
MATLAB for complete novices

Roland Memisevic

January 18, 2007

Why MATLAB ?

I Easy to learn.

I Many useful features (’toolboxes’).
I Standard!

I Used all over by engineers, scientists, etc.
I Useful to know even if you don’t want to use it... (see e.g.

Octave, Python’s pylab, etc.)

I Excellent documentation.
I Can use MATLAB to learn some math itself!

Caveats

I Has some disadvantages, too:
I Not a very ’modern’ programming language.
I Can be awkward.
I Not good for large software projects.
I Proprietary.

Starting MATLAB...

I At the command prompt type:

matlab

I Or, if you don’t like windows:

matlab -nodesktop

I Get help any time with

help ’function-name’

I To exit:

exit

Working with MATLAB

I The MATLAB-prompt behaves in many ways like a standard
UNIX-prompt.

I Navigate with cursor, TAB-completion, etc.

I MATLAB can be (and usually is) used interactively!

I MATLAB is verbose: Shows results immediately

I You can suppress this by ending the line with ’;’

Operations

I To use MATLAB, enter stuff at the command prompt:

5*7

I Some simple operations:

+,-,*,^,/,==,<,>,~=

I To use variables, assign to them:

x = 5
y = 234
x * y

I Some simple functions:

sin, cos, exp, log, sqrt, ...

Matrices

I To enter matrices use [,]

I Separate columns with ’,’ or ’ ’

I Separate lines with ’;’

I A = [1 2 3; 4 5 6] yields

A = [1 2 3
4 3 6]

I Important shortcut is ’ : : ’ Works like this:
1 : 0.5 : 3 gives you [1.0 1.5 2.0 2.5 3.0]

I Access matrix elements with (). For example

A(2,2) = 3

I Note: Indexes start at one!

Working with vectors and matrices

I Most functions mentioned before are performed element-wise.
Two exceptions are

* and ^

To make these element-wise, use ’dot-notation’:

.* and .^

I You can summarize vectors (and matrices) with

min, max, mean, sum, ...

For example: min([3, 2, 4, 5, 6]) = 2

Matrix algebra

I Standard matrix algebra rules apply. E.g.

[1,2]’*[1,2] = ?
[1,2]*[1,2]’ = ?

I To transpose use ’

Working with vectors and matrices

I Special functions for quickly building big matrices:

zeros, ones, rand, randn, eye

I Work like this:
I To get a 3× 3-matrix filled with zeros, type

zeros(3)

I To get a 3× 1-matrix filled with zeros, type

zeros(3,1)

I Etc.

I The other functions similarly.

Scripts and functions

I Can write scripts by stacking commands in a file ending in ’.m’

I Similarly, define functions by starting the file with

function [y] = myfunction(x)

The value of y will be the return value. The name of the file
will be the function name.

I Comments start with ’%’

I Example:

function [y] = timestwo(x)
y = 2*x % multiply by two...

for, while, if ...

I for-loops
I for i = 1 : 0.5 : 5

exp(i)
end

I while-loops
I i = 1.1

while i<=2
i = i^2

end

I conditionals
I i = sin(2.1374)

if i < 0.5
i = i^2

end

Plotting

I To plot use ’plot’.

I For example

x = 1 : 0.5 : 10;
y = sin(x);
plot(x,y)

I You can use an additional string argument. One example:

plot(x,y, ’r--’)

I Use ’help plot’ for more on this.

I Overlay plots using ’hold on/off’

More plotting

I Change labeling with ’xlabel’, ’ylabel’, ’title’.

I Generate subplots with ’subplot’.

I Display matrices with ’imagesc’.

I E.g.

A = rand(10)
subplot(1,2,1)
imagesc(A)
B = (1:0.1:10)’*(1:0.1:10)
subplot(1,2,2)
imagesc(B)

I Other: ’plot3’, ’scatter’, ’bar’, ’hist’, ...

Slicing and logical indexing

I Can refer to slices of matrices using ’:’

I Example: Let a = eye(3);
a(1, :) = [1, 0, 0] and a(2, :) = [0, 1, 0], etc.

I You can use logical matrices to access elements of other
matrices.

I ==, <, >, etc. actually return logical matrices (they work
component-wise).

I So, if a = [1, 2, 3] you have:
I a(a > 1) = [2, 3]

