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Abstract—Conventional gang scheduling has the disadvantage that when processes perform I/O or blocking communication, their

processors remain idle because alternative processes cannot be run independently of their own gangs. To alleviate this problem, we

suggest a slight relaxation of this rule: match gangs that make heavy use of the CPU with gangs that make light use of the CPU

(presumably due to I/O or communication activity), and schedule such pairs together, allowing the local scheduler on each node to

select either of the two processes at any instant. As I/O-intensive gangs make light use of the CPU, this only causes a minor

degradation in the service to compute-bound jobs. This degradation is more than offset by the overall improvement in system

performance due to the better utilization of the resources.

Index Terms—Gang scheduling, job mix, flexible resource management.
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1 INTRODUCTION

SCHEDULING parallel jobs on a parallel supercomputer
consists of deciding which processors to use for each

parallel job, and when to run it. A simple first-come-first-
serve (FCFS) approach keeps waiting jobs in a queue in the
order that they arrived. The scheduler then tries to find free
nodes for the first job in the queue. If there are not enough
free nodes, the job will have to wait until nodes become
available, when some job that is currently running,
terminates. When this happens, the needed nodes are
allocated and the queued job starts to run. Using FCFS
prevents starvation of jobs which use a large number of
nodes, but may cause nodes to be left idle when waiting for
more nodes to become available. This can be reduced by
using backfilling, in which jobs may be selected out of
order, provided this will not delay the execution of jobs
which have a higher location in the queue [13].

Another approach, called gang scheduling [14], slices the
time in a round-robin manner. The jobs are packed into a
matrix. Each column in the matrix represents a node and
each row represents a time slot. Jobs assigned to different
rows are executed one after the other. One of the problems
with this approach is fragmentation: Processors may be left
idle if nothing is assigned to them in a certain slot. Several
ideas for relaxations of gang scheduling that reduce this
waste have therefore been proposed [11], [7], [22], [1]. Our
work is also a relaxation of strict gang scheduling, which is
called Paired Gang Scheduling [23]. All of these improve-
ments remove the requirement that all processes of a given
job always run simultaneously on different nodes. There are
also other types of improvements, e.g., the use of backfilling
to handle the queue of jobs being packed into the gang
scheduling matrix [24], [17].

Gang scheduling enables processes in the same job to
run at the same time. This leads to better performance for

compute-bound communicating processes [6]. However,
I/O-bound processes cause the CPUs to be idle too much
of the time, while there are other processes which can
run. At the same time, the effect on the disk performance
is the opposite: I/O-bound processes keep the disks busy,
while compute-bound processes leave them idle. Indeed,
it is nontrivial to balance the use of these resources in
applications that have large computation and I/O
requirements [15].

The core idea of gang-scheduling is assigning as many
processors to a job as are required at the same time. Such an
assignment allows the job to avoid blocking processes while
they wait for the completion of communications with other
processes because of two reasons:

1. It is guaranteed that the awaited process is running
and making progress, so it makes sense to wait for it.

2. There is nothing else to run on the processor (all the
job’s processes are assigned).

By contradistinction, when one assigns more than one
process to each processor, it can lead to situations where
one process needs to wait for another process to be executed
again, because it is not currently running. Thus, gang
scheduling strives to maximize the performance of the
current job, at the possible expense of overall system
utilization.

The alternative to gang scheduling is to use local
scheduling independently on each node of the machine.
The local scheduler can use round-robin, or a priority-based
algorithm such as the one used in Unix. In such a system, a
process that needs to wait for another should block because
the two conditions listed above are negated: The awaited
process is probably not running, and there are other better
things to do with the processor rather than busy wait. In
other words, local scheduling has the pretension of
emphasizing overall system utilization, at the possible
expense of jobs that need to perform a lot of communica-
tion. However, the extra context switches induced by fine
grain communication can lead to inefficiency and reduced
effective utilization [6].

If the characteristics of each gang are known, this can be
exploited in order to keep both the CPU and the I/O devices
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busy. This paper presents the idea of matching pairs of
gangs, one compute-bound, and the other I/O-bound. The
rationale for such matching is that these gangs will hardly
interfere in each other’s work, as they use different devices.
Therefore, they will “feel” that they work alone in the
system. If the I/O operations’ time is not negligible relative
to the CPU time, such an overlap of the I/O activity with
CPU work can be efficient [16]. The concept is illustrated in
Fig. 1. It is similar to the idea of symbiotic job scheduling
proposed for SMT processors [21].

Paired gang scheduling tries to be a compromise
between the above two schemes, with the goal of utilizing
the system resources well without causing interference
between the processes of competing jobs. It enjoys the best
from the two worlds. On one hand, the processes will not
have to wait much because a process which occupies the
CPU most of the time will be matched with a process that
occupies an I/O device most of the time, so they will not
interfere with each other’s work. On the other hand, the
CPU and the I/O devices will not be idle while there are
jobs which can be executed.

The rest of the paper is organized as follows: Section 2
presents the model of paired gang scheduling and the
algorithms used in its implementation. Section 3 describes

the platform of the realization and what changes were

required to support paired gang scheduling. Section 4

evaluates the concept of paired gang scheduling. It reports
on the experiments that have been conducted and the

workloads that were used. Finally, Section 5 summarizes

the results.

2 PAIRED GANG SCHEDULING

The problem of how I/O-bound jobs affect system
performance under gang scheduling is discussed by Lee

et al. [11]. They suggest a method of varying the time

quantum, which is given to processes according to their

characteristics. The proposal of this paper is leaving the

time quantum as a constant, but dispatching a pair of

processes in each time quantum. The matching of processes

is based on a prediction of what their CPU utilization will

be in the next quantum.

2.1 Framework for Scheduling

The framework for paired gang scheduling is depicted in

Fig. 2. We use a centralized gang scheduler, as is used in

many conventional implementations [4], [9], [5], [8]. This is
a user-level daemon process that runs on a distinguished

node in the cluster. It maintains information in an

Ousterhout matrix [14], in which rows denote scheduling

slots and columns represent processors. In strict gang

scheduling, one row is selected each time. Each node

scheduler is then directed to schedule the process in the

respective cell of the chosen row. This is typically done by

making only this process runnable, while the others are

blocked (in Unix implementations, this is typically done by
sending them a SIGSTOP signal).

For paired gang scheduling, two rows are selected. In this
case, two processes are left runnable on each node, and their

scheduling is done at the discretion of the local scheduler.

In essence, the paired gang scheduler uses its power over

the local workload to generate a good job mix with two

complementary processes. Similar mixes are generated on

all nodes by virtue of the homogeneity of processes in the

same row of the matrix.
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Fig. 1. Paired gang scheduling: By running pairs of complementary jobs,

resource utilization is improved without undue interference. Vertical bars

represent processes, with time flowing downwards.

Fig. 2. Framework for paired gang scheduling (b), as opposed to strict gang scheduling (a). NS = node scheduler; P = processor.



2.2 Measuring CPU Utilization

The idea is to match jobs that use the CPU with those that use
I/O devices (including the network). This seems to imply that
we need to measure both CPU utilization and I/O activity for
each job. However, as long as we bundle all the I/O activity
into a single class, I/O and CPU usage are actually
complementary. A process that performs I/O is blocked,
and is prevented from utilizing the CPU until the I/O
completes. Thus, it is enough to measure the CPU utilization
and postulate that the I/O utilization is the remaining time.
Indeed, this way of measuring even works for applications
that use nonblocking I/O, thus boosting their CPU utilization.

Note that, by using this definition, paging is included in
I/O, because the operating system blocks processes that are
waiting for a page fault to be serviced. While this is not
strictly a characterization of the inherent I/O activity of the
process, it does characterize the I/O activity under the
current system conditions (physical memory installed and
competing jobs that also use memory). Thus, it is appro-
priate to include it.

The measured CPU utilization can be used directly.
But, consider a case where two gangs are matched
because they have a low CPU utilization, and then this
changes and they both become compute-bound. Due to
the fact that they are running together, they will, by
necessity, achieve CPU utilizations that are together
bounded by 100 percent, so the scheduler will think that
it is appropriate to continue and schedule them together.
A possible workaround is to replace the actual
CPU utilization by the effective utilization, defined as
the utilization out of what is left over by the other process.
Specifically, if processes x and y have measured utiliza-
tions uðxÞ and uðyÞ, respectively, their effective utiliza-
tions will be

ueffðxÞ ¼
uðxÞ

1ÿ uðyÞ and ueffðyÞ ¼
uðyÞ

1ÿ uðxÞ :

However, this would lead to misleading results if the true
CPU utilizations are together slightly less than 100 percent.
A better solution is therefore to monitor changes in the
CPU utilization. When the utilization of a process that
shares the processor grows, it can then be speculatively
assigned a utilization of 100 percent, thus forcing it into a
slot by itself. This then provides a better test of the true
CPU utilization. If it fails the test (that is, if its utilization is
actually much lower than 100 percent), it will be matched
again with another process the next time it is scheduled.

2.3 Predicting CPU Utilization

The characteristics of a process can be assessed by looking
at its history. A reasonable guess is that, if a process had a
high/low CPU utilization in its past, the process will
continue to have a high/low CPU utilization in its future,
respectively. In [19], Silva and Scherson introduce a way for
classifying processes using fuzzy sets. An extension of their
idea can be obtained by using Markov chains. A Markov
chain can be useful in investigating the process’ history. A
simple Markov chain can be the average of the last N CPU
utilization values as measured in the last N time slices. A
more complex Markov chain can give more weight to the
recent slices, while giving a reduced weight to the far
history. In [18], the authors suggest the formula:

�nþ1 ¼ �tn þ ð1ÿ �Þ�n;

where tn is the actual length of the nth CPU burst, �n is the
predicted value for that CPU burst, and � is a coefficient
having a value between 0 and 1.

Their method was used for predicting the length of the
next CPU burst, but it can be trivially adapted for predicting
utilization. However, this method never forgets any
CPU burst which was in the process’ history. Although
the influence of a very old burst becomes very small, it is
still there. A Markov chain of the last N CPU bursts can
totally forget the old bursts, which can be meaningless.
Moreover, this formula considered just one process. We
would like to have a formula which will take into account
all processes that make up a parallel job.

The Markov Chain which was used in our test is:

�n ¼
X4

i¼1

ð5ÿ iÞ
10

�
Xm
j¼1

tnÿi;j
m

" #
; ð1Þ

where:

. n is the serial number of the next time quantum for
this job.

. �n is the predicted CPU utilization in the next time
slice.

. ti;j is the actual CPU utilization in the i time slice on
the j processor.

. m is the number of processors used by the job.

The first sum is over the four last CPU quanta and gives
them linearly decreasing weights. The inner sum produces
the average for the job’s processes on the different
processors.

At the beginning, before any concrete data is available,
new jobs will be postulated to have 100 percent
CPU utilization. This initialization will force each job to
be executed separately in its first time quantum and gives
the system a chance to measure the true utilization. If
another initialization were to be used, there is a danger
that two computed-bound jobs execute together, leading
to an erroneous measurement of less than 50 percent
CPU utilization. Thus, we start with a speculative value
of 100 percent, as we also suggest to do after a sharp
increase is detected. Fig. 3 shows the correlation between
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Fig. 3. Predicted CPU utilization compared with real CPU utilization.



the predicted CPU utilization and the real CPU utilization
when running heterogeneous applications as described in
Section 4.2.2. The dots at the right are new jobs that were
speculatively predicted to have 100 percent utilization.

2.4 Matching Pairs of Jobs

The data is represented in percents: 100 percent means all
the time quantum was dedicated to CPU activity in this
process, while 0 percent means none of the time quantum
was dedicated to CPU activity. The master collects the data
from all active slaves. Then, the master calculates the
average CPU utilization of all processes in the job. This is
calculated anew at the end of each quantum in which the
job ran.

Scheduling is based on an Ousterhout matrix [14], with the
jobs in successive slots scheduled in turn in a round-robin
manner. But, as the job in the next slot is considered, the
master will look for a match for this job, and schedule both of
them. Let us assume the job to be scheduled now (the one in
the next slot) has a predicted x percent CPU utilization as
calculated by (1). The match for this job will be a job whose
predicted CPU utilization y, again according to (1), satisfies

xþ yþm < 100%;

where m is a safety margin (we used m ¼ 1%). Such a match
can keep the CPU busy on one hand, but will not cause the
processes to wait for the CPU to be freed, on the other hand.

A naive approach could do the matching dynamically at
each context switch, based on the most recent data
available, using a best-fit searching procedure. Thus, if
several jobs tie as the best match, the last one will always be
chosen. Moreover, such a matching method is unfair.
Suppose we have a lot of I/O-bound jobs with very low
CPU utilizations, e.g., 5 percent or less. If we have two other
jobs having 80 percent and 81 percent CPU utilizations, the
81 percent job will be the ideal match for each of the low
CPU jobs, so the 81 percent job will always be selected,

giving it much more CPU time than its peer which has just
80 percent CPU utilization. In order to be more fair, we have
used another matching method, in which matching is
performed once for each round of the whole matrix. The
matching algorithm is described in Fig. 4. The idea is to sort
the jobs according to their CPU utilization and match jobs
from both ends. Thus, each job will be matched with a
distinct other one if a possible match exists. Only jobs which
did not match any other unmatched job will be matched to a
matched job. As a result, the waiting queue will be smaller
and the jobs will get more uniform service. If a job needs
exclusive control of the system’s resources (e.g., for running
a benchmark), a flag can be set in order to indicate to the
system that this job must not be matched with another job.

2.5 Extension to General Gang Scheduling

The above description was based on matching single jobs.
But, in the general case, more than one job may be allocated
to the same slot. If this is the case, the above will be
generalized to matching slots instead of jobs. This is
achieved by modifying the formula to

maxðxÞ þmaxðyÞ þm < 100%;

where maxðxÞ and maxðyÞ are the maximal CPU utilizations
for jobs in slots x and y, respectively.

It is desirable that all jobs in a slot will be homogeneous.
Sometimes, an exceptional job can cause a problem. A given
slot can be a perfect match to another, but the scheduler will
not match them because an exceptional job has much higher
CPU utilization than the other jobs in the same slot. In order
to prevent such cases, we would like to have homogeneous
slots, in which all jobs have similar characteristics. We
therefore check the characteristics of each running job on
every context switch. A job J in slot s which does not satisfy
CPUutilðJÞ < minðsÞ þM (where M is the allowed range
within the slot), will be removed from the slot. A search will
be invoked in order to find another slot for the removed job.
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Fig. 4. The matching algorithm (indentation is used to delimit blocks).



If no such slot is found, the job will be put in a new slot. In
our tests, we have used M ¼ 20%. In effect, the range of
each slot is then bounded as in maxðslotÞ ÿminðslotÞ � 20%.

2.6 Alternate Scheduling

Alternate Scheduling [3] can improve gang scheduling.
Using this method, we look for idle nodes in a slot. If we
find some, we will try to execute a job or even several jobs
which need these nodes or part of them. When using paired
gang scheduling, we should take into account the char-
acteristic of the alternate-scheduled jobs. In other words,
when a job is assigned for alternate scheduling in a slot, it
must match the characteristics of other jobs that are already
assigned to this slot. If its utilization does not fall within the
band of M ¼ 20% allowed, alternate scheduling will not be
used. However, this does not mean that the nodes will
remain idle: In paired gang scheduling, each node is
supposed to run two processes. If no alternates are found,
only one process will run. A node will remain idle only if it
is not allocated in both selected slots.

3 IMPLEMENTATION

3.1 The ParPar Environment

The implementation of paired gang scheduling was done in
the context of the ParPar cluster [4]. The cluster has a host
node which is the “master,” and 16 other nodes which are
the “slaves.” The master runs a daemon which controls all
system-wide activity. Among other things, it decides for the
slaves when they should do a context switch. The master
also maintains the gang scheduling matrix. When the
master decides on a context switch, it sends a message to
the slaves which job should be executed instead of the
current job. The slaves stop the current job and start
executing the new job as ordered by the master.

Each node is an independent PC with its own processor,
memory, and disk. The slaves and the master are connected
by a switched Ethernet. The master sends broadcast
messages using UDP, and slaves reply using TCP [10].
The communication of applications is performed using
TCP/IP. The cluster is also equipped with a Myrinet, but
this was not used as explained blow.

3.2 Modifications to Support Paired Gang
Scheduling

While the original ParPar software includes support for
gang scheduling, in paired gang scheduling, things are a
little bit more complex. The master still has to decide on
context switches, but it has to take into account the
characteristics of the different jobs and do the matching.
The data on the characteristics of the processes comes from
the slaves. At each context switch, the slaves send the
master a message about the processes they were executing.
The message contains information regarding how much of
the last quantum was actually consumed by the processes
as CPU time.

To get this data, the node daemon reads kernel data
structures that describe different processes and their resource
consumption. By comparing the readings of CPU usage at the
beginning and end of the quantum, the CPU usage is
obtained. While the resolution provided by the kernel is not
very high, it is adequate, especially considering that a gang
scheduling quantum on ParPar is a full second.

The master daemon collects the data from all the nodes
and calculates the average CPU utilization for the job. This
data is then used for the matching, as described above. The
way all this fits together is described in Fig. 5.

The main problem with the experimental implementa-
tion is that it breaks the communication mechanisms.
ParPar integrates a modified version of the FM user-level
communications library for Myrinet, in which only one
communication context is used, and this is replaced as part
of the context switching [2]. Obviously, this cannot work if
two processes run at once. This can be fixed (at the cost of
considerable recoding) by having two active contexts each
time. However, for our evaluations, it was simpler to use
conventional Unix IPC for communications, as is done in
many clusters based on PVM or MPICH.

4 EVALUATION

To evaluate the performance impact of paired gang
scheduling, we ran several tests using the ParPar imple-
mentation described above.

4.1 Proof of Concept

4.1.1 Workload

All the experiments were based on the synthetic program
shown in Fig. 6, used with different parameters. For
example, setting GI=O ¼ 0 creates a compute-bound job,
whereas setting Gcomp ¼ 0 creates an I/O-bound job.
Making Gcomp and/or GI=O large, increases the granularity
(the amount of computation or I/O between barriers).

This structure of alternating compute and I/O phases is
widely accepted as a reasonable model for parallel applica-
tions [15]. The barrier is implemented by all processes
sending a message to process 0 and waiting for a reply.
Process 0 sends the reply only after it receives a message
from every other process in the job. In the following results,
we use a mix of compute-bound and I/O bound jobs, with
Gcomp ¼ 2; 500; 000 and GI=O ¼ 20, respectively; B was set to
8; 193. These values lead to approximately similar times for
a compute barrier and an I/O barrier. Note, however, that
the communication involved in barrier synchronization
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Fig. 5. Actions by the master and node daemons during a paired gang

scheduling quantum.



creates some I/O-like activity, even for compute-bound
processes. N was set to 250.

The proof-of-concept experiments were conducted with
a mutually executed job mix. In other words, a set of jobs
were all started at the same time, and each job’s size was
the same as the cluster size (eight nodes were used unless
otherwise noted). Performance data was collected during
the interval in which all the jobs ran concurrently on the
system, using the original strict gang scheduling scheme
or the new paired gang scheme. When the first job in the
mix terminated, all other jobs were killed, and the

measurements stopped. This is to ensure that the
measurements indeed reflect a consistent job mix. If jobs
are allowed to run to completion, the mix changes with
time as some jobs terminate, and then it is harder to
assign the results to the original mix.

4.1.2 Experimental Results

The metrics recorded during the runs are the rate of
progress, measured in barriers completed per second, and
the success rate of matching jobs to each other at runtime.

Performance Impact. To gauge the performance impact of
paired gang scheduling, the performance of five job mixes
were measured. Mix i, i ¼ 0 . . . 4, was composed of i I/O-
bound jobs and 4ÿ i compute-bound jobs.

The upper part of Fig. 7 shows how many barriers per
second were completed by the compute-bound jobs and the
I/O-bound jobs, averaging over all such jobs in each mix.
The figure shows an improvement when using the paired
gang scheduling as compared to the traditional gang
scheduling. There is no meaningful difference when there
are just compute-bound jobs in the system, because
compute-bound jobs cannot be matched, so the paired gang
scheduling acts like the strict gang scheduling in this case.
However, when there are I/O-bound jobs which can be
matched with the compute-bound jobs, the progress of the
jobs is accelerated in paired gang scheduling. Note that this
is true both for the compute-bound jobs (especially when
there are two or three I/O-bound jobs), and for the I/O-
bound jobs (especially when there are two or three
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Fig. 6. The test program used in experiments.

Fig. 7. Top: Performance of different jobs in each mix, as measured by barriers per second, comparing paired gang scheduling with strict gang

scheduling. Bottom: Fraction of quanta in which jobs occupying different slots in the matrix were used for matching, in percent. Left: Using best-fit

matching. Right: Using the predesigned approach.



compute-bound jobs). Thus, we find that both types of jobs
benefit from the additional access to the CPU provided by
being paired with another job, and this benefit outweighs
the degradation suffered when another job is paired with
them. The conclusion is that the interference between the
matched jobs is indeed low (matching the results of [11]).

The case of a single I/O-bound job is especially
interesting. When multiple I/O-bound jobs are present,
they can be matched with each other, but this does not give
a big improvement because these jobs interfere with each
other when writing to the disk. This interference causes the
disk to become a bottleneck, so paired gang scheduling does
not give a significant improvement (higher CPU allocations
leading to reduced performance due to disk contention has
also been observed by Rosti et al. [15]). However, when
there is just one I/O-bound job and three compute-bound
jobs, the I/O-bound job is matched with all the compute-
bound jobs in turn. This job will therefore advance almost
four times faster than when it only runs on its own, as
indeed is shown in the upper part of Fig. 7. This implies that
the I/O-bound job achieved nearly the maximal perfor-
mance possible, as if it had the system dedicated to
itself—and without compromising the performance of the
compute-bound jobs.

One approach to decide which jobs should run together
in the same quantum is the best-fit algorithm. The left part
of Fig. 7 shows the results of this algorithmic decision. Best
fit always scans all four slots in the same order. The lower
slots belong to compute-bound jobs, while the higher slots
belong I/O-bound jobs. The number of jobs of each type
changes in the various tests.

When there are only compute-bound jobs in the system,
they all have a high CPU utilization. Therefore, no matching
will be done in this case, as indicated in the leftmost part of
the figure.

At the other extreme, when only I/O-bound jobs are
present, their CPU utilization is typically 0 percent (because
they immediately perform an I/O operation whenever they
run, and do not log any noticeable CPU time). Therefore,
they are all equivalent as far as the matching algorithm is
concerned. As a result, the matching algorithm always
chooses the last available job for matching. Thus, when the
jobs in slots 0, 1, and 2 are scheduled to run, the job in slot 3
is chosen as the best match. When it is slot 3’s turn, the job
in slot 2 is chosen. This leads to the skewed histogram in
which slot 2 is chosen 25 percent of the time and slot 3 is
chosen 75 percent of the time.

The intermediate cases can also be analyzed in a similar
way. When there are one I/O job and three compute jobs,
the I/O job is matched with all of them (75 percent), but
they take turns being matched with it (8 percent each)
because their CPU utilizations vary slightly. Conversely,
when there is one compute job and three I/O jobs, the
compute job is matched with all I/O jobs (75 percent), but
only the last I/O job is matched with the compute job
(because they all have the same 0 percent utilization).
Finally, in the case of two jobs of each type, the compute
jobs take turns being matched (around 25 percent each),
whereas the second I/O job dominates over the first (near
50 percent).

An alternative is to use a matching algorithm that
emphasizes fairness. At the beginning of each round, the
matching algorithm described in Fig. 4 is performed. As can

be seen in Fig. 7, this leads to a much more equitable
selection of slots for matching, with no harm to the rate of
barriers per second. The slots, which previously got less
time slices because of their lower serial number, will now
get an equal opportunity to be executed, so some of the jobs
will pass more barriers per second, while others will pass
less; but, the total number of barriers, which will be passed,
is very similar to the one which the best-fit method had
produced.

Sensitivity to Cluster Size. In the next set of experiments,
the measurements were repeated on clusters of sizes 2, 4,
and 12 (in addition to the size of 8 used before).

Fig. 8 shows the impact of the cluster’s size on rate of
progress of the different job types. Starting from the left,
we see that when all the jobs are compute-bound, the size
does not have any real impact. But, when compute-bound
jobs are mixed with I/O-bound jobs, an interesting
interaction occurs. As the processes of an I/O-bound job
all perform I/O to the same server, a larger cluster size
implies that more I/O operations are performed, leading
to congestion at the server. Therefore, the rate of progress
of the I/O-bound jobs (measured in barriers per second,
not total I/O done per second!) decreases when the
cluster size is increased. This decrease would be avoided
if the I/O itself was parallelized. But, due to the use of
paired gang scheduling, the reduced activity of the I/O-
bound processes is picked up by the compute-bound
processes. Thus, the rate of progress of the compute-
bound jobs improves with cluster size provided enough
I/O-bound jobs are present.

Sensitivity to Granularity. In another set of these experi-
ments, we changed the granularity of the compute part of
the test’s compute-bounded jobs. Specifically, the size of the
internal null loop of the compute-bound jobs was reduced
from 2.5 million down to 1 million, in steps of 500,000. This
is an important test of the concept of paired gang
scheduling, because there is a danger that when the
granularity is finer, the asynchronous nature of the I/O-
bound processes will cause more severe interference.

Fig. 9 shows that, in fact, the different granularities do
not have much impact on the rate of progress, despite the
fact that the time between a barrier to the next barrier is
smaller. Thus, paired gang scheduling is not very sensitive
to the granularity of the jobs.
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Fig. 8. Barriers per seconds in various size of clusters, for different
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4.2 Performance with a Dynamic Workload

The results presented in the previous section were for a
static workload containing a carefully controlled mix of
jobs. While this allowed us to analyze the detailed behavior
of the system, it was not very realistic. In this section, we
turn to more realistic workloads.

The experiments reported here were run on the full
16 nodes of the ParPar cluster. Each experiment consisted of
running 1,000 jobs generated according to the Lublin
workload model [12]. The model specifies the arrival time,
number of nodes, and running time of each job. As the
model is based on long-running jobs from production
supercomputer installations, we divided the arrival times
and running times by 40 to reduce the overall time to run
the experiments. The arrival times were further multiplied
by a constant factor to achieve different load conditions. The
time to complete a single experiment was typically in the
range of 8-11 hours, with more time needed for the lower
load conditions.

4.2.1 Homogeneous Fine-Grain Applications

In the first set of experiments, all jobs are homogeneous,
meaning that they display the same behavior. The selected
behavior is one of fine-grain computation that still allows

for matching. We started by measuring the time for the
communication involved in a barrier synchronization and
setting the loop in the compute part to take slightly less
time, so that the CPU utilization will be about 45 percent.
We used the program described in Fig. 6. N was set to
600 � sec, where sec is the number of seconds the job should
run according to the workload model. Gcomp was set to
25,000 and GI=O was set to 0. Since GI=O was 0, B is
meaningless.

Our aim was to compare strict gang scheduling and
paired gang scheduling. Exactly the same workload was
used for all the different schedulers and load conditions.
The results show that, even under heavy loads, perfor-
mance is reasonable when using paired gang scheduling.
However, when using strict gang scheduling, the results
show a saturation under heavy loads, created by a bottle-
neck of jobs, which the system cannot handle fast enough.

Fig. 10 shows the average slowdown and response times
of all the jobs with:

. strict gang scheduling,

. paired gang scheduling with a homogeneous work-
load, and

. paired gang scheduling with a heterogeneous work-
load (described below).

The slowdown is calculated by 1
N

PN
i¼1

tElapsedi
tExecutingi

, whereN is the

number of jobs (in our case N is 1,000), tExecutingi is the

execution time of job i measured by the kernel on the nodes,

and tElapsedi is the elapsed time of job i. The response time is

simply the average of tElapsedi .
Both response time and slowdown clearly show that

paired gang scheduling can use the computer resources
more efficiently. Hence, the jobs can complete their tasks in
a shorter time period. When the workload is heavier, the
ratio between paired gang scheduling and strict gang
scheduling will be higher. Under a 0.5 load, the response
time with paired gang scheduling is about twice faster,
while under 0.95 load, the response time with paired gang
scheduling is nearly six times faster.

Fig. 11 shows the number of jobs in the system while
running the simulation using these two methods of
scheduling, for different load conditions. For low loads,
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Fig. 9. Barriers per seconds in various granularities. The numbers in the

legend are the size of the internal null loop in millions.

Fig. 10. Average response time and slowdown as function of system load.



the strict gang scheduling and the paired gang scheduling
are similar, and both schedulers give almost the same
results. At all loads, the paired gang scheduling sometimes
succeeds to clear all the jobs, while the strict gang
scheduling fails to do so for loads above 0.6 or 0.7. At such
high loads, after all 1,000 jobs have been submitted, the
scheduler still has some dozens of jobs left in the system. At
the highest load of 0.95, it takes over three hours to
successfully complete these jobs. In fact, for loads of 0.9 and
0.95, it seems that the system is actually saturated, as the
number of jobs in the system seems to rise with time. This is
due to wasting resources when processes wait for synchro-
nization. Paired gang scheduling, on the other hand, does
not saturate even at a load of 0.95.

Note that, in these experiments, we enable an unrest-
ricted number of jobs in the system at the same time. This
might be unrealistic for real applications because of the
memory pressure. However, this demonstrates that when
paired gang scheduling is used, jobs can complete their
computation faster. This leads to less overlap and a smaller

degree of memory congestion, and the memory pressure is
actually reduced significantly.

4.2.2 Heterogeneous Applications

The previous section focused on fine-grain applications, as
they are expected to be the most sensitive to interference
from other applications that share their time slot. To further
increase the interference, we tailored the applications so
that their CPU utilization would be roughly 45 percent, so
that they will always be matched. The results indicate that,
even in this case, the benefits of improved resource usage
far outweigh the degradation due to interference.

The question we wish to tackle in this section is whether
matching occurs enough in practice to make a difference. To
do so, we need to create a mix of heterogeneous applica-
tions, with different granularities and CPU utilizations. As
there is no real data about the mixes of CPU utilizations in
production workloads, we will use a mix in which the
CPU utilization is selected at random uniformly in the
range from 0 to 100 percent, with the rest being used for
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barrier synchronizations. Thus, the granularities correlates
with the utilization and for each degree of CPU utilization,
we use the most fine-grain application possible.

The results are shown in Fig. 10, and indicate that
enough matching occurs to make the performance similar to
that of the homogeneous case. Fig. 12 shows the number of
jobs in the system while running the heterogeneous load. As
can be seen in this figure, there is just a slight difference
between the homogeneous load and the heterogeneous
load, when paired gang scheduling is used.

4.2.3 Applications with Distinct Phases

The applications used in the previous sections were
stationary, in the sense that their behavior did not change
during the course of their execution. In particular, we used
their phases to create fine-grain interactions, as we wanted
to investigate how susceptible they were to interference
from other applications. But, real applications may have
long phases of computation and I/O, and the pattern may
also change during the run. In this section, we investigate
such applications and check how paired gang scheduling
adjusts to the changing behavior of applications.

We used a model of the QCRD application as described
in [15]. This application is structured as 12 short I/O-bound
phases alternating with 12 longer CPU-bound phases. The
final part of the application is a relatively long I/O-bound
phase.

Fig. 13 shows the CPU utilizations and the success of
matching when four copies of QCRD are running. We can
see that when the CPU utilization is high, just a single job
runs at a time, while when the CPU utilization is low jobs
are paired and run together.

First, the CPU-bound phase is done executing each job in
a separate slot. Then, the I/O-bound phase comes and the
jobs are matched and run in pairs. When a new CPU-bound
phase comes, it will take a little while for the scheduler to
understand that there was a change and to run the CPU-
bound phase alone. Sometimes, the scheduler executes a
pair of CPU bound jobs, but it does not split them because it
sees a CPU utilization lower than 50 percent for each one of
the jobs. Note that this can only happen if the jobs are
perfectly synchronized, which sometimes happens in this
case, where they are copies of the same application started
together.

In order to solve the problem of the unnoticed changes
by the scheduler, we changed the scheduler to detect any
sharp change in the behavior of a job. When such a sharp
change occurs, the scheduler will give the job an opportu-
nity to run one quantum alone, so its real characteristics can
be observed. This might cause a little delay, because a pair
of jobs which could be executed together are sometimes
separated. However, it gives the scheduler a better way to
know what is the real character of the jobs.

The results of the scheduler which notices sharp changes
are shown in Fig. 13. A sharp change was defined as a
change of more than 20 percent in the CPU utilization. The
response time was longer by just about 1 percent.

We also experimented with a dynamic workload where
all jobs are scaled versions of QCRD. Since the running time
in the Lublin workload model is different for each job, we
shrank the phases so the total time will be same as it is in
the Lublin workload model. The results were similar to the
results of the stationary applications, with only a very slight
degradation. The progress of the runs can be seen in Fig. 14,
for a load of 0.8. When comparing the run of QCRD-like job
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under paired gang scheduling with running the same jobs
using strict gang scheduling, the average response time was
reduced by half.

5 CONCLUSIONS

The results of the experiments are promising: Given a good
match of a compute-bound parallel job and an I/O bound
parallel job, they can run within the same quantum with little
mutual interference, nearly doubling the resource utilization.
Thus, paired gang scheduling seems to be a good compromise
between the extreme alternatives of strict gang scheduling or
uncoordinated local scheduling. Naturally, the system’s
ability to find such a match depends on the available job
mix. Recent work has identified various I/O-intensive
applications, so it seems that the potential is there [15], [20].

Especially noteworthy is the fact that this is achieved by
a very simple device, based on data easily available directly
to the scheduler. This distinguishes paired gang scheduling
from other flexible gang scheduling schemes that are based
on monitoring communication in order to deduce the
characteristics of parallel jobs (e.g., [11], [7], [22], [1]).

The idea can be extended if there are more I/O devices
in the system. One I/O operation will not interfere with
other I/O operation, so a group of N þ 1 gangs can be
dispatched, where N is the number of I/O devices in the
system. In particular, it is possible to overlap disk I/O with
communication.

Additional future work includes the handling of user-
level communication, in which poling and busy waiting
may mask I/O activity and make it look like CPU activity.
This requires modifications of the communications library,
and in particular, the substitution of busy waiting by spin
blocking.

Finally, we also intend to experiment with more
advanced pairing schemes. For example, we would like to
consider a more precise matching of slots, e.g., using a
detailed measurement of CPU utilization on each processor
rather than average values for each job.
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