MM Research Preprints,165-172
No. 19, Dec. 2000. Beijing 165

On the Parallel /Distributed Network Computing
Environment for Wu’s Method

D. Lin, Y. Wu
Institute of Systems Science, Academia Sinica
Beijing, 100080, China

Abstract. In order to get better performance for the implementation of Wu’s method,
A network environment which could provide parallel/distributed processing is discussed.
Feasibility, requirement, message transmission and architecture design with ELIMINO
are presented.

1. Introduction

Mathematics mechanization[l] is a new mathematical research subject introduced
by Wu Wentsiin, a chinese famous mathematician, in the late of 1970’s. Mechanization
of a mathematical problem means “making inflexible” or “standardizing” in the process of
proving or calculation, that is, after each step, we should have a fixed next step to choose.
The essence of mathematics mechanization is to convert the qualitative difficulties inherited
in usual mathematical proofs into quantitative complexities of calculations on standardizing
the proof procedure in an algebraic manner. It’s clear that mathematics mechanization is a
new thought suitable for the era of computer.

In the past two decades, Wu’s method has been developed very fast. Now it can be used
not only in mechanically geometric theorem proving, but also in the field of multivariate
polynomial equations solving, theoretical physics, CAGD, robotics and so on.

At present, several implementations of Wu’s method have been developed by using math-
ematical softwares, such as ELIMINO[2], MAPLE, SACLIB. But as Wu’s method has found
applications in more and more fields, it is challenged by more complicated calculation prob-
lems, some of them can be calculated for several days or even failed because of memory
limitation of a single computer. In order to get better performance for the implementation of
Wu’s method, it is reasonable and necessary to consider parallel /distributed implementation
under the network environment. In another way, ”the network is the computer” have been
a concept with global impact and the network make many kinds of services easily accessible.
Why do not we use it for the implementation of Wu’s method to improve the performance?
So, the establishment of Parallel/distributed Network Computing Environment(P/dNCE)
for Wu’s method become reasonable.

The parallel/distributed computation is built based on remote execution. That means
the smallest execution unit is process. In the P/dNCE, One task is divided into two or more
processes which contain same program set and can be executed on the different host at the
same time. See Fig. 1,

166 D. Lin, Y. Wu

Executable Paralle
Program Set

J L

Get Multi-Copies and
Execute them Alone on Different Host

%

AI I
(AJowew [eo0|) Z sseo0.d I

Transportation
>
Synchronize
Gather

(Atowsw [e00]) T SS800.d ’v\

(AJowew [eo0|) € sse00.4d

Output
\mﬁM/

Fig. 1. Flow Chart of Parallel/Distributed Computation

From Fig. 1, we can see that more hosts (processes) might make computation more
quickly; Each process could use the local memory; NFS (Network File System) services can
help us to keep the storage of program set on only one host.

In this paper, we will show our thought about the construction of parallel/distributed
network computing environment for Wu’s method. A simple model for the environment is

presented.

2. Feasibility and Requirements

In Wu’s method, the concept of characteristic setis very important. The characteristic set
of a polynomial set contains information about the zero structure of the related polynomial
set. In fact, the most essential part of Wu’s method is to calculate the characteristic set.
After getting the characteristic set of a polynomial set, we can easily get or analyse the zeros
of the polynomial set.

For a given polynomial set PS, the algorithm for computing its characteristic set can be
stated as follows (see in [3]):

Input: a polynomial set P.S

Output: the characteristic set of P.S

Step 1 Let BS = BasicSet(PS), if BS is contradictory then return .

Parallel/Distributed 167

Step 2 Let RS = RemainderSet(PS, BS), if RS =) then return(BS).
Step 3 Let PS = PS|URS, go to Step 1.

There are theorems to assert that the above procedure will be terminated after finite
many steps, that is, we can certainly come to a point that RS = (). The final basic set BS
(let it be C'S) is the characteristic set to compute.

From the algorithm we can see that the basic operation in the C'S method is the pseudo-
division of polynomials. Analysis and experiments have shown that many costly pseudo-
division are needed to form RS, and so the computations of set RS is the most time consum-
ing task, especially when the intermediate polynomials become large. Thus the computation
of the remainder set RS is a prime candidate for parallelization. In fact, it is the right
point suited for parallelization. In any step of above algorithm, in order to form RS, every
polynomials of the set PS will be picked and a pseudo reduction with respect to BS will
carried out independently. During the computation of RS, PS and RS remain unchanged,
so we can divide PS into several disjoint subsets of polynomials, and then pseudo-reduce
these subset in parallel. We believe that the power of the Wu’s method could be enhanced
by use of parallel /distributed processing.

Considering that Wu’s method is a symbolic method that manipulates polynomials, the
parallel /distributed network computing environment of Wu’s method should include follow-
ing parts at least:

1. Basic symbolic computing functions libraries.

Symbolic computation is expected to manipulate mathematical expressions symboli-
cally and handle numbers exactly so that no error arises in their calculations. Since
Wu’s method, as a symbolic method, mainly handle polynomials, so the big integer
(which can be as large as desired with the only limitation of total storage of the system)
arithmetic[4] and polynomial operations[5] (such as polynomial factorization, GCD,
pseudo-division of polynomial and so on) should be essential part of this library. Of
course, this library should also contain some implementing functions of Wu’s method.

2. Parallel and distributed computing libraries.

Parallel and distributed computation let many different computers do same things
at the same time. Clearly, these computers must communicate with each other for
getting tasks , sending results, telling the progress and so on. So the communication
between these computers is essential. At present, there are several libraries which
can provide these communication, such as MPI (Message-Passing Interface) and PVM
(Parallel Virtual Machine). Both MPI and PVM can deal with processes management,
basic-message transmission and so on. See more in [6, 7, 8].

3. Message transmission for complex datum.

Since Wu’s method is a method specially for manipulating polynomials symbolically, so
that only the simple data types (such as INTEGER, REAL, CHARACTER, LOGICAL
DOUBLE and so on) provided by general parallel/distributed computing library (such
as MPI, PVM)are not enough for the implementation of P/dNCE of Wu’s method.

168

D. Lin, Y. Wu

So new and complex data structures (such as big integer and polynomial) must be
introduced.

. Parallel algorithm of Wu’s method.

At present, most of implementation of Wu’s method are based on the sequential algo-
rithms. In order to construct a P/dNCE, it is necessary and important to develop high
effective parallel algorithms. Discussions in Section 2 has given a natural parallelism
of Wu’s method.

3. Message Transmission

In any parallel/distributed computing environment, Sending and Receiving of messages

are the basic communication mechanisms. Normally, there are two types of communication
mechanism model. one is point-to-point communication and another is collective communi-

cation.

1. Point-to-point communication.

Point-to-point communication is defined as communication that involves two processes:
one sends data and another receives data. Following point-to-point operations SEND
and RECV are most elementary and important, which is also the basis of any other
communication operations.

e SEND(buf, count, datatype, dest, tag, comm)
Input Parameters

buf: initial address of send buffer (choice)

count: number of elements in send buffer (nonnegative integer)
datatype: datatype of each send buffer element (handle)

dest: rank of destination (integer)

tag: message tag (integer)

comm: communicator (handle)

SEND does not return until the message data and envelope have been safely stored
into the send buffer so that the sender is free to access and overwrite the send
buffer. The message might be copied directly into the matching receive buffer, or
it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send
can complete as soon as the message was buffered, even if no matching receive
has been executed by the receiver. On the other hand, message buffering can be
expensive, as it entails additional memory-to-memory copying, and it requires the
allocation of memory for buffering.

e RECV(buf, count, datatype, source, tag, comm, status)
Input Parameters

count: number of elements in receive buffer (integer)
datatype: datatype of each receive buffer element (handle)

Parallel/Distributed 169

source: rank of source (integer)
tag: message tag (integer)
comm: communicator (handle)

Output Parameters

buf: initial address of receive buffer (choice)
status: status object (Status)

The receive buffer consists of the storage containing count consecutive elements of
the type specified by datatype, starting at address buf. The length of the received
message must be less than or equal to the length of the receive buffer. An overflow
error occurs if all incoming data does not fit, without truncation, into the receive
buffer. If a message that is shorter than the receive buffer arrives, then only those
locations corresponding to the (shorter) message are modified.

2. Collective communication.
The collective communication is defined as communication that involves a group processes
which can complete following functions:

Broadcast from one member to all members of a group.

Gather data from all group members to one member.

Scatter data from one member to all members of a group.
Scatter/Gather data from all members to all members of a group.
Barrier synchronization across all group members.

Global reduction operations such as sum, max, min, or user-defined functions,
where the result is returned to all group members and a variation where the
result is returned to only one member.

In the above send-receive operations, a datatype object must be committed before it can
be used in a communication, so that only the datatypes provided by parallel/distributed com-
puting libraries can be transported. But Wu’s method is a method specially for manipulat-
ing polynomials symbolically, so that only the simple data type, such as INTEGER, REAL,
CHARACTER, COMPLEX, LOGICAL and so on, are not enough. Function VECTOR
has been introduced for transmission of the polynomials and big integers in the P/dNCE of
Wu’s method.

VECTOR(count, blocklength, stride, oldtype, newtype)

Input Parameters

count: number of blocks (nonnegative integer)
blocklength: number of elements in each block (nonnegative integer)

stride:

number of elements between start of each block (integer)

oldtype: old datatype (handle)

Output Parameter

newtype: new datatype (handle)

170 D. Lin, Y. Wu

VECTOR allows replication of a specific datatype into locations that consist of equally
spaced blocks. Each block is obtained by concatenating the same number of copies of the
old datatype. The spacing between blocks is a multiple of the extent of the old datatype.
For example, assume that we have type oldtype with extent 16. the function call of

VECTOR(2,3,4,oldtype, newtype)

will create the type newtype with type oldtype:

{(double,0), (char,8), (double, 16), (char, 24), (double, 32), (char, 40),
(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104) }

That is, two blocks with three copies of the oldtype, with a stride of 4 elements (bytes)
between the blocks.

After giving the definition of new datatype, the followed three steps is essential for the
transmission:

1. Commit a new datatype with command COMMIT (newdatatype);

2. Send/receive a new datatype as normal datatype with command SEND/RECV (buf,
count, newdatatype, dest, tag, comm);

3. Free a newdatatype defined by user with command FREE (newdatatype).

Now, let’s see how to transmit big numbers and polynomials by using the above function
VECTOR. From [4], we can see that a big number can be expressed in a list of integers,
S0 it is easy to transmit big integers by using VECTOR. Now let us consider polynomials.
In fact, any polynomial can be expressed with two list: One is variable sequence list [1 =
[1, %2, 23, -] and another is a list of list: Iy = [l21,l2.2,l2.3, - - -], where the first item of the
list Io; is the basic coefficient of ith term of the polynomial and other items of the list I3 ; are
the exponents of corresponding variables in the ith term of the polynomial. So transmitting
polynomial can be converted to transmitting above 2 lists by using VECTOR. Of course,
this method of transportation maybe not the best when parallel/distributed efficiency is
considered.

4. Architecture Design with ELIMINO

As we discussed in section 2, Wu’s method contains natural sources of parallelism. for
example, it produces a lot of mutually independent subproblems (such as puedo-remainders
of polynomials) that may be treated in parallel by process at different nodes. We believe that
the power of the Wu’s method could be enhanced by use of parallel /distributed processing.
In this section, we will give a design of P/dNCE for Wu’s method with ELIMINO.

ELIMINO is a open and flexible symbolic computation software platform developed in
MMRC, Institute of System Science, the Chinese Academy of Sciences. It provides various
kinds of functions for multiprecision numbers and multivariate polynomials, as well as a
complete implementation of Wu’s method. so we can easily implement parallel algorithm of
Wu’s method by using the library provided by ELIMINO and parallel/distributed libraries
discussed in section 2.

Parallel/Distributed 171

There are several (star, tree and circle) topologies and each topology include several
models (master-slave and parallel) that can be used to accomplish our goal. In our P/dNCE
of Wu’s method, a master-slave model of star topology (shown in Fig. 2) is selected, that is
one master process and several slave processes in the parallel computation scheme. Master
process performs special task such as initialization, coordinating the work of slave processes,
collecting data and printing out the computation results, the slave processes perform the
actual computations such as pseudo-reduction.

NETWORK

>

!

...... E'E

ELIMINO ELIMINO ELIMINO ELIMINO
DAEMON DAEMON DAEMON DAEMON

LI
iII:II-'I —>
H’H-' —>

Fig. 2. Architecture of P/dNCE for Wu’s Method

In the master-slave model, one of the major concern is balancing the loads of slave process.
Ideally, all slaves are kept busy doing useful work all the time till the entire computation is
finished. Perfection is hard to achieve, a major reason for the load imbalance is that different
process take different amount of time on the different nodes, as a result, one or several slaves
can be idle while other slaves are still busy although they all execute the same program set.

A flexible load balancing scheme is required in order to achieve good performance. there
are the basic scheduling schemes: dynamic scheduling scheme and static scheduling scheme.
dynamic scheduling scheme would send polynomials from master to each slave when it is
ready. This can reduce idle time but maybe incur too much communication overhead and may
cause a bottleneck specially when many slave processes are used. static scheduling scheme
would partition the total polynomial system into equal-sized sub-systems of polynomials
and send each sub-system to a different slave. this approach reduces communication time
but may result in unacceptably high idle time since it is hard to predict each sub-system is
harder to deal with. base on analysis, a hybrid approach of above two scheduling schemes has

172

D. Lin, Y. Wu

been adopted for our implementation. In the hybrid scheme, we would farm out several(s)
polynomials at once using static scheduling scheme and hold the remaining (r) polynomials
to dish out using dynamic scheduling scheme. The ratio s/r to use depends on the number
of slave precesses (n) and the total number (%) of polynomials to be treated with. the value
of (t) depends on how many intermediate polynomials are generated in the algorithm and is
not easily predicted. more experimentation can provide some basis for heuristic value of s/r.

[1]
2]
3]

[4]

[5]

[9]
[10]
[11]

References

W. T. Wu, On the Decision Problem and the Mechanization of Theorem in Elementary Geometry,
Scientia Sinica 21(1978), 159-172; Also in Automated Theorem Proving: After 25 years, A. M.
S., Contemporary Mathematics, 29(1984), 213-234.

D. Lin, J. Liu & Z.Liu, Mathematical Research Software: ELIMINO, ascm’98, pp.107-114.

D. Wang, Master Degree Thesis: Polynomial equations Solving & mechanical geometric Theo-
rems Proving, 1993.

H. Yang, Z. Liu, D. Lin, Development of An Object-Oriented number system, mm-research
Preprint, 1999(18), pp.212-219.

Y. Wu, Master Degree Thesis: Polynomial Factorization Algorithm and its implementation in
ELIMINO System, 1999.

S. Gray, A guide to Programming with MP Version 1.1.3, Department of Mathematics and
Computer Science, Kent State University, 1997.

W. Gropp & E. Lusk, User’s Guide for mpich, a Portable implementation of mpl, Argonne
National Labrotary, University of Chicago,1996.

W. Gropp & N. Doss, MPICH Model MPI Implementation reference manual, Argonne National
Labrotary, University of Chicago, 1999.

1. A. Ajwa, P.S. Wang, D.Lin, An Attempt for Parallel computation of characteristic Set, 2000.
P. S. Wang, TAMC: Internet Accessible Mathematical Computation, ascm’98, pp.1-14.
W. T. Wu, Mathematics Mechanization, Kluwer Academic Publishers, 2000.

