
DSP Programming using DirectSound and MFCNC++ 

Frank Perkins, WB51PM 
wb5ipm@comcast.net 

Abstract 

This paper discusses DSP programming using Microsoft DirectSound and MFCNC++. Topics 
covered include an overview of Microsoft Windows programming, the MFCNC++ framework, 
DirectSound, AX.25 demodulation and packet decoding, and simple TCP/IP Winsock 
communications. A packet monitoring program is used as an example. The link to the VC++ 
folder for this program can be found at www.tapr.org in the "Conferences" section. 

Keywords 

APRS, AX.25, DirectSound, DSP, MFC, VC++ 

Introduction 

My fIrst experience with DSP programming was writing a set of modems for the TAPR!AMSAT 
DSP-93 some 10 years ago!. Since that time, PC performance has increased to the point that DSP 
applications can be easily run in real time, and a number of Amateur Radio DSP applications 
have been published for the PC in recent years. These applications, and a challenge from N5EG, 
encouraged me to try porting one of my DSP-93 modems to Windows. This project took much 
longer than I expected, and was much more interesting than I expected. Hopefully what I cover 
in this paper will help shorten the learning curve on your fIrst PC-based DSP application. 

Microsoft Windows Programming 

Windows provides your application program with access to hundreds of utility functions, 
referred to as Application Program Interface functions or API functions. API functions let you do 
such things as create application windows, draw text and graphics, send and receive TCP/IP 
packets, and interact with soundcards. When your program is running, Windows will send it 
messages about events such as mouse clicks and keystrokes. Windows will also allocate slices of 
CPU time to the one or more "threads of execution" in your program. 

To a large extent, "raw" Windows application programming consists of writing code to make 
API function calls in response to messages sent to your program. In addition to hundreds of API 
functions, Windows is full of special data structures, variable types and constants. Developing a 
working knowledge of all these Windows components is a long learning curve for most people. 
To shorten this learning curve and take much of the tedium out for Windows programming, 
application programming frameworks, such and Microsoft Visual Basic, Microsoft Foundation 
Classes in Visual C++ (MFCNC++) and Borland Delphi have been developed. I have some 
experience with both Visual Basic and MFCNC++. I started with Visual Basic, and once 
event-driven programming started to make sense to me, I found Visual Basic a very intuitive 

140 



extension of my experience with Microsoft QuickBASIC. However, I decided to switch to 
MFCNC++ for my fIrst DSP application based on its reputation for much faster execution. 

Coming from a background ofQuickBASIC and TMS320C25 (DSP-93) assembly language 
programming, I found Visual Basic source code examples initially quite confusing. I saw 
subroutines that seemed totally isolated; nowhere in the source code did I see a main loop or any 
other code that called them. Eventually I realized these subroutines were, in effect, being called 
by the Windows operating system itself, in response to events such as clicking on a menu item 
with the mouse. These subroutines can be thought of as similar to interrupt service routines in 
assembly language programming. As mentioned above, Windows actually sends event messages 
to your application, plus several other types of messages. When you are doing "raw" Windows 
programming (no framework), you use a special "callback" API function which is in your 
application code but is called by Windows to deliver messages to your application. You then 
have to decide which messages to act on and how, using a switch statement that can quickly 
become very large and tedious to implement. Visual Basic, MFCNC++ and Delphi all simplify 
this message handling problem. 

The MFCNC++ Framework 

Recent versions of Microsoft Visual C++ include the MFC application framework (I am using 
VC++ 6). MFC is an object-oriented programming framework. Recall that object-oriented 
programming makes heavy use of classes, which can be thought of as blueprints for specifIc 
types of code objects. Classes include variables and other data structures that relate to the same 
topic, plus the functions (methods) that operate directly on this data. A class can include another 
class, called a base class, as part of its defmition. In this case, the data structures and functions of 
the base class are inherited by the new (derived) class. The functions inherited from the base 
class provide the derived class with default functionality, which can be selectively overridden as 
needed in the derived class. An example of an MFC class is the CString class, which provides 
string handling capabilities similar to Visual Basic. You can instantiate, or create, a CString 
object just like an ordinary variable: 

CString str; 

Storage for the characters in the str object is automatically created, and you can apply a whole 
range of methods to str, such as retrieving the three left characters: 

CString lftstr = str.Left(3); 

MFC contains dozens of classes that encapsulate much more functionality than single API 
function calls, and they are generally much simpler to use than API functions. Nothing in MFC 
prevents you from using API functions, and in some cases you still have to use API function 
calls. 

MFCNC++ programming is a big topic, so expect to take several months getting familiar with it. 
The books I have found most helpful on MFCNC++ programming are listed at the end of the 

l2paper- • The MFCNC++ source code published by AE4Jy 13 is also an excellent resource. 

141 



DirectSound 

There are two ways MFCNC++ can interact with the soundcard in your PC; by using the 
Microsoft multimedia wave API functions or the DirectSound API functions in Microsoft 
DirectX. The wave API functions were available first. Low level wave API functions are 
complex to use. Fortunately, AE4JY has developed a class, CSound, that greatly simplifies using 
the wave API functions in MFCNC++. I did my first PC-based DSP experiments using his 
CSound class. DirectSound is a more recent development, and is part of DirectX, which 
Microsoft has developed to speed up graphic and sound intensive applications such as games. 
DirectSound is less complex to use than wave sound. AC50G has demonstrated using 
DirectSound with Visual Basic in his QEX articles 1

\ and using DirectSound with MFCNC++ is 
discussed in this article. 

You have to manually add the libraries for multimedia wave and DirectSound to your 
MFCNC++ linker. To do this, start VC++, load your MFC application, click on the "Projects" 
menu, then click on "Settings" and select the "Link" tab. In the "Object/library modules" text 
box add: 

winmm.lib dsound.lib dxguid.lib dxerr8.lib 

Do this for both the "Win32 Debug" and "Win 32 Release" settings. The multimedia library is 
included with recent versions ofMFCNC++. You can get the latest DirectX software 
development kit (SDK) from the Microsoft web site. I used DirectX 8 in the example discussed 
here. 

Packet Monitoring Program Operation 

Before discussing the design of the packet monitoring program, I will briefly discuss its 
operation. When the monitor starts, a dialog box is presented to let you choose either to activate 
or cancel a simple TCP/IP loopback server. I use this server to drive WinAPRS I5• To make 
WinAPRS aware of the monitor, put the wb5ipm.prt file in the WinAPRS "Ports" folder. Then to 
use the monitor with WinAPRS, click on the "Activate TCP/IP Server" button in the monitor's 
dialog box and start WinAPRS. Click on the "Ports list" menu item of the WinAPRS "Settings" 
menu, and highlight the "Soundcard Packet Monitor" row. Then click the Open button. You 
should see ACTIVE appear in the status column of the highlighted row. The monitor will then 
start feeding packets to WinAPRS. If you simply want to monitor packet text and not run 
WinAPRS, click on the "Cancel TCP/IP Server" button in to monitor's dialog box. 

The monitor has three menus, "File", "View" and "Mode". The "File" menu contains "New", 
"Open", "Save", "Save As", a list of files, and "Exit". Basically normal Windows file support for 
the screen text. The "View" menu contains the following items: "Clear Text", "Demodulator 
Output" which is the default scope display showing the output of the FSK demodulator (Figure 
I), "Demodulator Vector Amplitude" which shows the vector amplitude of the FSK signal into 
the demodulator (Figure 2), and "Input FFT and Waveform", which shows the FFT of the input 
signal on the left and the time waveform on the right (Figure 3). The "Mode" menu allows you to 
choose either "300 bls AX.25" or "1200 bls AX.25" (default). Under the "Mode" menu you can 

142 



- - ~ - - - - -~ - -~--- -~ --­ ~ -­ - -­ -­ - - - ~ ---­ - ~~- - - -­ - ~ -~ -­ -­

~..,Y,~I"'a,.a~~ 

iRec:enoedTeoIL.er¢I: 47 InIlCMdT"~44 

- - ~ 

Figure 1 Figure 2 

Figure 3 Figure 4 

also choose "Audio Loopthrough" which allows you to listen to the input audio, albeit somewhat 
delayed. 

Tuning 300 bls AX.25 on HF (SSB) can be a bit tricky. I start by choosing the "Input FFT and 
Waveform" display mode and centering the signal between the tick marks on the FFT display. I 
then switch to the "Demodulator Output" display mode and fine tune my HF rig so that the red 
"adaptive threshold" line sits on top of the middle green line while a packet is being received 
(the red line tends to drift up between packets). The adaptive threshold is handy for HF packet 
monitoring, as there is often some difference in frequency between stations in an HF packet 
QSO. Figure 4 shows the adaptive threshold operating on a packet that has been deliberately 
mistuned. 

The "Demodulator Vector Amplitude" gives an interesting insight into the amplitude balance 
between the two FSK tones. I have seen many transmissions that have a 2: 1, 3: 1, or even higher 
tone unbalance. 

143 



To run the monitor, you must have the end-user runtime files or the SDK for DirectX8 (or 
higher) installed on your PC. Windows XP includes the DirectX runtime files. For Windows 98 
you can download the latest runtime files or SDK from the Microsoft web site. The monitor may 
not run under Windows 95, even with the latest DirectX runtime files for Windows 95 installed. 

Overall Program Design 

The packet monitoring program is based on MFC's Single Document Interface (SDI) 
architecture, which is generated using the AppWizard in VC++. I chose the SDI architecture 
because it uses a true "industrial strength" overlapped Windows main frame, and it also makes it 
easy to save received packets as text files. In building the SDI with AppWizard, a Status Bar is 
added to the bottom of the Main Frame, and CEditView is chosen as the base class for 
CDSPView to provide text display support in the client area. Then, in the header of the Main 
Frame class, a CSplitterWnd utility class is added to allow the client area to be split into two 
rows. The split is defined by overriding the OnCreateClient virtual method in the Main Frame 
implementation. CEditView is put in the upper split, and a new class, CScope, is added to the 
program and put in the lower split for waveform display. CScope is derived from MFC's CView 
class, which provides it graphics support. 

To do the DSP, a class called CDSPThread is added to the program, derived from MFC's CWnd 
base class. CDSPThread is a "worker" thread, and gets its own independent slice of CPU time 
from the operating system. Soundcard support for CDSPThread is provided by defining another 
class, CDXSound, which is also derived from MFC's CWnd base class. CDXSound handles calls 
to the DirectSound API functions. A simple Dialog class, CSockDlg, is also added to allow the 
user to activate or cancel the TCP/IP loopback server for WinAPRS. 

MFC programs that include a worker thread and several views will usually require 
communication between some of the main classes. Here is a summary of what is done in the 
example packet monitoring program. CDSPView controls CDSPThread and also handles most of 
the interfaces with the user, including the TCP/IP server dialog box. The Status Bar belongs to 
the Main Frame. So to write text to the Status Bar panes, CDSPView uses ffiyFrame, which is a 
pointer to the Main Frame. To create, start, stop and delete CDSPThread, CDSPView uses a 
global pointer pDSPThread, which is defined above CDSPView's constructor. When CDSPView 
starts CDSPThread, it gives the thread its pointer so the thread can communicate back to it. 
CDSPView also contains several data structures which are loaded or read by other classes. 
CDSPView's m_PktStr is loaded with new packets by CDSPThread, after testing CDSPView's 
m_fReady flag to be sure CDSPView is not in the middle of processing m_PktStr (poor man's 
critical section). CDSPThread then posts a user-defined message which triggers CDSPView to 
process m_PktStr for display. Note that a worker thread can load or read data structures 
belonging to other classes with a bit of coordination, but it is usually not "safe" for the thread to 
directly call functions in other classes. Hence the use of messages. 

CDSPView's m_fHF flag, which indicates that the monitor is in the HF (300 b/s) mode, is read 
by CDSPThread and CScope. CDSPView's m_fSO flag, which indicates the user wants the input 
audio looped through to the audio output, is read by CDSPThread. CDSPView controls the three 
scope display modes with m_scope, which is read by CScope and CDSPThread. CDSPView 

144 



reads CSockDlg's m_tIP selection flag and then sets mjSocket to control the TCP/IP server 
function, which in turn is read by CDSPThread. 

CScope includes two data buffers, m-pData which holds waveform data for display, and and 
m-pThld, which holds the adaptive threshold data for display. These are loaded by CDSPThread, 
using the m-pScope pointer, after testing the m_fScope flag to be sure CScope is ready for more 
data. CScope uses the global pDSPThread pointer to access and update CDSPThread's 
m_fScope flag. CScope also maintains a pointer to CDSPView, called m-pView, to read 
CDSPView data as discussed in the above paragraph. CScope also has a Main Frame pointer, 
m-pFrame, but this is just used as a means to initialize m-pView. CDSPDoc has access to the 
CEditView text window as a standard feature ofthe SDI architecture, allowing packets to be 
stored as text files. 

Here are a couple of hints about SDI programs and VC++. Each time you click "New" in the 
"File" menu, it triggers the OnInitialUpdate method in the first view class (CDSPView in the 
case ofthe packet monitoring program). Design the code you add to this method so you do not 
unintentionally create, define, or initialize things more than one time. I had some very interesting 
debugging experiences until I figured this out. I use the CEditView control in CDSPView to 
display text. This control will overflow at about 32,000 characters, and seems to get sluggish on 
slow computers when it is working with more than about 16,000 characters. So be sure to 
manage the amount of characters in the CEditView control to avoid a program hang up. The 
CEditView control only executes a carriage return-line feed when it sees the (char)13-char(lO) 
pair; ifjust one or the other of these characters occurs, CEditView prints a vertical mark and 
keeps going. And unless a backspace comes directly from the keyboard, CEditView just prints a 
vertical mark and goes on. You will have to preprocess any (char)8 backspaces in your own code 
before adding the text to the CEditView control. In trade for execution speed, VC++ will let you 
hurt yourself. Become familiar with the terms "memory leak" and "GDI resource leak" and test 
your code for them. Otherwise, you can have an application appear to run fine for hours and/or 
for a number of restarts, and then shut your computer down. 

DSP Design Details 

There are a number of ways to demodulate an FSK signal with DSP. I chose the arctangent 
method for the packet monitor because of its relative insensitivity to amplitude fluctuations 16

. 

Figure 5 shows a block diagram of the demodulator. The demodulator and the routines that 
assemble packets from the demodulated bits are found in CDSPThread::DSPLoopO. Look for 
the "while (m_fDSPRun == TRUE)" statement within DSPLoopO. The first call in this while 
loop, "DXS.ReadDirectSoundO", feeds the DSP calculations and the packet assembly routines 
by returning blocks of 4096 audio input samples. Each sample is 16-bit monaural, so the block 
size is 8192 bytes. After retrieving the block of input samples, either the samples are written 
back to DirectSound for soundcard output or "silence" is written back, depending on what the 
user has chosen. The "for (i = 0; i < (int)(DXS.m_BufSize / 2); i++)" loop turns the DSP and 
packet assembly crank on the 4096 input samples. 

Referring again to Figure 5, the audio samples first flow through an IIR high-pass filter to 
remove any DC offset. Next the samples flow through a limiter, which in retrospect is probably 

145 



300·1200 b/s FSK Demodulator 

Sampled 
PhaseAudio 

Demodulator Output 

Decoded 
Bit Streem 

Phase -.__-------,0/ 

Figure 5 

not needed. The samples then flow through an FIR band-pass filter. Note that there are two 
band-pass filter choices, one for 1200 bls packet and one for 300 bls packet. The coefficients for 
the FIR filters are stored in the DSPData.h header file. Both filters are centered at 1700 Hz. The 
output of the band-pass filter is applied to two mixers. The local oscillator for one mixer is a 
1700 Hz cosine wave (I-channel), and the local oscillator for the other mixer is a 1700 Hz sine 
wave (Q-channel). The output samples from each mixer are filtered by FIR low-pass filters to 
remove the "sum" products. The vector amplitude of the signal is calculated at this point by 
taking the square root of the sum of the squares of the filtered I and Q signals. The vector 
amplitude is used as a "squelch" for some of the scope displays and is an interesting signal to 
view itself. 

For 1200 bls packet, the filtered I and Q samples are applied directly to an arctangent phase 
detector. For 300 bls packet, the I and Q channels are first decimated by four (300 bls = 11<1 of 
1200 b/s). The narrow band-pass filter used for 300 bls packet prevents aliasing due to this 
decimation. The prior output of the phase detector is subtracted from the current output of the 
phase detector to detect the frequency (change in phase between samples) of the audio signal 
with respect to 1700 Hz. The output samples from the frequency detector flow through a "post 
detection" low-pass FIR filter. The output of the post-detection filter is the default scope display. 
The output of the post-detection filter is applied to a data slicer, which is a one-bit digitizer. An 
input sample equal to or greater than the threshold value of the slicer is digitized at a "1" value, 
otherwise it is digitized as a "0" value. In the case of 1200 bls packet, the slicer threshold is set to 
zero, which represents 1700 Hz, or the frequency half-way between the 1200 and 2200 Hz FSK 

146 



tones used for 1200 bls packet. 1200 bls packet is nonnally transmitted FM, so the tones you 
send are the tones you get. 

In the case of 300 bls HF packet, SSB reception is used and the FSK tones received depend on 
the transmitter frequency and the receiver tuning. A data slicer provides the best noise rejection 
when its threshold is set half-way between the demodulator output values for each tone. As 
discussed earlier, an adaptive threshold is used for 300 bls packet monitoring, to track out 
frequency offsets between the stations in a QSO. The adaptive threshold used is from N5EG's 
book on Wireless Digital Communications17 

. 

Each bit value is "estimated" to be equal to the value of a slicer output sample near the middle of 
its bit period. To do this estimation, a simple phase-locked loop (PLL) is used to line up the 
period of a numerically-controlled oscillator (NCO) with the average position of the edges 
(sample-to-sample transitions from 1 to 0 or 0 to 1) in the slicer output stream. Operation of the 
PLL is similar to a "bang-bang" feedback controller such as thennostat. When an edge occurs in 
the slicer output stream, the NCO is tested to see if it is in the first half of its period or in the last 
half. If the edge occurred in the first half, the NCO is retarded about 6%; if it is in the second 
half, it is advanced about 6%. This has the effect of sliding the NCO gradually either backwards 
or forwards into alignment with the embedded clock in the slicer output stream. Once aligned, 
the PLL will dither back and fourth slightly around the alignment point. Noise has the effect of 
jittering the edge positions in the slicer output samples, but the average edge position can still be 
found using filtering effect of the PLL. The PLL will also track out mild errors in the embedded 
clock rate of the slicer output samples. At the beginning of each NCO period, counter "n" is reset 
and is then incremented on each sample. The "n" counter reaches 5 near the middle of the bit 
period (PLL locked), and the value of corresponding sample is used as the bit estimate. Another 
way to estimate the bit value is to use the "integrate and dump" method, which can be 
implemented by adding just a few more lines of code. I will leave this as your homework 
assignment. 

AX.25 data is usually differentially encoded, which means a "0" bit is encoded as a change in bit 
value and a "1" bit is encoded as no change in bit value. Differential decoding just reverses this 
process. The output of the differential decoder is a stream of bits that you can use to assemble 
received packets for display and to drive WinAPRS. 

Before looking at packet assembly, let's discuss a few points about the CDXSound class that 
supports the DSP calculations. Recall that "DXS.ReadDirectSoundO" is the first call at the top of 
the "while (m_fDSPRun == TRUE)" loop. If you look at the ReadDirectSoundO method in 
CDXSound, you will see the ::WaitForMultipleObjects function call. This function is looking for 
two events that are set up when DirectSound is initialized. One event occurs when the lower 
block of the DirectSound capture buffer (circular) is full of new audio samples, and the other 
event occurs when the upper block of the DirectSound capture buffer is full of new audio 
samples. When either of these events occur, the new audio samples are copied into the mylnBuf 
buffer for use by the DSP calculations, etc. The ::WaitForMultipleObjects function has a couple 
of noteworthy features. First, Windows will devote very little CPU time to this function until one 
of the event objects becomes true. Second, you can make this function time out so you can back 
out of your application if some other application grabs the soundcard from you or otherwise hogs 

147 



most of the CPU time for an extended period. Third, this function provides the basic pacing for 
receiving audio samples, sending audio samples, and doing the DSP calculations and packet 
assembly routines. 

The DirectSound output play buffer is set at twice the size of the input capture buffer, and is 
subdivided into four blocks. When WriteDirectSoundO is called, output samples are written two 
blocks ahead (circular) of the block where the play cursor is currently located. This approach 
introduces some delay in the audio output, but it is simple to code and recovers well from CPU 
loading peaks that cause the audio to get "out of sync". Someday I will rework this call for less 
delay when I start writing transmit routines. 

CDXSound is hard coded for 16-bit monaural sampling at 11,025 samples/second. The block 
size can be set when an object of CDXSound is instantiated. I have been using a block size of 
4,096 samples, or 8,192 bytes. This is 371.5 milliseconds of audio. Using this block size, the 
packet monitoring program will even run on myoid 166 MHz desktop Pc. A smaller block size 
can be used if you are only going to run on fast PCs. 

Going back to the topic of packet assembly, the decoded bit stream is first fed into a flag 
detection correlator. When a flag is detected, the number of accumulated bytes is checked. If 
there are more than 16 bytes and the FCS tests OK, the packet is assembled in "human readable" 
form in m_TStr. If the TCP/IP sever function is active, the bytes in m_TStr are sent to the 
TCP/IP loopback address. At this point, various flags, strings and other variables are reinitialized 
for building the next packet. 

In addition to the correlator, the decoded bit stream is fed into a byte assembler which includes 
bit-destuffing, and a bit-wise FCS calculator. The first fields in a packet contain the To and From 
address, and usually some repeater addresses. During byte assembly, the "end of the address 
field" bit is detected and the number of bytes in the address field is stored in AfC for later use. 
The packet bytes are assembled into a raw packet in string "Str", with byte values that 
CEditView does not like to print replaced with spaces (for a cleaner display look). And while the 
address field byte are coming in, the To, From, and the first two repeater addresses are loaded 
into their own string variables for building the human-readable packet string. Expecting the 
packet monitor to be used mostly for APRS, I have not tried to decode/display some of the 
fancier, little used parts of an AX.25 frame. This is another homework assignment for you if 
your interested. 

At the bottom of the "for (i = 0; i < (int)(DXS.m_BufSize / 2); i++)" DSP calculation loop, data 
samples are loaded for graphical display by CScope according to the view and mode the user has 
chosen. Each time the "for" loop completes, m_TStr is tested to see if it is holding a packet. If 
so, the packet is loaded into CDSPView's m_PktStr string and a user-defined message is posted 
to trigger CDSPView into displaying it. 

Simple TCP/IP Communications 

When I started to write the packet monitoring program, I anticipated that driving WinAPRS 
through the PC's TCP/IP stack would be quite involved. It actually turned out to be quite simple. 

148 



MFC has a class called CAsyncSocket that allows a simple TCP/IP server function to be added 
with just a dozen or so lines of code. You will find the initialization code just below the variable 
declarations in CDSPThread::DSPLoopO. Note you need two socket objects, one to listen for a 
connection request and one to actually make the connection. 

Conclusion 

As expected, I have found writing the DSP part of an application much easier in MFCNC++ 
than in the assembly language I used for DSP-93 applications 10 years ago. In addition to the 
high-level MFCNC++ programming language, floating point calculations, built-in trig 
functions, graphical data displays and high CPU capacity greatly simplify DSP design and 
debugging. On the other hand, gaining some capability in MFCNC++ Windows programming 
has taken much longer than I expected. PC performance is continuing to improve rapidly, along 
with the growing availability of high performance sound and video I/O cards. It will be 
interesting to see how Amateur Radio DSP takes advantage of these hardware improvements to 
further evolve over the next 10 years. 

Notes 

IF. Perkins, WB5IPM, "DSP-93 Programming Hints,", Proceedings ofthe 14
th 

ARRL Digital Communications 

Coriference, Arlington, Texas, September 1995, pp 97-100. 

2R. McGregor, Using C++ (Indianapolis, Indiana: QUE, 1998, ISBN 0-7897-1667-4). 

3J. Prosise, Programming Windows with MFC, second edition (Redmond, Washington: Microsoft Press, 1998, 

ISBN 1-57231-695-0). 

4R. Jones, Introduction to MFC Programming with Visual C++ (Upper Saddle River, New Jersey: Prentice Hall, 

2000, ISBN 0-13-016629-4). 

5E. Kain, The MFC Answer Book (Boston, Massachusetts: Addison-Wesley, 1998, ISBN 0-201-18537-7). 

6J. Bates and T. Tompkins, Practical Visual C++ 6 (Indianapolis, Indiana: QUE, 1999, ISBN 0-7897-2142-2). 

7D. Chapman, SAMS Teach Yourself Visual C++ 6 in 21 Days (Indianapolis, Indiana: SAMS, 1998, 

ISBN 0-672-31240-9), pp 495-520. 

8J. Beveridge and R. Wiener, Multithreading Applications is Win32 (Boston, Massachusetts: Addison-Wesley, 

1997, ISBN 0-201-44234-5), pp 223-243. 

9B. Bargen and P. Donnelly, Inside DirectX (Redmond, Washington: Microsoft Press, 1998, ISBN 1-57231-696-9), 

pp 203-280. 

IOMicrosoft, Visual C++ MFC Library Reference, Part 1 (Redmond, Washington: Microsoft Press, 1997, 

ISBN 1-57231-518-0). 

149 



IIMicrosoft, Visual C++ MFC Library Reference, Part 2 (Redmond, Washington: Microsoft Press, 1997, 

ISBN 1-57231-519-9). 

12T. Grandgent, "Tom's Spectrum Analyzer Source Code," available at www.grandgent.com. 

13M. Wheatley, AE4JY, "WinPSK 1.2 Source Code and Technical Reference Manual," available at 

www.qsl.riet/ae4jy. 

14G. Youngblood, AC50G, "A Software Defined Radio for the Masses: Part 2," QEX, September/October 2002, 

pp 10-18. 

15M. Sproul, KB2ICI, and K. Sproul, WU2Z, "WinAPRS: Windows Automatic Position Reporting System," 

Proceedings ofthe 15th ARRL and TAPR Digital Communications Conference, Seattle, Washington, September 

1996, pp 130-135. 

1~. Frerking, Digital Signal Processing in Communication Systems (New York, New York: Van Nostrand 

Reinhold, 1994, ISBN 0-442-01616-6). 

17T. McDermott, N5EG, Wireless Digital Communications: Design and Theory (Tucson, Arizona: TAPR, 1996, 

ISBN 0-9644707-2-1), pp 162-165. 

150 


