
2019 Tutorial on
3D Deep Learning

Hao Su (UCSD)





Broad Applications of 3D data

Robotics



Broad Applications of 3D data

Robotics Augmented  
Reality



Autonomous 
driving

Broad Applications of 3D data

Robotics Augmented  
Reality



Autonomous 
driving

Broad Applications of 3D data

Robotics Augmented  
Reality

Medical Image 
Processing



Traditional 3D Vision
Multi-view Geometry: Physics based



3D Learning: Knowledge Based



Acquire Knowledge of 3D World by Learning
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The Representation Challenge 
of 3D Deep Learning

Rasterized form 
(regular grids) 

Geometric form
(irregular)



The Representation Challenge 
of 3D Deep Learning

VolumetricMulti-view

Point Cloud Mesh (Graph CNN)

Part Assembly

Implicit Shape

F(x) = 0



The Richness of 3D Learning Tasks

3D Analysis

Classification Segmentation
(object/scene) Correspondence

Detection



The Richness of 3D Learning Tasks
3D Synthesis

Monocular 
3D reconstruction

Shape completion Shape modeling



The Richness of 3D Learning Tasks
3D-based Knowledge Transportation



3D Learning Tasks
From static to dynamic
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Algorithms of 3D Deep Learning
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Task: 3D Classification

This is a chair!

Covered methods: Volumetric CNN, OctNet, O-CNN, SparseConvNet, 
PointNet, PointNet++, RS CNN, DGCNN, Point ConvNet, KPConv, 
Monte Carlo Point Convolution, PConv, Multi-View CNN, Spectral CNN, 
Synchronized Spectral CNN, Spherical CNN



Multi-View CNN



Given an Input Shape  

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape 
Recognition”, ICCV 2015



Render with Multiple Virtual Cameras

view 
1
view 
2
view 
3

view N

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape 
Recognition”, ICCV 2015



The Rendered Images are Passed through CNN1 for 
Image Features

… CNN1

… CNN1

… CNN1

… CNN1

. . .
CNN1: a ConvNet extracting 
image features

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape 
Recognition”, ICCV 2015



All Image Features are Combined by View Pooling

…

…

…

…

CNN1
. . .

View pooling: element-
wise max-pooling 
across all views 

View 
pooling

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape 
Recognition”, ICCV 2015



… and then Passed through CNN2 and to Generate Final 
Predictions

…

…

…

…

CNN1
. . .

View 
pooling

CNN2:       a second 
ConvNet producing 
shape descriptors 

…

CNN2

softmax

Su et al., "Multi-view Convolutional Neural Networks for 3D Shape 
Recognition”, ICCV 2015



Experiments – Classification & Retrieval

Method Classification Retrieval
(Accuracy) (mAP)

SPH [16] 68.2% 33.3%

LFD [5] 75.5% 40.9%

3D ShapeNets [37] 77.3% 49.2%

FV, 12 views 84.8% 43.9%

CNN, 12 views 88.6% 62.8%

MVCNN, 12 views 89.9% 70.1%

MVCNN+metric, 12 views 89.5% 80.2%

MVCNN, 80 views 90.1% 70.4%

MVCNN+metric, 80 views 90.1% 79.5%

[credit: Hang Su]
On ModelNet40



• Indeed gives good performance

• Can leverage vast literature of image classification

• Can use pertained features

• Need projection

• What if the input is noisy and/or incomplete? e.g., 
point cloud



Volumetric CNN



Can we use CNNs but avoid projecting the 3D 
data to views first?

Straight-forward idea: Extend 2D grids 3D grids



Voxelization

Represent the occupancy of regular 3D grids



3D CNN on Volumetric Data

3D convolution uses 4D kernels



Complexity Issue

AlexNet, 2012 3DShapeNets, 
2015Input resolution: 224x224

Input resolution: 30x30x30224x224=50176

224x224=27000



Complexity Issue

Occupancy Grid
30x30x30

Polygon Mesh

Information loss in voxelization



Idea 1: Anisotropic Probing

Su et al., “Volumetric and Multi-View CNNs for Object 
Classification on 3D Data”, CVPR 2016

Idea: “X-ray” rendering + Image (2D) CNNs 
very low #param, very low computation



More Principled: Sparsity of 3D Shapes

Resolution: 32 64 128
Occupancy:



Store only the Occupied Grids

• Store the sparse surface signals
• Constrain the computation near the surface



Octree: Recursively Partition the Space

Each internal node has exactly eight children



Convolution on Octree

Neighborhood searching: Hash table

OCTREEFullVoxel



GPU Memory
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Implementation

• SparseConvNet
• https://github.com/facebookresearch/

SparseConvNet
• Uses ResNet architecture
• State-of-the-art for 3D analysis
• Takes time to train

Graham et al., “Submanifold Sparse Convolutional 
Networks”, arxiv

https://github.com/facebookresearch/SparseConvNet
https://github.com/facebookresearch/SparseConvNet


Point Networks



Point cloud
(The most common 3D sensor data)



Directly Process Point Cloud Data

End-to-end learning for unstructured, 

unordered point data 

PointNet Object 
Classification



Permutation invariance

N

D

Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation



Permutation invariance
Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation

N

D

N

D

represents the same set as 
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Construct a Symmetric Function

(1,2,3)
(1,1,1)

(2,3,2)

(2,3,4)

simple symmetric function

PointNet (vanilla)

h

g γ

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg



Visualize What is Learned by Reconstruction

Salient points are discovered!



Hierarchical feature learning
 Multiple levels of abstraction

Limitations of PointNet

3D CNN (Wu et al.) PointNet (vanilla) (Qi et al.)

Global feature learning
Either one point or all points

• No local context for each point!
• Global feature depends on absolute coordinate. Hard to 

generalize to unseen scene configurations!



Points in Metric Space

• Learn “kernels” in 3D space and conduct convolution

• Kernels have compact spatial support

• For convolution, we need to find neighboring points

• Possible strategies for range query
• Ball query (results in more stable generally)
• k-NN query (faster)



PointNet v2.0: Multi-Scale PointNet

N points in 
(x,y)

N1 points in 
(x,y,f)

N2 points in 
(x,y,f’)

Repeat 
• Sample anchor points 
• Find neighborhood of anchor points 
• Apply PointNet in each neighborhood to mimic convolution



Point Convolution As Graph Convolution
• Points -> Nodes
• Neighborhood -> Edges
• Graph CNN for point cloud processing

Wang et al., “Dynamic Graph CNN for Learning on Point Clouds”, 
Transactions on Graphics, 2019

Liu et al., “Relation-Shape Convolutional Neural Network for Point 
Cloud Analysis”, CVPR 2019



Issue

• Assume points are sampled from surfaces, the 
sampling would affect feature extraction :(

• Rescue: Estimate the continuous kernel and point 
density for continuous convolution



(F ⇤ g)(x) =
Z

g(y � x)f(y)dy
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Interpolated Kernel for Convolution
• Continuous conv: 

• Empirical conv: 



• Continuous conv: 

• Empirical conv: 

• Interpolated cont. kernel: 
•

(F ⇤ g)(x) =
Z

g(y � x)f(y)dy
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Interpolated Kernel for Convolution

�
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: RBF kernel

Atzmon et al., “Point Convolutional Neural Networks by 
Extension Operators”, Trans. on Graphics, 2018

Thomas et al., “KPConv: Flexible and Deformable 
Convolution for Point Clouds”, ICCV 2019



• Deformable point-based kernel

Interpolated Kernel for Convolution

Thomas et al., “KPConv: Flexible and Deformable Convolution for 
Point Clouds”, ICCV 2019



Continuous Point Density Estimation

Hermosilla et al., “Monte Carlo Convolution for Learning on Non-
Uniformly Sampled Point Clouds”, Trans. on Graphics, 2018

Monte Carlo Integration:

RBF Density Estimation: 



Spectral Convolution



Shapes as surfaces
• Triangle/quad mesh: Piece-wise linear

• Coordinates and features as functions defined on 
the surface (e.g., store at nodes and interpolate in-
between)

Shape Processing as Surface Conv



Fourier Analysis on Surfaces
• Convolution -> linear transformation in the functional 

space defined on surface

• Bases of the functional space: 
• Eigenfunctions from self-adjoint operators, e.g. Laplacian-Bertrami 

or Dirac operator

Masci et al., “Geometric deep learning on graphs and 
manifolds using mixture model CNNs”, CVPR 2017



Spectral CNN

• Convolution done in the spectral domain

• Kernels are also built in spectral domain

• Activation done in the spatial domain

Masci et al., “Geometric deep learning on graphs and 
manifolds using mixture model CNNs”, CVPR 2017



Advantage of Spectral CNN
• Can compare shapes invariant to its embedding 

(agnostic to rotation, translation, pose change)



• Can compare shapes invariant to its embedding 
(agnostic to rotation, translation, pose change)

Advantage of Spectral CNN

geodesic = intrinsic

isometry = length-preserving transform



• The functional space of a surface under isometric 
transformation does not change

• As a consequence that the Laplacian-Bertrami operator is 
intrinsic

Advantage of Spectral CNN

Visualization of the 5th basis 
(Laplacian-Bertrami eigenfunction) at two poses



Fundamental Challenge of Spectral CNN

• If the shapes are not isometric, their spectral domains 
are not aligned

• Rescue: synchronize them by functional maps

Yi et al., “SyncSpecCNN: Synchronized Spectral CNN for 3D 
Shape Segmentation”, CVPR 2017



• If the surface is always a SPHERE, no worry about 
the functional space alignment anymore

• Generate a spherical representation

• Do Spectral CNN
• Has numerical tricks exploiting the symmetry of 

sphere

A Special Case: Spherical CNN

input
spherical 

representation

Cohen et al., “Spherical CNN”, ICLR 2018
Esteves et al., “Learning SO(3) Equivariant Representations with 
Spherical CNNs”, ECCV 2018



• Rotation invariance guaranteed 

• Can be used to improve the rot. invariance of 
MVCNN, as well

A Special Case: Spherical CNN

Esteves et al., “Learning SO(3) Equivariant Representations with Spherical 
CNNs”, ECCV 2018
Esteves et al., “Equivariant Multi-View Networks”, ICCV 2019



Topics

• Classification

• Segmentation and Detection

• Reconstruction

• 3D Dataset

• 3D Few-shot Learning



Task: 3D Segmentation & 
Detection

Input Output

Covered methods: Sliding Shapes, Deep Sliding Shapes, PointRCNN, 
VoteNet, GSPN, SGPN, Learning to Group  

Object Detection

Object Segmentation

Part Segmentation



Sliding Shapes

Song et al., “Sliding Shapes for 3D Object Detection in Depth 
Images”, ECCV 2014

Song et al., “Deep Sliding Shapes for Amodal 3D Object 
Detection in RGB-D Images”, CVPR 2016

Sliding window to walk over 
the entire space

Expensive !



Sliding Window

Two-stage Pipeline

First stage: Proposal
Second stage: Refinement



Qi et al., “Frustum PointNets for 3D Object 
Detection from RGB-D Data”, CVPR 2018

Early Attempt: View-based Proposal

Generate object proposals from a view (e.g., using SSD)



Second-stage: Coordinate Normalization

Handle perspective variation in frustum point cloud 
by a series of coordinates normalization 

Qi et al., “Frustum PointNets for 3D Object 
Detection from RGB-D Data”, CVPR 2018



Stage-1: Foreground/Background segmentation to 
generate 3D proposals

Stage-2: Refine proposals in the canonical coordinates

Shi et al., “PointRCNN: 3D Object Proposal Generation 
and Detection from Point Cloud”, CVPR 2019

Bin Based Box Representation

Proposal from 3D FG/BG 
Segmentation



Challenge: 3D object centroid can be far from any 
surface point, thus hard to regress accurately

Proposal from Voting

Qi et al., “Deep Hough Voting for 3D Object Detection 
in Point Clouds”, ICCV 2019

• Sample a set of seed 
points and generate votes, 
targeting at object centers

• Vote clusters emerge near 
object centers



Proposal from Generative Network
• Randomly sample seeds points
• Take point cloud and a seed point as input, use 

conditional VAE to generate a point cloud as proposal
• Convert the proposal to an ROI box
• R-PointNet (mask RCNN) to segment the object

Yi et al., “GSPN: Generative Shape Proposal Network for 3D 
Instance Segmentation in Point Cloud”, CVPR 2019



• Learn a per-point embedding, so that points from the 
same instance have similar embeddings

• Clustering gives proposals

• The 3D version of “Associative Embedding”
Wang et al., “SGPN: Similarity Group Proposal Network for 3D Point 
Cloud Instance Segmentation”, CVPR 2018

Proposal from Bottom-up Clustering



Few-shot Detection
(will be elaborated later)



FinalIf TrueMerge
Verification

Learning to Group

...{ }
{ }...

Sub-Part Pool

• Avoid including context information for generalizability
• Bottom up agglomerative clustering 

Merge
Policy



Topics
• Classification

• Segmentation and Detection

• Reconstruction

• Generation Model

• Multi-View Stereo

• 3D Dataset

• 3D Few-shot/Zero-shot Learning



Conditional generation

Free generation

Task

Gaussian Noise

Single-image 
3D reconstruction Shape Completion



Metric

First of all,

how to evaluate the generated shapes?



Metric For Point Clouds
Chamfer Distance

Earth Mover’s Distance

Fan et al., “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017



Metric For Surfaces
Light Field Descriptor (LFD)

• Extract features from orthogonal projections

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 
Computer graphics forum
Chen et al., “Learning Implicit Fields for Generative Shape 
Modeling”, CVPR 2019



Algorithm for 
Conditional Generation



From Single Image to Volume
Avoid  reconstruction

• Octree representation of shapes

• Generate the octree layer by layer

𝒪(n3)

Tatarchenko et al., “Octree Generating Networks: Efficient Convolutional 
Architectures for High-resolution 3D Outputs”, ICCV 2017



• It is possible to generate a set (permutation invariant)

From Single Image to Point Cloud

Fan et al., “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017

Deep Neural 
Network

Predicted set

Point Set

Distance

Groundtruth point cloud
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From Image to Surface

• Learn to warp a plane to surface

Groueix et al., “AtlasNet: A Papier-Mâché Approach to 
Learning 3D Surface Generation”, CVPR 2018



From Image to Surface

Groueix et al., “AtlasNet: A Papier-Mâché Approach to 
Learning 3D Surface Generation”, CVPR 2018



• Implicit representation of a surface: 

Implicit Surface Reconstruction

Park et al., “DeepSDF: Learning Continuous Signed Distance Functions for 
Shape Representation”, CVPR 2019
Other two similar paper on implicit representation:
Mescheder et al., “Occupancy Networks: Learning 3D Reconstruction in Function 
Space”, CVPR 2019
Chen et al., “Learning Implicit Fields for Generative Shape Modeling”, CVPR 2019

F(x) = 0



• In general, 
• First map the input to a shape embedding
• Then reconstruct by decoding

• Limitation (interpretability)
• Output is not explicitly grounded on the input
• Structures of 3D objects not explicitly leveraged



Visually Grounded Prediction: 2.5D to Bridge

Image 2.5D
(depth/normal/…) 3D

Only for visible areas Hallucination



Wu et al., “MarrNet: 3D Shape Reconstruction via 2.5D Sketches”, NeurIPS 2017

Zhang et al., “Learning to Reconstruct Shapes from Unseen Classes”, NeurIPS 2018

Visually Grounded Prediction: 2.5D to Bridge



Recursive Network for Hierarchical Graph AE

Structured Prediction: Part-based

Mo et al., “StructureNet, a hierarchical graph network for 
learning PartNet shape generation”, Siggraph Asia 2019



Structured Prediction: Part-based

Mo et al., “StructureNet, a hierarchical graph network for 
learning PartNet shape generation”, Siggraph Asia 2019



Algorithm for 
Free Generation (GAN)



Challenges

Similar challenges as GAN for images:

• Good by human eye v.s. Good by objective metric



Metrics

Geometry Quality of Generated Shape 
• e.g., MMD for Chamfer/EMD distances

Coverage (COV)
• Model collapse test (The fraction of the shapes in GT dataset that were matched to shapes in 

generated shapes)

Perceptually Correct
• Feature distribution distance (e.g. Frechet Point Cloud Distance)

Achlioptas et al., “Learning Representations and Generative 
Models for 3D Point Clouds”, ICML 2018
Shu et al., “3D Point Cloud Generative Adversarial Network 
Based on Tree Structured Graph Convolutions”, ICCV 2019



Volumetric Generation

Wu et al., “Learning a Probabilistic Latent Space of Object Shapes 
via 3D Generative-Adversarial Modeling”, NeurIPS 2016



• FC as Generator

• PointNet as Discriminator

• WGAN

Point Cloud Generation

Achlioptas et al., “Learning Representations and Generative 
Models for 3D Point Clouds”, ICML 2018



Hierarchical Generation
TreeGAN
• Hierarchical generator

• TreeGCN

Ancestor term

Shu et al., “3D Point Cloud Generative Adversarial Network 
Based on Tree Structured Graph Convolutions”, ICCV 2019

GCN TreeGCN



• Still cannot generate high quality local details

• Still hard to generate complex structures

• Use stronger classifiers (than PointNet) for 
discriminator is highly tricky

Many Issues



Topics
• Classification

• Segmentation and Detection

• Reconstruction

• Generation Model

• Multi-View Stereo

• 3D Dataset

• 3D Few-shot/Zero-shot Learning



Task: Reconstruction

[image: oswald]

Covered methods: SurfaceNet, LSM, GC-Net, MVSNet,
 R-MVSNet, PointMVSNet, BA-Net



Ji et al., “SurfaceNet: An End-to-End 3D Neural Network for 
Multiview Stereopsis”, ICCV 2017

Unprojection along viewing rays to build 
colored voxel cubes.

Surface Reconstruction as 
Voxel Occupancy Prediction



Predict the surface confidence for each voxel: 

Ji et al., “SurfaceNet: An End-to-End 3D Neural Network for 
Multiview Stereopsis”, ICCV 2017



Limitations:

• Pre-computed grids can only take RGB colors at 
coarse resolution

• Voxel binarization introduces quantization errors.



Learning-Based Stereopsis

• End-to-end learning of deep features for 
each pixel.

Kar et al., “Learning a Multi-View Stereo 
Machine”, NeurIPS 2017



Still very coarse resolution (32x32x32) 
due to volumetric representation.

Kar et al., “Learning a Multi-View Stereo 
Machine”, NeurIPS 2017



• Differentiable soft-argmin to achieve sub-pixel accuracy.

• View-aligned cost-volume construction.

Kendall et al., “End-to-End Learning of Geometry and Context for Deep 
Stereo Regression”, ICCV 2017

Improve Output Resolution



Idea 1: Slide-by-Slide Processing of Cost Volume 
by Recurrent Neural Network

The cost volume is sequentially regularized along the depth direction.
Yao et al., “MVSNet: Depth Inference for Unstructured Multi-view 
Stereo”, ECCV 2018
Yao et al., “Recurrent MVSNet for High-resolution Multi-view Stereo 
Depth Inference”, CVPR 2019

Input Input Resolution



Input Input Resolution

Chen et al., “Point-Based Multi-View Stereo Network”, ICCV 2019

• Point-based representation for computational efficiency.

• Iteratively update the location of points and spawn more points.

• More flexible and accurate.

Idea 2: Point-based MVS



Results on DTU benchmark

Iterative refinement:

Chen et al., “Point-Based Multi-View Stereo Network”, ICCV 2019



Learning for SfM

• Above learning-based MVS methods all assume 
relative camera pose

• What if not? 
• Classic 3D: Bundle Adjustment

• Learning-based bundle adjustment



BA-Net

Tang et al., “BA-Net: Dense Bundle Adjustment Network”, ICLR 2019

End-to-end pipeline for SfM with differentiable 
bundle adjustment. 



BA-layer:

Differentiable LM algorithm:

• Iterative update as rollout of network layers

• Use network to predict the damping factor lambda.

Tang et al., “BA-Net: Dense Bundle Adjustment Network”, ICLR 2019



Topics

• Classification

• Segmentation and Detection

• Reconstruction

• 3D Dataset

• 3D Few-shot Learning



…

3DScan: Consumer-grade 3D scanning (click to open)

Chang et al., “ShapeNet: An Information-Rich 3D Model Repository” , arXiv
Wu et al., "3D ShapeNets: A deep representation for volumetric shapes", CVPR 2015
Choi et al., “A Large Dataset of  Object Scans", arXiv

ModelNet: absorbed by ShapeNet

Datasets for 3D Scenes
Large-scale Synthetic Objects: ShapeNet

http://redwood-data.org/3dscan/


Datasets for 3D Scenes
Large-scale Synthetic Scenes: SceneNet

Ankur et al., “Understanding RealWorld Indoor Scenes with Synthetic 
Data”, CVPR 2016
McCormac et al.,  “SceneNet RGB-D: Can 5M Synthetic Images Beat 
Generic ImageNet Pre-training on Indoor Segmentation?”, ICCV 2017 

• 3D meshes
• 5M Photorealistic Images



Datasets for 3D Scenes

• 2.5 M Views in 1500 RGBD scans
• 3D camera poses
• surface reconstructions
• Instance-level semantic segmentations

Dai et al., “ScanNet: Richly-annotated 3D 
Reconstructions of Indoor Scenes”, CVPR 2017

Large-scale Scanned Real Scenes: ScanNet



Yi et al., “A Scalable Active Framework for Region Annotation 
in 3D Shape Collections”, SIGGRAPH Asia 2016

Datasets for 3D Object Parts
Coarse-grained Part: ShapeNetPart2016



• Fine-grained (towards mobility)
• Instance-level
• Hierarchical

Mo et al., “PartNet: A Large-Scale Benchmark for Fine-Grained and 
Hierarchical Part-Level 3D Object Understanding ”, CVPR 2019

Datasets for 3D Object Parts
Fine-grained Part: PartNet (ShapeNetPart2019)



Mobility Analysis of 3D Shapes 

Wang et al., “Shape2Motion: Joint Analysis of Motion Parts 
and Attributes from 3D Shapes”, CVPR 2019

Dataset for Object Part Motion
Shape2Motion Dataset



Topics

• Classification

• Segmentation and Detection

• Reconstruction

• 3D Dataset

• 3D Few-shot/Zero-shot Learning



Why Few-shot/Zero-shot Learning by 3D?

• Can be a better platform than images

• Shapes are pure and complete
• No contamination by distortion, illumination, 

viewpoint change, …

If one image is more than a thousand words, then 
one shape is more than one thousand pictures



Why Few-shot/Zero-shot Learning by 3D?

Algorithmically, 3D shapes are:

• easier to be compared 

• easier to be related (correspondence)

• easier to abstracted



Task: Few-shot Structure Induction



Emergence of Structure by 
Persistence

Capture re-occuring units!



Yi et al., “Deep Part Induction from Articulated 
Object Pairs”, SIGGRAPH Asia 2018

Part Induction by Relating Shapes



Part Induction by Relating Shapes

Yi et al., “Deep Part Induction from Articulated 
Object Pairs”, SIGGRAPH Asia 2018



Part Induction by Relating Shapes

Yi et al., “Deep Part Induction from Articulated 
Object Pairs”, SIGGRAPH Asia 2018



Mobility Induction

Yi et al., “Deep Part Induction from Articulated 
Object Pairs”, SIGGRAPH Asia 2018



Task: Zero-shot Part Discovery

Ours
SOTA of  
Classics 
(WCSeg)

SOTA of  
Deep Learning 

(PartNet)

Train set Test set



FinalIf TrueMerge
Verification

Learning to Group

...{ }
{ }...

Merge
Policy

Sub-Part Pool



Slides will be posted on 
http://ai.ucsd.edu/~haosu/ 

(Homepage of Prof. Hao Su)

http://ai.ucsd.edu/~haosu/

