
Anderson Acceleration: Algorithms and Implementations1

Homer F. Walker2

September 2010; revised June 2011 and October 2011

The following provides outlines of Anderson acceleration in various forms, along with some ancillary

algorithms and implementational outlines. The notation is that used in [6].

Suppose we want to solve x = g(x) for some g : IRn → IR
n. Basic fixed-point iteration for this problem

is as follows:

Algorithm FPI: Fixed-Point Iteration

Given x0.

For k = 0, 1, . . .

Set xk+1 = g(xk).

For this iteration, the usual general form of Anderson acceleration is as follows:

Algorithm AA: Anderson Acceleration

Given x0 and m ≥ 1.

Set x1 = g(x0).

For k = 1, 2, . . .

Set mk = min {m, k}.

Set Fk = (fk−mk
, . . . , fk), where fi = g(xi)− xi.

Determine α(k) = (α
(k)
0 , . . . , α

(k)
mk

)T that solves

minα=(α0,...,αmk
)T ‖Fkα‖2 s. t.

∑mk

i=0 αi = 1.

Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i).

The constrained linear least-squares problem in Algorithm AA can be solved in a number of ways; see

[5] for several alternatives. Our preference is to recast it in an unconstrained form suggested in [4],

[3], and [6] that is straightforward to solve and convenient for implementing efficient updating of QR

1Worcester Polytechnic Institute Mathematical Sciences Department Research Report MS-6-15-50, June 2011.
2Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609-2280

(walker@wpi.edu). This work was supported in part by US National Science Foundation grant DMS 0915183 and
US Department of Energy award DE-SC0004880. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the National Science
Foundation or the Department of Energy

1

factorizations. We define ∆f i = fi+1 − fi for each i and set Fk = (∆fk−mk
, . . . ,∆fk−1). Then the

least-squares problem is equivalent to

min
γ=(γ0,...,γmk−1

)T
‖fk −Fkγ‖2,

where α and γ are related by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1, and αmk
= 1− γmk−1.

This unconstrained least-squares problem leads to a modified form of Anderson acceleration. Denoting

the least-squares solution by γ(k) = (γ
(k)
0 , . . . , γ

(k)
mk−1)

T , we have

xk+1 = g(xk)−
mk−1
∑

i=0

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)] = g(xk)− Gkγ

(k),

where Gk = (∆gk−mk
, . . . ,∆gk−1) with ∆gi = g(xi+1)− g(xi) for each i. Then Anderson acceleration

becomes

Algorithm AA: Anderson Acceleration

Given x0 and m ≥ 1.

Set x1 = g(x0).

For k = 1, 2, . . .

Set mk = min {m, k}.

Determine γ(k) = (γ
(k)
0 , . . . , γ

(k)
mk−1)

T that solves

minγ=(γ0,...,γmk−1
)T ‖fk −Fkγ‖2.

Set xk+1 = g(xk)− Gkγ
(k).

As the algorithm proceeds, the successive least-squares problems can be solved efficiently by updating

the factors in the decomposition Fk = QkRk. To describe this, we assume a “thin” QR decomposition,

i.e., Qk ∈ IR
n×mk and Rk ∈ IR

mk×mk , for which the solution of the least-squares problem is obtained

by solving the mk ×mk triangular system Rkγ = Q′

k ∗ fk, where the prime denotes transpose and “∗”

denotes matrix-vector multiplication.

The following provides a short outline of how the updating goes. Note: From here on, MATLAB-like

notation is used increasingly; also, it is convenient to omit subscripts on the Q and R factors.

Updating the QR factors. Each Fk is n×mk and is obtained from Fk−1 by adding a column on

the right and, if the resulting number of columns is greater than m, also deleting the first column on

the left. If mk−1 = m, then this column deletion must occur, and a little storage and arithmetic can be

saved by doing it first, i.e., before adding the column on the right. The resulting scheme for updating

at the kth step is as follows:

2

1. When k = 1, set m1 = 1 and initialize F1 = QR with Q = ∆f0/‖∆f0‖2 and R = ‖∆f0‖2.

2. When k > 1, we have Fk−1 = QR, where Fk−1 is n×mk−1, and update as follows:

(a) If mk−1 = m, then delete the left column of Fk−1, updating Q and R so that Fk−1 ←

Fk−1(:, 2 : m) = QR and reducing mk−1 ← m− 1.

(b) Add a column on the right, updating Q and R so that Fk = [Fk−1,∆fk−1] = QR and

setting mk = mk−1 + 1.

We now give more details of the QR-updating procedures. The procedure for adding a column on the

right is simpler, consisting of a single modified Gram–Schmidt sweep, so we describe it first. From here

on, we use “End” statements to make the ends of loops and conditionals clear.

For i = 1 : mk − 1

Set R(i,mk) = Q(:, i)′ ∗∆fk−1.

Update ∆fk−1 ← ∆fk−1 −R(i,mk) ∗Q(:, i).

End

Set Q(:,mk) = ∆fk−1/‖∆fk−1‖2 and R(mk,mk) = ‖∆fk−1‖2.

Note that the original value of ∆fk−1 is lost, but that’s OK because it isn’t needed later in an actual

implementation.

We now describe the updating procedure for deleting the left column of Fk−1 when mk−1 = m. Here is

the general idea: If Fk−1 = Q∗R, then Fk−1(:, 2 : m) = Q∗R(:, 2 : m), where R(:, 2 : m) ∈ IR
m×(m−1)

is upper-Hessenberg. We determine m×m Givens rotations J1, . . . , Jm−1 such that

Jm−1 ∗ . . . ∗ J1 ∗R(:, 2 : m) ∈ IR
m×(m−1) is upper-triangular with an all-zero bottom row. Then

Fk−1(:, 2 : m) = Q ∗R(:, 2 : m) = Q ∗ J ′

1 ∗ . . . ∗ J
′

m−1 ∗ Jm−1 ∗ . . . ∗ J1 ∗R(:, 2 : m),

and so we update Q← Q ∗ J ′

1 ∗ . . . ∗ J
′

m−1(:, 1 : m− 1) and R← Jm−1 ∗ . . . ∗ J1 ∗R(1 : m− 1, 2 : m).

Since this updating procedure is rather long and ultimately appears twice in the final version of Al-

gorithm AA, it is appropriate to describe it in subroutine form. In writing the calling statement, we

follow the form of MATLAB’s qrdelete function, which accomplishes the same thing (and should be

used in a MATLAB implementation). (The “1” in the calling sequence indicates that the first column

is to be deleted.) On input, Q ∈ IR
n×m and R ∈ IR

m×m are such that Fk−1 = Q ∗ R; on output,

Q ∈ IR
n×(m−1) and R ∈ IR

(m−1)×(m−1) are such that Fk−1(:, 2 : m) = Q ∗R. Note that Fk−1 never

appears in the algorithm; all we need are its Q and R factors.

[Q, R] = qrdelete(Q, R, 1)

Given Q ∈ IR
n×m and R ∈ IR

m×m.

For i = 1 : m− 1

3

Set temp =
√

R(i, i+ 1)2 +R(i+ 1, i+ 1)2.

Set c = R(i, i+ 1)/temp and s = R(i+ 1, i+ 1)/temp.

Update R(i, i+ 1)← temp and R(i+ 1, i+ 1)← 0.

If i < m− 1

For j = i+ 2 : m

Set temp = c ∗R(i, j) + s ∗R(i+ 1, j).

Set R(i+ 1, j) = −s ∗R(i, j) + c ∗R(i+ 1, j).

Set R(i, j) = temp.

End

End

For ℓ = 1 : n

Set temp = c ∗Q(ℓ, i) + s ∗Q(ℓ, i+ 1).

Set Q(ℓ, i+ 1) = −s ∗Q(ℓ, i) + c ∗Q(ℓ, i+ 1).

Set Q(ℓ, i) = temp.

End

End

Update Q← Q(:, 1 : m− 1) and R← R(1 : m− 1, 2 : m).

The following is a “semi-final” version of Anderson acceleration that expresses the basic algorithm in an

implementable form. This will be followed by a final version that incorporates additional useful features

discussed below. The hope is that these versions can serve as better outlines for writing actual code than

the previous, more abstract versions. Accordingly, there are some minor changes: The iterations now

begin with k = 0 and, for clarity, m and mk appearing in previous versions have been replaced by mMax

and mAA, respectively. Also, we have removed iteration subscripts that would not be appropriate in

an actual implementation. Finally, the number of iterations has been limited to a prescribed maximum

itmax, a feature shared by virtually all iterative algorithms. Other possible termination criteria may vary

according to circumstances and are discussed following the final version of the algorithm.

Remark. The matrices that appear in these versions are G, Q, and R. In MATLAB, G should be

initialized as the empty matrix; Q and R can be built up incrementally without initialization. In

non-MATLAB coding, G and Q should be dimensioned n × mMax , and R should be dimensioned

mMax ×mMax .

Algorithm AA: Anderson Acceleration

Given x and mMax ≥ 1.

Initialize mAA = 0 and G = [].

For k = 0, 1, . . . , itmax

Evaluate gcur = g(x) and fcur = gcur − x.

If k > 0

Set ∆f = fcur − fold and ∆g = gcur − gold.

4

If mAA < mMax

Update G ← [G,∆g].

Else

Update G ← [G(:, 2 : mAA),∆g].

End

Update mAA ← mAA + 1.

End

Update fold = fcur and gold = gcur.

If mAA = 0

Update x = gcur.

Else

If mAA = 1

Set Q(:, 1) = ∆f/‖∆f‖2 and R(1, 1) = ‖∆f‖2.

Else

If mAA > mMax

Call [Q, R] = qrdelete(Q, R, 1).

Update mAA ← mAA − 1.

End

For i = 1 : mAA − 1

Set R(i,mAA) = Q(:, i)′ ∗∆f .

Update ∆f ← ∆f −R(i,mAA) ∗Q(:, i).

End

Set Q(:,mAA) = ∆f/‖∆f‖2 and R(mAA,mAA) = ‖∆f‖2.

End

Solve Rγ = Q′ ∗ fcur.

Update x← gcur − G ∗ γ.

End

End

We now discuss several useful features that can be added to this basic algorithm.

Damping. Anderson’s original formulation in [1] allows a more general step

xk+1 = (1− βk)
mk
∑

i=0

α
(k)
i xk−mk+i + βk

mk
∑

i=0

α
(k)
i g(xk−mk+i)

=
mk
∑

i=0

α
(k)
i xk−mk+i + βk

(

mk
∑

i=0

α
(k)
i g(xk−mk+i)−

mk
∑

i=0

α
(k)
i xk−mk+i

)

,

5

where βk > 0. Usually in practice, βk is a damping parameter, i.e., 0 < βk ≤ 1, used to improve

convergence by reducing step lengths when iterates are not near a solution. It is important to note

that the damped step is from the point xmin
k ≡

∑mk

i=0 α
(k)
i xk−mk+i and not from xk. (If the problem

were linear, then xmin
k would give minimal fixed-point residual norm among all points in the affine

subspace containing xk−mk
, . . . , xk.) The points {xk−m, . . . , xk} are not available to compute xmin

k

directly; however, xmin
k can be computed without increasing storage, as follows: In analogy with the

undamped iterate expression xk+1 = g(xk) − Gkγ
(k), we have xmin

k = xk − Xkγ
(k), where Xk =

(∆xk−mk
, . . . ,∆xk−1) with ∆xi = xi+1− xi for each i. Since xk = g(xk)− fk and Xk = Gk −Fk, we

obtain

xmin
k = g(xk)− fk − (Gk −Fk)γ

(k) =
(

g(xk)− Gkγ
(k)
)

−
(

fk −Fkγ
(k)
)

= xk+1 −
(

fk −Fkγ
(k)
)

,

where xk+1 = g(xk) − Gkγ
(k) is the undamped iterate. With Fk = QR, this leads to the following

strategy:

1. Compute the undamped iterate xk+1 = g(xk)− Gkγ
(k).

2. Update xk+1 by

xk+1 ← xmin
k + βk

(

xk+1 − xmin
k

)

= xk+1 −
(

fk −Fkγ
(k)
)

+ βk
(

fk −Fkγ
(k)
)

= xk+1 − (1− βk)
(

fk −QRγ(k)
)

.

This strategy requires no additional storage but does require some additional arithmetic, mainly to

compute QRγ(k).

Condition control. In practice, there is often a danger that Fk will become ill-conditioned as the

iterations proceed. With Fk = QR, the conditioning of Fk can be monitored by monitoring the

condition number of R, which can be done inexpensively, e.g., using incremental condition estimation

[2] or, in MATLAB programming, the cond command. Acceptable conditioning can be maintained by

monitoring the condition number of R and, if it exceeds a prescribed threshhold, updating Q and R

(implicitly deleting columns of Fk on the left) using the qrdelete procedure discussed previously until

the condition number drops below the threshhold.

Delayed acceleration start. In some applications, it may be advantageous to delay the start of

Anderson acceleration until the underlying fixed-point method has gone through some number of initial

iterations. For example, this may be the case if the underlying method has strong global convergence

properties and the initial iterations may help to bring the iterates closer to a solution before starting

the acceleration. Such a delayed start is easily achieved by prescribing an iteration number at which

acceleration is to begin.

6

The following is our final version of Anderson acceleration. In this, the additional features discussed

above are incorporated into the algorithm, with new optional inputs as follows: droptol, a threshhold

for deleting columns to maintain acceptable conditioning; beta, a damping parameter to allow damping

with βk = beta for each k (this can be a function such that βk = beta(k)); and AAstart, an iteration

number at which to begin acceleration. The condition number of R is denoted by cond(R).

Algorithm AA: Anderson Acceleration

Given x, mMax ≥ 1, and, optionally, droptol (default 1.e10), beta (default 1),

and AAstart (default 0).

Initialize mAA = 0 and G = [].

For k = 0, 1, . . . , itmax

Evaluate gcur = g(x) and fcur = gcur − x.

If k > AAstart

Set ∆f = fcur − fold and ∆g = gcur − gold.

If mAA < mMax

Update G ← [G,∆g].

Else

Update G ← [G(:, 2 : mAA),∆g].

End

Update mAA ← mAA + 1.

End

Update fold = fcur and gold = gcur.

If mAA = 0

Update x = gcur.

Else

If mAA = 1

Set Q(:, 1) = ∆f/‖∆f‖2 and R(1, 1) = ‖∆f‖2.

Else

If mAA > mMax

Call [Q, R] = qrdelete(Q, R, 1).

Update mAA ← mAA − 1.

End

For i = 1 : mAA − 1

Set R(i,mAA) = Q(:, i)′ ∗∆f .

Update ∆f ← ∆f −R(i,mAA) ∗Q(:, i).

End

Set Q(:,mAA) = ∆f/‖∆f‖2 and R(mAA,mAA) = ‖∆f‖2.

End

While cond(R) > droptol and mAA > 1

7

Call [Q, R] = qrdelete(Q, R, 1).

Update mAA ← mAA − 1.

End

Solve Rγ = Q′ ∗ fcur.

Update x← gcur − G ∗ γ.

If beta > 0 and beta 6= 1

Update x← x− (1−beta) ∗ (fcur −Q ∗R ∗ γ).

End

End

End

Other termination criteria. In an actual implementation, there are very likely to be termination

criteria in addition to whether the number of iterations has reached itmax. One is whether the problem

has been sufficiently well solved. This is likely to be based on whether the fixed-point residual norm

‖fcur‖ is sufficiently small, where ‖·‖ is an appropriate norm, possibly a weighted norm that accounts for

different scaling among the components of f . Such a test is likely to be placed in the algorithm just after

the evaluation of gcur and fcur. Another possibility is a criterion based on whether the norm of some

auxiliary function is sufficiently small. For example, this may be the case when the underlying fixed-point

iteration is Picard iteration determined by some PDE problem, and it is appropriate to terminate on

the PDE residual norm instead of (or in addition to) the fixed-point residual norm. A test of this type

will probably be placed before the evaluation of gcur and fcur. Finally, there is likely to be a criterion

based on whether the iterates are making insufficient progress. This will likely involve a test of whether

the norm (possibly a weighted norm) of the difference between successive iterates is less than some

prescibed tolerance.

References

[1] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Machinery,

12:547–560, 1965.

[2] C. H. Bischof. Incremental condition estimation. SIAM J. Matrix Anal. Appl., 11:312–322, 1990.

[3] H. Fang and Y. Saad. Two classes of multisecant methods for nonlinear acceleration. Numer. Linear

Algebra Appl., 16:197–221, 2009.

[4] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semi-

conductors using a plane-wave basis set. Computational Materials Sci., 6:15–50, 1996.

8

[5] P. Ni and H. F. Walker. A linearly constrained least-squares problem in electronic structure com-

putations. Technical Report MS-1-13-46, Worcester Polytechnic Institute Mathematical Sciences

Department, January 2010.

[6] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal.,

49:1715–1735, 2011.

9

Appendix. A MATLAB implementation.

The following is a MATLAB implementation of the final version of Anderson acceleration. Note that if

the input mMax is zero, then the code performs fixed-point iteration without acceleration.

function [x,iter,res_hist] = AndAcc(g,x,mMax,itmax,atol,rtol,droptol,beta,AAstart)

% This performs fixed-point iteration with or without Anderson

% acceleration for a given fixed-point map g and initial

% approximate solution x.

%

% Required inputs:

% g = fixed-point map (function handle); form gval = g(x).

% x = initial approximate solution (column vector).

%

% Optional inputs:

% mMax = maximum number of stored residuals (non-negative integer).

% NOTE: mMax = 0 => no acceleration.

% itmax = maximum allowable number of iterations.

% atol = absolute error tolerance.

% rtol = relative error tolerance.

% droptol = tolerance for dropping stored residual vectors to improve

% conditioning: If droptol > 0, drop residuals if the

% condition number exceeds droptol; if droptol <= 0,

% do not drop residuals.

% beta = damping factor: If beta > 0 (and beta ~= 1), then the step is

% damped by beta; otherwise, the step is not damped.

% NOTE: beta can be a function handle; form beta(iter), where iter is

% the iteration number and 0 < beta(iter) <= 1.

% AAstart = acceleration delay factor: If AAstart > 0, start acceleration

% when iter = AAstart.

%

% Output:

% x = final approximate solution.

% iter = final iteration number.

% res_hist = residual history matrix (iteration numbers and residual norms).

%

% Homer Walker (walker@wpi.edu), 10/14/2011.

10

% Set the method parameters.

if nargin < 2, error(’AndAcc requires at least two arguments.’); end

if nargin < 3, mMax = min{10, size(x,1)}; end

if nargin < 4, itmax = 100; end

if nargin < 5, atol = 1.e-10; end

if nargin < 6, rtol = 1.e-10; end

if nargin < 7, droptol = 1.e10; end

if nargin < 8, beta = 1; end

if nargin < 9, AAstart = 0; end

% Initialize the storage arrays.

res_hist = []; % Storage of residual history.

DG = []; % Storage of g-value differences.

% Initialize printing.

if mMax == 0

fprintf(’\n No acceleration.’);

elseif mMax > 0

fprintf(’\n Anderson acceleration, mMax = %d \n’,mMax);

else

error(’AndAcc.m: mMax must be non-negative.’);

end

fprintf(’\n iter res_norm \n’);

% Initialize the number of stored residuals.

mAA = 0;

% Top of the iteration loop.

for iter = 0:itmax

% Apply g and compute the current residual norm.

gval = g(x);

fval = gval - x;

res_norm = norm(fval);

fprintf(’ %d %e \n’, iter, res_norm);

res_hist = [res_hist;[iter,res_norm]];

% Set the residual tolerance on the initial iteration.

if iter == 0, tol = max(atol,rtol*res_norm); end

11

% Test for stopping.

if res_norm <= tol,

fprintf(’Terminate with residual norm = %e \n\n’, res_norm);

break;

end

if mMax == 0 || iter < AAstart,

% Without acceleration, update x <- g(x) to obtain the next

% approximate solution.

x = gval;

else

% Apply Anderson acceleration.

% Update the df vector and the DG array.

if iter > AAstart,

df = fval-f_old;

if mAA < mMax,

DG = [DG gval-g_old];

else

DG = [DG(:,2:mAA) gval-g_old];

end

mAA = mAA + 1;

end

f_old = fval;

g_old = gval;

if mAA == 0

% If mAA == 0, update x <- g(x) to obtain the next approximate solution.

x = gval;

else

% If mAA > 0, solve the least-squares problem and update the

% solution.

if mAA == 1

% If mAA == 1, form the initial QR decomposition.

R(1,1) = norm(df);

Q = R(1,1)\df;

else

% If mAA > 1, update the QR decomposition.

12

if mAA > mMax

% If the column dimension of Q is mMax, delete the first column and

% update the decomposition.

[Q,R] = qrdelete(Q,R,1);

mAA = mAA - 1;

% The following treats the qrdelete quirk described below.

if size(R,1) ~= size(R,2),

Q = Q(:,1:mAA-1); R = R(1:mAA-1,:);

end

% Explanation: If Q is not square, then qrdelete(Q,R,1) reduces the

% column dimension of Q by 1 and the column and row

% dimensions of R by 1. But if Q *is* square, then the

% column dimension of Q is not reduced and only the column

% dimension of R is reduced by one. This is to allow for

% MATLAB’s default "thick" QR decomposition, which always

% produces a square Q.

end

% Now update the QR decomposition to incorporate the new

% column.

for j = 1:mAA - 1

R(j,mAA) = Q(:,j)’*df;

df = df - R(j,mAA)*Q(:,j);

end

R(mAA,mAA) = norm(df);

Q = [Q,R(mAA,mAA)\df];

end

if droptol > 0

% Drop residuals to improve conditioning if necessary.

condDF = cond(R);

while condDF > droptol && mAA > 1

fprintf(’ cond(D) = %e, reducing mAA to %d \n’, condDF, mAA-1);

[Q,R] = qrdelete(Q,R,1);

DG = DG(:,2:mAA);

mAA = mAA - 1;

% The following treats the qrdelete quirk described above.

if size(R,1) ~= size(R,2),

Q = Q(:,1:mAA); R = R(1:mAA,:);

end

condDF = cond(R);

13

end

end

% Solve the least-squares problem.

gamma = R\(Q’*fval);

% Update the approximate solution.

x = gval - DG*gamma;

% Apply damping if beta is a function handle or if beta > 0

% (and beta ~= 1).

if isa(beta,’function_handle’),

x = x - (1-beta(iter))*(fval - Q*R*gamma);

else

if beta > 0 && beta ~= 1,

x = x - (1-beta)*(fval - Q*R*gamma);

end

end

end

end

end

% Bottom of the iteration loop.

if res_norm > tol && iter == itmax,

fprintf(’\n Terminate after itmax = %d iterations. \n’, itmax);

fprintf(’ Residual norm = %e \n\n’, res_norm);

end

14

