-1} J(\mathcal{X})^{\top} E(\mathcal{X}).$$

Topics

- Classification
- Segmentation and Detection
- Reconstruction
- 3D Dataset
- 3D Few-shot Learning

Datasets for 3D Scenes

Large-scale Synthetic Objects: ShapeNet

3DScan: Consumer-grade 3D scanning (click to open)

ModelNet: absorbed by ShapeNet

Chang et al., "ShapeNet: An Information-Rich 3D Model Repository", arXiv
Wu et al., "3D ShapeNets: A deep representation for volumetric shapes", CVPR 2015
Choi et al., "A Large Dataset of Object Scans", arXiv

Datasets for 3D Scenes

Large-scale Synthetic Scenes: SceneNet

- 3D meshes
- 5M Photorealistic Images

Ankur et al., "Understanding RealWorld Indoor Scenes with Synthetic Data", CVPR 2016

McCormac et al., "SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation?", ICCV 2017

Datasets for 3D Scenes

Large-scale Scanned Real Scenes: ScanNet

- 2.5 M Views in 1500 RGBD scans
- 3D camera poses
- surface reconstructions
- Instance-level semantic segmentations

Datasets for 3D Object Parts

Coarse-grained Part: ShapeNetPart2016

Datasets for 3D Object Parts

Fine-grained Part: PartNet (ShapeNetPart2019)

- Fine-grained (towards mobility)
- Instance-level
- Hierarchical

Dataset for Object Part Motion

Shape2Motion Dataset

Mobility Analysis of 3D Shapes

Topics

- Classification
- Segmentation and Detection
- Reconstruction
- 3D Dataset
- 3D Few-shot/Zero-shot Learning

Why Few-shot/Zero-shot Learning by 3D?

- Can be a better platform than images
- Shapes are pure and complete
 - No contamination by distortion, illumination, viewpoint change, ...

If one image is more than a thousand words, then one shape is more than one thousand pictures

Why Few-shot/Zero-shot Learning by 3D?

Algorithmically, 3D shapes are:

- easier to be compared
- easier to be related (correspondence)
- easier to abstracted

Task: Few-shot Structure Induction

Emergence of Structure by Persistence

Capture re-occuring units!

Part Induction by Relating Shapes

Yi et al., "Deep Part Induction from Articulated Object Pairs", SIGGRAPH Asia 2018

Part Induction by Relating Shapes

Part Induction by Relating Shapes

Yi et al., "Deep Part Induction from Articulated Object Pairs", SIGGRAPH Asia 2018

Mobility Induction

Yi et al., "Deep Part Induction from Articulated Object Pairs", SIGGRAPH Asia 2018

Task: Zero-shot Part Discovery

Train set

Test set

Learning to Group

Sub-Part Pool

Slides will be posted on http://ai.ucsd.edu/~haosu/

(Homepage of Prof. Hao Su)