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Network-enabled electronic warfare (NEW) is the development
of modeling and simulation efforts that explore the advantages
and limitations of NEW concepts. The advantages of linking
multiple electronic support measures (ESM) and electronic
attack (EA) assets to achieve improved capabilities across a
networked battle force have yet to be quantified. In this paper,
we utilize radar sensors as ESM and EA assets to demonstrate the
advantages of NEW in collaborative automatic target recognition
(CATR). Signal (waveform) design for radar sensor networks
(RSN) in NEW is studied theoretically. The conditions for
waveform coexistence and the interferences among waveforms in
RSN are analyzed. We apply the NEW to CATR via waveform
diversity combining and propose maximum-likelihood (ML)-ATR
algorithms for nonfluctuating targets as well as fluctuating
targets. Simulation results indicate that our NEW-CATR performs
much better than the single sensor-based ATR algorithm for
nonfluctuating and fluctuating targets.
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I.  INTRODUCTION AND MOTIVATION

In current and future military operational
environments such as the Global War on Terrorism
(GWOT) and Maritime Domain Awareness (MDA),
war fighters require technology that can support their
information needs in a manner that is independent
of their location and consistent with their level of
command or responsibility and operational situation.
To support this need, the U.S. Department of Defense
(DoD) has developed the concept of network centric
warfare (NCW) defined as “military operations that
exploit state-of-the-art information and networking
technology to integrate widely dispersed human
decision makers, situational and targeting sensors,
and forces and weapons into a highly adaptive,
comprehensive system to achieve unprecedented mission
effectiveness” [1]. Network-enabled electronic warfare
(NEW) is the form of electronic combat used in
NCW. Focus is placed on a network of interconnected,
adapting systems that are capable of making choices
about how to survive and achieve their design goals
in a dynamic environment. The goal of NEW is to
develop modeling and simulation efforts that explore
the advantages and limitations of NEW concepts. The
advantages of linking multiple electronic support
measures (ESM) and electronic attack (EA) assets
to achieve improved capabilities across a networked
battle force have yet to be quantified [2]. In this
paper we utilize radar sensors as ESM and EA
assets to demonstrate the advantages of NEW in
collaborative automatic target recognition (CATR).
The network of radar sensors should operate with
multiple goals managed by an intelligent platform
network that can manage the dynamics of each radar
to meet the common goals of the platform rather
than each radar operating as an independent system.
Therefore, it is significant to perform signal design
and processing and networking cooperatively within
and between platforms of radar sensors and their
communication modules. This need is also apparent
in the recent solicitations from the U.S. Office of
Naval Research [2, 3]. For example, in [3] it is stated,
“Algorithms are sought for fused and/or coherent
cross-platform RF sensing. The focus of this effort is
to improve surveillance utilizing a network, not fusion
of disparate sensor products. The algorithms should be
capable of utilizing RF returns from multiple aspects
in a time-coordinated sensor network.”

In this paper, we study waveform design and
diversity algorithms for radar sensor networks.
Waveform diversity is the technology that allows one
or more sensors onboard a platform to automatically
change operating parameters, e.g., frequency, gain
pattern, and pulse repetition frequency (PRF), to
meet the varying environments. It has long been
recognized that judicious use of properly designed
waveforms, coupled with advanced receiver strategies,
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is fundamental to fully utilizing the capacity of the
electromagnetic spectrum. However, it is the relatively
recent advances in hardware technology that are
enabling a much wider range of design freedoms

to be explored. As a result there are emerging and
compelling changes in system requirements such as
more efficient spectrum usage, higher sensitivities,
greater information content, improved robustness

to errors, reduced interference emissions, etc. The
combination of these changes is fueling a worldwide
interest in the subject of waveform design and the use
of waveform diversity techniques.

Most existing works on waveform design and
selection are focused on the single radar or sonar
system. In 1974 Fitzgerald [8] demonstrated the
inappropriateness of selection of waveforms based
on measurement quality alone: the interaction
between the measurement and the track can be
indirect, but must be accounted for. Since then,
extensive works on waveform design have been
reported. Bell [6] used information theory to design
radar waveforms for the measurement of extended
radar targets exhibiting resonance phenomena. In
[5], the singularity expansion method was used to
design discriminant waveforms such as K-pulse,
E-pulse, and S-pulse. Sowelam and Tewfik [23]
developed a signal selection strategy for radar
target classification, and a sequential classification
procedure was proposed to minimize the average
number of necessary signal transmissions. Intelligent
waveform selection was studied in [4, 12], but the
effect of Doppler shift was not considered. In [16],
time-frequency—based generalized chirps were used
as waveform for detection and estimation. In [15], the
performance of constant frequency (CF) and linear
frequency modulated (LFM) waveform fusion from
the standpoint of the whole system was studied, but
the effect of clutter was not considered. In [24], a
new time-frequency signal decomposition algorithm
based on the S-method was proposed and evaluated
on the high-frequency surface-wave radar (HFSWR)
data; it demonstrated that it provided an effective
way for analyzing and detecting maneuvering air
targets with significant velocity changes, including
target signal separation from the heavy clutter. In
[25], CF and LFM waveforms were studied for a
sonar system, but it was assumed that the sensor
was nonintelligent (i.e., the waveform cannot be
selected adaptively). All the above studies and
design methods focused on the waveform design or
selection for a single active radar or sonar system. In
[21], cross-correlation properties of two radars are
briefly mentioned, and the binary coded pulses using
simulated annealing [7] are highlighted. However,
the cross-correlation of two binary sequences such
as binary coded pulses (e.g., Barker sequence) is
much easier to study than that of two analog radar
waveforms.

In this paper, we focus on the waveform diversity
and design for radar sensor networks using the CF
pulse waveform. Compared with previous works, this
paper has the following novelties.

1) Our focus is placed on a network of
interconnected, adapting radar systems that are
capable of making choices about how to survive and
achieve their design goals in a dynamic environment.

2) We study waveform design and diversity
for radar sensors networks. In space-time adaptive
processing (STAP) [18], the waveform (pulse) design
is essentially for a single radar system. The pulse is
sent repeatedly at different times, and the echos are
received and processed by an antenna array, and no
interference exists among pulses if the pulse repetition
interval is large enough.

3) We investigate CATR using radar sensor
networks and compare it against the single-radar
system in CATR.

4) Simulations are performed for nonfluctuating
targets as well as fluctuating targets, and a real-world
application example, sense-through-foliage target
detection, is presented.

The rest of this paper is organized as follows:
In Section II, we study the coexistence of radar
waveforms. In Section III, we analyze the
interferences among radar waveforms. In Section IV,
we propose a RAKE structure for waveform diversity
combining and present a maximum-likelihood
(ML) algorithm for CATR. In Section V, we
provide simulation results on ML-CATR. In
Section VI, we conclude this paper and discuss future
research.

II.  COEXISTENCE OF RADAR WAVEFORMS

In radar sensor networks (RSN), radar
sensors interfere with each other, and the
signal-to-interference-ratio may be very low if the
waveforms are not properly designed. In this paper,
we introduce orthogonality as one criterion for
waveform design in RSN to make radars coexist. In
addition, since the radar channel is narrowband, we
also consider the bandwidth constraint.

In our RSNs, we choose the CF pulse waveform,
which can be defined as

x(1) = \/g exp(j27 1), ~T/2<t<T/2 (1)

where [ is the RF carrier frequency in rad/s. In

radar, ambiguity function (AF) is an analytical tool
for waveform design and analysis, which succinctly
characterizes the behavior of a waveform paired with
its matched filter. The AF is useful for examining
resolution, side lobe behavior, and ambiguities in both
range and Doppler for a given waveform [18]. For a
single radar, the matched filter for waveform x(¢) is
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x*(—t) and the AF of CF pulse waveform is

T/2
A(T,Fp) = ‘/

T/2+1

x(t)exp (j2mF,s)x*(t — 7)dt

S -T<7t<T.

_ | Esin[nFp(T —|7))]
B TrF,

@)

We can simplify this AF in the following three special
cases:

1) When 7 =0,
AO,Fy) = ’—E S}’jfgé - 3
2) When £, = 0,
A(r,0) = ‘E(TT_'T)‘ @
3) When r = Fj = 0,
A(0,0) = E. 5)

Note that the above ambiguity is for one radar only
(no coexisting radar).

For RSNs the waveforms from different radars
interfere with each other. We choose the waveform
for radar i as

x(t) = \/gexp[j%r(ﬁ +6)l, —T/2<t<T)2
(6)

which means that there is a frequency shift 6, for radar
i. To minimize the interference from one waveform to
another, optimal values for ¢; should be determined to
make the waveforms orthogonal to each other, i.e., let
the cross-correlation between x;(¢) and x,,(¢) be 0,

T/2
/ x;(t)x,(H)dt
)

7/

E (T2
= —/ explj2n (5 + 6;)tlexp[—j2n(B + 6, )tldt
T )1

(N
= E'sinc[n(6; — 6,)T]. %)
If we choose ;
6= )
where i is a dummy index, (8) can be written as
T/2 X E i=n
/_T/zxi(t)xn(t)dt = {0 P £n (10)

Therefore choosing §; = i/T in (6) yields orthogonal
waveforms, i.e., the waveforms can coexist if the
carrier spacing is a multiple of 1/7T between two radar
waveforms. In other words, orthogonality amongst
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carriers can be achieved by separating the carriers by
a multiple of the inverse of waveform pulse duration.
With this design, all the orthogonal waveforms can
work simultaneously. However, there may exist
time-delay and Doppler-shift ambiguity which may
interfere with other waveforms in RSN.

IlI.  INTERFERENCES OF WAVEFORMS IN RADAR
SENSOR NETWORKS

A. RSN with Two Radar Sensors

We are interested in analyzing the interference
from one radar to another if a time delay and Doppler
shift are present. For a simple case where there
are two radar sensors (i and n), the AF of radar i
(considering the interference from radar n) is

A1, Fp  Fp )
= ’ / [x, () exp(j2rFy, 1) + x, (1 —1,)

x exp(j2mFy, Hlx;(t —t)dt (11)

TrF,

i

T /2+min(t;,t,)
< / x,(t—1t,)exp( j27FFD" Dx;(t —t)dt
—T /2+max(tj,tn)
T/2
+ / x,(t)exp (j2rFy, Hx;(t —t,)dt (12)
—T/2+t1; !
T /2+min(t; 1)
= '/ x,(t— tn)exp(jZWFDllt)x;‘(t —t,)dt
—T/2+max(t;,tp)
Esin[nF, (T — |t,)]
+’ AUl ’ (13)

To make the analysis easier, it is generally assumed
that the radar sensor platform has access to the
Global Positioning System (GPS) and the inertial
navigation unit (INU) timing and navigation data [3].
In this paper, we assume that the radar sensors are
synchronized and that ¢, = ¢, = 7. Then (13) can be
simplified as

A7, Fp  Fp ) = |Esinc[n(n —i+ Fp T)]|

Esin[rFy, (T — |7))]
TrFy, ’

(14)

We have the following three special cases:

1) If F, = Fp =0, and 6; and 6, follow (9), (14)
becomes

Ai(1,0,0) = ‘M‘ (15)
T
2) If =0, (14) becomes
A0, Fp, . Fp,) = |Esinc[m(n —i + Fp, D]
Esin(nF, T
sin(mFp, T) . (16)
Tmkp,
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3) It Fp, =F, =0,7=0, and é; and ¢, follow (9),
(14) becomes

A;(0,0,0) =~ E. a7

B. RSN with M Radar Sensors

Our analysis on an RSN with two radar sensors
can be extended to the case of M radars. Assuming
that the time delay 7 for each radar is the same, then
the AF of radar 1 (considering interferences from all
the other M — 1 radars with CF pulse waveforms) can
be expressed as

M
A((T.Fy .. Fp )& Z |E sinc[r(i — 1 + F, T)]|
i=2
Esin[nFy, (T —|[7])]
T7TFDl )

(18)

Similarly, we have the following three special cases:

1) Fp =Fp, =--- =Fp, =0 and the frequency
shift é; in (6) for each radar follows (9); then (18)
becomes

Al(T,O,O,...,O)z’ (19)

E(T -]
T .
Comparing it against (4), we notice that a radar may
exist that can get the same signal strength as that of
the single radar in a single radar system (no coexisting
radar) when the Doppler shift is 0.
2) If 7 =0, then (18) becomes

M
A0 Fp, Fp ... Fp )~ Y |Esine[n(i — 1+ F, D]
i=2

(20)

Esin(rFp T)
TrFp, ’

Compared with (3), a radar in RSN has higher
interferences when unknown Doppler shifts exist.

3) Fp, =Fp, =+ =F,, =0,7=0and ¢, in (6)
follows (9); then (18) becomes

A,(0,0,0,...,0) =~ E. (21)

IV. NEW FOR COLLABORATIVE AUTOMATIC
TARGET RECOGNITION

In NEW, the radar sensors are networked
together in an ad hoc fashion. They do not rely
on a preexisting fixed infrastructure, such as a
wireless backbone network or a base station. They are
self-organizing entities that are deployed on demand
in support of various events, surveillance, battlefield,
disaster relief, search and rescue, etc. Scalability
concern suggests a hierarchical organization of radar
sensor networks with the lowest level in the hierarchy
being a cluster. As argued in [9, 10, 13, 17], in

————{lox 14—

1i(u,) x(t=1)

1Z, |

®

: xz(t_tz)

Diversity

Combining

[Zy |

x(t-,)

Waveform diversity combining by clusterhead in RSN.

Fig. 1.

addition to helping with scalability and robustness,
aggregating sensor nodes into clusters has additional
benefits:

1) conserving radio resources such as bandwidth,

2) promoting spatial code reuse and frequency
reuse,

3) simplifying the topology, e.g., when a mobile
radar changes its location, it is sufficient for the
nodes in the attended clusters to update their topology
information,

4) reducing the generation and propagation of
routing information, and

5) concealing the details of global network
topology from individual nodes.

In RSN, each radar can provide its waveform
parameters such as §; to its clusterhead radar, and the
clusterhead radar can combine the waveforms from its
cluster members.

In RSN with M radars, the received signal for
clusterhead (assume it’s radar 1) is

M
(1) = alu)x,(t — 1) exp(j2mFp, 1) + n(u,t)
i=1
(22)

where «a(u) stands for radar cross section (RCS),
which can be modeled using non-zero constants

for nonfluctuating targets and four Swerling target
models for fluctuating targets [18]; Fy, is the Doppler
shift of the target relative to waveform i; ¢, is the
delay of waveform i; and n(u,?) is the additive

white Gaussian noise (AWGN). In this paper, we
propose a RAKE structure for waveform diversity
combining, as illustrated by Fig. 1. The RAKE
structure is so named because it reminds one of a
garden rake, each branch collecting echo energy in

a way similar to how tines on a rake collect leaves.
This figure summarizes how the clusterhead works.
The received signal r,(u,t) consists of echoes triggered
by the waveforms from each radar sensor, x;( —t,)

is used to retrieve the amplified waveform from
radar i (amplified by the target RCS) based on the
orthogonal property presented in Sections II and

III, and then this information is time-averaged for
diversity combining.
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According to this structure, the received r,(u,t)
is processed by a bank of matched filters, then the
output of branch 1 (after integration) is

Zy(5t sty Fp oo Fp )

T/2
= / ri(u,0)x[(t —t,)ds (23)
-T/2
T/2 [ M
_ / S 0, — 1) exp(j2rEp 1) + 1)
-T2 o l
X xj(t—t))dt. 24)
Assuming t; =t, = --- =1, = 7, then based on (18),
M
ngﬂF]wwﬂw)%E:MMEﬁmhﬁfl+FAD]
i=2
a(u)E SiI'1[7TFDl (T - 1)1
+ TWFDI +n(u, ).
(25)
Similarly, we can get the output for any branch m
(m=1,2,...,M),
M
Z, 7, Fy o Fy )R §:<KMEmthfm+FhD]
i=1li#m
a@)Esin[rF, (T - [7D]
+ TrF,, +n(u, 7).
(26)
Therefore Zm(u;T,FDl seeesFp,) consists of three

parts, namely, signal (reflected signal from radar m
waveform) a(u)E sin[nFp, (T —|7))]/T7F, ,
interferences from other waveforms Z?il,i;ém a(u)
-E sinc[m(i —m + Fp, T)], and noise n(u, 7).

We can also have the following three special cases
for |Z,(u;T,Fp ..., Fp, )]

1) When Fy, =---=F, =0,

~ Ea)(T —|7))]

Z, (u;7,0,0,...,0) .

+ n(u,7)

27

which means that if there is no Doppler mismatch,
there is no interference from other waveforms.
2) If 7 =0, (26) becomes

2, ;0,F ..., Fp )

M
~ Y a@Esinc[r(i—m + F,T)]
i=1,i#m
a)Esin[nFy, T]
TF, + n(u). (28)
3) If 7=0,and F}, =---=F, =0, (26) becomes
Z,(u;0,0,0,...,0) = Ea(u) + n(u). 29)

562

Doppler mismatch happens quite often in a

target search where the target velocity is not yet
known. However, in target recognition, generally
high-resolution measurements of targets in range

(7 = 0) and Doppler are available; therefore, (29) will
be used for CATR.

The process of combining all the Z, s (m =
1,2,...,M) is very similar to the diversity combining
in wireless communications that combats channel
fading, and the combination schemes may be different
for different applications. In this paper, we are
interested in applying the RSN waveform diversity
to CATR, e.g., recognizing that the echo on a radar
display is that of an aircraft, ship, motor vehicle, bird,
person, rain, chaff, clear-air turbulence, land clutter,
sea clutter, bare mountains, forested areas, meteors,
aurora, ionized media, or other natural phenomena
via collaborations among different radars. Early
radars were “blob” detectors in that they detected the
presence of a target and gave its location in range
and angle; then, radar began to be more than a blob
detector and could provide recognition of one type
of target from another [21]. It is known that small
changes in the aspect angle of complex (multiple
scatter) targets can cause major changes in the RCS.
This has been considered in the past as a means
of target recognition, and is called RCS, but it has
not had much success [21]. In [19], a parametric
filtering approach was proposed for target detection
using airborne radar. In [14], knowledge-based
sensor networks were applied to threat assessment.
In this paper, we propose ML-CATR algorithms for
nonfluctuating targets as well as fluctuating targets.

A.  ML-CATR for Nonfluctuating Targets

In some sources, the nonfluctuating target
is identified as a “Swerling 0” or “Swerling 5”
model [22]. For nonfluctuating targets, the RCS o, (1)
is just a constant « for a given target. In (29), n(u,7)
is a zero-mean Gaussian random variable for a given
7, 80 |Z,,(4;0,0,...,0)| follows a Rician distribution
because signal Ea(u) is a positive constant, E«, for a

nonfluctuating target. Let y,, = |Z,,(1;0,0,...,0)|; then
the probability density function (pdf) of y,, is

2 [ OB, (2
FOu) = Z2exp [ = M( 02) (30)

where

AN=FE«o 31

o is the noise power (with I and Q subchannel power
02/2), and I,(+) is the zero-order modified Bessel
function of the first kind. Let y é[yl,yz, ...,¥y]; then
the pdf of y is

M
f@=11row

m=1

(32)
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Our CATR is a multiple-category hypothesis
testing problem, i.e., it decides a target category
(e.g., aircraft, ship, motor vehicle, bird, etc.) based
on r;(u,t). Assume there are a total of N categories,
and a category n target has RCS «,; therefore the
ML-CATR algorithm to decide a target category C
can be expressed as

C = argmax f(y | A = Ea,,) (33)
N o 2y (2 + E*a?) 2Eay
- [ [ 2 np | O (2
(34)

B. ML-CATR for Fluctuating Targets

Fluctuating target modeling is more realistic when
the target RCS is drawn from either the Rayleigh or
chi-square of a deg four pdf. The Rayleigh model
describes the behavior of a complex target consisting
of many scatters, none of which is dominant. The
fourth-degree chi-square model targets have many
scatters of similar strength with one dominant
scatter. Based on different combinations of pdf
and decorrelation characteristics (scan-to-scan or
pulse-to-pulse decorrelation), four Swerling models
are used [18]. In this paper we focus on the “Swerling
2” model, which is a Rayleigh distribution with
pulse-to-pulse decorrelation. The pulse-to-pulse
decorrelation implies that each individual pulse results
in an independent value for RCS a.

For the Swerling 2 model, the RCS |a(u)| follows
a Rayleigh distribution, and its I and Q subchannels
follow zero-mean Gaussian distributions with a
variance 72. Assume

a(u) = oy (u) + jog(u) (35)

and n(u) = n;(u) + jn,y(u) follows a zero-mean
complex Gaussian distribution with a variance o2 for
the I and Q subchannels. Therefore, according to (29),
Z,(u;0,0,0,...,0) is a zero-mean Gaussian random
variable with a variance E2~% + o2 for the I and Q

subchannels, which means y,, £ |Z, (1:0,0,...,0)|
follows a Rayleigh distribution with a parameter

VE*? + 0%
2
Yy Yy
JOw) = Wrz_gzexp (—Wﬁ_gz) . (36

The mean value of y,, is \/7(E?7? + 02)/2, and the

variance is (4 — 7)(E*~? + 0%)/2. The variance of
signal is (4 — m)E?4?/2, and the variance of noise is
4 —m)o?/2.

Let yé[yl,yz,...,yM]; then the pdf of y is

M
f»=11row

m=1

(37

Assume there are a total of N categories, and a
category n target has a RCS «, (1) (with a variance
72), so the ML-ATR algorithm to decide a target
category C can be expressed as

€ = argmax f(y |7 = 7,) (38)
- v
- argrrrllzalx ]-_-[ E?72 + 02 xp (_Ezfy,% + 02) )
m=1
(39)

V.  SIMULATIONS AND REAL-WORLD APPLICATION
EXAMPLE

A. Computer Simulations

RSNs will be required to detect a broad range
of target classes. Too often, the characteristics of
objects that are not of interest (e.g., bird) are similar
to those of threat objects (e.g., missile). Therefore,
new techniques to distinguish threats from undesired
detections (e.g., birds, etc.) are needed. We applied
our ML-CATR to this important application to
recognize a target from many target classes. We
assume that the domain of target classes is known a
priori (N in Sections IVA and IVB), and that the RSN
is confined to work only on the known domain.

For nonfluctuating target recognition, our targets
have 5 classes with different RCS values, which
are summarized in Table I [21]. We applied the
ML-CATR algorithms in Section IVA (for the
nonfluctuating target case) to classify an unknown
target as one of these 5 target classes. At each average
signal-to-noise ratio (SNR) value, we ran Monte-Carlo
simulations for 103 times for each target. The average
SNR value is based on the average power from all
targets (signal variance), so the actual SNRs for bird
and missile are much lower than the average SNR
value, for example, at the average SNR = 16 dB, the
bird target SNR = —33.1646 dB, and the missile target
SNR = 0.8149 dB; and at average SNR = 20 dB, the
bird target SNR = —29.1646 dB, and the missile target
SNR = 4.8149 dB. In Figs. 2(a), 2(b), we plotted the
probability of the automatic target recognition (ATR)
error in bird and missile recognition when they are
assumed to be nonfluctuating targets. These figures
indicate that a single radar system can’t perform
well in both recognitions, because the probability of
the ATR error is above 10%, which cannot be used
for real-world ATR. However, the 5-radar RSN and
10-radar RSN can maintain very low ATR errors.
In Fig. 2(c), we plotted the average probability of
the ATR error for all 5 targets. Since the other 3
targets (different aircrafts) have much higher SNRs,
their ATR error is lower, which makes the average
probability of ATR error lower.
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TABLE 1
RCS Values at Microwave Frequency for 5 Targets

Index n Target RCS
1 Bird 0.01
2 Conventional unmanned winged missile 0.5
3 Small single-engine aircraft 1
4 Small fighter aircraft or 4 passenger jet 2
5 Large fighter aircraft 6

For fluctuating target recognition, we assume
the fluctuating targets follow the Swerling 2
model (Rayleigh distribution with pulse-to-pulse
decorrelation), and assume the RCS value listed
in Table I to be the standard deviation (std) -, of
RCS o, (u) for target n. We applied the ML-CATR
algorithm in Section IVB (for the fluctuating target
case) for target recognition within the 5-targets
domain. Similarly we ran Monte-Carlo simulations at
each SNR value. In Figs. 3(a), 3(b), 3(c), we plotted
the ATR performance for fluctuating targets and
compared the performances of a single-radar system,
a S5-radar RSN, and a 10-radar RSN. Observe that the
two RSNs perform much better than the single-radar
system. The ATR error for the missile is higher than
that for the bird because the Rayleigh distribution
of the missile has a lot of overlap with its neighbor
targets (aircrafts). Comparing Figs. 2(a), 2(b), 2(c)
to Figs. 3(a), 3(b), 3(c), it is clear that higher SNRs
are needed for the fluctuating target recognition as
compared with the nonfluctuating target recognition.
According to Skolnik [21], the radar performance with
a probability of recognition error (p,) less than 10%
is good enough. Our RSN with waveform-diversity
can achieve a probability of ATR error much less than
10% for each target ATR as well as the average ATR
for all targets. However, the single-radar system has
a probability of ATR error much higher than 10%.
Fig. 3(c) also tells us that it is impossible for the
average probability of ATR error of a single-radar
system to be less than 10%, even at an extremely
high SNR. Our RSN with waveform diversity is very
promising for real-world ATR.

B. Real-World Application Example

We verified our approach based on a real-world
application example, sense-through-foliage target
detection from the U.S. Air Force Research
Laboratory. The target is a trihedral reflector (as
shown in Fig. 4) in a forest. We plot two collections
using ultra wideband (UWB) radars in Figs. 5(a) and
5(b). Fig. 5(a) has no target in range, and Fig. 5(b)
has a target at samples around 13,900. We plot
the echo differences between Figs. 5(a) and 5(b)
in Fig. 5(c). However, it is impossible to identify
whether there is any target or where that target
is, based on Fig. 5(c), which means single radar
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Fig. 2. Probability of ATR error for nonfluctuating targets at
different average SNR (dB) values. (a) Bird. (b) Missile.
(c) Average probability of ATR error for 5 targets.

doesn’t work even in the ideal case. Since significant
pulse-to-pulse variability exists in the echoes, this
motivates us to explore the spatial and time diversity
using the radar sensor networks approach. The echoes,
i.e., RF responses by the pulse of each cluster-member
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Fig. 3. Probability of ATR error for fluctuating targets at
different average SNR (dB) values. (a) Bird. (b) Missile.
(c) Average probability of ATR error for 5 targets.

radar, are combined by the clusterhead using the
RAKE structure in Fig. 1.

We ran simulations for an RSN with 30 radar
sensors, and plotted the power of ac values in
Figs. 6(a) and 6(b) for the two cases (with target and

Fig. 4. Target (a trihedral reflector) shown on stand at 300 ft
from measurement lift.

without target, respectively). Observe that in Fig. 6(b),
the power of ac values (around sample 13,900) where
the target is located is nonfluctuating (monotonically
increasing, then decreasing). Although some other
samples also have very high ac power values, it is
very clear that they are fluctuating, and the power

of ac values behaves like random noise because,
generally, the clutter has Gaussian distribution in the
frequency domain.

VI.  CONCLUSIONS AND FUTURE WORKS

We have studied the CF pulse waveform design
and diversity in RSNs. We showed that the waveforms
can coexist if the carrier frequency spacing is a
multiple of 1/7 between two radar waveforms. We
made analysis on interferences among waveforms in
RSN and proposed a RAKE structure for waveform
diversity combining in RSN. As an application
example, we applied the waveform design and
diversity to CATR in RSN and proposed ML-CATR
algorithms for nonfluctuating targets as well as
fluctuating targets. Simulation results show that an
RSN using our waveform diversity-based ML-ATR
algorithms performs much better than a single-radar
system for nonfluctuating targets and fluctuating
targets recognition. We also validated our RSN
approach via a real-world sense-through-foliage target
detection example.

In our future research, we will investigate the
CATR when multiple targets coexist in RSN and
when the number of targets are time varying. In
this paper, we used spatial diversity combining.

For multitarget ATR, we will further investigate
spatial-temporal-frequency combining for waveform
diversity in RSN.
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Fig. 5. Measurement of UWB radar. (a) Expanded view of traces

(no target) from sample 13,001 to 15,000. (b) Expanded view of

traces (with target) from sample 13,001 to 15,000. (c) Differences
between (a) and (b).
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