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Abstract

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed A-calculi, and linear logic. The emergence in the past ten years of a coherent field
of research often named “logic and computation” has had two major (and related) effects:
firstly, it has rocked vigorously the world of mathematical logic; secondly, it has created
a new computer science discipline, which spans from what is traditionally called theory of
computation, to programming language design. Remarkably, this new body of work relies
heavily on some “old” concepts found in mathematical logic, like natural deduction, sequent
calculus, andi-calculus (but often viewed in a different light), and also on some newer
concepts. Thus, it may be quite a challenge to become initiated to this new body of work (but
the situation is improving, there are now some excellent texts on this subject matter). This
paper attempts to provide a coherent and hopefully “gentle” initiation to this new body of
work. We have attempted to cover the basic material on natural deduction, sequent calculus,
and typedXi-calculus, but also to provide an introduction to Girard’s linear logic, one of the
most exciting developments in logic these past five years. The first part of these notes gives
an exposition of background material (with the exception of the Girard-translation of classical
logic into intuitionistic logic, which is new). The second part is devoted to linear logic and
proof nets.

Résumé

Le but de cet article est de donner unegantation dléments de logigue constructive,
de lambda calcul tyg, et de logique lieaire. Lémergence, ces dix deen€s anaés, d’'un
domaine cobfent de recherche souvent agpébgique et calcul” a eu deux effets majeurs
(et concommitents): tout d’abord, elle a dynaenle”monde de la logique maimatique;
deuxeémement, elle a eée une nouvelle discipline d’informatique, discipline quetsiid
depuis ce qu’on appelle traditionellement la&dhie de la calculabilit@a la conception des
langages de programmation. Remarquablement, ce corps de connaissances repose en grande
partie sur certains “vieux” concepts de logique neatiatique, tel que laatluction naturelle, le
calcul des sguents, et l&.-calcul (mais souvent vus avec une optiqueatdfite), et d'autres
concepts plus nouveaux. Il est donc assez difficile de s’inétiee nouveau domaine de
recherche (mais la situation s’estealiniée depuis I'apparition d’excellents livres sur ce sujet).
Cet article essaye degsénter “en douceur” et dedar) colerente ce corps de travaux. Nous
avons essay de couvrir des sujets classiques tels queddudtion naturelle, le calcul des
séquents, et le-calcul typg, mais aussi de donner une introductéiota logique lirgaire de
Girard, un des evelopements en logique les plus interessants de ces cin@@aranaés.
Dans une prenere partie nous psentons les bases (eéxception de la traduction de Girard
de la logique classique en logique intuitionniste, qui est nouvelle). La logigeait:ét les
réseaux de preuves sont testdans la deugime partie.
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Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 1

1 Introduction

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typedA-calculi, and linear logic. During the last fifteen years, a significant amount of research
in the areas of programming language theory, automated deduction, and more generally logic
and computation, has relied heavily on concepts and results found in the fields of constructive
logics and typedi-calculi. However, there are very few comprehensive and introductory
presentations of constructive logics and typecalculi for noninitiated researchers, and many
people find it quite frustrating to become acquainted to this type of research. Our motivation
in writing this paper is to help fill this gap. We have attempted to cover the basic material on
natural deduction, sequent calculus, and typethlculus, but also to provide an introduction
to Girard’s linear logic [7], one of the most exciting developments in logic these past five
years. As a consequence, we discovered that the amount of background material necessary for
a good understanding of linear logic was quite extensive, and we found it convenient to break
this paper into two parts. The first part gives an exposition of background material (with the
exception of the Girard-translation of classical logic into intuitionistic logic, which is new [9]).
The second part is devoted to linear logic and proof nets.

In our presentation of background material, we have tried to motivate the introduction of
various concepts by showing that they are indispensable to achieve certain natural goals. For
pedagogical reasons, it seems that it is best to begin with proof systems in natural deduction
style (originally due to Gentzen [3] and thoroughly investigated by Prawitz [14] in the sixties).
This way, it is fairly natural to introduce the distinction between intuitionistic and classical
logic. By adopting a description of natural deduction in terms of judgements, as opposed to
the tagged trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding
of proofs as certain typettterms, and to the correspondence between proof normalization and
B-conversion (the&€urry/Howard isomorphisriil0]). Sequent calculi can be motivated by the
desire to obtain more “symmetric” systems, but also systems in which proof search is easier to
perform (due to the subformula property). At first, the cut rule is totally unnecessary and even
undesirable, since we are trying to design systems as deterministic as possible. We then show
how every proof in the sequent calculgg)(can be converted into a natural deduction proof
(in ;). In order to provide a transformation in the other direction, we introduce the cut rule.
But then, we observe that there is a mismatch, since we have a transforivatihn— A;
on cut-free proofs, whered@ N; — G maps to proofs possibly with cuts. The mismatch
is resolved by Gentzen’s fundamental elimination theoremmwhich in turn singles out the
crucial role played by theontraction rule Indeed, the contraction rule plays a crucial role
in the proof of the cut elimination theorem, and furthermore it cannot be dispensed with in
intuitionistic logic (with some exceptions, as shown by some recent work of Lincoln, Scedrov,
and Shankar [12]). We are thus setting the stage for linear logic, in which contraction (and
weakening) are dealt with in a very subtle way. We then investigate a number of sequent
calculi that allow us to prove the decidability of provability in propositional classical logic
and in propositional intuitionistic logic. The cut elimination theorem is proved in full for the
Gentzen systeriC using Tait’s induction measure [18], and some twists due to Girard [8]. We
conclude with a fairly extensive discussion of the reduction of classical logic to intuitionistic
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2 Jean Gallier

logic. Besides the standard translations due ¢d&,"Gentzen, and Kolmogorov, we present
an improved translation due to Girard [9] (based on the notion of polarity of a formula).

2 Natural Deduction and Simply-Typed A-Calculus

We first consider a syntactic variant of the natural deduction system for implicational
propositions due to Gentzen [3] and Prawitz [14].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving a
proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction,
certain packets of assumptions can be “closed”, or “discharged”. A proof is a deduction
such that all the assumptions have been discharged. In order to formalize the concept of a
deduction, one faces the problem of describing rigorously the process of discharging packets
of assumptions. The difficulty is that one is allowed to discharge any number of occurrences
of the same proposition in a single step, and this requires some form of tagging mechanism.
At least two forms of tagging techniques have been used.

e The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree
whose nodes are labeled with propositions. One is allowed to tag any set of occurrences
of some proposition with a natural number, which also tags the inference that triggers the
simultaneous discharge of all the occurrences tagged by that number.

e The second solution consists in keeping a record of all undischarged assumptions at every
stage of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions
of the forml + A, calledsequentswhere A is a proposition, and is a record of all
undischarged assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human’s point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt
the second solution. It is convenient to tag packets of assumptions with labels, in order to
discharge the propositions in these packets in a single step. We use variables for the labels,
and a packet consisting of occurrences of the proposiias written asz: A. Thus, in a
sequent ~ A, the expression is any finite set of the forme1: A1, ..., 2m: Am, Where the
z; are pairwise distinct (but thg; need not be distinct). Giveln = z1: A1, ..., Zm: Ay, the
notationl, z: A is only well defined whem 7 z; for all 7, 1 < ¢ < m, in which case it denotes
the sete1: Ay, ..., zm: Am, 2. A. We have the following axioms and inference rules.

Definition 1 The axioms and inference rules of the systég (minimal implicational logic)
are listed below:

Me:Ar A
Mez:Av B (>-intro)
- -i
r''-A>B >

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 3

NrN-A>DB T A

D-elim
N~ B ( )

In an application of the rulex{-intro), we say that the propositioA which appears as a
hypothesis of the deduction discharged(or closed. It is important to note that the ability
to label packets consisting of occurrences of the same proposition with different labels is
essential, in order to be able to have control over which groups of packets of assumptions are
discharged simultaneously. Equivalently, we could avoid tagging packets of assumptions with
variables if we assumed that in a sequent C, the expression, also called aontext is a
multisetof propositions. The following two examples illustrate this point.

Example 2.1 Let
Fr=z:A>(BD2C),y:AD B,z A.

r-A>(B>C0C) M- A - A>B Mr— A
- B>C B
. AD(BDC),yAD B,z AvC
. ADBDOC) ,yyADB+ADC
z2ADBD>C)-(ADB)D(ADC(O)
(ADBDOC)D((ADB)D(ADCQ))

In the above example, two occurrencesdofire discharged simultaneously. Compare with
the example below where these occurrences are discharged in two separate steps.

Example 2.2 Let
Fr=2:AD>(BDC),y:AD B,21: A, 220 A.

r-A>(B>C0C) M- A - A>B Mr— A
- B>C B
2. AD(BDC),y>AD B,21:A,22. A C
2. AD(BDC),yADB,z1:A+ADC
z2AD(BDC)z:A-(ADB)D(ADC)
z21:1A- (ADBDC)D((ADB)D(ADQO))

|—AD((AD(BDC))D((ADB)D(ADC)))
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4 Jean Gallier

For the sake of comparison, we show what these two natural deductions look like in the
system of Gentzen and Prawitz, where packets of assumptions discharged in the same inference
are tagged with a natural number. Example 2.1 corresponds to the following tree:

Example 2.3

(AD (B >CQC)° Al (AD B)? Al
B>C B
C

ADC
AD>DB)D>AD0O)
(ADBDC)D((ADB)D(ADCQO))

and Example 2.2 to the following tree:

Example 2.4

(AD (B >CQC)° Al (AD B)? A*
B>C B
C

ADC
AD>DB)D>AD0O)
(ADBDC)D((ADB)D(ADCQO))

AD((AD(BDC’))D((ADB)D(ADC)))

It is clear that a context (the in a sequenf + A) is used to tag packets of assumptions
and to record the time at which they are discharged. From now on, we stick to the presentation
of natural deduction using sequents.

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example:

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 5

D,
MNez:Av B Dy
- A>DB M~ A

N~ B

Intuitively, it should be possible to construct a deductionfer B from the two deductions
D1 andD, without using at all the hypothesis A. This is indeed the case. If we look closely
at the deductio®4, from the shape of the inference rules, assumptions are never created, and
the leaves must be labeled with expressions of thefary z: A,y: C+ Corl", A, z: Av A,
wherey Z . We can form a new deduction fbn— B as follows: inD1, wherever a leaf of the
form [, A, z: A+ A occurs, replace it by the deduction obtained frimby addingA to the
premise of each sequenti. Actually, one should be careful to first make a fresh copppf
by renaming all the variables so that clashes with variabl@¥ iare avoided. Finally, delete
the assumptioe: A from the premise of every sequent in the resulting proof. The resulting
deduction is obtained by a kind of substitution and may be denot&d [@%,/z], with some
minor abuse of notation. Note that the assumptiong occurring in the leaves of the form
Az A, y: Cv+ C were never used anyway. This illustrates the fact that not all assumptions
are necessarily used. This will not be the case in linear logic [7]. Also, the same assumption
may be used more than once, as we can see intkaifm) rule. Again, this will not be the
case in linear logic, where every assumption is used exactly once, unless specified otherwise
by an explicit mechanism. The step which consists in transforming the above redundant proof
figure into the deductio®4[D-/z] is called areduction ster normalization step

We now show that the simply-typekicalculus provides a natural notation for proofs in
natural deduction, and th@tconversion corresponds naturally to proof normalization. The
trick is to annotate inference rules with terms corresponding to the deductions being built, by
placing these terms on the righthand side of the sequent, so that the conclusion of a sequent
appears to be the “type of its proof”. This way, inference rules have a reading as “type-
checking rules”. This discovery due to Curry and Howard is known a<Ctirey/Howard
isomorphismor formulae-as-types principlle0]. Furthermore, and this is the deepest aspect
of the Curry/Howard isomorphism, proof normalization corresponds to term reduction in the
A-calculus associated with the proof system.

Definition 2 The type-checking rules of thecalculusA- (simply-typecdk-calculus) are listed
below:

Mo Avz: A
Me:Av M: B
M- (Az:A.M):ADB
N-M:ADB T~ N:A
N~ (MN):B

(abstraction)

(application)

Research Report No. 8 May 1991



6 Jean Gallier

Now, sequents are of the form+ M: A, wherelM is a simply-typed\-term representing
a deduction ofA from the assumptions ih. Such sequents are also caljadgementsandl
is called aype assignmerdr context

The example of redundancy is now written as follows:

Me:Av M: B
M- (Az:A.M):ADB N~ N: A
N~ (Az: A.M)N: B

Now, D is incorporated in the deduction as the tedfy and D, is incorporated in the
deduction as the teriV. The great bonus of this representation is BgtD, /] corresponds
to M[N/z], the result of performing A-reduction step onXg: A. M)N.

Thus, the simply-typed-calculus arises as a natural way to encode natural deduction proofs,
and g-reduction corresponds to proof normalization. The correspondence between proof
normalization and term reduction is the deepest and most fruitful aspect of the Curry/Howard
isomorphism. Indeed, using this correspondence, results about the simplyAtgadclilus
can be translated in terms of natural deduction proofs, a very nice property.

When we deal with the calculus’, rather than using, we usually use-, and thus, the
calculus is denoted as™. In order to avoid ambiguities, the delimiter used to separate the
lefthand side from the righthand side of a judgenient A1: A will be >, so that judgements
are writtenag > M: A.

3 Adding Conjunction, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of
the simply-typedi-calculus. As far as proof normalization is concerned, conjunction does
not cause any problem, but as we will see, negation and disjunction are more problematic. In
order to add negation, we add the new constagfalse) to the language, and define negation
- A as an abbreviation fod D L.

Definition 3 The axioms and inference rules of the sys.t‘ﬁe’ﬁ1A’V’L (intuitionistic proposi-
tional logic) are listed below:

Me:Ar A
oAy B (D-intro)
- A>B

M- A>B T A
- B

(>-elim)

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 7

N-A B .
—————  (A-intro)
- AAB
- AAB . - AAB .
—  (A-elim) —— (A-elim)
M~ A N~ B
N A . M~ B .
——— (v-intro)) ———— (v-intro)
N~ Av B - Av B
Fr'-AvB TlNz:Av-C T,y.BvC )
(v-elim)
M- cC
ML .
—  (L-elim)
M- A

Minimal propositional logicV,2»"V+1 is obtained by dropping the ¢elim) rule. In order to
obtain the system aflassical propositional logicdenotedV2>"+V++, we add taV2"V+L the
following inference rule corresponding to the principle of proof by contradictiyncontrg
(also calledeductio ad absurduim

Mae:—-Aw1

by-contr
N~ A (by 3

Several useful remarks should be made.

(1) In classical propositional logio\(?+"+V+1), the rule

M1 .
—  (L-elim)
M- A

can be derived, since if we have a deductior of 1, then for any arbitraryd we have a
deductionz: = A, + L, and thus a deduction 6f+ A by applying the Ijy-contrg rule.

(2) The propositiond > -- A is derivable inA2V+L, but the reverse implication
-= A D Ais not derivable, even in;?"V. On the other hands~ A O A is derivable in
A/CD,/\,V,J_:

. Ay A A . Ay Ar - A
. Ay AL
(by-contrg
. A A
F-—ADA

Research Report No. 8 May 1991



8 Jean Gallier

(3) Using the py-contrg inference rule together witln(-elim) and {/-intro), we can prove
AV Af(thatis, A DL1) Vv A). Let

M=z:(AD>L)VvA) DLy A

We have the following proof for4 D 1) v A.

N~ A

M- ((A>L)vA) DL I'-(ADL)VA
z.(ADL)VA) DL,y Av1L
z.(ADL)VA) Dl ADL

z.(ADL)VA) DI+ (ADL)VA)DL z.(ADL)VA) DI (ADL)VA
z.(ADL)V A) Dlw1 (by-contr3
—(ADL)VA

The typed A-calculus A~ corresponding to/\/f”\’v’L is given in the following
definition.

Definition 4 The typed\-calculusA—** is defined by the following rules.
Mo Avz A

Mez:A>M: B
M>Az:A.M):A— B

(abstraction)

lr-M:A—- B IpN:A
N>(MN):B

(application)

Nr-=M:A Te-N:B
Mr>-(M,N):Ax B

(pairing)

l>-M:Ax B L Nl>-M:Ax B o
——— (projection) —— (projection)
F>7r1(M):A F>7r2(M):B

MN-M:A L N-M:B L
_ (injection) _ (injection)
M-inl (M):A+B Msinr (M):A+B

N>P:A+B T,z:AcM:.C T,y.B>N:C
I>case (P, Az: A.M,Ay:B.N):.C

(by-cases)

M- M: L

T (L-elim)
> Aa(M): A

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 9

A syntactic variant ofcase (P, Az: A. M, Ay: B. N) often found in the litterature is
case P of inl (z:A) = M | inr (y:B) = N, or evencase P of inl (z) =
M |inr (y) = N, and thefy-caseprule can be written as

N>P:A+B T,z:AcM:.C T,y.B>N:C

: _ (by-casep
>(case Pofinl (z:A)= M |inr (y:B)= N):C

We also have the following reduction rules.

Definition 5 The reduction rules of the systexmr>**L are listed below:

(Az: A. M)N — M[N/z],
(M, N)) — M,
mo((M,N)) — N,
case (inl (P),Az: A.M,\y: B.N) — M[P/z], or
caseinl (P)ofinl (z:A)= M |inr (y:B)= N — M[P/z],
case (inr (P),Az: A.M,\y:B.N) — N[P/y], or
caseinr (P)ofinl (z:A)= M |inr (y:B)= N — N[P/y],
Aaop(M)N — Ap(M),
T1(Daxs(M)) — La(M),
(D axs(M)) — Ap(M),
case (A4+5(P),Az: A. M,\y: B. N) — Ac(P),
Aa(AL (M) — Aa(M).

Alternatively, as suggested by Amsuder $iarez, we could replace the rules éase by the
rules

case (inl (P),M,N) — MP,

case (inr (P),M,N) — NP,
case (Aa+(P), M,N) — A¢c(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up te-renaming. This result was first proved by Prawitz [15]

for the systentv;>""*.

Theorem 1 (Church-Rosser property, Prawitz (1971)) Reduction inA=>**L (specified
in Definition 5) is confluent. Equivalently, conversiomin "+ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martf{lL3] using a form of
parallel reduction (see also Stenlund [16]).

Research Report No. 8 May 1991



10 Jean Gallier

Theorem 2 (Strong normalization property, Prawitz (1971)) Reductionim\=*" (asin
Definition 5) is strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [17], [19], as done in Girard [5]
(1971), [6] (1972) (see also Gallier [2]).

If one looks at the rules of the systelqﬁ?”\’\”L (or A=>%%4), one notices a number of
unpleasant features:

(1) There is arasymmetnjpetween the lefthand side and the righthand side of a sequent (or
judgement): the righthand side must consist of a single formula, but the lefthand side
may have any finite number of assumptions. This is typical of intuitionistic logic, but it
is also a defect.

(2) Negation is very badly handled, only in an indirect fashion.

(3) The (-intro) rule and the -elim) rule are global rules requiring the discharge of
assumptions.

(4) Worse of all, the \{-elim) rule contains the parasitic formufawhich has nothing to do
with the disjunction being eliminated.

Finally, note that it is quite difficult to search for proofs in such a system. Gentzen’s sequent
systems remedy some of these problems.

4 Gentzen’s Sequent Calculi

The main idea is that now, a sequdnt— A consists of two finite multiset and A
of formulae, and that rather than having introduction and elimination rules, we have rules
introducing a connective on the left or on the right of a sequent. A first version of such a
system for classical propositional logic is given next. In these fukasdA stand for possibly
empty finite multisets of propositions.

Definition 6 The axioms and inference rules of the sysgetfV:~ for classical propositional
logic are given below.

ATHAA
AATHA N=AA A .
——  (contrac left) —— (contrac right)
ATrA MN=AA
A B, T+ A A left NrN-AA T AB A right
_— : 1
AANB,T+A ( ) r-AAANB (A:1ight)

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 11

AlTT-A BT A N-AAB .
(v: left) —————  (V:right)
AV B,T+ A r-A AV B
N-AA BT A (> left) AT+ AB (>: right)
. e —— . n
ADB,T+A > r'-AADB -9
MN-AA AT+ A .
—  (—:left) ————  (~:right)
“A A M= A-A

Note the perfect symmetry of the left and right rules. If one wants to deal with the extended
language containing alsb, one needs to add the axiom

1, A

One might be puzzled and even concerned about the presence of the contraction rule.
Indeed, one might wonder whether the presence of this rule will not cause provability to be
undecidable. This would certainly be quite bad, since we are only dealing with propositions!
Fortunately, it can be shown that the contraction rule is redundant for classical propositional
logic. But then, why include it in the first place? The main reason is that it cannot be
dispensed with in intuitionistic logic, or in the case of quantified formulae. (Recent results
of Lincoln, Scedrov, and Shankar [12], show that in the case of propositional intuitionistic
restricted to implications, it is possible to formulate a contraction-free system which easily
yields the decidability of provability). Since we would like to view intuitionistic logic as a
subsystem of classical logic, we cannot eliminate the contraction rule from the presentation of
classical systems. Another important reason is that the contraction rule plays an important role
in cut elimination. Although it is possible to hide it by dealing with sequents viewed as pairs
of sets rather than multisets, we prefer to deal with it explicitly. Finally, the contraction rule
plays a crucial role in linear logic, and in the understanding of the correspondence between
proofs and computations, in particular strict versus lazy evaluation.

In order to obtain a system for intuitionistic logic, we restrict the righthand side of a sequent
to consist ofat most one formulaWe also modify the %: left) rule and the ¥: right) rule
which splits into two rules. Thecontrac right) rule disappears, and it is also necessary to add
a rule of weakening on the right, to mimic the-glim) rule.

Definition 7 The axioms and inference rules of the sysgeti™""~ for intuitionistic proposi-
tional logic are given below.
ATHA
M-

o (weakeningright)

A AT A

(contrac left)
ATrA

Research Report No. 8 May 1991



12 Jean Gallier

A B, T+ A '-A '-B .
2 (Arleft) ————— " (A:right)
ANB, T+ A - AAB
AlTT-A B,T+A
(V: left)
AV B, TrA
VA4 right - V: right
_— g _— g
- Av B ( ght) - Av B ( ght)
N-A B,T+A (>: left) AT+ (>: right)
ADB T+ A ' r'-ADB -"9
A ey AT Girighy
SATE Fe-4 o9

In the above rules) contains at most one formula. If one wants to deal with the extended
language containing alsb, one simply needs to add the axiom

1, A,

whereA contains at most one formula. If we choose the language restricted to formulae over
A, D, V, and L, then negatiom A is viewed as an abbreviation far O 1. Such a system can
be simplified a little bit if we observe that the axiom I v A implies that the rule

M1
M- A

is derivable. Indeed, assume that we have the axigm+ A. If ' + L is provable, since no
inference rule applies ta, the leaf nodes of this proof must be of the forfn- L. Thus, we
must havel [T ’, in which casd™’ ~ A is an axiom. Thus, we obtain a prooflof- A. We
can also prove that the converse almost holds. Sinder L is an axiom, using the rule

4,1
1, A

we see thatl,I' + A is provable. The reason why this is not exactly the converse is that
L,T + is not provable in this system. This suggests to consider sequents of th€ ferzh
where A consistexactly of a single formulaln this case, the axiom, I ~ A is equivalent

to the rule

TEL (L right)
M- A M9

We have the following system.

Definition 8 The axioms and inference rules of the sysgeti"* for intuitionistic proposi-
tional logic are given below.
ATHA
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TEL L right
| Mg
A ATvC
————— (contrac left)
ATwC
A BT+ C - A '8 .
o Y (anleft) ————— (A:right)
AANB, T+ C - AAB
ATw-C B,TvC
(v: left)
AVB,TwC
"EA right "m B right)
- AV B -n9 - Av B "9
- A B,T+C (o: left) AT+ B (5: right)
ADBTT+C ' r-A>B "9

There is a close relationship between the natural deduction syétefn”* and the Gentzen
systemg?”"V"*. In fact, there is a procedur¥ for translating every proof ig;""** into
a deduction inN""*. The procedureV has the remarkable property th&f(M) is a
deduction in normal form for every prodf. Since there are deductions. 2Vl that are
not in normal form, the functioW is not surjective. The situation can be repaired by adding
a new rule tag?”™"*, thecut rule Then, there is a procedusé mapping every proof in
G>"™V* to a deduction inv;"'*, and a procedur@ mapping every deduction it>"""¥*
to a proof ing? Ve,

In order to close the loop, we would need to show that every progfifi’"~“* can be
transformed into a proof igf’A’V’L, that is, a cut-free proof. It is an extremely interesting
and deep fact that the systeg?””"* and the systeng?""*¥"" are indeed equivalent.
This fundamental result known as tbet elimination theorenwvas first proved by Gentzen in
1935 [3]. The proof actually gives an algorithm for converting a proof with cuts into a cut-free
proof. The main difficulty is to prove that this algorithm terminates. Gentzen used a fairly
complex induction measure which was later simplified by Tait [18].

The contraction rule plays a crucial role in the proof of this theorem, and it is therefore natural
to believe that this rule cannot be dispensed with. This is indeed true for the intuitionistic
systemg;”"™V"* (but it can be dispensed with in the classical sysgghf-V:1). If we delete
the contraction rule from the systegiy”""""* (or G?*V'™), certain formulae are no longer
provable. For example; - (P v = P) is provable ing?>"""”, but it is impossible to build
a cut-free proof for it without usingcontrac left). Indeed, the only way to build a cut-free
proof for =— (P v = P) without using ¢ontrac left) is to proceed as follows:
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14 Jean Gallier

-PVv-P
—|(P\/—|P)I—
I——|—|(P\/—|P)

Since the only rules that could yield a cut-free prooiof’ v -~ P are the {¢: right) rules
and neither- P nor+ - P is provable, itis clear that there is no cut-free proofoP v - P.

However,- -— (P v - P) is provable ing?"¥"", as shown by the following proof (the

same example can be worked ougif”"*):
Example 4.1
Pv P
P+ PV-P
P,~(PV-P)r

—|(P\/—|P)I——|P
A(PV-aP)rPv-aP
A(PV~aP),~(PV-P)+r

(contrac left)

—|(P\/—|P)I—
I——|—|(P\/—|P)

Nevertheless, it is possible to formulate a cut-free sysgdgi”™"" which is equivalent

to g2V, Such a system due to Kleene [11] has no contraction rule, and the premise of
every sequent can be interpreted as a set as opposed to a mukiseniResults of Lincoln,
Scedrov, and Shankar [12], show that in the case of propositional intuitionistic logic restricted
to implications, it is possible to formulate a contraction-free system which easily yields the
decidability of provability).

5 Definition of the Transformation N from G; to N;

The purpose of this section is to give a proceddfenapping every proof ig”"""* to

a deduction in/\/f’A’V’l. The procedureV is defined by induction on the structure of proof
trees and requires some preliminary definitions.

Definition 9 A proof treell with root nodd” + C is denoted as

M
M~ C
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and similarly a deductio® with root nodel” + C is denoted as

D
M- cC

A proof treell whose last inference is

'~ B
A D

is denoted as
My
M- B
A D

wherell; is the immediate subproof 6f whose root i” + B, and a proof tred1 whose last
inference is

- B I'C
Av D
is denoted as
My AP
'~ B MN-¢C
Av D

wherell; and I, are the immediate subproofs bf whose roots ard” + B andl + C
respectively. The same notation applies to deductions.

Given a proof treé€l with root nodd + C,

M
M~ cC

N vyields a deductiow/ () of C from the set of assumptions,

N()
MMwC

wherel " is obtained from the multis€t. However, one has to exercise some care in defining
" so thatV is indeed a function. This can be achieved as follows. We can assume that we
have a fixed total ordex, on the set of all propositions so that they can be enumerated as
Py, P>, ..., and afixed total ordet,, on the set of all variables so that they can be enumerated
asey, ro, ...
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Definition 10 Given a multisef’ = Ay, ..., A,, since{4q,...,4,} = {PF;,,..., Pi,} where
P, <, P, <, ...<, P, (WherePy, P, . ., is the enumeration of all propositions and where
ij = i;4+1 iS possible sinc€ is a multiset), we defineé* aslr* = z1: P; , ..., 2z, B;,.

We will also need the following concepts and notation.

Definition 11 Given a deduction

D
M- cC

the deduction obtained by adding the additional assumptotsthe lefthand side of every
sequent oD isdenoted aA+D, and itis only well defined provided thddm(')ndom@) = O
for every sequerlt’ + A occurring inD. Similarly, given a sequential proof

M
M= A

we define the prodk + 1 by adding/\ to the lefthand side of every sequenfiofand we define
the prooff1 + © by adding® to the righthand side of every sequenfbf

We also need a systematic way of renaming the variables in a deduction.

Definition 12 Given a deductio® with root nodeA + C the deductiorD’ obtained fronD
by rectification is defined inductively as follows:

If D consists of the single nodg: A1, ..., ym: Am + C, define the total ordek on the
contextA = y1: A1, ..., Ym: A, as follows:

' ) . A; <pAJ" or
it A; <yt A; iff {Ai:Aj and y; <, y;.

The order< onyi: Ay, ..., ¥m: Ay defines the permutationsuch that
Yo(1)' Ao(1) < Yo 2): Ao@) < -+ < Yo(m-1)" Aom—1) < Yo(m): Ae(m)-

Let A" = &1 Ag(1), . . ., m: Ao@m), and defineD’ asA' + C. The permutatior induces a
bijection betweeqz, ..., z,} and{y1,...,yn}, Namelyz; — y,).

If D is of the form

D,
1. Al,yzl Az, e Yme Am — B

yzZAz,...,ymZAml— A1 DB
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Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 17

by induction, we have the rectified deduction
D1
1. Aa(l), sy Tjo1t Aq(j_l), z;: Al, Zj+1: Aq(j+1), ey Tt Aa(m) + B
wherez; corresponds t@; in the bijection betweefz1,...,z,} and {y1,...,y,} (in fact,

j = o71(1) sinceA; = A,(;)). Then, apply the substitutide,, /z;, 2;/zj+1, . . . Tm-1/Zm]
to the deductiorD!, and form the deduction

Dilem/2j, 2/ 241, - - > Tm—1/Tm]
1. Aa(l), sy Tjo1t Aq(j_l), Tm- Al, z;: Aa(j+1), RN Je Aa(m) + B
T Aa(l), A Aq(j_l), z;: Aq(j+1), R Aa(m) - Al OB

The other inference rules do not modify the lefthand side of sequent®’asdbtained by
rectifying the immediate subtree(s)Df

Note that for any deductio® with root nodey;: A1, ...,ym: Am + C, the rectified
deductionD’ has for its root node the sequértit C, wherel * is obtained from the multiset
= A4,..., A, asin Definition 10.

The procedurgV is defined by induction on the structure of the proof free
e An axioml', A+ A is mapped to the deductioh (4)* ~ A.

e A proof 1 of the form

M1
M- A

is mapped to the deduction
N (1)
M1
Me A

e A proof 1 of the form

AA T+ B
AT+ B
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is mapped to a deduction as follows. First nigpto the deductiooh'(M1)

N (M)
. A,y AT "+ B

Next, replace every occurrence af:“A, y: A" in N'(M1) by “z: A” where z is a new variable
not occurring inV(My), and finally rectify the resulting tree.

e A proof of the form

My M2
| N~ B
- AAB
is mapped to the deduction
N (1) N(M2)
Mr A M+~ B
M~ AAB
e A proof of the form
My
A B, TwC
ANB,TwC

is mapped to a deduction obtained as follows. First, Mapo A (1)
N (1)
z. A,y B, C
Next, replace every leaf of the form A, y: B, A, "+ A in N (1) by the subtree

zZZANB,AT*+ ANB
ZZANB,AT - A

and every leaf of the form: A, y: B, A, + B in N(M1) by the subtree

zZZANB,AT*+ ANB
z2AANB,AT"+ B
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where z is new, replace #: A,y: B” by “z: A A B” in every antecedent of the rdsug
deduction, and rectify this last tree.

¢ A proof I of the form

AT+ B
r-AD>DB

is mapped to the deduction
N (1)
z.A,T" B
M~ A>B

¢ A proof I of the form

M1 M
M- A B,I'-C
ADB,T-C

is mapped to a deduction as follows. First mi&pandl; to deductionsV (1)
N (1)
Me A
andN (My)
N ()
z. B, C
Next, form the deductio®

z2AD B+N(My)
z2ADB,["-ADB zZZADB, T '+ A
z2ADB,T*+ B

and modifyN (M) as follows: replace every leaf of the fomn B, A, "+ B by the deduction
obtained fromA + D by replacing %: B” by “z: A D B” in the lefthand side of every sequent.
Finally, rectify this last deduction.
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e A proof of the form

My
T4
- Av B

is mapped to the deduction
N (1)
Me A
MM+~ AV B

and similarly for the other case of the:(right) rule.

e A proof of the form
My M2
ATwC B,I'vC
AVB,TwC

is mapped to a deduction as follows. First nigpandrl; to deductionsV (1)

N (M)
. AT C
andN/ (MMy)
N (M)
y. B, "+ C
Next, form the deduction
z.AV B+ N(My) 22 AV B+ N(My)
z2AVB,T"+ AVB Z2AVB,z. AT v C z2AV B,y:B,T"+ C

zZZAVB,T'w+C

and rectify this last tree.

This concludes the definition of the proceduve Note that the contraction rule can be
stated in the system of natural deduction as follows:

z. A,y AT+ B
z.A,Tv Blz/z, z/y]
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wherez is a new variable. The following remarkable property\bfs easily shown.

Lemma 1 (Gentzen (1935), Prawitz (1965)) For every prooffl in G2V, N (M) is a
deduction in normal form (iv,>""%).

Since there are deductions """ that are not in normal form, the functiod is not
surjective. Itis interesting to observe that the funcids not injective either. What happens
is thatg?"™"* is more sequential thav,>"""""*, in the sense that the order of application
of inferences is strictly recorded. Hence, two proofﬁjﬁ’\’v’L of the same sequent may
differ for bureaucratic reasons: independent inferences are applied in different orders. In
NPV these differences disappear. The following example illustrates this point. The
sequent- (P A P') D ((Q A Q") D (P A Q)) has the following two sequential proofs

P, P,Q,Q'v P P, P,Q,Q'vQ
P,P'.Q,Q'v PAQ
PAP.Q,Q'vPAQ
PAP,QANQ'v+PAQ

PAP' = (QAQ)D(PAQ)
H(PAP)D((QAQ)D(PAQ))

and

P, P,Q,Q'v P P, P,Q,Q'vQ
P,P'.Q,Q'v PAQ
PP ,ONQ v PAQ
PAP,QANQ'v+PAQ
PAP' = (QAQ)D(PAQ)
H(PAP)D((QAQ)D(PAQ))

Both proofs are mapped to the deduction

. P\NP,y:QANQ'v+ PA P . PANPLy:QANQ'+QANQ’
. PANP,y.QANQ' v+ P .PANPLy:QAQ v Q
. PANP,y.QANQ' v~ PAQ
z.PAP-QAQ)D(PAQ)
H(PAP)D((@QAQ)D(PAQ))
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6 Definition of the Transformation G from N to G;

We now show that if we add a new rule, the cut rule, to the systéfy¥"*, then we can
define a proceduré mapping every deduction it;>""¥"* to a proof ing;" <,

Definition 13 The systeng;"V** is obtained from the systegy""""* by adding the
following rule, known as the cut rule:

NrN-A4 ATlw+C
r=C

(cut)

The systeng2:"V-1eut is obtained frong2>"V>+ by adding the following rule, also known
as the cutrule:
M= A,A AT+ A

cut
M= A (cut)

Next, we define the procedu@ mapping every deduction in/;"¥'* to a proof in

g2V The procedurd is defined by induction on the structure of deduction trees.
Given a deduction treB of C' from the assumptiors,

D
M- cC

G yields a prooiG (D) of the sequent — + C
g(D)
e C

wherel ™ is the multisetds, ..., A, obtained from the context = z1: A1, ..., 2, A, by
erasingey, . . ., ¢,, Wherezq, .. ., &, are pairwise distinct.

e The deductior, z: A+ A is mapped to the axiofi—, A+ A.
¢ A deductionD of the form

M1
M- A

is mapped to the proof

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi

23

G(D1)
ML
MM A
¢ A deductionD of the form
Ds Dy
| '~ B
- AAB
is mapped to the proof
G(D1) G(D2)
MM A B
MM~ AAB
¢ A deductionD of the form
D,
- AAB
N~ 4
is mapped to the proof
G(D1) AB,TT+ A
M+ AAB AANB, T+ A
(cuy)
M A
and similarly for the symmetric rule.
¢ A deductionD of the form
Ds
z. A, B
- A>B
is mapped to the proof
G(D1)
AT+ B
MM~ ADB
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¢ A deductionD of the form

Ds Dy
- A>B |
N~ B
is mapped to the proof
G(D2)
G(D,) MM A B, "+ B
r~~A>DB ADB,I"+B
(cuy)
B
¢ A deductionD of the form
D,
_ed
- AV B
is mapped to the proof
G(D1)
M A
MM~ AV B

and similarly for the symmetric rule.

¢ A deductionD of the form

- AvB 2. ATwC y. B, C
M= C
is mapped to the proof
G(D2) G(Da3)
G(Dy) AT C B I vC
MM~ AVB AVB, T +C
(cuy)
MeC
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This concludes the definition of the procedgre

For the sake of completeness, we also extend the definition of the funtiamich is
presently defined on the set of sequential proofs of the syggf1*" to proofs with cuts,

that is, to proofs in the systef>""** A proof I of the form

My Mp
M- A ATwC
M- cC

is mapped to the deduction obtained as follows: First, construct

N(My)
Me A

andN/ (MMy)

N(2)
. AT C

Then, replace every leaf: A,A,T" + A in N(MNy) by A+ N (MN,), delete %: A” from the
antecedent in every sequent, and rectify this last tree.

7 First-Order Quantifiers

We extend the systeré"""\" andg?""*V*** to deal with the quantifiers.

Definition 14 The axioms and inference rules of the sysgept™""™%+ for intuitionistic
first-order logic are listed below:
Me:Ar A
Mez:Av B

———  (D-intro
r'-A>B ( )

FrN-A>DB T A
- B

(>-elim)

N-A - B

(A-intro)
'~ AAB

- AAB - AAB

A-elim A-elim
N A ( im) M~ B ( im)
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N A . M~ B .
—————  (V-intro) —————  (V-intro)
- AvB - AvB
Fr'-AvB Tlz:.Av-C T,y:BvC )
(v-elim)
N~ ¢C
M1 .
(L-elim)
M- A
M~ Aly/z] . N~ OzA .
—— = (O-intro) ————  (O-elim)
N~ OzA M~ Alr/z]
where in (J-intro), y does not occur free if or Oz A,
Me A M kA 2z Aly/z],T+ C _
FeAlr/zl - ino) C # AW/l TEC o im)
M- CeAd rN-¢C

where in (3elim),y does not occur free if, [k A, or C.

The variabley is called the eigenvariable of the inference.

Definition 15 The axioms and inference rules of the sysgstd""=51= for intuitionistic
first-order logic are given below.

AT A
THL L right
| Mg
A ATvC
—— (contrac left)
ATwC
NrN-A4 ATlw+C
(cut)
M= C
A BT+ C - A -8B .
S T (aclefty) ———— 7 (A:right)
AANB, T+ C - AAB
ATvC B,TvC
(v: left)
AV B,TvC
"mA . right "m B right)
- AvB "9 - Av B "9
r-A B,T+C (- left) AT+ B (>: right)
; — i
ADB,T+C = r'-A>DB > g
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A r=C M- A
Ar/ebTe € ey DAL gy
OzeA, T+ C N~ OzA
where in (J: right), y does not occur free in the conclusion;
A ,r=C M- A )
M—'_ (T left) ﬂ (Tt right)
eA, T+ C Y

where in (I left), y does not occur free in the conclusion.

The variabley is called the eigenvariable of the inference.

The typedi-calculusA—>+28L corresponding tav;>"">3 is given in the following
definition.

Definition 16 The typed\-calculusA—*55L is defined by the following rules.
Mo Avz A

Mez:A>M: B
M>Az:A.M):A— B

(abstraction)

l-M:A—- B ITpN:A

(application)

N>(MN):B
l>=M:A T>-N:B (pairing)
Fo(M,NyAxB Ponnd
Nl>=M:Ax B L N>M:Ax B L
——— (projection) —— (projection)
F>7r1(M):A F>7r2(M):B
MN-M:A L N-M:B L
_ (injection) _ (injection)
M>inl (M):A+B M>inr (M):A+B
N>P:A+B T,z:AcM:.C T,y.B>N:C
(by-cases)
I>case (P, Az: A.M,Ay:B.N).C
or
N>P:A+B T,z:AcM:.C T,y.B>N:C
(by-cases)

>(case Pofinl (z:A)= M |inr (y:B)= N):C

M- M: 1 .
———  (L-elim)
Mo Ay(M): A
> M: Alu/t] (C-intro)

e (At:e. M): OtA
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wherewu does not occur free if or 0t A;

M- M:0tA

> MT: AlT/t] (C-elim)

> M: A[T/t]
e pair (r, M)A

(Cintro)

Mo M:dA T,z Alu/t]> N:C
I>select (M,At:e.Az: A.N):C

(Celim)

whereu does not occur free ifi, kA, or C.

In the term Qt::.. M), the type. stands for the type of individuals. Note that
> Atie. Az A. N:Ot(A — C). The termAt:c. Az: A. N contains the typed which is
a dependentype, since it usually contains occurrenceg.oDbserve thatXt: ¢. Az: A. N)r
reduces toAz: A[r/t]. N[7/t], in which the type ofz is now A[r/{]. The term
select (M,At::. Az: A. N) is also denoted aselect M of pair (t:¢,z:A) = N,
or evenselect M of pair (¢,z) = N, and the (Felim) rule as

Mo M:dA T,z Alu/t]> N:C
> (select M of pair (t:¢,z: A)= N):C

(Celim)

whereu does not occur free i, X A4, orC.

Such aformalism can be easily generalized to many sorts (base types), if quantified formulae
are written aglt: 0. A and(t: . A, wheree is a sort (base type). We also have the following
reduction rules.

Definition 17 The reduction rules of the systexm*+55L gre listed below:

(Az: A. M)N — M[N/z],
(M, N)) — M,
mo((M,N)) — N,
case (inl (P),M,N)— MP, or
caseinl (P)ofinl (z:A)= M |inr (y:B)= N — M[P/z],
case (inr (P),M,N)— NP, or
caseinr (P)ofinl (z:A)= M |inr (y:B)= N — N[P/y],
Aasp(M)N — Ag(M),
T1(DaxB(M)) — La(M),
m(Aaxs(M)) — Ap(M),
(At:e. M)T — M[7/1],
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Agea(M)T — A g1 p0(M),
case (Aa+p(P), M, N) — Ac(P),

select (pair (r,P),M)— (MT)P, or

select pair (7, P) of pair (t:¢,z: A)=> N — N[7/t, P/z],
select (Aza(P), M) — Ac(P),

select (pair (r, P), Anya—c)(M)) — Dcpr/g(M),
Ap(AL(M) — Aa(M).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up te-renaming. This result was first proved by Prawitz [15]
for the systemy;>"" 25+,

Theorem 3 (Church-Rosser property, Prawitz (1971)) Reduction inA—*:*5%5L (speci-
fied in Definition 17) is confluent. Equivalently, conversioaiy*55L is Church-Rosser.

A proof can be given by adapting the method of Tait and Martf{lL3] using a form of
parallel reduction (see also Stenlund [16]).

Theorem 4 (Strong normalization property, Prawitz (1971)) Reduction imA=»%:*05L js
strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [17], [19], as done in Girard [5]
(1971), [6] (1972) (see also Gallier [2]).

To obtain the systerg?-"V:BBLeut of classical logic, we add t62+"V++ the cut rule and
the quantifier rules shown in the next definition.

Definition 18 The axioms and inference rules of the sys@p™V:BHLeut for classical
first-order logic are given below.

ATHAA
AATHA N=-AA A .
—— (contrac left) ——  (contrac right)
ATrA MN=AA
N—A L (L right)
-_— S
MN-AA g
N AA ATHA
(cut)
M= A
A B, THA (A lef) N-ANA ITeAB (A right)
_— : S
AANB,T+A r-AANB g
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AlTT-A BT A N-AAB .
(v: left) ————  (Vv:right)
AV B,T+A r-AAvVB
r-AA B, T A O left) AT+AB (5: right)
ADB,T+A ' r~ANADB 19
A A Fr-AA )
M (O: left) |——[y/:c] (0: right)
OeA, T+ A M= A OzA
where in (: right), y does not occur free in the conclusion;
A FreA Fr-AA
M—"_ (T left) '_’—[TM (T right)
M= A A

eA, - A

where in (I left), y does not occur free in the conclusion.

We now extend the function§” andg to deal with the quantifier rules. The procediifas
extended to the quantifier rules as follows.

e A proof of the form
My
Alr/z],T v+ C
OzA,l+-C

is mapped to a deduction obtained as follows. First, Mapo A (1)
N (1)
y  Alt/z],T " C
Next, replace every leaf of the forgpn A[7/z], A, T+ A[r/z] in N(My) by the subtree

y: Oz A, AT Oz A
y: Oz A, AT Alr/z]

and rectify this last tree.

e A proof of the form
My

M~ Aly/z]

N 0OzA
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is mapped to the deduction

N (1)
M Aly/z]
e OzA
¢ A proof 1 of the form
My
Aly/z],T v C
A, T+ C
is mapped to the deduction
u. OeAd +N(|_|1)
w (AT A uw kA, v Aly/z],T "+ C
u AT " C
and rectify this last tree.
¢ A proof 1 of the form
My
M~ Alr/z]
M- Ced
is mapped to the deduction
N (1)
M Alr/z]
M Oed

It is easily seen that Lemma 1 generalizes to quantifiers.

Lemma 2 (Gentzen (1935), Prawitz (1965)) For every prooflin g2"V:"5 A(M)is a
deduction in normal form (iV;>"""%54),

Next, we extend the procedugeto deal with the quantifier rules.
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¢ A deductionD of the form

is mapped to the proof

¢ A deductionD of the form

is mapped to the proof

G(D1)
M OdzA

M~ Aly/z]
M~ OdzA

G(D1)

M~ v Aly/z]

M OdzA

D,
M~ OdzA
M+ Alr/z]

Alr/z], T~ v+ Al1/2]

Oz A, T~ v+ Alr/z]

¢ A deductionD of the form

is mapped to the proof

May 1991

M v Alr/z]

D,
M+ Alr/z]
N [keA

G(D1)

v Alr/z]

M+ ed

(c

uy)
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¢ A deductionD of the form

Dl DZ
M- CeA z: Aly/z],T v C
M= C
is mapped to the proof
G(D2)
G(D1) Aly/z],T~+C
M Ced AT~ C
(cuy)
M C

We now turn to cut elimination.

8 Gentzen’s Cut Elimination Theorem
As we said earlier before presenting the functiprirom A2Vt to g2V 0¥ it is

possible to show that the systegp”™""** is equivalent to the seemingly weaker system
gZ'D,/\,V,J_-

We have the following fundamental result.

Theorem 5 (Cut Elimination Theorem, Gentzen (1935)) There is an algorithm which,
given any proofl in g>"":254e4 produces a cut-free prodl’ in G225+ There is

an algorithm which, given any prodi in g2"V-5BLeut produces a cut-free prodfl’ in
gD,/\,V,D,D,J_-

Proof. The proof is quite involved. It consists in pushing up cuts towards the leaves, and in
breaking cuts involving compound formulae into cuts on smaller subformulae. Full details are
given for the systenf K in Section 11. Interestingly, the need for the contraction rule arises
when a cut involves an axiom. The typical example is as follows. The proof

My
ATr A AATHC
ATwC

is equivalent to aqontrac left), and it is eliminated by forming the proof
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My
AJA T C
_~ "~ (contrac left)
ATwC O

If we are interested in cut-free proofs, exceptlassical propositional logidhe contraction
rules cannotbe dispensed with. We already saw in Example 4.1 tha(P v - P) is
a proposition which is not provable without contractionsdn”™"". Another example
involving quantifiers is the sequemizy(Py A - Pz) v which is not provable without
contractions ing;"*¥"®3™ or even ing2»v-:B8~_ This sequent has the following proof in
gzp,/\,v,lil,lil,—-:

Example 8.1

Pu,- Pz, Pvv+ Pu

Pu,- Pz, Pv,~n Puw
Pu,~ Pz,(PvA-Pu)v+
(Pu A~ Pz),(PvA-Pu)+
(Pu A~ Pz),y(Py A - Pu) v+
(Pu A~ Pz),Ozly(Py A~ Pz) v+
Cy(Py A - Pz), ey(Py A - Pz) v+
OxCy(Py A - Pe), Dely(Py A = Pz) +

(contrac left)

Ozly(Py A - Pz) v

It is an interesting exercise to find a deductioiafiy(Py A ~ Pz) DL in N5,

For classical logic, it is possible to show that the contraction rules are only needed to permit
an unbounded number of applications of thelgft)-rule and thel(t right)-rule. For example,
the formulalkOy(Py D Pz) is provable ing2V:%0L  but not without the ruleqontrac
right). The systeng2-"V:50L can be modified to obtain another systgig2"V:">5+ in
which the contraction rules are deleted and the quantifier rules are as follows:
OzA, Alr/z], T+ A M A, Aly/z]

O: left ———=  (O:right
OeA, T+ A ( ) M= A OzA ( ght)

where in (J: right), y does not occur free in the conclusion;

Aly/z], T+ A e A A, Al7/ 2] )
———— (O left) (T right)
eA, T+ A M= A A
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where in (1 left), y does not occur free in the conclusion.

The above system is inspired from Kleene [11] (see sys#npage 481). Note that
contraction steps have been incorporated in theléft)-rule and the [t right)-rule. The
equivalence of the systerg@ V5514 andg £ 2+V-% 54 is shown using two lemmas inspired
from Kleene [11] (1952). Given an inference other than (ight), note that the inference
creates a new occurrence of a formula calledatiecipal formula

Lemma 3 Given a proof in g2:~V:5:5™ of a sequenk + A, for every selected occurrence

of a formula of the formd A B, AV B, AD B,-A,inT or A, or A, inT, ordzA in A,

there is another proofl’ whose last inference has the specified occurrence of the formula as
its principal formula, and uses no more contractions tiadoes.

Proof. The proof is by induction on the structure of the proof tree. There are a number of
cases depending on what the last inferencalis.

Lemma 3 does not hold for an occurrence of a formided in I or for a formulalls A
in A, because the inference that creates it involves a tgermamd moving this inference down
in the proof may cause a conflict with the side condition on the eigenvasaibieolved in
the rules [J: right) or (I left). As shown by the following example, Lemma 3 also fails for
intuitionistic logic. The sequer®, (P D @), (R O 5)+ @ has the following proof:

P,(R> S)+ P P, (RD5),Q0rQ
P, (P2Q),(RD 5+ Q

On the other hand, the following treensta proof:

PvP PQwR PSP PSQvQ
P,(PDQ)-R P,(PDQ),5+Q
P,(PDQ),RD8+Q

This shows that in searching for a proof, one has to be careful not to stop after the first
failure. Since the contraction rule cannot be dispensed with, it is not obvious at all that
provability of an intuitionistic propositional sequent is a decidable property. In fact, it is, but
proving it requires a fairly subtle argument. We will present an argument due to Kleene. For
the time being, we return to classical logic.

Lemma 4 Given any formulad, any termsry, 7, any prooffl in g2-V-55~ of a sequent
Alri /2], A[m2/z],T v A (resp. of a sequent v A, A[r1/z], A[m2/=]), either there is a
proof of the sequend[r;/z],I" + A, or there is a proof of the sequeA{r,/z],I + A (resp.
either there is a proof of the sequeht— A, A[m;/z], or there is a proof of the sequent
I+ A, A[2/=2]). Furthermore, this new proof does not use more contractionsfthdoes.
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Proof. The proof is by induction on the structure of the proof tree. Lemma 3 is used in the
proof. O

We can now prove that in classical logic, the contraction rules are only needed for the
qguantifier-rules.

Lemma 5 (Contraction elimination) Every proof ing2-"V:55~ can be transformed to a
proof inGic2NV.BE,

Proof. The proof is by lexicographic induction on the péit, n), wherem is the number
of contractions in the proof treld, andn is the size offl. We use Lemma 4 when the last
inference is a contraction, with = 7 = z. Since at least one contraction goes away, we can
apply the induction hypothesis]

We now present a cut-free system for intuitionistic logic which does not include any explicit
contraction rule and in which the premise of every sequent can be interpreted as a set. Using
this systen C; due to Kleene (see syste@dBa, page 481, in [11]), we can give a very nice
proof of the decidability of provability in intuitionistic propositional logic. The idea behind
this system is to systematically keep a copy of the principal formula in the premise(s) of every
left-rule. Since Lemma Hails for intuitionistic logic, such a system is of interest.

Definition 19 The axioms and inference rules of the sysgy"""">"5+ for intuitionistic
first-order logic are given below.

AT A
THL L right
| Mg
ANB,A,B,TvC - A I'+B .
(Arleft) —— = (A:right)
AANB, T+ C - AAB
AVB,AT+C AVB,BTvC
(v: left)
AV B,TvC
T4 right - v: right
— i — i
- Av B ( ght) - Av B ( ght)
ADB,TvA ADB,B,T+C O left) AT+~ B (>: right)
; — i
ADB,T+C o r''-A>B > Mg
Oz A, A[r/2],T v+ C Me A .
ed Alr/el,TeC ey DAL oiong
OzeA, T+ C M- OzA
where in (J: right), y does not occur free in the conclusion;
kA, Aly/z],T v C e A .
W/alTeC ey A2 gy
AT+ C M- (kA
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where in (1 left), y does not occur free in the conclusion.

The variabley is called the eigenvariable of the inference.

37/\7V7|:|7D1J— 37/\7V7|:|7D1J—
K3 2

The following lemma shows th&iC is equivalent taz , and also that

the premise of every sequent@k;""">+ can be viewed as a set.

Lemma 6 For every sequerit + C, every proofl in g2*"V">5+ can be transformed into
a proofM’ of [ v C in GIC"™V"25+ . Furthermore, a proofl’ can be found such that every
formula occurring on the left of any sequentli occurs exactly once. In other words, for
every sequerit + C in ', the premisé can be viewed as a set.

Proof. The proof is by induction on the structureldf The case where the last inference
(at the root of the tree) is a contraction follows by induction. Otherwise, the sequent to be
proved is either of the forh + D whererl is a set, or it is of the formh, A, A+ D. The first
case reduces to the second sifioean be written ad, A, and from a proof of\, A + D, we
easily obtain a proof o\, A, A+ D. If the last inference applies to a formulafor D, the
induction hypothesis yields the desired result. If the last inference applies to one of the two
A’s, we apply the induction hypothesis and observe that the rulg€phave been designed to
automatically contract the two occurrencesdiahat would normally be created. For example,
if A= B AC,theinduction hypothesiswould yield a proof&fB A C, B,C v+ D considered
as a set, and the\( left)-rule of GK; yieldsA, B A C' v D considered as a setl

As a corollary of Lemma 6 we obtain the fact that provability is decidable for intuitionistic
propositional logic. Similarly, Lemma 5 implies that provability is decidable for classical
propositional logic.

Theorem 6 It is decidable whether a proposition is provableAf””"*. It is decidable
whether a proposition is provable Fp"\V:-Leut,

Proof. By the existence of the function¢ andg, there is a proof of a propositiaa in
NPV iffthere is a proof of the sequest 4 in 2"V | By the cut elimination theorem
(Theorem 5), there is a proof ig>"""-“* iff there is a proof ing?>”"\"*. By Lemma 6,
there is a proof ing?"""* iff there is a proof ingkc?”¥*. Call a proofirredundantif
for every sequenk + C in this proof,I" is a set, and no sequent occurs twice on any path.

If a proof contains a redundant sequént- C' occurring at two locations on a path, it is

clear that this proof can be shortened by replacing the subproof rooted at the lower (closest
to the root) location of the repeating sequéni- C' by the smaller subproof rooted at the
higher location of the sequeht— C'. Thus, a redundant proof can always be converted to an
irredundant proof of the same sequent. Since premises of sequents can be viewed as sets and
we are considering cut-free proofs, only subformulae of the formulae occurring in the original
sequent to be proved can occur in any proof of that sequent. Therefore, there is a fixed bound
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on the size of every irredundant proof of a given sequent. Thus, one simply has to search for
an irredundant proof of the given sequent.

By the cut elimination theorem (Theorem 5), there is a prodd V<4t iff there is a
proof ing2>"V-L. By Lemma 5, there is a proof g2V iff there is a proof ing K2V,
To conclude, note that every inferenc@;lvfcl’\’\”L decreases the total number of connectives
in the sequent. Thus, given a sequent, there are only finitely many proofsffor it.

As an exercise, the reader can show that the proposition
(P>Q)D>P)DP,

known asPierce’s law is not provable ifV;>""**, but is provable classically iV,>:"V++.

The fact that in any cut-free proof (intuitionistic or classical) of a propositional sequent only
subformulae of the formulae occurring in that sequent can occur in the proof is an important
property called thesubformula property The subformula property is not preserved by the
guantifier rules, and this suggests that provability in first-order intuitionistic logic or classical
logic is undecidable. This can indeed be shown.

One of the major differences between Gentzen systems for intuitionistic and classical logic
presented so far, is that in intuitionistic systems, sequents are restricted to have at most one
formula on the righthand side ef. This assymetry causes the:(left) and {/: right) rules of
intuitionistic logic to be different from their counterpart in classical logic, and in particular, the
intuitionistic rules cause son@ssof information. For instance, the intuitionistio (left)-rule
is

r-A B,IT'+C
ADB,T-C

whereas its classical version is

- A, B,TvC
ADB,T-C

(D: left)

(D: left)

Note thatC' is dropped in the left premise of the intuitionistic version of the rule. Similarly,
the intuitionistic {/: right)-rules are

L - (v: right)
_— S ri - S ri
- Av B g - Av B g
whereas the classical version is
=48 righ
- Av B g

Again, eitherA or B is dropped in the premise of the intuitionistic version of the rule. This
loss of information is responsible for the fact that in searching for a proof of a sequent in
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g>"V'BEL “one cannot stop after having found a deduction tree which is not a pre.ofy(
deduction tree in which some leaf is not labeled with an axiom). The rules may have been tried
in the wrong order, and it is necessary to make suredahattempts have failed to be sure that

a sequent is not provable (in fact, this search should be conducted in the gyefefn’ =5+

to ensure termination in the propositional case).

Takeuti [20] has made an interesting observation about intuitionistic cut-free sequent calculi,
but before discussing this observation, we shall briefly discuss some recent results of Lincoln,
Scedrov, and Shankar [12], about propositional intuitionistic logic based on the connective
The system of Definition 19 restricted to propositions built up only frons shown below:

AT A

ADB,T-A ADB,B,T+C AT+
(D: left) _—
ADB,T+C r''-A>B

(D: right)

This system is contraction-free, but it is not immediately obvious that provability is decidable,
sinced D B is recopied in the premises of the:(left)-rule. First, it is easy to see that we can
require4 in an axiom to be atomic, and to see that we can dtap B from the right premise

and obtain an equivalent system. The new rule is

ADB,T-A B,IT+C

:left
ADB,I'wC © )

Indeed, if we have a prooff D B, B,I' + C, sinceB, + A D B is provable, by a cut we
obtain that the sequer, I + C is provable. Now, the difficulty is to weaken the hypothesis

A D B inthe left premise. What is remarkable is that whentself is an implication, that is
whenA O B is of the form (4’ > B’) D B, then (4’ > B’) D B) D (B’ D B) is provable,

and B’ O B does indeed work. Also, whe# is atomic, then it can be shown that recopying

A D B isredundant. The new system introduced by Lincoln, Scedrov, and Shankar, is the
following:

PIwP
- P B,I'-C B>C,T-AD>B C,TvD
(D: left) (O: left)
PS> B,T+C (ADB)>C,TvD
ATEB s righy
r'-A>DB "9

whereP is atomic.
The equivalence of this new system and of the previous one is nontrivial. One of the steps

involved is “depth-reduction”. This means that we can restrict ourselves to propositions which
when viewed as trees have depth at most 2 (thus, such a formula is of th&fd®n> Q),
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P> (Q D R),or(PDQ)D R,whereP,Q, R are atomic). A nice feature of this new system
is that it yields easily the decidability of provability. Note that under the multiset ordering,
the complexity of the premises of each rule decreases strictly (we consider ltisetaif the
number of connectives in the formulae occurring in each sequent). For exarhpleB) O C

is replaced byB D C andA D B, both of (strictly) smaller complexity.

We now come back to Takeuti’s observation [20]. The crucial fact about intuitionistic
systems is not so much the fact that sequents are restricted so that righthand sides have at
most one formula, but that the application of the rules fight) and (J: right) should be
restrictedso that the righthand side of the conclusion of such a rule consistsingkeformula
(and similarly for &: right) if = is not treated as an abbreviation). The intuitive reason
is that the rule : right) moves some formula from the lefthand side to the righthand side
of a sequent (and similarly for( right)), and (J: right) involves a side condition. Now,
we can view a classical sequdnt+ Bj, ..., B, as the corresponding intuitionistic sequent
M+~ By V...V B,. With this in mind, we can show the following result.

Lemma 7 Let gT7"™V""54 pe the systeng2V:B0L where the application of the rules
(D: right) and (: right) is restricted to situations in which the conclusion of the inference is
a sequent whose righthand side has a single formula. Then,B1,..., B, is provable in
gT>"MVIBLiff M By V...V B, is provable ing?"V"%54,

Proof. The proof is by induction on the structure of proofs. In the case of an axiom
A, T v A A, letting D be the disjunction of the formulae iy, we easily obtain a proof of
A,T + DV Ain g% 5+ by applications of {: right) to the axiomd, T + A. Itis also
necessary to show that a number of intuitionistic sequents are provable. For example, we need
to show that the following sequents are intuitionistically provable:

ADB,(AVD)A(BDD)w D,
(AVD)A(BVD)w (AANB)V D,
Alt/z]V Dw AV D,
Dv1wDVA,
CvCvDwCVD,
AV D,~Av D.

Going fromg7?"":P54 to g2V:BBL itis much easier to assume that the cut rule can be
used inG;, and then use cut elimination. For example, if the last inference is

N A,A B,T+A
ADB,T+A

(D: left)

letting D be the disjunction of the formulae iy by the induction hypothesis, we have proofs
in g2"V'%54 of T+ Av D andB,T + D. Itis obvious that we also have proofs 4f>
B, AvDandA D B,T+ B D D,andthusaproofofl D B, (AVD)A (B D D).
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Since the sequert D B,IN,(AvV D) A (B D D)+ D is provable, using a cut, we obtain that
A D B, D isprovable, as desired. The other cases are simiilar.

We can also adapt the systehic?""">54 to form a systeng X 77""""5+ having the
same property asT?’A’V’D’m. In this system, it is also necessary to recopy the principal
formula of every right-rule on the righthand side. Such a system can be shown to be complete
w.r.t. Kripke semantics, and can be used to show the existence of a finite counter-model in the
case of a refutable proposition. This system is given in the next definition.

Definition 20 The axioms and inference rules of the sysgga? ;""" are given below.

ATr-AA
AL ighy
MN-AA "9
ANB,A,B,T+A rN-AAANB TwAB,AANB i
(A: left) (A: right)
AANB,T+ A r-AAANB
AVB,ATvA AV B,B,T+A r-AAB,AV B i
(v: left) (v: right)
AV B,T+ A r-AAVB
ADB,T-AA ADB,B,T+A AlT-AB,ADB i
(O: left) (D: right)
ADB,T+A r-AADB
OzA, A ,T=A Mr=AA , Oz A :
e Alr/al,Te B ey = O Aly/el, Do A - o iong
OeA, I+ A M= A OzA
where in (J: right), y does not occur free in the conclusion;
eA, Aly/z], T+ A M A Alr/2], A i
(1 left) (T right)
eA, T+ A M= A A

where in (1 left), y does not occur free in the conclusion.

In the systemGiCT7""%5+ the application of the rules>¢ right) and (: right) is
restricted to situations in which the conclusion of the inference is a sequent whose righthand
side has a single formula.

We now consider some equivalent Gentzen systems.
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9 The Gentzen Systems L7 and LK

Axioms of the formA, I' + A, A are very convenient for searching for proofs backwards, but
for logical purity, it may be desirable to consider axioms of the fefrm A. We can redefine
axioms to be of this simpler form, but to preserve exactly the same notion of provability, we
need to add the following rules afeakenindalso calledhinning).

Definition 21 The rules of weakening (or thinning) are

=4 (weakeningleft) reA (weakeningright)
AT+ A g MN=AA ang

In the case of intuitionistic logic, we require thatbe empty in (weakeningight).

In view of the previous section, it is easy to see that the quantifier rule

Alr/z],0zA, T+ A e A OeA, AlT/ 2] ,
(O: left) (T right)
OeA, I+ A M= A A

of gK2V:BEL are equivalent to the weaker rules

Alr/z], T+ A M~ A, Al1/2] i
——— (O left) —— (O right)
OeA, T+ A M= A A

of g2:»V:BEL "provided that we addcontrac left), (contrac right), (weakening left) and
(weakening right). Similarly, in order to make thea( left) rule and the ¥: right) rule
analogous to the corresponding introduction rules in natural deduction, we can introduce the
rules

ATrA B, I+ A
—— (A left) — (A left)
ANB, T+ A AANB, T+ A
and
N=A A . M- A B .
—————  (V:right) ————  (V:right)
- AAV B Mr-AAV B

They are equivalent to the old rules provided that we amihtfac left), (contrac right),
(weakeningleft) and (veakeningright). This leads us to the systerds/ and LK defined

and studied by Gentzen [3] (except that Gentzen also had an explicit exchange rule, but we
assume that we are dealing with multisets).

Definition 22 The axioms and inference rules of the syst&fh for intuitionistic first-order
logic are given below.

Axioms:
Ar A
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Structural Rules:

=4 (weakeningleft) s (weakeningright)
AT+ A g | g
AA T A
——— (contrac left)
ATrA
N A AA-0O
(cut)
A0
Logical Rules:

ATrA B, I+ A
———  (A:left) —  (A:left)
AANB, T+ A AANB, T+ A

N- A4 I'-~B .
——FF—F (A:right)
- AAB
AlTT-A B,T+A
(V: left)
AV B, TrA

"EA right - (v: right)
- i - ST
- AV B g - Av B g
N-A B,T+A (>: left) AT+ B (5: right)
ADB T+ A ' r'-ADB "9

A ey 2T Girighy

A, T+ ' Fe-4 o9

In the rules aboved v B, A A B, A O B, and- A are called the principal formulae and,
B the side formulae of the inference.

Alr/z], T+ A M~ Aly/z] )
———  (O: left) ———— = (O: right)
OeA, T+ A M- OzA
where in (J: right), y does not occur free in the conclusion;
A FreA Fr— A
M—"_ (T left) ﬂ (T right)
eA, - A M- [kA

where in (1 left), y does not occur free in the conclusion.

In the above rulesp and © consist of at most one formula. The varialylés called the
eigenvariable of the inference. The condition that the eigenvariable does not occur free in
the conclusion of the rule is called the eigenvariable condition. The forimulé (or [z A)
is called the principal formula of the inference, and the formd[a/z] (or A[y/z]) the side
formula of the inference.
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Definition 23 The axioms and inference rules of the syst¥for classical first-order logic
are given below.

Axioms:
Ar A

Structural Rules:

7r eakeningleft 7r eakeningright
Wi | Wi | |
AT A ( g ) r A, A ( grig )

AATHA N=AA A
——— (contrac left) _
ATrA MN=AA

N A,A A AN-0O
MNA-AOG

(contrac right)

(cut)

Logical Rules:

ATrA B, I+ A
(A: left)

i T (A lef)
ANB,T A AANB, T A

rN-AA TwAB
r-AAAB

AlTT-A B,T+A
AV B, TrA

(A: right)

(v: left)

MN=AA . M- A B .
—————  (V:right) —————  (V:right)
- AAV B Mr-AAV B

NrN-AA B, T+ A AT+ AB
(D: left) -

:right
ADB,TA r-AADB (5: right)

MN-A A AT+ A
—  (—:left) _—
“A M- A MN=A-A

In the rules aboved v B, A A B, A O B, and- A are called the principal formulae and,
B the side formulae of the inference.

(= right)

Alr/z], T+ A M A, Aly/z] )
——  (O: left) ———————=  (O:right)
OeA, T+ A M= A OzA
where in (: right), y does not occur free in the conclusion;
A FreA Fr-AA
M—"_ (T left) '_’—[TM] (Tt right)
eA, - A M= A A
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where in (1 left), y does not occur free in the conclusion.

The variabley is called the eigenvariable of the inference. The condition that the
eigenvariable does not occur free in the conclusion of the rule is called the eigenvariable
condition. The formul&lz A (or [z A) is called the principal formula of the inference, and the
formula A[r/z] (or A[y/=]) the side formula of the inference.

One will note that the cut rule

N A,A A AN-0O
MNA-AOG

(cub)

(with A empty in the intuitionistic case ar®® at most one formula) differs from the cut rule

N AA ATHA
M= A

(cub

used ing2»V:BOeut or jn g2V B BLent fin that the premises do not require the contexts
I', A to coincide, and the contexfs © to coincide. The rules are equivalent using contraction
and weakening. Similarly, the other logical rulestd€ (resp.£.J) andg2>»"V:Bbmeut (resp,

g "MVBELeuty are equivalent using contraction and weakening.

10 A Proof-Term Calculus for g»":D 5w

Before we move on to cut elimination £¥C (andL.7), itis worth describing a term calculus
corresponding to the sequent caICLLD,[?s’\’V’D’m’C“t. A sequenf ~ A becomes ajudgement
Mo M: A, such that, it = Aq,..., A4, thenl™ = z1: Ay,..., 2, 4, iS a context in which
thez; are distinct variables anglf is a proof term. Since the sequent calculus has rules for
introducing formulae on the left of a sequent as well as on the right of a sequent, we will have
to create new variables to tag the newly created formulae, and some new term constructors.

Definition 24 The term calculus associated wigl?"""""5-°* is defined as follows.
Mz Avz A

z. A,y A,T>M:B
z:A,T>let zbe z: A@y:Ain M:B

(contrac left)

MrN>N:A zATe-M:.C

t

> M[N/z].C (cu
—FDM:L eakeningright
o A,(0) A (Weakeningright)
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. A,y:B,T>M:C
zZANB,[>let zbe (z:A,y:B)in M:C

l>M:A T>N:.B
Fr>(M,N):AANB
2. AT>M:C y:B,T>N:C

(A: left)

(A: right)

: : (v: left)
zzAV B,T>case zofinl (z:A)= M |inr (y:B)= N:C
oM A (v: right) oM B (v: right)
Foinl (M).4avB o 9 Foinr M).AvB = 9
Ml>=M:A z.B,T>N:C z.A,l>M:B .
(O: left) (D: right)
z2AD B,T > N[(zM)/z]: C M>Az:A.M):ADB
CA[T/], T M: C > M: Alu/t
o: Alr/t], [ > (0: left) P MEAl
z:[OtA, T > M[(27)/z]: C > (At e. M): OtA
wherewu does not occur free if or 0t A;
CAlu/t],Te M. C
o Alu/t],T'> (T left)

z:[¥A, I >select zofpair (t:e,z:A)= M:C
wherewu does not occur free if, kA4, or C;

> M: A[T/t]
e pair (r, M): XA

(T right)

It is possible to write reduction rules that correspond to cut-elimination steps. For example,
let (M,N)be (z:A,y:B)in P — P[M/z,N/yl.

It is also possible to specify reduction rules imposing a certain strategy, for exaagror
lazyevaluation. Such reduction strategies have been considered in this setting by Abramsky [1].

The above proof-term assignment has the property tihat il/: A is derivable andl C A,
thenAw> M: Ais also derivable. This is because the axioms are of thefoemA > z: A. We
can design a term assignment system foCgfstyle system. In such a system, the axioms
are of the form

z.Avz: A

and the proof-term assignment for weakening is as follows:

F>M:B
z:A,Tvlet zbe _in M:B

(weakeningleft)

Note that the above proof-term assignment has the property that }if: A is provable and
I C A thenA> N: Ais also derivable for som¥ easily obtainable frond/.
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If instead of the abovex( left) rule, we use the twg 7 -style rules

ATvC BT+ C
P (aclefy (A lefi)
AAB,Tr C AANB,T v C

then we have the following proof-term assignment:

. AT>-M:.C
_ (A: left)
zZANB,T>let zbe (z:A,.)in M:C
B, T>M:C
v (A: left)

zZANB,T>let zbe (_,y:B)in M:C

It is then natural to write the normalization rules as

let (M,N)be (z:A,_)in P— P[M/z],
let (M,N)be (_,y:B)in P —— P[N/y].

We note that in the second case, the reductidazg in the sense that it is unnecessary to
normalizeN (or M) since it is discarded. In the first case, the reduction is genezather

since bothM and N will have to be normalized, unlessor y do not appear inP. Such
aspects of lazy or eager evaluation become even more obvious in linear logic, as stressed by
Abramsky [1].

11 Cut Eliminationin £K (and LJ)

The cut elimination theorem also appliesd& and £J7. Historically, this is the version
of the cut elimination theorem proved by Gentzen [3] (1935). Gentzen’s proof was later
simplified by Tait [18] and Girard [8] (especially the induction measure). The proof given
here combines ideas from Tait and Girard. The induction measure used is due to Tait [18] (the
cut-rank), but the explicit transformations are adapted from Girard [8], [4]. We need to define
the cut-rank of a formula and the logical depth of a proof.

Definition 25 The degreéA| of a formulaA is the number of logical connectives4n LetT

be anLK-proof. The cut-rank(T’) of T is defined inductively as follows.fis an axiom, then
¢(T) = 0. If T is not an axiom, the last inference has either one or two premises. In the first
case, the premise of that inference is the root of a sulityeén the second case, the left premise
is the root of a subtre@1, and the right premise is the root of a subtfBe If the last inference

is not a cut, then if it has a single premig€T’) = ¢(T1), elsec(T) = maz(c(T1), ¢(T2)). If the
last inference is a cut with cut formuld, thene(T) = maz({|A| + 1, ¢(T1), c(T%)}). We also
define the logical depth of a proof trde denoted ag(T’), inductively as followsd(T) = O,
whenT is an axiom. If the root off’ is a single-premise rule, then if the lowest rule is
structural, d(T') = d(T1), elsed(T) = d(Ty) + 1. If the root ofT is a two-premise rule, then
d(T) = maz(d(Ty), d(T2)) + 1.
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Thus, for an atomic formuldA| = 0. Note thate(7') = 0 iff T’ is cut free, and that if’
contains cuts, the#(T) is 1 + the maximum of the degrees of cut formula&’inWe also need
the definition of the functiomzp(m, n, p).

exp(m,0,p) = p;
exp(m,n + 1, p) = me=Pmmp),

This function grows extremely fast in the argument Indeed, exzp(m,1,p) = m?,
ezp(m,2,p) =m™" , and in generakzp(m, n, p) is an iterated stack of exponentials of height
n, topped with g:

.mp

ezp(m, n,p) = m™" }"

The main idea is to move the cuts “upward”, until one of the two premises involved is an
axiom. In attempting to design transformations for convertingC&iproof into a cut-free
LK -proof, we have to deal with the case in which the cut formdiles contracted in some
premise. A transformation to handle this case is given below.

1
MN-A7AA A 7
MN=AA AN+ 0O
MNA-AOG
=
w1 w2
MN-A7AA A AN+ 0O T
MNA-A0,A AN-0O

FAAEA G0

A A O

The symmetric rule in which a contraction takes place in the right subtree is not shown.
However, there is a problem with this transformation. The problem is that it yields infinite
reduction sequences. Consider the following two transformation steps:

T 2
M- AC,C C,C,A\v0
Mr=AC C,AN+-0
(cuy)
MNA-AOG
=
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2
71 C,C,\v+0 7
N~ AC,C C,A\+-0 C,C,A+0
MAvA0,C C,A+0
NAA-AOG,0
MNA+-AOG
=
1 2

1 N-AC,C C,C,A+-0
r~AC,C  CAvAOC
rrAv-AA0OC,C

m2
M Av0,0,C,C C,C,Av 0
A A,0,C C,Av- 0O

FAAEA G0

A A O

The pattern with contractions on the left and on the right is repeated.

One solution is to consider a more powerful kind of cut rule. In the sequel, the multiset
', nA denotes the multiset consisting of all occurrenceB & A in I and ofm +n occurrences
of A wherem is the number of occurrences gfin I".

Definition 26 (Extended cut rule)

M= A,mA nA,\A+ O
MNA-AOG

wherem,n > 0.

This rule coincides with the standard cut rule wher n = 1, and it is immediately verified
that it can be simulated by an application of the standard cut rule and some applications of
the contraction rules. Thus, the syst&ik* obtained from£K by replacing the cut rule by
the extended cut rule is equivalentddC. From now on, we will be working witl£X*. The
problem with contraction is then resolved, since we have the following transformation:

1
N-A,(m—1)A4,A,A 7
M= A,mA nA,\A\+ O
MNA-AOG
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T 2
N A, (m+1)A nA, A+ 0©
MA-AOG

We now prove the main lemma, for which a set of transformations will be needed.

Lemma 8 (Reduction Lemma, Tait, Girard) LetM; be anLX"-proof of [ + A, mA, and
My an LK -proof of n4, A + ©, wherem,n > 0, and assume that(M1), ¢(MN2) < |A].
An LK*-proof M of [, A + A, © can be constructed, such the1) < |4|. We also have
d(Mn) < 2(d(MNy) +d(My)), and if the rules for are omitted, thed(M) < d(M;) +d(My).

Proof. It proceeds by induction od(lM4) + d(M2), wherell; andl, are the immediate
subtrees of the proof tree

M1 Mo
N~ A,mA nA,\A+ O
MNA-AOG

There are several (hon-mutually exclusive) cases depending on the structure of the immediate
subtree$1; andll5.

(1) The root off1; and the root of1; is the conclusion of some logical inference having
some occurrence of the cut formwaas principal formula. We say thdtis active

Every transformation comes in two versions. The first version corresponds to the case of an
application of the standard cut rule. The other version, called the “cross-cuts” version, applies
when the extended cut rule is involved.

(i) (A: right) and (\: left)

T i) 3
N~ A B M- AC B,A+ 0
rN-ABAC BAC,A-0O
MNA-AOG
=
1 3
N~ A B B,A+ 0
MNA-AOG

By the hypothesig(l1), ¢(M2) < |A|, and it is clear that for the new prodf we have
c(M) < |4|, sincee(N) = maz({|B| + 1, ¢(71), c(73)}), |B| +1 < |A] (sinceA = B A C),
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c(m1) < (M), e(mo) < ¢(My), ande(n3) < ¢(MMy). Itis also easy to establish the upper bound
ond(M).

Cross-cuts version. Some obvious simplifications apply when eitherO orn = 0, and
we only show the main case wheren > 0. LetA =B A C.

1 2 3
N~ A, mA,B N~ A,mA,C B,nA, N+ O
N A, (m+1)A (n+1A,A+-0O
MNA-AOG

Let M} be the proof tree obtained by applying the induction hypothesis to

3
1 B,nA, N+ 0O
N~ A, mA,B (n+1)A,A+0O

A A0 B

and’, the proof tree obtained by applying the induction hypothesis to

1 L)
M~ A,mA,B M~ A,mA,C 3
N~ A,(m+1)A B,nA,\N+ ©
B,,A+A0O
and finally letl be
M M,

MNA+-AO,B B,I,A-A0
rr,AA-AANO,0

A-AO

Sincec(ry) < ¢(My), e(rz) < ¢(M1), ande(ws) < ¢(My), by the induction hypothesis,
e(MY),c(N) < |4|, and it is clear that for the new prodt we havec(l) < |A|, since
e(M) = maz({|B| + 1,¢(N%), c(M%)}), and|B| + 1 < |A| (sinceA = B A C). Itis also easy to
establish the upper bound dfr1).

(ii) (V: right) and (: left)

1 2 3
r—-AB B,A-0 C,A\-0
rN-ABvC BVvC,A-0
MNA+-AOG
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1 2
N~ A B B,A+ 0
MNA-AOG

By the hypothesis(M1),¢(M2) < |A4], it is clear that for the new proofl we have
c(M) < |A4|, sincee(N) = maz({|B| + 1, ¢(71), c(m2)}), |B| +1 < |A] (sincedA = BV C),
c(m1) < (M), e(mo) < e(My), ande(n3) < ¢(MMy). Itis also easy to establish the upper bound
ond(M).

Cross-cuts version: Similar to (i) (Some obvious simplifications apply when either0
orn =0).

(i) ( D: right) and (O: left)
Left as an exercise.
(iv) (—: right) and 6 left)

1 2
ATrA A-0,A
M= A-A “A N+ O

MNA-AOG

=
2 1
A-0,A ATrA
MNA-AOG

By the hypothesis(M1),¢(M2) < |- 4|, it is clear that for the new prodfl we have
c(M) < |= 4], sincee(N) = maz({|A| + 1, ¢(71), c(m2)}), e(71) < e(M1), e(m2) < e(My). ltis
also easy to establish the upper boundi(in).

Cross-cuts version (Some obvious simplifications apply when eitivei0 orn = 0).

T 2

A, T+ A, m(-A) n(-A),\+ 0, A

N~ A,(m+1)-A) (n+1)-A),A+0
MNA+-AOG

Let M} be the proof tree obtained by applying the induction hypothesis to
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™
A, T+ A, m(=A) T
N A, (m+1)-A) n(-A),\+ 0, A

[ A-AO A

andr’, the proof tree obtained by applying the induction hypothesis to

T2
1 n(-A),\+ 0, A
AT+ A m(-A) (n+1)-A4),A\+ 0O
AT, A+ A0
and finally letl be
M M3
MA-AOB,A AT, A+ A 0O

rr,AA-AANOGO

A A O

Sincec(mr1) < ¢(MM1), e(r2) < ¢(My), by the induction hypothesig[7), ¢(M%) < |~ 4],
and it is clear that for the new prodt we havec(l) < |- A|, sincec() = maz({|A| +
1,¢(MM9), ¢(M5)}). Itis also easy to establish the upper boundiim).

(v) (O: right) and (: left)
T 2
I+ A, Bly/z] Blt/z],A+ ©

M= A, OzB OeB,\A+ ©
MNA-AOG

=
m[t/z] w2
'~ A, B[t/z] Blt/z],A+ ©
MA-AOG

In the above, it may be necessary to renans®e that it is distinct from all eigenvariables and
distinct from all variables in.

By the hypothesig(I1),¢(M) < |OzB|, it is clear that for the new prodfl we have

(M) < |[OeB|, sincec() = maz({|B[t/z]| + 1,c(mi[t/z]), c(n2)}), c(mi[t/e]) = c(ra),
c(m1) < e(My), ande(m) < ¢(My). Itis also easy to establish the upper bound ).
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Cross-cuts version (Some obvious simplifications apply when eittve0 orn = 0).

1 2
'~ A,m(0zB), Bly/z] B[t/z],n(0zB),A\+ O
N A, (m+1)(0zB) (n+1)([OzB),A+ O
Ak A O

Let M} be the proof tree obtained by applying the induction hypothesis to

T
71 B[t/z],n(0zB),A\+ O
M+~ A,m(0zB), Bly/z] (n+1)({JzB),\+ O

M, A+ A0, Bly/z]

andTT, the proof tree obtained by applying the induction hypothesis to

T
'~ A,m(0zB), Bly/z] 7o
M+ A, (m+1)OzB) B[t/z],n(0zB),A\+ O
B[t/z],[,A+A,0O
and finally letlT be
Mi(t/z] M3
M, A+ A 0O, B[t/z] B[t/z],[,A+A0O

rrL,AA-AANOG,O

A-A O

In the above, it may be necessary to renans®e that it is distinct from all eigenvariables and
distinct from all variables in.

Sincec(m1) < ¢(MM1), ande(m2) < ¢(My), by the induction hypothesig}), ¢(MN5) < |z B|,
and it is clear that for the new probifwe havec(I) < |Oz B|, sincec(M) = maz({|B[t/z]| +
1, c(My[t/=]), c(N5)}) ande(My[t/x]) = ¢(M}). Itis also easy to establish the upper bound on
a(n).

(vi) (T right) and (t left)

1 2
I+ A, B[t/z] Bly/z],Av+ ©
M+ A (bB (B,A+ O
MA-AOG
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1 mo[t/z]
'~ A, B[t/z] Blt/z],A+ O
MA-AO

In the above, it may be necessary to renanse that it is distinct from all eigenvariables and
distinct from all variables in.

By the hypothesise(M1), ¢(M2) < |OeB|, and it is clear that for the new prodt we
havec(M) < |CeB|, sincec(MN) = maz({|B[t/z]| + 1, c(71), c(m2[t/2]) }), e(ma[t/x]) = c(72),
c(m1) < e(My), ande(m) < ¢(My). Itis also easy to establish the upper bound ).

Cross-cuts version (Some obvious simplifications apply when either O or n = 0).
Similar to (v) and left as an exercise.

(2) Either the root of1; or the root off1, is the conclusion of some logical rule, the cut rule,
or some structural rule having some occurrence of a forfuta A as principal formula. We
say that4 is passive

We only show the transformations corresponding to the case whéesepassive on the
left, the case in which it is passive on the right being symmetric. For this case (wWhere
passive on the left), we only show the transformation where the last inference applied to the
left subtree is a right-rule, the others being symmetric.

(1) (Vv: right)
1
N~ A,mA,B T
M- AmA,BvC nA, A+ ©

MNA-A0,BVC
=
T 2
N~ A,mA,B nA,A+ 0O
MNA+-A0,B
MNA-A0,BVC

Note thate(my) < ¢(MM1) ande(m2) < ¢(M2). We conclude by applying the induction
hypothesis to the subtree rooted withA+ A, ©, B. It is also easy to establish the upper
bound ond(I).

(i) (A: right)
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w1 )
M~ A,mA,B M~ A,mA,C 3
M- AmA,BANC nA, A+ QO
MNA-A0,BAC
=
T 3 2 73
N-AmA, B nA, A+ 0 N A,mA,C nA,A+0
MNA+-A0,B MNAv-A0,C
MNA-A0,BAC

Note thate(r1) < ¢(M1), e(m2) < ¢(M1), ande(ws) < ¢(MM2). We conclude by applying the
induction hypothesis to the subtrees rooted With - A, ©, BandlN, A+ A, O, C. Itisalso
easy to establish the upper bounddgf).

(iii) ( D: right)
Left as an exercise.

(iv) (= right)

w1
B, A,mA T
N~ A,mA,-B nA,\A+ O
MNA+-A0,-B
=
T 2
B, A,mA nA,A+ 0O
B, ,A+A0
MNA+-A0,-B

Note thate(m1) < ¢(M1), ande(m) < e(M2). We conclude by applying the induction
hypothesis to the subtree rooted wih ™, A+ A, ©. It is also easy to establish the upper
bound ond(I).

(v) (O: right)

1
'~ A,mA, Bly/z] 7
N~ A,mA,OzB nA,\A+ O

MNA+ A0, 0OzB
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m1[z/z] T
'~ A,mA, B[z/z] nA, A+~ QO
A+ A 0O, Bl[z/z]
MNA+ A0, 0OzB

In the above, some renaming may be necessary to ensure the eigenvarialiercond

Note thate(m1[z/2]) = e¢(71), e(m1) < ¢(M1), ande(m) < ¢(M2). We conclude by applying
the induction hypothesis to the subtree rooted Wit + A, ©, B[z/z]. It is also easy to
establish the upper bound dfr1).

(vi) (T right)

1
M+~ A,mA, B[t/z] 7o
N~ A,mA, (kB nA,\A+ 0O
MNA+-AOG
=
™1 )
M+~ A,mA, B[t/z] nA, A+~ QO

M, A+ A O, B[t/z]
MA-AO, kB

Note thate(r1) < ¢(M1), ande(m) < e(M2). We conclude by applying the induction

hypothesis to the subtree rooted wWith\ + A, ©, B[t/z]. Itis also easy to establish the upper
bound ond(I).

(vii) (cud)

1 2
M+ A, miA,pB gB,\1+ O1,mpA 3
M= A,mA nA,\A+ O
MNA-AQG

where in the above proaof, m1 +my = m, I =T1,/A;, andA = A1,0;. Since by the
hypothesis,c(M1), c(M2) < |A|, ande(M1) = maz({|B| + 1, ¢(71), c(72)}), we must have
|B| < |A], e(m1) < |A], e(m2) < |A], ande(ws) < |A|. Thus in particularB # A. We show
the transformation in the case wherg > 0 andm, > O, the cases where either, = 0 or
my = 0 being special cases.
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Let M} be the result of applying the induction hypothesis to

1 3
M+ A, pB,mA nA,\A+ 0O
rlaAF Al7®7pB

let 15 be the result of applying the induction hypothesis to

T T3
gB,\1+ O1,myA nA,\A+ 0O
qB7/\la/\|_ 6176

and letl be the proof
M M3
rlaAF Al7®7pB qBaAlaAF 6176
rrA-AAOG

A A O

Since by the induction hypothesis(1}), c(M%) < |A|, and since|B| < |A|, we have
c(M) < |AJ. Itis also easy to establish the upper bound(im).

(viii) (contrac right)

w1
N~ A B,B,mA T
N-A,B,mA nA,\A+ O
MNA+-A0,B
=
T 2
N~ A B,B,mA nA,\A+ O
NA+-AO,B,B
MNA+-A0,B

Note thate(r1) < ¢(M1), ande(m) < ¢(M2). We conclude by applying the induction
hypothesis to the subtree rooted wWithA+ A, ©, B, B. Itis also easy to establish the upper
bound ond(I).

(ix) (weakeningright)
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1
M= A,mA T
N~ A,mA,B nA,A+ 0O
MNA+-A0,B
=
T 2
N~ A,mA nA,\A+ O
MNA-AOG
MNA+-A0,B

Note thate(r1) < ¢(M1), ande(m) < e(M2). We conclude by applying the induction
hypothesis to the subtrees rooted wWith\ + A, ©. It is also easy to establish the upper bound
ond().

(3) Eitherly or M5 is an axiom. We consider the case in which the left subtree is an axiom,
the other case being symmetric.Af [ , then

2
A A nA,\A+ O
AN-0O

else
2
Ar A nA, A+ 0, A
AN-0, A
=
Ar A

Note thate(rz) < ¢(My). In the first case, since by hypothes(Bl1), ¢(I2) < |A|, itis clear
thate() < |A|. The second case is obvious.

(4) Either the root of11 or the root off 1, is the conclusion of some thinning or contraction
resulting in an occurrence of the cut formula We consider the case in which this happens in
the succedent of the left subtree, the other case being symmetric.
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(i) (weakeningright)
1
M= A m™
MN=AA AN+ 0O
MNA-AQG
=
w1
M= A
MNA-AQG
and wherm, n > 0,
w1
N~ A,mA T
N A, (m+1)A nA, A+ ©
MNA-AOG
=
1 2
N~ A,mA nA,\A+ O
MNA-AOG

Since by the hypothesis we ha#l,), c(M2) < |A|, itis clear thaie(M) < |A] in the first
case. In the second case, siate) < ¢(IM1) ande(wz) < ¢(I5), we conclude by applying the

induction hypothesis.

(i) (contrac right)

1
N-A,(m—1)A4,A,A 7
N~ A,mA nA,\A+ O
MNA-AOG
=
1 2
N A, (m+1)A nA, A+ ©
MNA-AOG

Since by the hypothesis we havf11), ¢(M2) < |A|, and we haver(w;) < ¢(M7) and
¢(m2) < e(MMy), we conclude by applying the induction hypothesis.
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The symmetric rule in which a contraction takes place in the right subtree is not shtiown.

We can now prove the following major result (essentially due to Tait [18], 1968), showing
not only that every proof can be transformed into a cut-free proof, but also giving an upper
bound on the size of the resulting cut-free proof.

Theorem 7 LetT be a proof with cut-rank(T’) of a sequenl + A. A cut-free proof™ for
I + A can be constructed such thétT™*) < ezp(4, ¢(T), d(T)).

Proof. We prove the following claim by induction on the depth of proof trees.

Claim: Let T be a proof with cut-rank(T") for a sequenf + A. If ¢(T) > 0 then we can
construct a proof” for I' + A such that

e(T) < e(T) and d(T") < 44D,

Proof of Claim If either the last inference & is not a cut, oritis a cut ane(T") > |A| + 1,
we apply the induction hypothesis to the immediate subtfees 7> (or T1) of T'. We are left
with the case in which the last inference is a cut a¥t) = |A| + 1. The proof is of the form

T 15
M= A,mA nA,I~ A
M= A

By the induction hypothesis, we can construct a prBpfor I' + A, mA and a proofl’
for nA,T v A, such thae(T!) < |A] andd(T!) < 44T, for i = 1,2. Applying the reduction
lemma (Lemma 8), we obtain a pradf such thate(T”) < |A| andd(T") < 2(d(Ty) + d(T3)).
But

2(d(T)) + d(Th) < 2(48T) + 4412y < grav(dT)dT2))*1 = dT)

The proof of Theorem 7 follows by induction @"), and by the definition oézp(4, m, n).
O

It is easily verified that the above argument also goes through for the sysferfihus, we
obtain Gentzen'’s original cut elimination theorem.

Theorem 8 (Cut Elimination Theorem, Gentzen (1935)) There is an algorithm which,
given any proofl in LK produces a cut-free prodi’ in LK. There is an algorithm which,
given any proof1in LJ produces a cut-free proél’ in LJ.
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A few more remarks about the role of contraction and weakening will be useful before
moving onto linear logic. We already noticed with the cut rule that context§ (th@ccurring
in the premise(s) of inference rules) can be treated in two different ways: (1) either they are
merged (which implies that they are identical), or (2) they are concatenated.

In order to search for proof backwards, it is more convenient to treat contexts in mode (1),
but this hides some subtleties. For example, theight) rule can be written either as

rN-AA TwAB
r-AAAB

where the contexts are merged, or as

NrN-AA A-0O,B
MNA-A0,AAB

where the contexts are just concatenated but not merged. Following Girard, let’s call the first
versionadditive and the second versianultiplicative Under contraction and weakening,

the two versions are equivalent: the first rule can be simulated by the second rule using
contractions:

N-=A4A A N~ A B
Nr~AAAAB

Fr-AAAB

and the second rule can be simulated by the first rule using weakenings:

MN-AA A+ 0O,B
MNA-A0,A MNA+-A0,B
MNA-A0,AAB

Similarly, the (\: left) rules can be written either as

AT+ A B, I+ A
ANB, T+ A AANB, T+ A

or as
A B, T+ A

AANB,T+A
Again, let’'s call the first versiomdditive and the second versianultiplicative These

versions are equivalent under contraction and weakening. The first version can be simulated
by the second rule using weakening:
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ATrA .
(weakeningleft)

A B, T+ A
AANB, T+ A

and the second version can be simulated by the first rule and contraction:

A B, T+ A
AANB,B, T+ A
ANB,ANB,T+ A

(contrac left)

AANB, T+ A

If we take away contraction and weakening, the additive and multiplicative versions are no
longer equivalent. This suggests, and this path was followed by Girard, to split the connectives

A andv into two versions: thenultiplicativeversion ofA andv, denoted a® and 0, and

the additive version of A and v, denoted as & an@. In linear logic, due to Girard [7],

the connectives\ andv are split into multiplicative and additive versions, contraction and
weakening are dropped, negation denafedis involutive, and in order to regain the loss of
expressiveness due to the absence of contraction and weakening, some new connectives (the
exponentials ! and ?) are introduced. The main role of these connectives is to have better
control over contraction and weakening. Thus, at the heart of linear logic lies the notion that
resources are taken into account.

12 Reductions of Classical to Intuitionistic Logic

Although there exist formulae that are provable classically but not intuitionistically, there
are several ways of embedding classical logic into intuitionistic logic. More specifically, there
are functions' from formulae to formulae such that for every formuaits translationd* is
equivalent toA classically, andA is provable classically iffA* is provable intuitionistically.
Stronger results can be obtained in the propositional case. Sifice O A is provable
classically but not intuitionistically, whereag4 > -- A is provable both classically and
intuitionistically, we can expect that double-negation will play a crucial role, and this is indeed
the case. One of the crucial properties is that triple negation is equivalent to a single negation.
This is easily shown as follows:

Ar A
A-~Ar
Ar--A
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Since we also have the following proof

“Ar-A
—|A,—|—|AI—
—|AI— b b b | A

itis clear that.=— A = = A is provable intuitionistically.

The possibility of embedding classical logic into intuitionistic logic is due to four crucial
facts:

(1) ==~ A = - Ais provable intuitionistically;

(2) If a formula A is provable classically without using thé&l:(right)-rule, then-- A is
provable intuitionistically;

(3) For a class of formulae for which- A v A is provable intuitionistically, (2) holds
unrestricted. This means that if a formulan this class is provable classically then A
is provable intuitionistically;

(4) For every formul& built only from >, A,- and,if A=-= Py D P1,...,~ Py D Py
where Py, ..., P, are all the atoms occurring i, thenA,-- A + A is provable
intuitionistically.

The “trick” of the double-negation translation (often attributed d€l"(1933), although
it was introduced independently by Kolmogorov (1925) and Gentzen (1933)) is that if we
consider a formula only built from D, A, -, [0, and replace every atomic subformutsby
-- P obtainingAf, we get a subclass of formulae for which (4) holds withoutthand thus
(3) also holds. For this clasd, is provable classically ifidf is provable intuitionistically.

Our first result will concern propositions. Given = Aj,..., A,,, we let --[ =
- Al,...,—|—| A,

Lemma 9 Given a sequerit + By, ..., B, of propositions, if v By, ..., B, is provablein
G2V then-=l + = (= By A ... A = By,)is provable ing? """,

K]

Proof. We proceed by induction on proofs. In fact, it is easier to worlgih™" ™

and use cut elimination. It is necessary to prove that a number of propositions are provable
intuitionistically. First, observe that ifts,..., A,, + B is provable ing;"™"" ™  then

-= Ay,...,7 A, + - B is also provable ing? ™", The following sequents are
provable ing? "

m A —|(—|A/\D),

May 1991 Digital PRL



Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 65

- (mAAD),~(=-BAD)+=(=(AAB)AD),
== A,-= B+ == (AA B),
- (mAAN=BAD)v=(=(AV B)A D),
-2 AV--B+ == (AV B),
(—AD-(=BAD)+~-(=(AD B)AD),
-=(AD B),m"(nAAD),(-m B> D)+ D,
(= AD-D)r (== AAD),
~(wAA D)~~~ Av =D,
~(mAA-AAD)=(=ANAD).

We now consider the axioms and each inference rule. Given Bq,...,B,, we let
D =-BiA...AN=B,. This way, observe thai(-AA-BiA...A=B,)==-(=AAD).
An axioml', A+ A, Abecomes-I , =~ A+ = (= A A D), which is provable irg?""""™
since-— A+ (= A A D) is. Letus also consider the case of the (ight)-rule, leaving the
others as exercises.

MNAw- B,A

F—AD>B,A
By the induction hypothesisy-I" , = A+ = (=~ B A D) is provable ing?>"""™“* and so is
~-F & (= AD =(=B A D).
Since
(mAD>-(BAD)r-(-(AD B)AD)

is also provable g™, by a cut, we obtain that

== +=(=(AD B)A D)

,7,eut

is provable ing?"" , as desiredd
Since-—-—- A = = A is provable intuitionistically, we obtain the following lemma known
as Glivenko’s Lemma.

Lemma 10 (Glivenko, 1929) Givenasequenil ,A+ - By, ..., B, made of propositions,
if - ,A+ = By,...,~ B, is provable inG2:*V:~, then=l,==A + =(B1 A ...A By) is
provable ing?"™""". In particular, if - + =B is a propositional sequent provable in
g2"»Vv:m, then itis also provable ig;""".

Proof. By Lemma 9, using the fact that-—= A = - A is provable intuitionistically, and
that the sequent
A(rmBiA...A By v a(BiA .. A By)

is provable iG> O
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As a consequence of Lemma 9, if a propositidris provable classically, thea- A is
provable intuitionistically, and as a consequence of Lemma 10, if a propositide provable
classically, then it is also provable intuitionistically. It should be noted that Lemfiafl©Q
for quantified formulae. For exampléjz(P(z) v - P(z)) is provable classically, but we
can show that—-0 z(P(z) v - P(z)) is not provable intuitionistically, for instance using the
system of Lemma 6. Similarly,Jz-- P(z) O --~0 zP(z) is provable classically, but it is
not provable intuitionistically, and neitheris: (Oz-—- P(z) O --0 z P(z)). As observed by
Gddel, Lemma 10 has the following remarkable corollary.

Lemma 11 (GOdel, 1933) For every proposion A built only fromA and-, if A is provable
classically, thend is also provable intuitionistically.

Proof. By induction onA. If A =~ B, then this follows by Glivenko’s Lemma. Otherwise,
it must be possible to writd = By A ...A B,, where eaclB; is not a conjunct and where each
B; is provable classically. Thus, eaéh must be of the form C;, since if B; is an atom it is
not provable. Again, eacB; is provable intuitionistically by Glivenko’s Lemma, and thus so
isA. O

Lemma 9 indicates that double-negation plays an important role in linking classical logic

to intuitionistic logic. The following lemma shows that double-negation distributes over the
connectives\ and>.

Lemma 12 The following formulae are provable g™

-= (A A B)
--(AD B)

—|—|A/\—|—|B,
—|—|AD—|—|B,

Proof. We give a proof for
—|—|(ADB)I——|—|AD—|—|B,

leaving the others as exercises.

A, B+ B
A-~Bvr A A, B,mBw
AAD B,~nB+

A,mBv -(AD B)
A, (AD B),mB+
-=(AD B),"B+-A
-=(AD B),"mA,-Bw
--(AD B),~ A+ -~ B
-~ (ADB)r-—-AD-B O
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Lemma 12fails for disjunctions. For example,
—|—|(P\/—|P)I— (—|—|P\/—|—|—| P)

is notprovable inG?>"">”, since-- (P V - P) is provable but¢— PV --- P)isnotprovable
in g7 (this is easily shown using the systéiki;). Lemma 12 alséailsfor the quantifiers.
For example, using the system of Lemma 6, we can showthat P(z) O --0 z P(z) and

==z P(z) D -~ P(z) are not provable intuitionistically.

Even though Lemma 9 fails in general, in particular for universal formulae, Kleene has made
the remarkable observation that the culprit is precisely thei@ht)-rule [11] (see Theorem
59, page 492). Indeed, the lemma still holds for arbitrary sequients3,, ..., B,, provided
that their proofs irg2:"v>"55 do not use the rule[{: right).

Lemma 13 Given a first-order sequefit v+ Bi,..., By, if [+ By,..., B, is provable in

g2V B without using the rulel(: right), then——=I + ~(~B1 A ... A = B,) is provable
In g'D,/\,V,_!,D,D-

Proof. As in the proof of Lemma 9, we proceed by induction on proofs. It is necessary to
prove that the following sequents are provablgh™ ™55

~(=A[t/z] A D)v =~ (-0zA A D),
Oe(-= AD-D),~-0zA+ =D,
(m= Aft/z] D - D),~~0zAw+ = D.

wherez does not occur itD in the second sequent. Proofs for the above sequents follow:

Alt/z],D v A[t/z]
Alt/z],Dv [A
Alt/z], -0z A, D v
-OzA,Dv = Alt/z] -OzA,Dw D
-OzA,Dv = Alt/z] AN D
= (= A[t/z] A D),-0zA, D+
~(=A[t/z] A D),-0zAA D+
—(=A[t/z] AD)v =~ (=0zA A D)
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D, Aly/z]+ Aly/=]

D, Aly/=],~ Aly/z]+ D, Aly/z]+ D
D, Aly/z]+ -~ Aly/=] ~D,D, Aly/z]+
-= Aly/z] D - D, D, Aly/z] v+
(e(+ A 5 = D), D, Aly/z] v
Oz(-~AD-D),D,[kAr
Oz(-~AD-D),Dw+ -zA
Oz(-—~ A D -D),--UzA,Dw+
Oz(-—~ A D -D),~~UzAw =D

wherez does not occur itD, andy is a new variable.

D, Alt/z] v A[t/z]

D, Alt/z],~ Alt/z] v+ D, Alt/z]+ D
D, Alt/z] v == A[t/z] - D,D,Alt/z] v
(-~ Al[t/2] D = D), D, Alt/z] v
(m= A[t/z] D -D),D,0zAw
(-= A[t/z] D -D),Dv+ -UzA
(mm A[t/z] D - D),~~0OzA, D+
(mm Aft/z] D =D),-~0zAw+ D

We now have to consider the cases where the last inference is oneleft], (LI left), or
(T right). We treat the case of the rulet fight), leaving the others as exercises.

M+ Alt/z],A
M- [kA,A

Given A = By,...,B,, we let D = =B1 A ... A~ B,. By the induction hypothesis,
~= + = (= A[t/2] A D) is provable ing;?”"*¥"™"™", On the other hand, since the sequent

~(=A[t/z] AD)v ~(=OzAA D)

37/\7\/7_'7']7']
ng;

is provable i , using a cut, we obtain that the sequent

-=l + = (=0zA A D)

-,0,0

is provable iG> ™", as desired
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Technically, the problem with Lemma 13, is that the sequent
Oz=(mAA D)+ ~(-OzAA D)

(wherez does not occur inD) is not provable ing?>"""™"" " In order to see where the
problem really lies, we attempt to construct a proof of this sequent.

~(=Aly/2] A D), D+ Aly/z]
Oz-(=AAD),Dv Aly/z]
Oz-(mAAD),Dv UOzA
Oz~ (mAA D),mUzA, D+
Oz-(mAAD),~UzAANDw
Oz-(nAA D) -(-UzAA D)

where z does not occur inD, andy is a new variable. The problem is that we cannot
apply the ([0: left)-rule before-OxzA has been transferred to the righthand side of the
sequent (adlzA) and before the [{: right)-rule has been applied tdlz A, since this
would violate the eigenvariable condition. Unfortunately, we are stuck with the sequent
~(~Aly/z] A D), D v Aly/z] which is unprovable irg?"""™>" However, note that the
sequent: (m Aly/z]AD), D v == Aly/z]in which A[y/z] has been replaced withh Aly/z]

is provable ing; """ ™0

D,-Aly/z] v - Aly/z] D,-~Aly/z]w D
D,-Aly/e]v - Aly/z] A D
= (=Aly/z] A D), D,~ Aly/z] v+
= (=Aly/z] A D), D v - Aly/z]

Thus, if the sequent- A — A was provable ig?"¥"™"2F, the sequent

Oz=(mAA D)+ =(-OzAA D)

would also be provable ig;"" "% It is therefore important to identify a subclass of

first-order formulae for which— A + A is provable ing?"*>™>%1 since for such a class,
Lemma 13 holds without restrictions. The following lemma showing the importance of the
axiom-- P~ P whereP is atomic, leads us to such a class of formulae. It is at the heart of
the many so-called “double-negation translations”.

Lemma 14 For every formul& builtonly from>, A, =, U, the sequent— A+ A is provable
in the systeng )" ™" obtained frong;*"™*" by adding all sequents of the foram P + P

where P is atomic as axioms. Equivalently, & = == P; D Py,...,-~ P, O P, where
Pi,..., P are all the atoms occurring iad, thenA, -~ A+ A is provable ing? " ™"
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Proof. It proceeds by induction on the structureAf If A is an atomP, this is obvious
since-— P + P is an axiom. IfA = B A C, by the induction hypothesis, bott~ B~ B
and-- C + C are provable irg™™", and so is~=- C A =~ C + B A C. We just have
to prove that-- (A A B) ~ ~— A A =~ B is provable ing?>"™", which is easily done. If
A == B, since we have shown that— B+ - B is provable iG> ™", sois~— A+ A. If
A = B > C, then by the induction hypothesisz C + C is provable ing2" ™" (and so is

1+
== B+ B, butwe won't need it). Observe thatthe sequenC > C,-~ (B> C)+ B> C
is provable ing;? " ™1

Bwv B B,CvC
B,(BD>C)vC
B,-C,(BDC)+
B,-Cw~=(BDC(C)
.= (B>C),B,~C+
-~ (BDC),Br ~~C -~ (B> C),B,C+ C
--C>C,-~-(BD>C(C),BvC
--C>C,~~(BO>C)»BDOC

Using the fact that~ C + C is provable ing;>™" and a suitable cut;~ (B D C) +
B D Cisprovableirg”™ ™", If A = Oz B, we can show easily that:0 z B + -~ B[t/z] is
provable ing?"™ ™", Since by the induction hypothesis; B + B is provable ing;" ™", for

any new variableg, -— B[y/z] v B[y/z] is also provable irﬁﬁ”\”’m, and thus by choosing

t =y, the sequent- B + B[y/z] is provable wherg is new, so that-[0 2B+ Oz B is

provable ing" ™ . o

In order to appreciate the value of Lemma 14, the reader should find a direct proof of
== (== P D P)in gf’A”’D. Unfortunately, Lemma 14ails for disjunctions and existential
guantifiers. For example,

-~ PDOPr-n(PV-P)D(PV-P)

is not provable ing;""™>>. This can be shown as follows. Singev - P is provable

in g2-AV-m00 by Lemma 9,4 (P V - P) is provable ing?" %" Thus,~~ P > P+

(P v = P) would be provable ig?"">™>%1 but we can show using the system of Lemma 6
that this is not so.

The sequent

-2 PO Pvr -~ (--0zP(z) DO - P(z)) D (--OzP(z) O Te-— P(x))
is also not provable ig?>""" ™", This is because--0zP(z) D Le-- P(z)) is provable
in g2V>B 8 without using the [: right)-rule, and so, by Lemma 13y~ (-=OzP(z) D
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e~ P(z)) is provable ing?V" ™2, Then,
== PD Pvr (-=OzP(z) D (k- P(x))

would be provable ig>""*¥"™""5 but we can show using the system of Lemma 6 that this is
not so.

Since the sequem V ~A + == A D A is easily shown to be provable g"" """,
Lemma 14 also holds with the axiomsP v - P substituted for- P + P (for all atomsP).
In fact, with such axioms, we can even show that Lemma 14 holds for disjunctions (but not for
existential formulae).

In view of Lemma 14 we can define the following functibron formulae built from
D) /\7 _|7 D

At =-- 4, if Aisatomic
(- A)t = - AT,
(AxB)f = (AT« BY), ifx O{D,A},
(OzA)f = Dz AT

Given a formula built only fronD, A, =, [, the functiont simply replaces every ator® by
-- P. Itis easy to show that andA' are classically equivalent. The following lemma shows
the significance of this function.

Lemma 15 For every formulad built only from >, A, -, 0, the sequent- At — At is

provable in the systeg” " ™"

Proof. Since--- A = -4 is provable ing?"" ™", the sequent~—~—~ P = == P is
provable ing?’A”’D for every atomP, and thus the result follows from the definition af
and Lemma 14

Actually, we can state a slightly more general version of Lemma 15, based on the observation
that--—~ A = - Ais provable ing? "V ™",

Lemma 16 For every formulaA built only from >, A, =, [0 and where every atomic sub-

formula occurs negated (except), the sequent— At - Af is provable in the system
gijy/\y_'ylj-

The formulae of the kind mentioned in Lemma 16 are caflegativeformulae. The follow-
ing lemma shows that if we use double-negation, thieand[are definable intuitionistically
from the connectives, -, [.
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Lemma 17 The following formulae are provable g™

-= (AV B) -(wAA-B)
-—0zA4 = -Oz-A.

Proof. We give a proof of the sequentJz A + -[Oz- A, leaving the others as exercises.

Aly/z] v Aly/z]
—Aly/e], Aly/=z] v
Oz- A, Aly/z] v
Oz— A, eA

Oz-Awv -OzA
-—0zA, Oz A

——0zAwr -Oz-A

wherey is a new variable

We are now ready to prove the main lemma about the double-negation translation. The
correctness of many embeddings of classical logic into intuitionistic logic follows from this
lemma, including those due to Kolmogorow@El, and Gentzen.

Lemma 18 Letl v B4,..., B, be any first-order sequent containing formulae made only
from D,A,~, and 0. If T + By,..., B, is provable ing2»V>"5U then its translation
M+ ~(=Bl A...A=B}) is provable ing?”™™". In particular, if B is provable in

g2~V.m00 thenBt is provable ing? "™,

Proof. First, we prove that iff + Bj,..., B, is provable ing2»V>"B0 then Tt
Bl,..., Bl is also provable irg2V>»B0. This is done by a simple induction on proofs.
Next, we prove that—I T+ - (= BI A...A = Bl) is provable ing?"™". The only obstacle
to Lemma 13 is the use of thé&l{ right)-rule. However, we have seen in the discussion
following Lemma 13 that the problem is overcome for formulae such thafl + A is
provable ingf’A”’D. But this is the case by Lemma 15 (which itself is a direct consequence
of Lemma 14), since we are now considering formulae of the fdim SinceB + -- B is
provable ingf’A”’D for any B, using cuts on the premises #l T, we obtain a proof of
M =B A...A=BE)InGg?" ™ Inthe special case where= 1 andrl is empty, we
have shown that —— B is provable ing?""™", and using Lemma 15, we obtain thét is

provable ing?>" ™", o

It is trivial that the converse of Lemma 18 holds (sin@z@“’D is a subsystem of

Gg2nVvmBD) - As a corollary of Lemma 18, observe that for negative formulae (defined in
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O

Lemma 16),A4 is provable ing2-"™U iff A is provable ing?’A”’ . This is because for a
0

negative formula&, all atoms appears negated, and tHus AT is provable irgf’A”’ .

We now define several translations of classical logic into intuitionistic logic.

Definition 27 The functior? (due to Gentzen) is defined as follows:

A°=-= A4, if Aisatomig
(n4)° =45
(AAB)° =(A° A B°),
(A D B)° =(4° D> B°),
(AV B)° ==(mA° A= B°),
(OzA)° =0zA°,
(DI:A)O ==0z-A°.

The functiort (due to Gdel) is defined as follows:

A"=-= A4, if Aisatomig
(n4) =47,
(AAB)"=(A" A BY),
(ADB)'==(A"A=B"),
(AV B)" ==(nA"A=B"),
(OzA)" =0z A~
(DI:A)* ==0z- A"

The functiort (due to Kolmogorov) is defined as follows:

A®=--A, if Aisatomig
(mA)* =~ 4%,
(A A B)t === (A% A BY),
(A D B)* === (A" D B"),
(AV B)t === (A% vV B7),
(DmA)F" === mAF",
(DI:A)F" =0z A",

By Lemma 17 and Lemma 14, it is easy to show that for any sequentBs, ..., B,, the
sequent
v -=(=B{A...A=B;)
is provable ing;?" ™ iff
M™+=(=BIA...A=B})
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is provable iff
M+ -(=BTA...ABJ)

is provable. Furthermore, it is easily shown that= A°, A = A* andA = A", are
provable classically.

Theorem 9 For any sequent + By, ..., B,,if[ + By,..., B, is provable ing2>:»V,5B0,
then the sequents® v = (=BY A ...A=B}), "+~ ~(=Bf A...A~B}), and "
~(~B5 A...A~Br), are provable ing?” ™", In particular, if A is provable ing2:"V:m20,
thenA°, A*, and A, are provable ing; " ™",

Proof. We simply have to observe that the translatias in fact the composition of two
functions: the first oné& is defined as in Definition 2'&xceptthat atoms remain unchanged,
and the second function is juist This translation has the property th&t only contains the
connectives, A, -, andl. Furthermore, it is easily shown that— B4, ..., B, is provable
in g2V BHiff T BY, ..., Bs is. Therefore, Lemma 18 applies F8 + B}, ..., B2,
and we obtain the desired resut.

Itis trivial that the converse of Theorem 9 holds.

We shall now discuss another translation of classical logic into intuitionistic logic due to
Girard [9]. Girard has pointed out that the usual double-negation translations have some rather
undesirable properties:

(1) They are not compatible with substitution. Indeed, the translat{@y P]* of A[B/P]
is not equal tod*[ B*/ P] in general, due to the application of double negations to atoms.

(2) Negation is not involutive. For instancé[B/P]* and A*[ B*/ P] are related through
the erasing of certain double negations (passing frem P to - P), but this erasing is not
harmless.

(3) Disjunction is not associative. For example Aifv B is translated as (- A A = B),
then AV B) v C istranslated as (- (- (wAA - B)) A=C),andA Vv (B Vv C) is translated as
—|(—|A/\ —|(—|(—|B A —|C)))

Girard has discovered a translation which does not suffer from these defects, and this
translation also turns out to be quite economical in the number of negation signs introduced [9].
The main idea is assignsign or polarity (+ or —) to every formula. Roughly speaking, a
positive literal P (where P is an atom) is a formula of polarity +, a negative literaP is
a formula of polarity—, and to determine the polarity of a compound formula, we combine
its polarities as if they were truth values, except that + corresponfidsiy — corresponds
to true, existential formulae are always positive, and universal formulae are always negative.
Given a sequent + A, the idea is that right-rules have to be converted to left-rules, and in
order to do this we need to move formulaeiro the lefthand side of the sequent. The new
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twist is that formulae i\ will be treated differently according to their polarity. Every formula

A of polarity — in Ais in fact of the form~ B, and it will be transferred to the lefthand side as

B (and not as— B), and every formula& of polarity + inA will be transferred to the lefthand
side asn A. The translation is then completely determined if we add the obvious requirement
that the translation of a classically provable sequent should be intuitionistically provable. Let
us consider some typical cases.

Casel. The last inference is
N~-C,~D

r~--Cv-D

whereC and D are positive. The sequeht— -C,- D is translated a§,C, D +, and we

have the inference
C,Dv

NCADw

It is thus natural to translateC v - D as—-(C A D), since therC' A D will be placed on the
lefthand side (because(C' A D) is negative).

Case2. The last inference is
r-C,D

r-Ccv>oD
whereC and D are positive. The sequeht C, D is translated a§,-C,- D +, and we

have the inference
M-C,~Dw

[~CA-Dr

This time, we would like to translat€' v D asC v D (sinceC Vv D is positive), so that
= (C v D) is placed on the lefthand side of the sequent. This is indeatinkede because
=(C v D) = -C A~ D is provable intuitionistically.

Case3. The last inference is
Mr-C

M~ OzC

where( is positive. The sequeftr C is translated aB, - C +, and we have the inference

r,—|CI—
M, ke-Cwr

We translatéJzC as-Uz—~C, so that k- C is placed on the lefthand side of the sequent.
Cased4. The last inference is

MN-C
M Oz-C
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where( is positive. The sequefit- - (' is translated aE, C +, and we have the inference

rCr
I, eC v

We translatéJz—- C as-UzC, so thatkkC is placed on the lefthand side of the sequent.

Caseb. The last inference is
M~ C[t/z]

M eC

whereC is positive. The sequeint~ C[t/z] is translated af, - C[t/z] +, and we have the

inference
F, - C[t/m] -

M Oz-Cw+

We would like to translatéleC' as[kC, so that-[JzC is placed on the lefthand side of the
sequent. This is possible becaugérC = Uz-C is provable intuitionistically.

Case6. The last inference is
M- —|C'[t/m]
F | ol DE—|C

whereC is positive. The sequet+ - C[t/z] is translated a§, C[t/z] . We would like

to translate’e-C as[k~C, so that-Uz-C is placed on the lefthand side of the sequent.
This is possible becauseélz-C = UOz-- C is provable intuitionistically, and we have the
sequence of inferences

r,Clt/z] v+
M+ -C[t/z]
r,-=Ct/z] v
r,Oz--C[t/z] v+

Note that it was necessary to first double-negéfe/=]. This is because-Jz-~C =
Oz-- C'is provable intuitionistically, bus[z-C = UzC is not.

Case7. The last inference is
N-C -0

r-CAD
where C, D are positive. The sequenis+ C andl + D are translated af,-C +
andlN,-D +. SinceC A D is positive, we would like to translat€’' A D asC A D,
so that-(C A D) is placed on the lefthand side of the sequent. This is possible because
(-~ C A= D) = =(C A D) is provable intuitionistically, and we have the sequence of
inferences
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M-Cr M-Dwr
MN---C N—--D
FrN--=CA--D
M=(==CA-~D)+r

Case8. The last inference is
N--C I'eD

MrN--CAD

whereC, D are positive. The sequenfis- -C andl + D are translated aB, C' + and
N-Dw. Since~C A D is positive, we would like to translateC A D as-C A D, so
that - (-C A D) is placed on the lefthand side of the sequent. This is possible because
- (nC A=~ D) = =(=-C A D) is provable intuitionistically, and we have the sequence of
inferences

rLCw M-Dw
rl——|C rl——|—|D
[~ =CA--D

r,—|(—|0/\—|—| D)I—

Case9. The last inference is
N--C I'~-D

r~-CA-D

whereC, D are positive. The sequents— -C andl v+ = D are translated ak, C' + and
I, D+, and we have the inference

v TI,Dw
NcvobDwr

We translate-C A =D as-(C v D), so thatC v D is placed on the lefthand side of the
sequent.

Considering all the cases, we arrive at the following tables defining the Girard transiation
of a formula.

Definition 28 Given any formula, its sign (polarity) and its Girard-translatiod are given
by the following tables:

If A = P where P is an atom, including the constants (true) and L (false), then
stgn(A) =+andA = A, and if A is a compound formula then
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Girard’s == -Translation
A B AANB AV B ADB
+C +, D + CAD + CVvD —,7(CA=D)
+C —,=D + CA=D —,7(=C A D) —,7(C A D)
—,=C +, D +,-CAD —,(CA=D) +CVD
—,=C —,=D —,=(C Vv D) —,=(C A D) —,~(=C A D)

Girard’s == -Translation
A Oz A e A -A
+C —,=0e-C +, eC —,=C
—,nC —,=0eC +, - C +,C

Given a formula4, we define its translatiod as follows:

Z:{ﬁz if sign(4) = +,
B ifsign(4)=—andA =-B.

Then, a sequerit+ A is translated into the sequeRt A 1.

We have the following theorem.

Theorem 10 Given any classical sequehtr+ A, if ' + A is provable classically, then its
translationl”, A+ is provable intuitionistically.

Proof. By induction on the structure of proofs. We have already considered a number of
cases in the discussion leading to the tables of Definition 28. As an auxiliary result, we need
to show that the following formulae are provable intuitionistically:

~(CVD) = ~CA-D,
~(~= C A== D) = ~(C A D),
~(+C A=~ D) = ~(~C A D),
~(+~CA-=D) = ~(C A-D),
-UzC = Oe-C,
Alz-C = Qe C.

We leave the remaining cases as an exercise.
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Observe that a formuld of any polarity can be made into an equivalent formula of polarity
+, namelyA* = A A T, or an equivalent formula of polarity, namelyA= = A v = T. The
Girard-translation has some nice properties, and the following lemma lists some of them [9].

Lemma 19 The translationd — A given in Definition 28 is compatible with substitutions
respecting polarities. Furthermore, it satisfies a number of remarkable identities:

(i) Negation is involutiven— A = A.

(i) De Morgan identities:- (A A B)
-AvV B, -0zA = [k-A4; -OzA

-AV-B;,-(AVvB) = ~AA-B; ADB =
Oz—-A.

(i) Associativity of A and v; as a consequencdAA B) D C = A D (B D (), and
ADBvVC)=ADB)VC.

(iv) Neutrality identities:tAv L = A; AA- L= A
(v) Commutativity oh andV (as a consequencd, > B = =B D = A).

(vi) Distributivity identities with restriction on polaritiesAA (P VvV Q) = (AAP)V(AAQ);
AV(LAM) = (AVvL)A(AV M) (whereP, @ are positive, and., M negative).

(vii) ldempotency identitiesP* = P whereP is positive;N~ = N whereN is negative;
as aconsequencd™ = ATandA™~ = A~.

(viil) QuantifierisomophismsA A kP = [e(A A P)if z is not free inA and P is positive;;
AvUOzN = Oz(AV N)if zis not free inA and N is negative;

Proof. The proof is quite straightforward, but somewhat tedious. Because of thdéipslar
many cases have to be considered. Some cases are checked in Girard [9], and the others can
be easily verified]
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