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Abstract.  In this paper, the authors find the best numbers « and f such that C(aa+
(1 —a)b,ab + (1 —a)a) < T(a,b) < C(Ba+ (1 —PB)b, b+ (1 —B)a) for

- 2 2
alla,b > 0 witha # b, where C(a,b) = *“ 4040 and T(a,b) = 2 o

\/ a2c0s2 0 + b2sin? 6 df denote respectively the centroidal mean and Toader mean of
two positive numbers a and b.
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1. Introduction

In [13], Toader introduced a mean

2 /2
T(a,b) = nf Va2 cos? 0 + b2 sin? 6 do (1.1)
0

5 2
2 NI
b4 a
2b a\2
né‘(\/l—<b>>, a<b,

a, a=>n, (1.2)

/2
£=E(r) =/ V1= r2sin26do
0

for r € [0, 1] is the complete elliptic integral of the second kind.
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In recent years, there have been plenty of literature dedicated to Toader mean [6, 7,
9-11,15].

For p € Rand a,b > 0, the centroidal mean C(a, b) and the p-th power mean
M (a, b) are defined respectively by

. 2(a*+ab+b*
C(a,b) = ( 3+ b) ) (1.3)
and
P 4P \1/P

Mp(a,b) = (a ;a ) ., P#0,

Vab, p=0. (1.4)

In [14], Vuorinen conjectured that

Ms3/s(a,b) < T(a, b) (1.5)

for all @, b > 0 with a # b. This conjecture was verified by Qiu and Shen [12] and by
Barnard et al. [3]. In [1], Alzer and Qiu presented that

T(a,b) < Man2)/mn(x/2)(a, b) (1.6)

forall a, b > 0 with a # b, which gives a best possible upper bound for Toader mean in
terms of the power mean.
Very recently, Chu et al. proved in [8] that the double inequality

C(xa+(1—a)b,ab+(1—a)a)<T(a,b)<C (Ba+(1—-8)b, Bb+(1—pB)a)
(1.7)

is valid foralla,b > O witha # bifandonly if @ < J and B > ) + ‘/4’2’;”2 , where

2 2, .
C(a,b) = “afg is the contraharmonic mean.
For positive numbers a, b > 0 with a # b, let

J(x)=C (xa+ (1 —x)b, xb+ (1 — x)a) (1.8)

on [é, 1]. It is easy to see that J(x) is continuous and strictly increasing on [é, 1]. Now it

is natural to ask the question: What are the best constants o > é and B < 1 such that the
double inequality

C (aa+(1—a)b,ab+(1—a)a)<T(a,b)<C (Ba+(1—p)b, Bb+(1—pB)a)
(1.9)

holds for a,b > 0 with a # b? This problem can be affirmatively answered by the
following theorem which is the main result of this paper.

Theorem 1. For positive numbers a,b > 0 with a # b, the double inequality (1.9) is
valid if and only if a < 5(14_ \?) and B > é—l— é\/f _3
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2. Proof of Theorem 1

For 0 < r < 1, denote ' = /1 —r2. It is known that Legendre’s complete elliptic
integrals of the first and second kinds are defined respectively by

/2 1
K=K(r) = / do,
0 V1—r2sin20
K= K'(r) = K,
T
K(0) = 5
(1) = 0o

and

/2
5:5(r)=/ V1= r2sin26 ds,
0
& =& =&,
T
E0) = 5
g1y =1,

(see [4,5]). For 0 < r < 1, the following formulas were presented in Appendix E,
pp. 474475 of [2]:

Ak E—-()K A E-K  dE-()K)

= , = , rkC,

dr r(r/)2 dr r dr

dK—-&  r€ 2Jr\ 28— (")K
Y l+r)  14r

For simplicity, denote

1 V3 1 1\/12
r=_|[1 d u= -3.
2<+ 2) and m=o oy,

It is clear that, in order to prove the double inequality (1.9), it suffices to show that
T(a,b) > C (ha+ (1 —Nb, b+ (1 —V)a) (2.1
and
T(a,b) < C (na+ (1 — )b, ub+ (1 — pwa). (2.2)

From (1.1) and (1.3) we see that both T'(a, b) and C (a, b) are symmetric and homogenous
of degree 1. Hence, without loss of generality, we assume thata > b. Let t = Z € (0,1)

andr = 171 € (0, ) and let p € (;, 1).Then

2
T(a,b) — C(pa—i—(l—p)b,pb—i—(l—p)a)z27_?5 \/1—<z)
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o, [P =p)b/al+[p+(1=p)bal(pbla+1=p)+(pb/a+1—p)*
3(1+b/a)
[p+(1=p)t1=[p+(1=p)t]l(pt+1—p)+ (pt+1-p)*
3(1+41)
2026 — (1 —rHK (1—=2p)2r*+3

— 2 e =124
s

~x 1+r % 30+4n
= 4 P ao ot o 23
=14, n[ —(—r)]—3(—17)r— . (2.3)
Let
2 2 1 2.2
)= TRE= (1=K = (1 =2p)r 1, (2.4)

andlet f1(r) = rf'(r) and fo(r) = 5 {r(r). Then, by standard argument, we have

4
f(0)=0, £(0) =0, fz(0)=1—3(1—2p)2,

_ 4 1 .2 2 _
fA)=_"—1-_(1=2p? fUA)="="(1-2p° fH(I7)=+00,
/4 3 T 3
2 2 2 2.2 2 4 2
fir)y="[E—-U-rHK] - _A=-2p)r-, fr)= K- _(-2p)-,
b4 3 b4 3
When p = A = é(l + ‘/23 ), it follows that f>(0) = 0. An easy argument leads
to f(r) > 0 forr € (0, 1). Together with this, the inequality (2.1) follows from (2.3)
and (2.4).

When p =pu = é + %\/;2 — 3, itis simple to derive that

Sm — 16
<

famH =0, fd)= 0, f2(0)= 0.

2(r —3)

>

b4

Consequently, considering the monotonicity of f2(r), it is deduced that there exists ro €
(0, 1) such that f>(r) < 0 on (0,r9) and f>(r) > 0 on (r9, 1). Hence, the function
f1(r) is strictly decreasing on (0, rp) and strictly increasing on (rp, 1). Similarly, there
exists r1 € (0, 1) such that f1(r) < O on (0,r1) and fi(r) > 0 on (r1, 1). Thus, the
function f (r) is strictly decreasing on (0, r1) and strictly increasing on (r1, 1). As aresult,
inequality (2.2) follows.

If p > A, then fo(r) < 0. From the continuity of f(r), fi(r) and f2(r), it
follows that there exists §; = §;(p) > 0 such that f(r) < 0 on (0, §;). Combin-
ing this with (2.3) and (2.4) yields T(a,b) < C (pa + (1 — p)b, pb + (1 — p)a) for
be (};g;, 1).If p < p, then f(17) > 0. Hence, there exists 8, = 82(p) € (0, 1)
such that f(r) > 0 on (I — 82, 1). Combining this with (2.3) and (2.4) reveals that
T(a,b) > C (pa+ (1 — p)b, pb+ (1 — p)a) for Z € (0, 62/(2 —82)). These imply that
the constants A and p are the best possible. The proof of Theorem 1 is complete.
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