CSC 1300 – Discrete Structures Chapter 8: Recurrences

Recurrences

CSC 1300 – Discrete Structures
Villanova University

In this chapter ...

Recurrence

- A sequence in which the next value in the sequence is dependent on a preceding value
- Example: Fibonacci sequence
- Seek to find explicit formulas for recurrence
 - Intuition
 - · Arithmetic expression (linear)
 - Geometric expression (exponential)

Villanova CSC 1300 - Dr Papalaskari

Some sequences and summations we have seen so far...

$$1+2+3+4+5+...+n = \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

$$1+2+4+8+16+...+2^n = \sum_{j=1}^n 2^j = 2^{n+1}-1$$

Villanova CSC 1300 - Dr Papalaskari

Defining a Numerical Sequence

Two ways:

Formula for the generic term s_n involving index n only

2, 4, 6, 8, 10, 12,...
$$s_n = 2n$$
 for $n \ge 1$

• Equation relating the generic term s_n to one or more preceding terms of the sequence

2, 4, 6, 8, 10, 12,...
$$s_n = s_{n-1} + 2$$
 for $n > 1$, $s_1 = 2$

Villanova CSC 1300 - Dr Papalaskari

Dr Papalaskari

Chapter 8: Recurrences CSC 1300 – Discrete Structures

Recurrence Relations

Definition A *recurrence relation* (or simply *recurrence*) is an equation that defines the generic term of a sequence s, in terms of one or more of its predecessors.

Examples: $s_n = s_{n-1} + 2$ for n > 1

$$o_n o_{n-1} = 100 m s$$

$$t_n = 3t_{n-1}$$
 for $n > 0$

$$f_n = f_{n-1} + f_{n-2}$$
 for $n > 1$

• To define a sequence uniquely, a recurrence relation needs an initial condition.

Villanova CSC 1300 - Dr Papalaskari

Recurrence Relations

Definition A *recurrence relation* (or simply *recurrence*) is an equation that defines the generic term of a sequence s_n in terms of one or more of its predecessors.

Examples:
$$s_n = s_{n-1} + 2$$
 for $n > 1$

$$s_1 = 2$$

$$t_n = 3t_{n-1}$$
 for $n > 0$

$$t_0 = 1$$

$$f_n = f_{n-1} + f_{n-2}$$
 for $n > 1$

$$f_0 = 0$$
 $f_1 = 1$

• To define a sequence uniquely, a recurrence relation needs an initial condition.

Villanova CSC 1300 - Dr Papalaskari

Solving Recurrence Relations

To solve a recurrence relation subject to an initial condition means to find a formula expressing its generic term as a function of *n*, the index of the sequence (referred to as the *closed form*).

Example:

$$S_n = S_{n-1} + 2$$
 & $S_1 = 2$ recurrence relation with initial condition $S_n = 2n$ closed form

Villanova CSC 1300 - Dr Papalaskari

Method of forward substitutions

• Using the recurrence, generate a few terms:

$$X_0$$
 X_1 X_2 X_3 X_4 ...

- Try to discern a pattern
- [Prove the formula's validity (use mathematical induction, substituting it in the initial condition and recurrence).]
- Example: $x_n = x_{n-1} + 3$ for n > 0, $x_0 = 0$

Villanova CSC 1300 - Dr Papalaskari

CSC 1300 – Discrete Structures Chapter 8: Recurrences

Method of backward substitutions

- Using the recurrence, substitute for previous terms (i.e., terms preceding x_o) in a hope to see a pattern.
- Consider what would happen if you keep substituting until the initial condition is reached.
- [Prove the formula's validity (use mathematical induction, substituting it in the initial condition and recurrence).]
- Example: $x_n = x_{n-1} + 3$ for n > 0, $x_0 = 0$

Villanova CSC 1300 - Dr Papalaskari

12

Method of finite differences

- This is useful if you have a recurrence of the form $x_n = x_{n-1} + p(n)$ for $x_1 = c$
- Compute differences of subsequent terms.
 - if difference is constant, you are done
 - otherwise, compute 2nd differences, etc.
- This method is described in some detail in Section 8.6
- Example: $x_n = x_{n-1} + 3$ for n > 0, $x_0 = 0$

Villanova CSC 1300 - Dr Papalaskari

1

3

Example: Tower of Hanoi Puzzle

 H_n = number of moves needed to solve the n-disk puzzle

Dr Papalaskari

Villanova CSC 1300 - Dr Papalaskari

2nd order linear homogeneous recurrence with constant coefficients

A recurrence that can be written in the form:

•
$$ax_n + bx_{n-1} + cx_{n-2} = 0$$

where a, b, c are real numbers (called the coefficients), $a \ne 0$.

• Examples:

Villanova CSC 1300 - Dr Papalaskari

CSC 1300 – Discrete Structures Chapter 8: Recurrences

2nd order linear homogeneous recurrence with constant coefficients

Unless b = c = 0, the recurrence

 $ax_n + bx_{n-1} + cx_{n-2} = 0$

has infinitely many solutions (sequences), called the *general solution* to the recurrence. All of them can be obtained by a single formula; the type of this formula depends on the roots of the quadratic equation called the *characteristic equation* for the above recurrence:

 $ar^2 + br + c = 0.$

Theorem If the characteristic equation has two distinct real roots r_1 , r_2 then the solutions will be of the form: $x_n = q_1 r_1^n + q_2 r_2^n$

If the characteristic equation has two equal real roots $r_1 = r_2 = r$ then the solutions will be of the form: $\mathbf{x}_n = q_1 r^n + q_2 n r^n$

 $(q_1 \text{ and } q_2 \text{ are any two real numbers})$

Villanova CSC 1300 - Dr Papalaskari

17

Example 1: Application of the theorem

Find the general solution to the recurrence $x_n = 5 x_{n-1} - 6 x_{n-2}$

Find the *particular solution* to this recurrence that satisfying the initial conditions $x_0 = 1$, $x_n = 0$

Villanova CSC 1300 - Dr Papalaskari

Example 2: Application of the theorem

Find the general solution to the recurrence $x_n = 4 x_{n-1} - 4 x_{n-2}$

Find the **particular solution** to this recurrence satisfying the initial conditions $x_0 = 1$, $x_1 = 3$

Villanova CSC 1309 - Dr Papalaskari

Application to the Fibonacci numbers

 $f_n = f_{n-1} + f_{n-2}$ for n > 1, $f_0 = 0$, $f_1 = 1$

Villanova CSC 1320 - Dr Papalaskari

4