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Preface

This text is an introduction to the basic principles of electrical engineering. It is the outgrowth of
lecture notes prepared by this author while teaching for the electrical engineering and computer
engineering departments at San José State University, DeAnza college, and the College of San Mateo,
all in California. Many of the examples and problems are based on the author’s industrial experience.
It can be used as a primary text or supplementary text. It is also ideal for self-study.

This book is intended for students of college grade, both community colleges and universities. It
presumes knowledge of first year differential and integral calculus and physics. While some
knowledge of differential equations would be helpful, it is not absolutely necessary. Chapters 9 and 10
include step-by-step procedures for the solutions of simple differential equations used in the
derivation of the natural and forces responses. Appendices B and C provide a thorough review of
complex numbers and matrices respectively.

There are several textbooks on the subject that have been used for years. The material of this book is
not new, and this author claims no originality of its content. This book was written to fit the needs of
the average student. Moreover, it is not restricted to computer oriented circuit analysis. While it is true
that there is a great demand for electrical and computer engineers, especially in the internet field, the
demand also exists for power engineers to work in electric utility companies, and facility engineers to
work in the industrial areas.

Circuit analysis is comprised of numerous topics. It would be impractical to include all related topics
in a single text. This book, Circuit Analysis | with MATLAB® Applications, contains the standard
subject matter of electrical engineering. Accordingly, it is intended as a first course in circuits and the
material can be covered in one semester or two quarters. A sequel, Circuit Analysis Il with MATLAB®
Applications, is intended for use in a subsequent semester or two subsequent quarters.

It is not necessary that the reader has previous knowledge of MATLAB®. The material of this text
can be learned without MATLAB. However, this author highly recommends that the reader studies
this material in conjunction with the inexpensive MATLAB Student Version package that is available
at most college and university bookstores. Appendix A of this text provides a practical introduction
to MATLAB. As shown on the front cover, a system of equations with complex coefficients can be
solved with MATLAB very accurately and rapidly. MATLAB will be invaluable in later studies such as
the design of analog and digital filters.

In addition to several problems provided at the end of each chapter, this text includes multiple-choice
P p P P

questions to test and enhance the reader’s knowledge of this subject. Moreover, answers to these

questions and detailed solutions of all problems are provided at the end of each chapter. The rationale
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Preface

is to encourage the reader to solve all problems and check his effort for correct solutions and
appropriate steps in obtaining the correct solution. And since this text was written to serve as a
self-study or supplementary textbook, it provides the reader with a resource to test his
knowledge.

The author has accumulated many additional problems for homework assignment and these are
available to those instructors who adopt this text either as primary or supplementary text, and
prefer to assign problems without the solutions. He also has accumulated many sample exams.

Like any other new book, this text may contain some grammar and typographical errors.
Accordingly, all feedback for errors, advice and comments will be most welcomed and greatly
appreciated.

Orchard Publications
Fremont, California
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Chapter 1

Basic Concepts and Definitions

his chapter begins with the basic definitions in electric circuit analysis. It introduces the con-
cepts and conventions used in introductory circuit analysis, the unit and quantities used in cir-
cuit analysis, and includes several practical examples to illustrate these concepts.

1.1 The Coulomb
Two identically charged (both positive or both negative) particles possess a charge of one conlomb

. . . -7
when being separated by one meter in a vacuum, repel each other with a force of 107" ¢? newton

where ¢ = velocity of light ~ 3 x 10° m/s . The definition of coulomb is illustrated in Figure 1.1.

@ 1@

F=10"N
q=1 coulomb

Figure 1.1. Definition of the coulomb

The coulomb, abbreviated as C, is the fundamental unit of charge. In terms of this unit, the charge

of an electron is 1.6x 107"° C and one negative coulomb is equal to 6.24 x [ 0" electrons. Charge,

positive or negative, is denoted by the letter ¢ or Q.

1.2 Electric Current and Ampere

Electric current i at a specified point and flowing in a specified direction is defined as the instanta-
neous rate at which net positive charge is moving past this point in that specified direction, that is,

i=9 = gim M (1.1)
dt  Ar—>0At

The unit of current is the ampere abbreviated as 4 and corresponds to charge ¢ moving at the raze of
one coulomb per second. In other words,

1 coulomb (1.2)

1 ampere =
1 second

Circuit Analysis I with MATLAB Applications 1-1
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Chapter 1 Basic Concepts and Definitions

Note: Although it is known that current flow results from electron motion, it is customary to think
of current as the motion of positive charge; this is known as conventional current flow.

To find an expression of the charge ¢ in terms of the current 7, let us consider the charge ¢ trans-

ferred from some reference time ¢, to some future time ¢. Then, since

=4
dt
the charge g is
t
t .
q|t0 = jzoldt
or
t
q(D)=q(ty) = | idr
t
or
t
g(t) = [ idt+q(1y) (1.3)
)
Example 1.1

For the waveform of current 7 shown in Figure 1.2, compute the total charge ¢ transferred between
at=0andt = 3s

bt=0and¢t=9s

301+ ---- .

20+

~

ot —-— - — — — —
w—

N

(Y

o F----=---
N

Co

t(s)

20 L

Figure 1.2. Waveform for Example 1.1
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Electric Current and Ampere

Solution:

We know that
t ! t
ql,_, = I idt = Area|,
B 0

Then, by calculating the areas, we find that:

a. For 0 <t<2s,area = "2 x (2 x 30 mA) =30 mC
For2 <t<3s area =1 x 30 = 30 mC
Therefore, for 0 < t < 3 s, total charge = total area = 30 mC + 30 mC = 60 mC.

b. For 0 <t<2s,area = V2 x (2 x 30 mA) = 30 mC
For2 <t<6s,area =4 x 30 = 120 mC
For 6 <t < 8s,area = 72 x (2 x 30 mA) = 30 mC
For 8 < t <9 s, we observe that the slope of the straight line for t > 6 s is =30 mA / 2's, or —15
mA / s. Then, for 8§ <t <9s,area = Y2 x {1x(=15)} = =7.5 mC. Therefore, for 0 < t <9 s, total
charge = total area = 30 + 120 + 30 -7.5 = 172.5 mC.

Convention: We denote the current i by placing an arrow with the numerical value of the current
next to the device in which the current flows. For example, the designation shown in Figure 1.3
indicates either a current of 2 4 is flowing from left to right, or that a current of -2 4 is moving
from right to left.

2A -2A

—
-—

Figure 1.3. Direction of conventional current flow

Caution: The arrow may or may not indicate the actual conventional current flow. We will see later
in Chapters 2 and 3 that in some circuits (to be defined shortly), the actual direction of
the current cannot be determined by inspection. In such a case, we assume a direction
with an arrow for said current i; then, if the current with the assumed direction turns out
to be negative, we conclude that the actual direction of the current flow is opposite to the
direction of the arrow. Obviously, reversing the direction reverses the algebraic sign of
the current as shown in Figure 1.3.

In the case of time-varying currents which change direction from time-to-time, it is convenient to
think or consider the instantaneous current, that is, the direction of the current which flows at some
particular instant. As before, we assume a direction by placing an arrow next to the device in which
the current flows, and if a negative value for the current 7 is obtained, we conclude that the actual
direction is opposite of that of the arrow.

Circuit Analysis I with MATLAB Applications 1-3
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Chapter 1 Basic Concepts and Definitions

1.3 Two Terminal Devices

In this text we will only consider two-terminal devices. In a two-terminal device the current entering

one terminal is the same as the current leaving the other terminal as shown in Figure 1.4.

7A 7A
o— Two terminal device ———©°

\ Terminal A Terminal B /

Figure 1.4. Current entering and leaving a two-terminal device

Let us assume that a constant value current (commonly known as Direct Current and abbreviated as
DC) enters terminal 4 and leaves the device through terminal B in Figure 1.4. The passage of cur-
rent (or charge) through the device requires some expenditure of energy, and thus we say that a poen-
tial difference ot voltage exists “across” the device. This voltage across the terminals of the device is a
measure of the work required to move the current (or charge) through the device.

Example 1.2

In a two-terminal device, a current i(¢) = 20cos100xt mA enters the left (first) terminal.

a. What is the amount of current which enters that terminal in the time interval —10 <¢< 20 ms?
b. What is the current at t = 40 ms?

c. What is the charge g at t = 5 ms given that g(0) = 0?

Solution:
a.

t 20% 107 3 i

i, = 2000s100m‘ 5 = 20cos1007(20 x 107) = 20cos 1007(~10 x 107)
! —10x 10
= 20cos2nt —20cos(—m) = 40 mA
b.
i, gy ms = 20c0s100mt| _ = 20cos40m = 20 mA

C.

sx 107 sx 107
J' idt + q(0) = j 20cos 1007 tdt + 0
0 0

q(1)

sx10° 0.2 .
== i
b

2 in100mil " = 2250 = 22 ¢
o 2 T

* We will see in Chapter 5 that a two terminal device known as capacitor is capable of storing energy.
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Voltage (Potential Difference)

1.4 Voltage (Potential Difference)

The voltage (potential difference) across a two-terminal device is defined as the work required to
move a positive charge of one coulomb from one terminal of the device to the other terminal.

The unit of voltage is the v/t (abbreviated as V' or v) and it is defined as

1 joule
1 coulomb

1 volt = (1.4

Convention: We denote the voltage v by a plus (+) minus (-) pair. For example, in Figure 1.5, we
say that terminal 4 is 10 V positive with respect to terminal B or there is a potential
difference of /0 V between points 4 and B. We can also say that there is a vo/tage
drop of 10 V in going from point 4 to point B. Alternately, we can say that there is a
voltage rise of 10 V in going from B to 4.

A

*J

~
S
<
Two terminal
device

|

B

Figure 1.5. Illustration of voltage polarity for a two-terminal device

Caution: The (+) and (-) pair may or may not indicate the actual voltage drop or voltage rise. As in
the case with the current, in some circuits the actual polarity cannot be determined by
inspection. In such a case, again we assume a voltage reference polarity for the voltage; if
this reference polarity turns out to be negative, this means that the potential at the (+)
sign terminal is at a lower potential than the potential at the (-) sign terminal.

In the case of time-varying voltages which change (+) and (-) polarity from time-to-time, it is con-
venient to think the instantaneous voltage, that is, the voltage reference polarity at some particular
instance. As before, we assume a voltage reference polarity by placing (+) and (=) polarity signs at
the terminals of the device, and if a negative value of the voltage is obtained, we conclude that the
actual polarity is opposite to that of the assumed reference polarity. We must remember that revers-
ing the reference polarity reverses the algebraic sign of the voltage as shown in Figure 1.6.

A . . A .
= Two terminal device _—B = — Same device TB

—12v

12v

Figure 1.6. Alternate ways of denoting voltage polarity in a two-terminal device
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Example 1.3
The i — v (current-voltage) relation of a non-linear electrical device is given by

l(f) _ O.I(eO.ZSin,?t_

1) (10.5)
a. Use MATLAB®" to sketch this function for the interval 0 <1< 10 s

b. Use the MATLAB quad function to find the charge at t = 5 5 given that ¢(0) = 0

Solution:

a. We use the following code to sketch i(?).

t=0: 0.1: 10;
it=0.1.*(exp(0.2.*sin(3.*t))-1);
plot(t,it), grid, xlabel('time in sec.'), ylabel(‘current in amp.')

The plot for i(¢) is shown in Figure 1.7.

] L

0.02 b= .I......I... ! .:.......:.... - I......I.... .........I.... afemman
oo1s
0.01H

0005

currentin amp.
(=]

-0.008

0

-0015

O I 4 T 4 I (T T

time insec

Figure 1.7. Plot of i(t) for Example 1.3

b. The charge q(¢) is the integral of the current i(¢), that is,

g(t) = Itli(t)dt - 0.]jt1(60'2Sin3t—1)dt (1.6)
0

ly

*  MATLAB and SIMULINK are registered marks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760,
www.mathworks.com. An introduction to MATLAB is given in Appendix A.
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We will use the MATLAB int(f,a,b) integration function where f is a symbolic expression, and a
and b are the lower and upper limits of integration respectively.

Note

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB returns
the following message when integration is attempted with the symbolic expression of (1.6).

t=sym(t);
s=int(0.1*(exp(0.2*sin(3*t))-1),0,10)

When this code is executed, MATLAB displays the following message:

Warning: Explicit integral could not be found.
In C:\MATLAB 12\toolbox\symbolic\@sym\int.m at line 58

s = int(1/10*exp(1/5*sin(3*t))-1/10,t = 0. . 10)

We will use numerical integration with Simpson’s rule. MATLAB has two quadrature functions for

performing numerical integration, the quad” and quad8. The description of these can be seen by
typing help quad or help quad8. Both of these functions use adaptive quadrature methods; this means
that these methods can handle irregularities such as singularities. When such irregularities occur,
MATLAB displays a warning message but still provides an answer.

For this example, we will use the quad function. It has the syntax q=quad(‘f’,a,b,tol), and per-
forms an integration to a relative error tol which we must specify. If tol is omitted, it is understood

-3 : 17 L .
to be the standard tolerance of 10 ~. The string ‘F is the name of a user defined function, and a and
b are the lower and upper limits of integration respectively.

First, we need to create and save a function m-file. We define it as shown below, and we save it as
CA_1_Ex_1_3.m. This is a mnemonic for Circuit Analysis I, Example 1.3.

function t = fcn_example_1_3(t); t = 0.1*(exp(0.2*sin(3"t))-1);

With this file saved as CA_1_Ex_1_3.m, we write and execute the following code.
charge=quad('CA_1_Ex_1_3',0,5)

and MATLAB returns

charge =

0.0170

* For a detailed discussion on numerical analysis and the MATLAB functions quad and quad8, the reader may
refer to Numerical Analysis Using MATLAB® and Spreadsheets by this author, Orchard Publications, ISBN 0-
9709511-1-6.
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1.5 Power and Energy
Power p is the rate at which energy (or work) W is expended. That is,
dw
p = p=2% 1.7
ower = p = — (1.7)

Absorbed power is proportional both to the current and the voltage needed to transfer one coulomb
through the device. The unit of power is the watt. Then,
_ Joul coul _ joul

Power = p = volts x amperes = vi = = watts 1.8
p P coul sec sec (1.8

and

I watt = 1 volt x 1 ampere (1.9

Passive Sign Convention: Consider the two-terminal device shown in Figure 1.8.

i

A —— Two terminal device — B
+

Vv

Figure 1.8. Illustration of the passive sign convention

In Figure 1.8, terminal 4 is v volts positive with respect to terminal B and current 7 enters the device
through the positive terminal 4. In this case, we satisfy the passive sign convention and power = p = vi
is said to be absorbed by the device.

The passive sign convention states that if the arrow representing the current / and the (+) (=) pair are
placed at the device terminals in such a way that the current enters the device terminal marked with
the (+) sign, and if both the arrow and the sign pair are labeled with the appropriate algebraic quanti-
ties, the power absorbed or delivered to the device can be expressed as p = vi. If the numerical
value of this product is positive, we say that the device is absorbing power which is equivalent to saying
that power is delivered to the device. If, on the other hand, the numerical value of the product
p = vi is negative, we say that the device delivers power to some other device. The passive sign con-
vention is illustrated with the examples in Figures 1.9 and 1.10.

-2A 2 A
= Two terminal device _—B = A—_ Same device TB
l—— 2V —— ! 12v !
Power =p =(—12)(-2) =24 w Power=p =(12)(2) =24 w

Figure 1.9. Examples where power is absorbed by a two-terminal device
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i=6cos3t

i=—5sin5t

B A

Two terminal device 2

v=—[8sin3t — ' ! v=cos5t !

Two terminal device 1

A
+

_B
+

p = (—18sin3t)(6cos3t) = —54sin6t w p = (cosSt)(=5sindt) = —2.5sinl0t w

Figure 1.10. Examples where power is delivered to a two-terminal device

In Figure 1.9, power is absorbed by the device, whereas in Figure 1.10, power is delivered to the
device.

Example 1.4

It is assumed a 12-volt automotive battery is completely discharged and at some reference time

t = 0, is connected to a battery charger to trickle charge it for the next 8 hours. It is also assumed
that the charging rate is

o) = {85”3600 A4 0<t<8 hr
otherwise

For this 8-hour interval compute:
a. the total charge delivered to the battery
b. the maximum power (in watts) absorbed by the battery
c. the total energy (in joules) supplied
d. the average power (in watts) absorbed by the battery
Solution:

The current entering the positive terminal of the battery is the decaying exponential shown in Fig-
ure 1.11 where the time has been converted to seconds.

i(t)y (A)

. —t/3600
i = 8e

/

t(s)

28800

Figure 1.11. Decaying exponential for Example 1.4

Then

gl
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a.
|15000 _ J”O(widt _ I288008et/360()dt _ 8 -1/3600 26800
=0 , ) ~1/3600 0
= 8% 3600(¢ ¥~ 1)~ 28800 C or 288 kC
b.
Iax = 8 A (occurs at t=0)
Therefore,
Pmax = Vipgar = 12x8 = 96 w
C.
28800 28800 28800
. - 96 ~1/3600
W = |pdt = vidt = 12x8¢"q = —22 ¢
J. J.o J-o —-1/3600 0

= 3456 % 10°(1 - )~ 345.6 KJ.

d.
T 28800 3
Ppe = 2f pdt = [ 12x 8™ My = 326210y,
2 28800, 28.8x 10
Example 1.5
2
The power absorbed by a non-linear device is p = 9(eo'l6t -1).Ifv = 3(60'4t+ 1), how much
charge goes through this device in two seconds?
Solution:
The power is
0.168
9 .y 0.4t 0.4t_
po=vi, izl = (eM ) _ 9(e +014)t(e D 2 31y A
Vo3 3™+ 1)

then, the charge for 2 seconds is

al, = |

t 2 2

. 0.4 3 04 2 0.8

idt = 3jo(e "_1)dt = e 1,-310 = 75" -n-6=319C
0

¢

The two-terminal devices which we will be concerned with in this text are shown in Figure 1.12.

Linear devices are those in which there is a linear relationship between the voltage across that device
and the current that flows through that device. Diodes and Transistors are non-linear devices, that is,
their voltage-current relationship is non-linear. These will not be discussed in this text. A simple cir-
cuit with a diode is presented in Chapter 3.
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Independent and Dependent Sources

©r

v or v(t)

o

iorit)

—>-

kv or kyi

e

Ideal Independent Voltage Source — Maintains same voltage
regardless of the amount of current that flows through it.
Its value is either constant (DC) or sinusoidal (AC).

Ideal Independent Current Source — Maintains same current
regardless of the voltage that appears across its terminals.
Its value is either constant (DC) or sinusoidal (AC).

Dependent Voltage Source — Its value depends on another
voltage or current elsewhere in the circuit. Here, k; is a
constant and &, is a resistance as defined in linear devices
below. When denoted as kv itis referred to as voltage
controlled voltage source, and when denoted as k,i it is
referred to as current controlled voltage source.

Dependent Current Source — Its value depends on another
current or voltage elsewhere in the circuit. Here, &k is a
constant and k, is a conductance as defined in linear devices
below.When denoted as k;iit is referred to as current
controlled current source and when denoted as kv it is
referred to as voltage controlled current source.

Linear Devices
Resistance R Vg Conductance G i
ip ¢ ig
—AMA— 30 A L
+ Vp T R . + Vg T G~
lR VG
Inductance L Capacitance C
i L v _le ¢ '
T _wmoL ot 4’+ <—_ _qot?
+ vV, — A\ di Ve c”
. L dve
dip dt = dvc dt
vp=L—~ ™Y ar

Figure 1.12. Voltage and current sources and linear devices
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1.6 Active and Passive Devices

Independent and dependent voltage and current sources are active devices; they normally (but not
always) deliver power to some external device. Resistors, inductors and capacitors are passive devices,
they normally receive (absorb) power from an active device.

1.7 Circuits and Networks

A network 1s the interconnection of two or more simple devices as shown in Figure 1.13.

— AAAA— OO0 I
2 / c I\

Vs

®

Figure 1.13. A network but not a circuit

A cirenit is a network which contains at least one closed path. Thus every circuit is a network but not
all networks are circuits. An example is shown in Figure 1.14.

Figure 1.14. A network and a circuit

1.8 Active and Passive Networks
Active Network 1s a network which contains at least one active device (voltage or current source).

Passive Network is a network which does not contain any active device.

1.9 Necessary Conditions for Current Flow

There are two conditions which are necessary to set up and maintain a flow of current in a network
or circuit. These are:
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1. There must be a voltage source (potential difference) present to provide the electrical work which
will force current to flow.

2. The circuit must be closed.
These conditions are illustrated in Figures 1.15 through 1.17.

Figure 1.15 shows a network which contains a voltage source but it is not closed and therefore, cur-
rent will not flow.

Figure 1.15. A network in which there is no current flow

Figure 1.16 shows a closed circuit but there is no voltage present to provide the electrical work for
current to flow.

Figure 1.16. A closed circuit in which there is no current flow

Figure 1.17 shows a voltage source present and the circuit is closed. Therefore, both conditions are
satisfied and current will flow.

)]

®

Figure 1.17. A circuit in which current flows

1.10 International System of Units

The International System of Units (abbreviated ST in all languages) was adopted by the General Confer-
ence on Weights and Measures in 1960. It is used extensively by the international scientific commu-
nity. It was formerly known as the Mezric Systens. The basic units of the ST system are listed in Table
1.1.
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TABLE 1.1 SI Base Units

Unit of Name Abbreviation
Length Metre m

Mass Kilogram kg

Time Second S

Electric Current Ampere A
Temperature Degrees Kelvin | °K

Amount of Substance | Mole mol
Luminous Intensity Candela cd

Plane Angle Radian rad

Solid Angle Steradian sr

The ST uses larger and smaller units by various powers of 10 known as standard prefixes. The common
prefixes are listed in Table 1.2 and the less frequently in Table 1.3. Table 1.4 shows some conversion
factors between the ST and the English system. Table 1.5 shows typical temperature values in degrees
Fahrenheit and the equivalent temperature values in degrees Celsius and degrees Kelvin. Other units

used in physical sciences and electronics are derived from the SI base units and the most common
are listed in Table 1.6.
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TABLE 1.2 Most Commonly Used SI Prefixes

Value | Prefix | Symbol | Example
10° _

Giga | G 12 GHz (Gigahertz) = 12 x 10 Hz

6

10

Mega | M 25 MO (Megaohms) = 25 X 105 Q. (ohms)
10° ‘

Kilo | K 13.2 KV (Kilovolts) = 13.2 x 103 volts
107 .

centi | c 2.8 cm (centimeters) = 2.8 x 10 2 meter
107 .

milli | m 4 mH (millihenries) = 4 X 10~ henry
10°° _

micro |y 6 uw (microwatts) = 6 X 10 ~¢ watt
107

fnano | n 2 ns (nanoseconds) = 2 x 10~ second
1077 .

pico 1 p 3 pF (picofarads) = 3 x 10 /2 Farad

TABLE 1.3 Less Frequently Used SI Prefixes

Value Prefix | Symbol | Example
10" Exa E 1 Em (Exameter) = 1018 meters
107 Peta P 5 Pyrs (Petayears) = 5 x 1017 years
10" Tera T 3 T$ (Teradollars) = 3 x 102 dollars
0 femto | f 7 fA (femtoamperes) = 7 x 10~ ampere
10718 atto a 9 aC (attocoulombs) = 9 x 1078 coulomb
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TABLE 1.4 Conversion Factors

1 in. (inch)

2.54 cm (centimeters)

1 mi. (mile)

1.609 Km (Kilometers)

11b. (pound)

0.4536 Kg (Kilograms)

1 gt. (quart)

946 cm? (cubic centimeters)

1 cm (centimeter)

0.3937 in. (inch)

1 Km (Kilometer)

0.6214 mi. (mile)

1 Kg (Kilogram)

2.2046 Ibs (pounds)

11t. (liter) = 1000 cn?®

1.057 quarts

1A (Angstrom)

10719 meter

1 mm (micron)

1070 meter

TABLE 1.5 Temperature Scale Equivalents

oF °C °K
-523.4 -273 0

32 0 273
0 —17.8 | 255.2
77 25 298
98.6 37 310
212 100 373

1-16
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TABLE 1.6 SI Derived Units

Unit of Name Formula
Force Newton (N) N = kg- m/s’
Pressure or Stress Pascal (Pa) Pa = N/m’
Work or Energy Joule (J) J=N-m
Power Watt (W) W =J/s
Voltage Volt (V) V=W/A
Resistance Ohm (Q) Q=V/A
Conductance Siemens (S) or (Qfl) S =A4/V
Capacitance Farad (F) F=A4-5/V
Inductance Henry (H) H=V.-s/4
Frequency Hertz (Hz) Hz = 1/s
Quantity of Electricity Coulomb (C) C=A4-s
Magnetic Flux Weber (Wh) Wb =V-s
Magnetic Flux Density Tesla (T) T = Wb/m’
Luminous Flux Lumen (Im) Im = cd-sr
Hlluminance Lux (Ix) Ix = Im/m’
RadioacliVily Becquerel (Bq) Bq - S—]
Radiation Dose Gray (Gy) S =J/kg
Volume Litre (L) L = m’x ]073

1.11 Sources of Energy

The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood etc.)
and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and solar energy.
Example 1.6

A certain type of wood used in the generation of electric energy and we can get 12,000 BTUs from
a pound (Ib) of that wood when burned. Suppose that a computer system that includes a monitor, a
printer, and other peripherals absorbs an average power of 500 w gets its energy from that burned
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wood and it is turned on for 8 hours. It is known that 1 BTU is equivalent to 778.3 ft-Ib of energy,
and 1 joule is equivalent to 0.7376 ft-1b.

Compute:

a. the energy consumption during this 8-hour interval

b. the cost for this energy consumption if the rate is $0.15 per kw-hr
c. the amount of wood in Ibs burned during this time interval.
Solution:

a. Energy consumption for 8 hours is

3600 s

Energy W = P, t = 500w x8 hrs x T hr

= [14.4 Mjoules

b. Since I kilowatt— hour = 3.6 x ]06j0ules,

Cost = $0.15 N kw—hr

6
= x 14.4x 10" = $0.60
kw—hr 3 6« 106j0ules

c. Wood burned in 8 hours,

ft=1b 1 BTU b _ s

14.4 x 10° joules x0.7376 -
x10° joules x joule " 7783 ft—1b " 12000 BTU

1.12 Summary

e Two identically charged (both positive or both negative) particles possess a charge of one coulomb
when being separated by one meter in a vacuum, repel each other with a force of / 0”¢? newton

where ¢ = velocity of light = 3 x 10° m/s. Thus, the force with which two electrically charged
bodies attract or repel one another depends on the product of the charges (in coulombs) in both
objects, and also on the distance between the objects. If the polarities are the same (negative/
negative or positive/positive), the so-called coulumb force is repulsive; if the polarities are
opposite (negative/positive or positive/negative), the force is attractive. For any two charged
bodies, the coulomb force decreases in proportion to the square of the distance between their
charge centers.

e Electric current is defined as the instantaneous rate at which net positive charge is moving past
this point in that specified direction, that is,

i=99 = i A4
dt At — 0At

1-18 Circuit Analysis I with MATLAB Applications
Orchard Publications



Summary

e The unit of current is the ampere, abbreviated as A, and corresponds to charge ¢ moving at the
rate of one coulomb per second.

e In a two-terminal device the current entering one terminal is the same as the current leaving the
other terminal.

e The voltage (potential difference) across a two-terminal device is defined as the work required to
move a positive charge of one coulomb from one terminal of the device to the other terminal.

e The unit of voltage is the volt (abbreviated as V or v) and it is defined as

1 joule
1 coulomb

1 volt =

e Power p is the rate at which energy (or work) W is expended. That is,

Power = p = %V

e Absorbed power is proportional both to the current and the voltage needed to transfer one cou-
lomb through the device. The unit of power is the watt and

1 watt = 1 volt x 1 ampere

e The passive sign convention states that if the arrow representing the current i and the plus (+)
minus () pair are placed at the device terminals in such a way that the current enters the device
terminal marked with the plus (+) sign, and if both the arrow and the sign pair are labeled with
the appropriate algebraic quantities, the power absorbed or delivered to the device can be
expressed as p = vi. If the numerical value of this product is positive, we say that the device is
absorbing power which is equivalent to saying that power is delivered to the device. If, on the
other hand, the numerical value of the product p = vi is negative, we say that the device delivers
power to some other device.

e An ideal independent voltage source maintains the same voltage regardless of the amount of cur-
rent that flows through it.

e An ideal independent current source maintains the same current regardless of the amount of volt-
age that appears across its terminals.

e The value of an dependent voltage source depends on another voltage or current elsewhere in the
circuit.
e The value of an dependent current source depends on another current or voltage elsewhere in

the circuit.

e Ideal voltage and current sources are just mathematical models. We will discuss practical voltage
and current sources in Chapter 3.
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¢ Independent and Dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device.

e Resistors, inductors, and capacitors are passive devices; they normally receive (absorb) power
from an active device.

e A network is the interconnection of two or more simple devices.

e A circuit is a network which contains at least one closed path. Thus every circuit is a network but
not all networks are circuits.

e An active network is a network which contains at least one active device (voltage or current
source).

e A passive network is a network which does not contain any active device.

e To set up and maintain a flow of current in a network or circuit there must be a voltage source
(potential difference) present to provide the electrical work which will force current to flow and
the circuit must be closed.

e Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device.

e The International System of Units is used extensively by the international scientific community. It
was formerly known as the Metric System.

e The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood etc.)
and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and solar
energy.
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1.13 Exercises
Multiple choice
1. The unit of charge is the
A. ampere
B. volt
C. watt
D. coulomb
E. none of the above
2. The unit of current is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above
3. The unit of electric power is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above
4. The unit of energy is the
A. ampere
B. volt
C. watt
D. joule
E. none of the above
5. Power 1s

A. the integral of energy
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B. the derivative of energy
C. current times some constant k

D. voltage times some constant k
E. none of the above
6. Active voltage and current sources
A. always deliver power to other external devices
B. normally deliver power to other external devices
C. neither deliver or absorb power to or from other devices
D. are just mathematical models
E. none of the above
7. An ideal independent voltage source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage rating of that voltage source
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above
8. An ideal independent current source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage that appears across its terminals
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above
9. The value of a dependent voltage source can be denoted as
A. kV where £ is a conductance value
B. kI where £ is a resistance value

C. kV where £ is an inductance value

D. kI where £ is a capacitance value
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E. none of the above
10. The value of a dependent current source can be denoted as
A. kV where £ is a conductance value
B. kI where £ is a resistance value
C. kV where £ is an inductance value
D. kI where £ is a capacitance value

E. none of the above

Problems

1. A two terminal device consumes energy as shown by the waveform of Figure 1.18 below, and the
current through this device is i(¢) = 2cos4000nt A . Find the voltage across this device at t =
0.5,1.5,4.75 and 6.5 ms. Answets: 25 V,0 V, 2.5 V,-2.5V

10+ ---------

N
[NC)
w
NS

n
- - -
~N

t (ms)
Figure 1.18. Waveform for Problem 1

2. A household light bulb is rated 75 watts at 120 volts. Compute the number of electrons per sec-
ond that flow through this bulb when it is connected to a 120 volt source.

Answer: 3.9 x ]018 electrons/s

3. An airplane, whose total mass is 50,000 metric tons, reaches a height of 32,808 feet in 20 minutes
after takeoff.

a. Compute the potential energy that the airplane has gained at this height. Answer: 1, 736 MJ

b. If this energy could be converted to electric energy with a conversion loss of 10%, how much
would this energy be worth at $0.15 per kilowatt-hour? Answer: $65.10

c. If this energy were converted into electric energy during the period of 20 minutes, what aver-
age number of kilowatts would be generated? Answer: 1, 450 Kw
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4. The power input to a television station transmitter is 125 kw and the output is 100 kw which is
transmitted as radio frequency power. The remaining 25 kw of power is converted into heat.
a. How many BTUs per hour does this transmitter release as heat? / BTU = 1054.8 J

Answer: 85,234 BTU/ hr
b. How many electron-volts per second is this heat equivalent to?

23 electron —volts
sec.

1 electron—volt = 1.6 x 1077 J Answer: 1.56 x 10
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1.14 Answers to Exercises
Dear Reader:

The remaining pages on this chapter contain answers to the multiple-choice questions and solutions
to the exercises.

You must, for your benefit, make an honest effort to answer the multiple-choice questions and solve
the problems without first looking at the solutions that follow. It is recommended that first you go
through and answer those you feel that you know. For the multiple-choice questions and problems
that you are uncertain, review this chapter and try again. If your answers to the problems do not
agree with those provided, look over your procedures for inconsistencies and computational errors.
Refer to the solutions as a last resort and rework those problems at a later date.

You should follow this practice with the multiple-choice and problems on all chapters of this book.
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Multiple choice

1.D
2.A
3.C
4.D
5.B
6.B
7. A
8.B
9.B
10. A
Problems
1.
y =P = dw/dt _ slope
i i i
a.
slope|éms = ';:’/lj =5J/s
v _ 5 J/s _ I J/s =5J/S=25V
OIS cos4000m(0.5 x 107y 4 2cos2mA 2 4
b.
Slopeﬁ "=
0
v|t:1.5ms = ; =0V
C.
slope|j = = _]5’1’;2'] =-5J/s
V] _ -5J/s - _SSJs S Is S o5 sy
AR 2cos4000m(4.75x 107y 4 2cosl9m A 2cosm A =24

d.
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slope|;ms = 2m 5 gy
ms
Vs = -5 J/s - :2_5;6/514 =_g{4/sz—2.5V
2cos4000m(6.5x 107°) A cos<0T
2.
_p_ 7w 3
v 120V 8
!
q = j idt
ly
Is 1s
5 5
ql,_,, = | Zdt=7%t =35C/s
t=1s s 0 S
18
3 C/s x 0.24x 10 electrons = 3.9x 10" electrons/s
8 1C
3.
1
Wp = Wk = Emv
where m = mass in kg and v = velocity in meters/sec.
33, 808 fi %"— = 10,000 m = 10 Km
20 minutes X 60 s.ec. = 1, 200 sec.
_ 10,000 m _ 25
y= 27" == m/s
1, 200 sec. 3
50, 000 metric tons x M = 5x10 Kg
metric ton
Then,
a.
2
W, =W, = §(5 x 107)(275) = 173.61x 10" J~ 1,736 MJ
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b.

1 joule = 1 watt-sec

6 1 watt-sec 1 Kw 1 hr
1,736 x 10°J x T joule X 7000 X 3,600 sec. ~ 482.22 Kw-hr

and with 10% conversion loss, the useful energy is

482.22 x 0.9 = 434 Kw-hr

482.22 % 0.9

Cost of Energy Ii?v.]hjr x 434 Kw-hr = $65.10

P, =0 LM s ane = 1450 Kw
t . 60 sec
20 min x ———
min

4.
a.
1 BTU = 1054.8 J
1 joule/sec. = 1 BTU _ 3600 sec. _
25, 000 watts x —y X548 Thr - 85,234 BTU/hr
b.

1 electron—volt = 1.6x 1077 J

_19
1 electron —volt _ 1.6x10 " J = 1 6x 10—19 watt
sec. sec.

23 electron —volts
sec.

1 electron jlxgzolt/ S€C _ 156% 10
1.6x 10 watt

25, 000 watts x
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Chapter 2

Analysis of Simple Circuits

his chapter defines constant and instantaneous values, Ohm’s law, and Kirchhoff’s Current

and Voltage laws. Series and parallel circuits are also defined and nodal, mesh, and loop analy-

ses are introduced. Combinations of voltage and current sources and resistance combinations
are discussed, and the voltage and current division formulas are derived.

2.1 Conventions

We will use lower case letters such as v, i, and p to denote instantaneous values of voltage, current,
and power respectively, and we will use subscripts to denote specific voltages, currents, resistances,
etc. For example, v and iy will be used to denote voltage and current sources respectively. Nota-

tions like vy, and iy, will be used to denote the voltage across resistance R; and the current
through resistance R, respectively. Other notations like v, or v; will represent the voltage (poten-

tial difference) between point A or point I with respect to some arbitrarily chosen reference point
taken as “zero” volts or “ground”.

The designations v, or v;, will be used to denote the voltage between point A4 or point I with

respect to point B or 2 respectively. We will denote voltages as v(#) and i(#) whenever we wish to
emphasize that these quantities are time dependent. Thus, sinusoidal (AC) voltages and currents will
be denoted as v(¢) and i(¢) respectively. Phasor quantities, to be inroduced in Chapter 6, will be rep-

resented with bold capital letters, V' for phasor voltage and I for phasor current.

2.2 Ohm’s Law

We recall from Chapter 1 that resistance R is a constant that relates the voltage and the current as:

vp = Rig 2.1)

This relation is known as Obw’s law

The unit of resistance is the Obz and its symbol is the Greek capital letter Q. One ohm is the resis-
tance of a conductor such that a constant current of one ampere through it produces a voltage of
one volt between its ends. Thus,

_ 1y
1o =4 (2.2)

~
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Chapter 2 Analysis of Simple Circuits

Physically, a resistor is a device that opposes current flow. Resistors are used as a current limiting devices
and as voltage dividers.

In the previous chapter we defined conductance G as the constant that relates the current and the volt-
age as

This is another form of Ohm’s law since by letting i; = ip and v, = vy, we get

G = (2.4)

=~

The unit of conductance is the siemzens or mho (ohm spelled backwards) and its symbol is § or Qf
Thus,

|
~
~

1ol =14 (2.5)

~

Resistances (or conductances) are commonly used to define an “open circuit” or a “short circuit”.
An open circuit is an adjective describing the “open space” between a pair of terminals, and can be
thought of as an “infinite resistance” or “zero conductance”. In contrast, a short circuit is an adjective
describing the connection of a pair of terminals by a piece of wire of “infinite conductance” or a
piece of wire of “zero” resistance.

The current through an “open circuit” is always zero but the voltage across the open circuit terminals
may or may not be zero. Likewise, the voltage across a short circuit terminals is always zero but the
current through it may or may not be zero. The open and short circuit concepts and their equivalent
resistances or conductances are shown in Figure 2.1.

A‘+ A+ A+ A+
‘ Open_ R =00 Short — > R=0
ico Circuit iz G=0 i | Circuit i G=wo
B vyp =0 Vg =0
I B_ B_ AB B

Figure 2.1. The concepts of open and short circuits

The fact that current does not flow through an open circuit and that zero voltage exists across the
terminals of a short circuit, can also be observed from the expressions vy = Rip and iz = Gvg.

That is, since G = 1%, infinite R means zero G and zero R means infinite G. Then, for a finite volt-

age, say v, and an open circuit,
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limig = lim Gvg = 0 2.6
6500 T 659G (26)

Likewise, for a finite current, say Zg, and a short circuit,

lim vy = lim Rip = 0 2.7
R—0 R—0

Reminder:

We must remember that the expressions
vp = Riy
and

ic = Gvg

are true only when the passive sign convention is observed. This is consistent with our classification
of R and G being passive devices and thus v, = Ri, implies the current direction and voltage

polarity are as shown in Figure 2.2.

I R R Ip
e AVAVAVA ey —ANWN—
+ ooy T T v +

Figure 2.2. Voltage polarity and current direction in accordance to passive sign convention

But if the voltage polarities and current directions are as shown in Figure 2.3, then,

vp = —Rij (2.8)
IR R R IR
—  AMN—— —  AMVW—

- VR + + VR -

Figure 2.3. Voltage polarity and current direction not in accordance to passive sign convention

Note: “Negative resistance,” as shown in (2.8), can be thought of as being a math model that sup-
plies energy.

2.3 Power Absorbed by a Resistor

A resistor, being a passive device, absorbs power. This absorbed power can be found from Ohm’s
law, that is,

and the power relation
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PR = Vgl
Then,

2
\% A4
Pr = Vpip = (Rip)ip = Ri3 = vR(;f) = ER (2.9)

The voltage, current, resistance and power relations are arranged in the pie chart shown in Figure 2.4.

Figure 2.4. Pie chart for showing relations among voltage, current, resistance, and power

Note:

A resistor, besides its resistance rating (ohms) has a power rating in watts commonly referred to as
the wattage of the resistor. Common resistor wattage values are /4 watt, /2 watt, 1 watt, 2 watts, 5 watts
and so on. This topic will be discussed in Section 2.16.

2.4 Energy Dissipated in a Resistor

A resistor, by its own nature, dissipates energy in the form of heat; it never stores energy. The energy
dissipated in a resistor during a time interval, say from ¢; to t,, is given by the integral of the instan-

taneous power pp . Thus,

f
WR diss = L Pr dt (210)
1
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If the power is constant, say P, then (2.10) reduces to
Wr giss = Pt (2.11)

Alternately, if the energy is known, we can find the power by taking the derivative of the energy, that
1s,

d

Pr = %WR diss (2.12)

Reminder:
When using all formulas, we must express the quantities involved in their primary units. For
instance in (2.11) above, the energy is in joules when the power is in wazts and the time is in seconds.

2.5 Nodes, Branches, Loops and Meshes
Definition 2.1

A node 1s the common point at which two or more devices (passive or active) are connected. An
example of a node is shown in Figure 2.5.

%
=) ©

Node
Figure 2.5. Definition of node

Definition 2.2

A branch is a simple path composed of one single device as shown in Figure 2.0.

e T

® Node Branch 4_J

Figure 2.6. Definition of branch

Definition 2.3

A logp is a closed path formed by the interconnection of simple devices. For example, the network
shown in Figure 2.7 is a loop.
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Chapter 2 Analysis of Simple Circuits

K

Figure 2.7. Definition of a loop

Definition 2.4

A mesh is a loop which does not enclose any other loops. For example, in the circuit shown in Figure
2.8, ABEF is both a loop and a mesh, but ABCDEF is a loop but not a mesh.

C

[
I\

D

Figure 2.8. Example showing the difference between mesh and loop

2.6 Kirchhoff’s Current Law (KCL)

KCL states that the algebraic sum of all currents leaving (or entering) a node is equal to Zero. For example,
in Figure 2.9, if we assign a plus (+) sign to the currents /leaving the node, we must assign a minus (—)
sign to the currents entering the node. Then by KCL,

Figure 2.9. Node to illustrate KCL

But if we assign a plus (+) sign to the currents enzering the node and minus (=) sign to the currents
leaving the node, then by KCL,
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or

—i =iyt is+i, =0 (2.15)
We observe that (2.13) and (2.15) are the same; therefore, it does not matter which we choose as
plus (+).

Convention:
In our subsequent discussion we will assign plus (+) signs to the currents /leaving the node.

2.7 Kirchhoff’s Voltage Law (KVL)

KVL states that zhe algebraic sum of the voltage drops (voltages from + to ) or voltage rises (voltages from
— to +) around any closed path (mesh or loop) in a circuit is equal to Zero. For example, in the circuit
shown in Figure 2.10, voltages v,, v,, v;, and v, represent the voltages across devices 1, 2, 3, and 4

respectively, and have the polarities shown.

Device 2
— +
+ V2 +
Device 1 | v, V3 | Device 3
- vy =
A = Device 4%

Figure 2.10. Circuit to illustrate KVL

Now, if we assign a (+) sign to the voltage drops, we must assign a () sign to the voltage rises. Then,
by KVL starting at node 4 and going cockwise we get:

|
S

—VJ—V2+V3+V4 =

(2.16)

or going counterclockiwise, we get:

|
S

-V —Vv3;+V,+v;, =

(2.17)

Alternately, if we assign a (+) sign to the voltage rises, we must assign a (—) sign to the voltage drops.
Then, by KVL starting again at node A and going clockwise we get:

Vi+Vv,—vs—v, =0 (2.18)
or going counterclockwise, we get:
Vytv;—v,—v; =0 (2.19)

We observe that expressions (2.16) through (2.19) are the same.
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Convention:
In our subsequent discussion we will assign plus (+) signs to voltage drops.

Definition 2.5

Two or more devices are said to be connected in series it and only if the same current flows through
them. For example, in the circuit of Figure 2.11, the same current i flows through the voltage source,
the resistance, the inductance and the capacitance. Accordingly, this is classified as a series circuit.

Figure 2.11. A simple series circuit

Definition 2.6

Two or more devices are said to be connected in paralle/ if and only if the same voltage exists across each
of the devices. For example, in the circuit of Figure 2.12, the same voltage v, exists across the cur-
rent source, the conductance, the inductance, and the capacitance and therefore it is classified as a
parallel circuit

A A A A
g
=
YD G L C
B B B B

Figure 2.12. A simple parallel circuit

Convention:
In our subsequent discussion we will adopt the conventional current flow, i.e., the current that flows
from a higher (+) to a lower (-) potential. For example, if in Figure 2.13 we are given the indicated

polarity,

R
—  AWA———
+ 17

Figure 2.13. Device with established voltage polarity
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then, the current arrow will be pointing to the right direction as shown in Figure 2.14.

—_— R
— AN——
+ Vp T

Figure 2.14. Direction of conventional current flow in device with established voltage polarity

Alternately, if current flows in an assumed specific direction through a device thus producing a volt-
age, we will assign a (+) sign at the terminal of the device at which the current enters. For example,
if we are given this designation a device in which the current direction has been established as
shown in Figure 2.15,

R
— A

Figure 2.15. Device with established conventional current direction

then we assign (+) and (=) as shown in Figure 2.16.

AN
+ Vp T

Figure2.16. Voltage polarity in a device with established conventional current flow

Note: Active devices, such as voltage and current sources, have their voltage polatity and current
direction respectively, established as part of their notation. The current through and the volt-
age across these devices can easily be determined #f #hese devices deliver power to the rest of the cir-
cuit. Thus with the voltage polarity as given in the circuit of Figure 2.17 (a), we assign a clock-
wise direction to the current as shown in Figure 2.17 (b). This is consistent with the passive
sign convention since we have assumed that the voltage source delivers power to the rest of
the circuit.

i
Vs Vs /s
C_i) Rest of the C_D Rest of the

Circuit Circuit

(a) (b)

Figure 2.17. Direction of conventional current flow produced by voltage sources
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Chapter 2 Analysis of Simple Circuits

Likewise, in the circuit of Figure 2.18 (a) below, the direction of the current source is clockwise, and
assuming that this source delivers power to the rest of the circuit, we assign the voltage polarity
shown in Figure 2.18 (b) to be consistent with the passive sign convention.

Circuit Circuit

+
p Rest of the p T Rest of the
™ @® l

(a) (b)
Figure 2.18. Voltage polarity across current sources
The following facts were discussed in the previous chapter but they are repeated here for emphasis.

There are two conditions required to setup and maintain the flow of an electric current:

1. There must be some voltage (potential difference) to provide the energy (work) which will force electric cur-
rent to flow in a specific direction in accordance with the conventional current flow (from a bigher to a lower
potential).

2. There must be a continuons (closed) external path for current to flow around this path (mesh or loop).

The external path is usually made of two parts: (a) the metallic wires and (b) the /oad to which the elec-
tric power is to be delivered in order to accomplish some useful purpose or effect. The load may be a
resistive, an inductive, or a capacitive circuit, or a combination of these.

2.8 Single Mesh Circuit Analysis

We will use the following example to develop a step-by-step procedure for analyzing (finding current,
voltage drops and power) in a circuit with a single mesh.

Example 2.1

For the series circuit shown in Figure 2.19, we want to find:

a. The current / which flows through each device

b. The voltage drop across each resistor

c. The power absorbed or delivered by each device
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40 64V 6Q
—A NN @
R, Vs2 R,
Vsi Vs
® ®
200V 80V
R, R;
A A
10Q 8§Q

Figure 2.19. Circuit for Example 2.1
Solution:

a. (¢ : € do no now which voltage source(s eliver power to € other sources, so 1et us
Step 1: We d tk hich voltag deliver p to the oth , so let

assume that the current i flows in the clockwise direction as shown in Figure 2.20.

40 m64V 6Q
A VAYAYAY \"‘) AN
* R T vs2 t R,

Vsi| /T Vs3

el S

00v] & 80V
L= asiat it
10Q 8§Q

Figure 2.20. Circuit for Example 2.1 with assumed current direction

Step 2: We assign (+) and (-) polarities at each resistor’s terminal in accordance with the estab-
lished passive sign convention.

Step 3: By application of KVL and the adopted conventions, starting at node 4 and going clock-
wise, we get:

_VS]+VR]+VS2+VR2+VS3+VR3+VR4 = 0 (2.20)
and by Ohm’s law,
Vp; = Ryi Ve = R, Vez = R;i Vee = Ryi

Then, by substitution of given values into (2.20), we get

*  Henceforth, the current direction will be assumed to be that of the conventional current flow.
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-200+4i+64+6i+80+8i+10i = 0
or
28i = 56

or
i=2A4 (2.21)

b. Knowing the current i from part (a), we can now compute the voltage drop across each resistor

using Ohm’s law v = Ri.

VRI 4x2=8V VR2=6><2=12V

2.22)
VR3:8X2:]6V VR4:]0X2:20V

c. The power absorbed (or delivered) by each device can be found from the power relation p = vi.
Then, the power absorbed by each resistor is

Pr; = 8x2=16w Pra=12x2=24w

(2.23)
Pr3 = 16x2=32w pp,=20x2=40w
and the power delivered (or absorbed) by each voltage source is
Py, = =200 % 2 =-400 w Py, = 64x2=128w Py, = 80x2=160w (2.24)

From (2.24), we observe that the 200 volt source absorbs —400 watts of power. This means that this
source delivers (supplies) 400 watts to the rest of the circuit. However, the other two voltage sources
receive (absorb) power from the 200 volt source. Table 2.1 shows that the conservation of energy
principle is satisfied since the total absorbed power is equal to the power delivered.

Example 2.2
Repeat Example 2.1 with the assumption that the current i flows counterclockwise.
Solution:

We denote the current as i' (7 prime) for this example. Then, starting at Node 4 and going counter-
clockwise, the voltage drops across each resistor are as indicated in Figure 2.21.

Repeating Steps 2 and 3 of Example 2.1, we get:
VRg+ VR —Vs3+ Vro— Vg + Ve + Vs = 0 (2.25)
Next, by Ohm’s law,

.1 1 .1 1
Vri = RjU Vea = Ry1 Vs = Rsl Vg = Ryl
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TABLE 2.1 Power delivered or absorbed by each device on the circuit of Figure 2.19

Device Power Delivered (watts) Power Absorbed (watts)
200 V Soutrce 400
64 V Source 128
80 V Source 160
4 Q Resistor 16
6 Q Resistor 24
8 Q Resistor 32
10 Q Resistor 40
Total 400 400
40 64V 60
@
_ R1 + VSZ R2 +
Vsi ., Vs3
&) ®
200V S0V
+ R4 — R3 _
A L AAAN AN
10Q 8§Q

Figure 2.21. Circuit for Example 2.2
By substitution of given values, we get

200+ 4i"'— 64+ 61'—80+8i'+ 101" = 0

or
281' = -56
or
i'=-24 (2.26)
Comparing (2.21) with (2.26) we see that [' = —i as expected.
Circuit Analysis I with MATLAB Applications 2-13

Orchard Publications



Chapter 2 Analysis of Simple Circuits

Definition 2.7

A single node-pair circuit is one in which any number of simple elements are connected between the
same pair of nodes. For example, the circuit of Figure 2.22 (a), which is more conveniently shown as
Figure 2.22 (b), is a single node-pair circuit.

A A A A A
Iy c s ~(—
~— () 26 8. To
B B B B B
(a) (b)

Figure 2.22. Circuit with a single node-pair

2.9 Single Node-Pair Circuit Analysis

We will use the following example to develop a step-by-step procedure for analyzing (finding cur-
rents, voltage drop and power) in a circuit with a single node-pair.

Example 2.3

For the parallel circuit shown in Figure 2.23, find:

a. The voltage drop across each device

b. The current / which flows through each conductance

c. The power absorbed or delivered by each device

I 1 I
D @ O % (D %
1zA 407" 18A 607" 24 A g

Figure 2.23. Circuit for Example 2.3
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Solution:

a. Step 1:

Step 2:

Step 3:

We denote the single node-pair with the letters 4 and B as shown in Figure 2.24. It is
important to observe that the same voltage (or potential difference) exists across each
device. Node B is chosen as our reference node and it is convenient to assume that this

reference node is at zero potential (ground) as indicated by the symbol =

A A A A A

AB
10" 18A 6Q" 24 A 8§

4
TTa T Ja T 4
Dw 26 O e D 9

o
S
o]

B —]—_— B
B

Figure 2.24. Circuit for Example 2.3 with assumed current directions

We assign currents through each of the conductances G,, G,, and G; in accordance

with the conventional current flow. These currents are shown as i;;, ig,, and ig;.

By application of KCL and in accordance with our established convention, we choose
node A4 which is the plus (+) reference point and we form the algebraic sum of the cur-
rents leaving (or entering) this node. Then, with plus (+) assigned to the currents leaving
this node and with minus (-) entering this node we get

—iS] +ig + iS2+ icz—is3 +ig; =0 (2.27)
and since
igr = Gvyp igo=Gyvp g3 =Gsvp (2.28)
by substitution into (2.27),
—ig+ G ptic+ G p—ig;+Gzv,p = 0 (2.29)

Solving for v 5, we get

Ig;—lsy+igs
_ 2.30
VB G, +G,+ Gy ( )

and by substitution of the given values, we get
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Vap = % (2.31)
or
vyg=17V (2.32)
b. From (2.28),
i, =4 iG,=6 ig; =8 (2.33)

and we observe that with these values, (2.27) is satisfied.

c. The power absorbed (or delivered) by each device can be found from the power relation p = vi.
Then, the power absorbed by each conductance is

pg; = Ix4=4w
Pgy = Ix6=6w (2.34)
Pgz = 1x8=8w
and the power delivered (or absorbed) by each current source is
py = I1x(=12)y=-12w
P, = 1x18=18w (2.35)
Pp; = Ix(=24)=-24w
From (2.35) we observe that the /2 4 and 24 A current sources absorb —/2 w and -24 w

respectively. This means that these sources deliver (supply) a total of 36 w to the rest of the cir-

cuit. The /8 A source absorbs power.

Table 2.2 shows that the conservation of energy principle is satisfied since the absorbed power is
equal to the power delivered.

2.10 Voltage and Current Source Combinations

Definition 2.8

Two or more voltage sources connected in series are said to be series aiding when the plus (+) terminal
of any one voltage source is connected to the minus (—) terminal of another, or when the minus (-)
terminal of any one voltage source is connected to the plus (+) terminal of another.

Two or more series aiding voltage sources may be replaced by an equivalent voltage source whose
value is the algebraic sum of the individual voltage sources as shown in Figure 2.25.
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TABLE 2.2 Power delivered or absorbed by each device of Figure 2.23

Device Power Delivered (watts) Power Absorbed (watts)

12 A Source 12
18 A Source 18
24 A Source 24
4 Q" Conductance 4

.y 6
6 Q ° Conductance
8 Q' Conductance 8
Total 36 36

A 200V, N 64V 80V B
+ +1 +
vy o\ v\

Yy = V1+V2+V3

+ 200 + 64 + 80 =344V

Figure 2.25. Addition of voltage sources in series when all have same polarity

A good example of combining voltage sources as series aiding is when we connect several AA size
batteries each rated at 1.5 v to power up a hand calculator, or a small flashlight.

Definition 2.9

Two or more voltage sources connected in series are said to be series gpposing when the plus (+) ter-
minal of one voltage source is connected to the plus (+) terminal of the other voltage source or
when the minus (—) of one voltage source is connected to the minus (—) terminal of the other volt-
age source. Two series opposing voltage sources may be replaced by an equivalent voltage source
whose value is the algebraic difference of the individual voltage sources as shown in Figure 2.20.

Definition 2.10

Two or more current sources connected in parallel are said to be paralle/ aiding when the arrows indi-
cating the direction of the current flow have the same direction. They can be combined into a single
current source as shown in Figure 2.27.
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A 200V N 64V B
+ | =

Vap = V1= V2
+-—200-64=136 V—— —

Figure 2.26. Addition of voltage sources in series when they have different polarity

12 A 18A 24 A 54 A

Figure 2.27. Addition of current sources in parallel when all have same direction

Definition 2.11

Two or more current sources connected in parallel are said to be parallel opposing when the arrows
indicating the direction of the current flow have opposite direction. They can be replaced by an
equivalent current source whose value is the algebraic difference of the individual current sources as

shown in Figure 2.28.
iy = i+, -
i; i, ir
OO — O
18 A 24 A 6A

Figure 2.28. Addition of current sources in parallel when they have opposite direction

2.11 Resistance and Conductance Combinations

Often, resistors are connected in series or in parallel. With either of these connections, series or par-
allel, it is possible to replace these resistors by a single resistor to simplify the computations of the
voltages and currents. Figure 2.29 shows n resistors connected in series.
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Rest of the circuit

Figure 2.29. Addition of resistances in series

The combined or equivalent resistance R eq 18

Y v v v v
R, =28 =R, RI, R3, K¢
q i i i i i
or
n
R, =R, +R,+R;+...+R = Ry
q n kgl (2.36)
For Resistors in Series
Example 2.4

For the circuit of Figure 2.30, find the value of the current i after combining the voltage sources to
a single voltage source and the resistances to a single resistor.

4 Q 64V 6 Q

—AAAA~ () AAAN—
Vzv R
R, 2
7 V3
@ ®
— l -
80V
200V R, R,
A AN
10 Q 8§ Q

Figure 2.30. Circuit for Example 2.4

Solution:

We add the values of the voltage sources as indicated in Definitions 8 and 9, we add the resistances
in accordance with (2.36), and we apply Ohm’s law. Then,

v _ 200-(64+80) _ 56

I =
2R 28 28

=24 (2.37)
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Next, we consider thecase where n resistors are connected in parallel as shown in Figure 2.31.
R,
— MV
—
1
R,

Figure 2.31. Addition of resistances in parallel
By KCL,
Ip=1I;+i+...+1, (2.38)
The same voltage exists across each resistor; therefore, dividing each term of (2.38) by V5, we get

. . . ;
r_o by L (2.39)
Vap  VaB VaB VaB
and since v/i = R, then i/v = 1/R and thus (2.39) can be written as
S e &
Ry R, R R,

or

L-L,L, 1L

R,, R, R, R, (2.40)

For Resistors in Parallel

For the special case of two parallel resistors, (2.40) reduces to

L _ 1,1
eq R] 2
or
R, R
R =RIR, = —L 2 2.41
where the designation R,||R, indicates that R, and R, are in parallel.
2-20 Circuit Analysis I with MATLAB Applications

Orchard Publications



Resistance and Conductance Combinations

Also, since G = 1/R, from (2.38),

n
Gy =G +Gy+...+G, = ZGk (2.42)
k=1

that is, parallel conductances combine as series resistors do.

Example 2.5
In the circuit of Figure 2.32,

a. Replace all resistors with a single equivalent resistance R,

b. Compute the voltage v, across the current source.

(1) vss3e §12§2 10 200 50

Figure 2.32. Circuit for Example 2.5

Solution:

a. We could use (2.40) to find the equivalent resistance R, . However, it is easier to form groups of

two parallel resistors as shown in Figure 2.33 and use (2.41) instead.

- TS 2 P I
i R / R, RN 7 | Ry Rs»
(D) wssie ?29 19 L Swa 50)
1y \\\ . 3 e
? _ — - — =

Figure 2.33. Groups of parallel combinations for the circuit of Example 2.5.

Then,

12x4 _

Ry|IR; = o

3Q

~
N
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Also,

_20x5 _ 4o
20+5

R4||R5

and the circuit reduces to that shown in Figure 2.34.

i ;LR \
Q) vap S 30 ) 40

\ /

R N

Figure 2.34. Partial reduction for the circuit of Example 2.5

Next,
313=323 - 150
3+3
Finally,
_ _15x4 _ 12
Rog= 15114 = 1.5+4 11

and the circuit reduces to that shown in Figure 2.35

i Req
(1) vas
12
11 et
Uy 7%

Figure 2.35. Reduction of the circuit of Example 2.5 to its simplest form

b. The voltage v, across the current source is

vig = Ry = g5 =2V (2.43)

2.12 Voltage Division Expressions

In the circuit of Figure 2.36, vg, R;, and R, are known.
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Figure 2.36. Circuit for the derivation of the voltage division expressions

For the circuit of Figure 2.36, we will derive the voltage division expressions which state that:

R, | R,
VRIZ RAR,S MO VRT RORYS

These expressions enable us to obtain the voltage drops across the resistors in a series circuit simply
by observation.

Derivation:
By Ohm’s law in the circuit of Figure 2.36 where i is the current flowing through i, we get
Ve = R;i and vy, = R,i (2.44)

Also,
(R;+Ry)i = vy

or

Vs

| = 2.45
"7 R +R, (2:49)
and by substitution of (2.45) into (2.44) we obtain the voltage division expressions below.
R R
Vri = - vg and vp, = - Vg
R, +R, R, +R, (2.46)
VOLTAGE DIVISION EXPRESSIONS

Example 2.6

In the network of Figure 2.37, the arrows indicate that resistors R, and R, are variable and that the

power supply is set for 12 V.

a. Compute vy, and vy, if R; and R, are adjusted for 7 Q and 5 Q respectively.
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b. To what values should R, and R, be adjusted so that vy, = 3V, v, = 9V, and

+
+ VR I R,
Power —

Supply
(Voltage
Source) l VR2 ¥ R,

Figure 2.37. Network for Example 2.6
Solution:

a. Using the voltage division expressions of (2.46), we get

vy, = R, ve= L x12=7V
RET R, +R, S~ 7+5 B
and
R
L N N VI

R TR YRS T 7+

b. Since vy, + vz, = 3+9 =12V ,R;+R, = 12 Q, and the voltage drops are proportional to the
resistances, it follows that if we let R, = 3 Q and R, = 9 Q, the voltage drops vy, and vy, will

be 3 V and 9 V respectively.

2.13 Current Division Expressions

In the circuit shown in Figure 2.38, ig, G,, and G, are known.

's iGll G iG£
1 G2
O (R)) (R,)

|

Figure 2.38. Circuit for the derivation of the current division expressions
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For the circuit of Figure 2.38, we will derive the current division expressions which state that

. GI . GZ
lg; = mls and

lny = ————i
G2 S
G, +G,

and these expressions enable us to obtain the currents through the conductances (or resistances) in

a parallel circuit simply by observation.

Derivation:

By Ohm’s law for conductances, we get

Orchard Publications

Also,
(G, +Gy)v = is
or
y= —3 (2.48)
G, +G,
and by substitution of (2.48) into (2.47)
. G, . . G, .
lg1 = GITGQZS and lgr = GITGZZS (249)
Also, since
) )
R, = — R, = —
G G,
by substitution into (2.49) we get
. R, . d i R, .
ip; = o——ig and iz, = ——1i
RET R +R,® R27R, +R,® (2.50)
CURRENT DIVISION EXPRESSIONS
Example 2.7
For the circuit of figure 2.39, compute the voltage drop v
Solution:
The current source ig divides into currents i, and i, as shown in Figure 2.40.
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n
R, 40
R; 250 v§]29 Q)
34
R, 20Q

Figure 2.39. Circuit for Example 2.7

—VVVY
R, 40 .
R, ig
R3§5Q v%IZQ Q)
i) i; 34
"R, 200 | ||
—— AW/

Figure 2.40. Application of current division expressions for the circuit of Example 2.7

We observe that the voltage v is the voltage across the resistor R; . Therefore, we are only interested

in current ;. This is found by the current division expression as

- R,+R;+R, = 4+5+20 '3_8_7
PR/ +R,+R;+R, S 12+4+5+20 41

and observing the passive sign convention, the voltage v is

o= i, = g 10,
or
v =-2546V

2.14 Standards for Electrical and Electronic Devices

Standardization of electronic components such as resistors, capacitors and diodes is carried out by
various technical committees. In the United States, the Electronics Industries Association (EIA) and
the American National Standards Institute (ANSI) have established and published several standards
for electrical and electronic devices to provide interchangeability among similar products made by
different manufacturers. Also, the U.S. Department of Defense or its agencies issue standards known
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as Military Standards, or simply MIL-stds. All of the aforementioned standards are updated periodi-
cally. The interested reader may find the latest revisions in the Internet or the local library.

2.15 Resistor Color Code

The Resistor Color Code is used for marking and identifying pertinent data for standard resistors.
Figures 2.41 and 2.42 show the color coding scheme per EIA Standard RS-279 and MIL-STD-
1285A respectively.

Significant 15t 1 Tolerance
Figures 2nd Wider Space to

3rd Identify Direction
of Reading
Left to Right
Multiplier

Figure 2.41. Resistor Color Code per EIA Standard RS-279

Failure Rate Level
on Established

Reliability Levels
Only

Significant 1t
Figures 2nd

Multiplier
Tolerance
Figure 2.42. Resistor Color Code per MIL-STD-12854

In a color coded scheme, each color represents a single digit number, or conversely, a single digit
number can be represented by a particular color band as shown in Table 2.3 that is based on MIL-
STD-1285A color code.

As shown in Figure 2.42, the first and second bands designate the first and second significant digits
respectively, the third represents the multiplier, that is, the number by which the first two digits are
multiplied, and the fourth and fifth bands, if they exist, indicate the tolerance and failure rate respec-
tively. The zolerance is the maximum deviation from the specified nominal value and it is given as a
percentage. The failure rate is the percent probability of failure in a 1000-hour time interval.

Let A and B represent the first and second significant digits and C represent the multiplier. Then the
resistance value is found from the expression

R = (10x A+ B)x10° (2.51)
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TABLE 2.3 Resistor values per MIL-STD-1285A4

Ist & 2nd Multiplier Tolerance Fail Rate
Color Code Digits (3rd Digit) (Percent) (Percent)
Black 0 1
Brown 1 10 1 1
Red 2 100 2 0.1
Orange 3 1000 0.01
Yellow 4 10000 0.001
Green 5 100000 0.5
Blue 6 1000000 0.25
Violet 7 0.1
Gray 8
White 9
Gold 0.1 5
Silver 0.01 10
No Color 20

Example 2.8

The value of a resistor is coded with the following colored band code, left to right: Brown, Green,
Blue, Gold, Red. What is the value, tolerance, and probability of failure for that resistor?

Solution:

Table 2.3 yields the following data: Brown (Ist significant digit) = 1, Green (2nd significant digit) =
5, and Blue (multiplier) = 1,000,000. Therefore, the nominal value of this resistor is 15,000,000
Ohms or 15 MQ The 4th band is Gold indicating a 5% tolerance meaning that the maximum devi-
ation from the nominal value is 15,000,000 £5% = 15,000,000 X £0.05 = £750,000 Ohms or +0.75
MQ That is, this resistor can have a value anywhere between 14.25 MQ and 15.75 MQ Since the 5th
band is Red, there is a 0.1% probability that this resistor will fail after 1000 hours of operation.

2.16 Power Rating of Resistors

As it was mentioned in Section 2.2, a resistor, besides its resistance rating (ohms) has a power rating
(watts) commonly referred to as the wattage of the resistor, and common resistor wattage values are /4
watt, V2 watt, 1 watt, 2 watts, 5 watts and so on. To appreciate the importance of the wattage of a
resistor, let us refer to the voltage divider circuit of Example 2.6, Figure 2.37 where the current is

12 V/12 Q = 1 A. Using the power relation p, = i2R, we find that the wattage of the 7 Q and
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5 Q resistors would be 7 watts and 5 watts respectively. We could also divide the 12 volt source into
two voltages of 7 Vand 5V usinga 7 kQ and a 5 kQ resistor. Then, with this arrangement the cur-
rent would be 12 V/12 kQ) = I mA . The wattage of the 7 kQ and 5 kQ resistors would then be

_3.2 _ 3.2
(10°) x7x10° = 7x 107 W = 7mW and (107) x5x 10° = 5 mW respectively.

2.17 Temperature Coefficient of Resistance

The resistance of any pure metal, such as copper, changes with temperature. For each degree that
the temperature of a copper wire rises above 20°C Celsius, up to about 200°C, the resistance
increases 0.393 of 1 percent of what it was at 20 degrees Celsius. Similarly, for each degree that the
temperature drops below 20°C, down to about —50°C, the resistance decreases 0.393 of 1 percent

of what it was at 20°C. This percentage of change in resistance is called the Temperature Coefficient of
Resistance. In general, the resistance of any pure metal at temperature T in degrees Celsius is given by

R = Ryp[1 + (T = 20)] (2.52)

where R, is the resistance at 20°C and a.,, is the temperature coefficient of resistance at 20°C.

Example 2.9

The resistance of a long piece of copper wire is 48 Q at 20°C.

a. What would the resistance be at 50°C?
b. Construct a curve showing the relation between resistance and temperature.

Solution:
a. The temperature rise is 50— 20 = 30 degrees Celsius and the resistance increases 0.393% for
every degree rise. Therefore the resistance increases by 30 x 0.393 = 11.79% . This represents an

increase of 0.1179 x 48 Q in resistance or 5.66 Q Therefore, the resistance at 50 degrees Celsius
is 48+ 5.66 = 53.66 Q.

b. The relation of (2.52) is an equation of a straight line with slope = R,ja,,. This straight line is

easily constructed with the Microsoft Excel spreadsheet shown in Figure 2.43.

From Figure 2.43, we observe that the resistance reaches zero value at approximately —235°C.
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Temp Resistance

(degC) (Ohms) Resistance of Copper Wire versus Temperature
-250 -2.9328
-240 -1.0464 100
-220 2.7264
@ 60
-210 4.6128 g
<
-200 6.4992 o 40 -
-190 8.3856 20 |
-180 10.272 0
170 12.1584 -250 -200 -150 -100 -50 O 50 100 150 200 250
-160 14.0448 '
-150 15.9312 Degrees Celsius
-140 17.8176

Figure 2.43. Spreadsheet for construction of equation (2.52)

2.18 Ampere Capacity of Wires

For public safety, electric power supply (mains) wiring is controlled by local, state and federal boards,
primarily on the National Electric Code (NEC) and the National Electric Safety Code. Moreover, many
products such as wire and cable, fuses, circuit breakers, outlet boxes and appliances are governed by
Underwriters Laboratories (UL) Standards which approves consumer products such as motors, radios,
television sets etc.

Table 2.4 shows the NEC allowable current-carrying capacities for copper conductors based on the
type of insulation.

The ratings in Table 2.4 are for copper wires. The ratings for aluminum wires are typically §4% of
these values. Also, these rating are for not more than three conductors in a cable with temperature

30°C or 86°F. The NEC contains tables with correction factors at higher temperatures.

2.19 Current Ratings for Electronic Equipment

There are also standards for the internal wiring of electronic equipment and chassis. Table 2.5 pro-
vides recommended current ratings for copper wire based on 45°C (40°C for wires smaller than 22
AWG. Listed also, are the circular mils and these denote the area of the cross section of each wire
size. A circular mil is the area of a circle whose diameter is 1 mil (one-thousandth of an inch). Since the
area of a circle is proportional to the square of its diameter, and the area of a circle one mil in diame-
ter is one circular mil, the area of any circle in circular mils is the square of its diameter in mils.

A mil-foot wire is a wire whose length is one foot and has a cross-sectional area of one circular mil.
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TABLE 2.4 Current Carrying Capacities for Copper Conductors

Copper Conductor Insulation
RH, RHW,
RUH, TA, TBS, SA,
(14-2) FEP, FEPB,
Size RUH(14-2) THW, THWN, | RHH, THHN
(AWG) T, TW, UF XHHW XHHW? TFE}
14 15 15 25 40
12 20 20 30 55
10 30 30 40 75
8 40 45 50 95
6 55 65 70 120
4 70 85 90 145
3 80 100 105 170
2 95 115 120 195
1 110 130 140 220
0 125 150 155 250
00 145 175 185 280
000 165 200 210 315
0000 195 230 235 370

T Dry Locations Only 1 Nickel or nickel-coated copper only
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TABLE 2.5 Current Ratings for Electronic Equipment and Chassis Copper Wires

Wire Size Maximum Current (Amperes)
Nominal
Resistance
(Ohms/1000 ft) Wire in Free Wire Confined
AWG Circular Mils at 100 °C Air in Insulation
32 63.2 188 0.53 0.32
30 100.5 116 0.86 0.52
28 159.8 72 1.4 0.83
26 254.1 45.2 2.2 1.3
24 404 28.4 3.5 2.1
22 642.4 22 7 5
20 10.22 13.7 11 7.5
18 1624 6.5 16 10
16 2583 5.15 22 13
14 4107 3.2 32 17
12 6530 2.02 41 23
10 10380 1.31 55 33
8 16510 0.734 73 46
6 26250 0.459 101 60
4 41740 0.29 135 80
2 66370 0.185 181 100
1 83690 0.151 211 125
0 105500 0.117 245 150
00 133100 0.092 283 175
000 167800 0.074 328 200
0000 211600 0.059 380 225

The resistance of a wire of length / can be computed by the relation

R =

S

(2.53)
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where p = resistance per mil-foot, / = length of wire in feet, d = diameter of wire in mils, and R is
the resistance at 20°C.

Example 2.10

Compute the resistance per mile of a copper conductor //8 inch in diameter given that the resis-
tance per mil-foot of copper is 10.4 Q at 20°C.

Solution:

(1/8)in = 0.125 in = 125 mils
and from (2.53)

Column 3 of Table 2.5 shows the copper wire resistance at /00°C. Correction factors must be

applied to determine the resistance at other temperatures or for other materials. For copper, the
conversion equation is

Ry = R,pol1 + 0.004(T - 100)] (2.54)

where R is the resistance at the desired temperature, R, is the resistance at /00°C for coppert,

and T is the desired temperature.

Example 2.11

Compute the resistance of 1000 ft of size AWG 12 copper wire at 30°C.

Solution:

From Table 2.5 we find that the resistance of 1000 ft of size AWG 12 copper wire at 100°C is
2.02 Q. Then, by (2.54), the resistance of the same wire at 30°C is

Rypoe = 2.02[1 +0.004(30 - 100)] = 1.45 Q

2.20 Copper Conductor Sizes for Interior Wiring

In the design of an interior electrical installation, the electrical contractor must consider two impor-
tant factors:

a. The wiring size in each section must be selected such that the current shall not exceed the cur-
rent carrying capacities as defined by the NEC tables. Therefore, the electrical contractor must

accurately determine the current which each wire must carry and make a tentative selection of
the size listed in Table 2.4.
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b. The voltage drop throughout the electrical system must then be computed to ensure that it does
not exceed certain specifications. For instance, in the lighting part of the system referred to as the
lighting load, a variation of more than 5% in the voltage across each lamp causes an unpleasant
variation in the illumination. Also, the voltage variation in the heating and air conditioning load
must not exceed /0% .

Important! The requirements stated here are for instructional purposes only. They change from
time to time. It is, therefore, imperative that the designer consults the latest publications
of the applicable codes for compliance.

Example 2.12

Figure 2.44 shows a lighting load distribution diagram for an interior electric installation.

L Lighting
kw-hr ! l—lr ! Load
Utility Meter Panel | I L,
[

Company L
Switch Circuit Board !
Breaker

— L4

/

| |
Main : f :
Lines Branch \ :
Lines
A
|

_________

L;

Figure 2.44. Load distribution for an interior electric installation

The panel board is 200 feet from the meter. Each of the three branches has 12 outlets for 75 w, 120
volt lamps. The /load center is that point on the branch line at which all lighting loads may be consid-
ered to be concentrated. For this example, assume that the distance from the panel to the load center
is 60 ft. Compute the size of the main lines. Use T (thermoplastic insulation) type copper conductor
and base your calculations on 25°C temperature environment.

Solution:

It is best to use a spreadsheet for the calculations so that we can compute sizes for more and differ-
ent branches if need be.

The computations for Parts I and II are shown on the spreadsheet of Figure 2.45 where from the last
line of Part II we see that the percent line drop is 72.29 and this is more than twice the allowable 5%
drop. With the 12.29% voltage variation the brightness of the lamps would vary through wide
ranges, depending on how many lamps were in use at one time.
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A much higher voltage than the rated /20 V' would cause these lamps to glow far above their rated
candle power and would either burn them immediately, or shorten their life considerably. It is there-
fore necessary to install larger than /2 AWG main line. The computations in Parts I1I through V of

the spreadsheet of Figures 2.45 and 2.46 indicate that we should not use a conductor less than size
6 AWG.
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Figure 2.45. Spreadsheet for Example 2.12, Parts I and 11
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Figure 2.46. Spreadsheet for Example 2.12, Parts III, IV, and V
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2.21 Summary

Ohm’s Law states that the voltage across a device is proportional to the current through that
device and the resistance is the constant of proportionality.

Open circuit refers to an open branch (defined below) in a network. It can be thought of as a resis-
tor with infinite resistance (or zero conductance). The voltage across the terminals of an open
may have a finite value or may be zero whereas the current is always zero.

Short circuit refers to a branch (defined below) in a network that contains no device between its
terminals, that is, a piece of wire with zero resistance. The voltage across the terminals of a short is
always zero whereas the current may have a finite value or may be zero.

A resistor absorbs power.

A resistor does not store energy. The energy is dissipated in the form of heat.

A node is a common point where one end of two or more devices are connected.
A branch is part of a network that contains a device and its nodes.

A mesh is a closed path that does not contain other closed paths

A loop contains two or more closed paths.

Kirchoft’s Current Law (KCL) states that the algebraic sum of the currents entering (or leaving) a
node is zero.

Kirchoff’s Voltage Law (KVL) states that the algebraic sum of the voltage drops (or voltage rises)
around a closed mesh or loop is zero.

Two or more devices are said to be connected in series if and only if the same current flows
through them.

Two or more devices are said to be connected in parallel if and only if the same voltage exists
across their terminals.

A series circuit with a single mesh can be easily analyzed by KVL.
A parallel circuit with a single node pair can be easily analyzed by KCL.

If two or more voltage sources are in series, they can be replaced by a single voltage source with
the proper polarity.
If two or more current sources are in parallel, they can be replaced by a single current source with

the proper current direction.

If two or more resistors are connected in series, they can be replaced by an equivalent resistance
whose value is
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Summary

e

n
R, =Ry +R,+R;+ ... +R, = ZRK
k=1

e If two or more resistors are connected in parallel, they can be replaced by an equivalent resis-
tance whose value is

1L 1,

+
1 R2

L
k., R,

e Tor the special case of two parallel resistors, the equivalent resistance is found from the relation

RI‘R2

R, = R,R, =

e

¢ Conductances connected in series combine as resistors in parallel do.
e Conductances connected in parallel combine as resistors in series do.

e For the simple series circuit below

Vs

the voltage division expressions state that:

R, R,

Vp; = —m—Ve and vy, = —m—V
R1 R1+R2S R2 R1+R2S

e For the simple parallel circuit below

the current division expressions state that:

. R, . . R, .
Ip; = R]TR;S and lRZ:R]TRZlS
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e In the United States, the Electronics Industries Association (EIA) and the American National
Standards Institute (ANSI) have established and published several standards for electrical and elec-
tronic devices to provide interchangeability among similar products made by different manufactur-
ers.

e The resistor color code is used for marking and identifying pertinent data for standard resistors.
Two standards are the EIA Standard RS-279 and MIL-STD-1285A.

e Besides their resistance value, resistors have a power rating.

e The resistance of a wire increases with increased temperature and decreases with decreased tem-
peratute.

e The current ratings for wires and electronic equipment are established by national standards and
codes.
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2.22 Exercises
Multiple Choice
1. Ohm’s Law states that
A. the conductance is the reciprocal of resistance
B. the resistance is the slope of the straight line in a voltage versus current plot

C. the resistance is the sum of the voltages across all the devices in a closed path divided by the
sum of the currents through all the devices in the closed path

D. the sum of the resistances around a closed loop is zero
E. none of the above

2. Kirchoff’s Current Law (KCL) states that
A. the sum of the currents in a closed path is zero

B. the current that flows through a device is inversely proportional to the voltage across that
device

C. the sum of the currents through all the devices in a closed path is equal to the sum of the volt-
ages across all the devices

D. the sum of the currents entering a node is equal to the sum of the currents leaving that node
E. none of the above
3. Kirchoff’s Voltage Law (KCL) states that
A. the voltage across a device is directly proportional to the current through that device
B. the voltage across a device is inversely proportional to the current through that device

C. the sum of the voltages across all the devices in a closed path is equal to the sum of the cur-
rents through all the devices

D. the sum of the voltages in a node is equal to the sum of the currents at that node
E. none of the above

4. For the three resistors connected as shown on the network of Figure 2.47, the equivalent resis-
tance R, is computed with the formula
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R RHR;
R;+R,+R;

D R. - |_RiRRs
4B R, +R,+R,

E. none of the above

C. R, =

Figure 2.47. Network for Question 4

5. For the three conductances connected as shown on the network of Figure 2.48, the equivalent
conductance G, is computed with the formula

A Gy = JG,+G,+ Gy
B.G,; = /G, +G;+G;

G,G,G;

C.Gp= —2L1273
487G, +G,+ G,

DL -L,L,1
Gy G Gy G;

E. none of the above

A B
G, G, G

GAB

Figure 2.48. Network for Question 5

0. For the three resistances connected as shown on the network of Figure 2.49, the equivalent con-
ductance G p is

A 21071

B. 1507
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c.2/307"

D. 144/19 Q'

E. none of the above

A

R, R, R,
Gy 540 20 30
B

Figure 2.49. Network for Question 6

7. In the network shown in Figure 2.50, when R = 4 Q, the voltage vy = 6 V. When R = 0 Q,
ip=2A4.When R = o0, vy is
A6V

B. 24V
C.8Vv
D16V

E. none of the above

+
Rest of the j\ R
Circuit f

Figure 2.50. Network for Question 7

8. The node voltages shown in the partial network of Figure 2.51 are relative to some reference

node not shown. The value of the voltage vy is
A. -6V

B 16V

cov

D. 10V
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E. none of the above

10V
ZA‘ 30
X
8 Q 6V 2 A
4 Q
20V

Figure 2.51. Network for Question 8

9. For the network of Figure 2.52 the value of the voltage v is
A8V
B2V
C.-=2V
D -8V

E. none of the above

40

8V

l<— < —>1

Figure 2.52. Network for Question 9

10. For the circuit of Figure 2.53 the value of the current i is
A. 24
B.04
C. o4
D714

E. none of the above
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40
2all

8V

Figure 2.53. Network for Question 10

Problems

1. In the circuit of Figure 2.54, the voltage source and both resistors are variable.

Figure 2.54. Circuit for Problem 1

a. With vg = 120 V, R, = 70 Q,and R, = 50 Q, compute the power absorbed by R, .

Answer: 50 w

b. With v¢ = 120 V and R, = 0 Q, to what value should R, be adjusted so that the power
absorbed by it will be 200 w? Answer: 72 Q

c. With R, = 0 Q and R, = 100 Q, to what value should vy be adjusted to so that the power
absorbed by R, will be 100 w? Answer: 100 V

2. In the circuit of Figure 2.55, R; ,4p represents the load of that circuit.

—3A
—r— @
50 ‘ 5A 24V 2Q i1 oap
. +
C"D (’[) 10 Q VL0o4D & PLOAD
75V 4 -
Rioap
Figure 2.55. Circuit for Problem 2
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Compute:

a. iy o p Answer: 8 4
b. v; pup Answer: 20 V

C. proap Answer: 160 w

3. For the circuit of Figure 2.56, compute the power supplied or absorbed by each device.

24 A —— ——06A
B D
+ + +

A |12V CcC |60V E |3V

Figure 2.56. Circuit for Problem 3

Answers: py = 288 w, pp = 1152 w,po = —1800 w, p;, = 144 w, pp = 216 w

4. In the circuit of Figure 2.57, compute the power delivered or absorbed by the dependent voltage

source.
R, 20 R; 10Q

10 Q
Sig, V

Figure 2.57. Circuit for Problem 4

Answer: 62.5 w

5. In the network of Figure 2.58, each resistor is 10 Q. Compute the equivalent resistance R, .
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eq

Figure 2.58. Circuit for Problem 5

Answer: 360/21 Q

6. In the network of Figure 2.59, R, = 10 Q and R, = 20 Q. Compute the current 7 supplied by
the 15 V source.

Figure 2.59. Circuit for Problem 6

Hint: Start at the right end and by series and parallel combinations of the resistors, reduce the cir-
cuit to a simple series circuit. This method is known as analysis by network reduction.
Answer: 0.75 A

7. In the circuit of Figure 2.60, use the voltage division expression to compute vy and vy.

24V

50> 2200

<+> 100 40Q

16V ¥

Figure 2.60. Circuit for Problem 7

Answers: vy = 8/3 V,vy = -16/3V
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8. In the circuit of Figure 2.61, use the current division expression to compute i, and iy.

iS50 100

WM O

16 A 00 | 244 400

Figure 2.61. Circuit for Problem 8§

Answers: iy = —16/3 V,iy = -8/3V

9. A transformer consists of two separate coi/s (inductors) wound around an zron core as shown in Figure
2.62. There are many turns in both the primary and secondary coils but, for simplicity, only few
are shown. It is known that the primary coil has a resistance of 5.48 Q at 20 degrees Celsius. After
two hours of operation, it is found that the primary coil resistance has risen to 6.32 Q@ Compute
the temperature rise of this coil.

Primary (

Secondary
Coil q % g

D Coil

Iron Core

Figure 2.62. Circuit for Problem 9

Answer: 36°C

10. A new facility is to be constructed at a site which is 1.5 miles away from the nearest electric utility
company substation. The electrical contractor and the utility company have made load calcula-
tions, and decided that the main lines from the substation to the facility will require several cop-
per conductors in parallel. Each of these conductors must have insulation type THHN and must
carry a maximum current of 220 A in a 20°C temperature environment.

a. Compute the voltage drop on each of these conductors from the substation to the facility when
they carry the maximum required current of 220 A ina 20°C temperature environment.
Answer: 70 V
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b. The power absorbed by each conductor under the conditions stated above.
Answer: 15.4 Kw

c. The power absorbed per square cm of the surface area of each conductor under the conditions
stated above.

Answer: 0.02 w/cm2
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2.23 Answers to Exercises
Multiple Choice

1.B

2.D

3. E

4. E

5 D

6.C

7.B When R = 4 Q, the voltage vz = 6 V. Therefore, iy = 6/4 = 1.5 4. Also,when R = 0 Q,
ip = 2 A, and thus v, = 0 (short circuit). When R = o, i, = 0 but v, has a finite value
and it is denoted as v, _ ., in the figure below. Now, we observe that the triangles abc and dbe

are similar. Then be _ de or 20-15_ _06
c ac 2.0 VR - o

and thus vp_ , = 24 1V

avR "

VR = o 4

d

6.0
. . e\b

C T T

05 1.0 15 20 iz(4)

8.D We denote the voltage at the common node as v, shown on the figure of the next page. Then,

. . v,—10
from the branch that contains the 3 Q resistor, we observe that -2

=2orv, = 16 and

thus vy = —6+16 = 10V
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9. A This is an open circuit and therefore no current flows through the resistor. Accordingly, there
is no voltage drop across the resistor and thus v = § V.

10. A The 12 Q resistor is shorted out by the short on the right side of the circuit and thus the only
resistance in the circuit is the 4 Q resistot.

Problems
1.a. With vg = 120 V,R; = 70 Q,and R, = 50 Q, the circuit is as shown below.
70 Q

Vs

6 50 Q

Using the voltage division expression, we get

50

Ve, = Srass X 120 = 50V
Then,
V2 2
R
Pr. = 2 = ’_5_0_ = 50w

We observe that
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and
2
— =200 w
2
or
120° - 200
R2
or
_ 120 _ 5,
27200

Then,
2
or
V2
— = 100 w
100
or
ve = 100 x 100 = 10, 000
or
vg = /10,000 = 100 V

2. a. Application of KCL at node A of the circuit below yields
ioup = 3+5 =284
b. Application of KVL around Mesh 1 yields

—7543(5)+v,, =0
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iLoaD
C Proap
75V
Ri04p
B
or

Application of KVL around Mesh 2 yields

or
—60+24+2x8+v, oup =0

or

Prosp = Vioap Xiroap = 20x 8 = 160 w (absorbed power)

3. Where not shown, we assign plus (+) and minus (-) polarities and current directions in accot-
dance with the passive sign convention as shown below.

Ip Ip

24 A A
T, x, =
B D =
+ liA vy icl |+ g ipl| 4
Val A Vel C ve| E
T2V — 60V — 36V

We observe that iy = iz and iy = ij. Also, by KCL at Node X

ic=ig+ip=24+6 =304
Then,
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Py = Vyiy = 12x24 = 288 w (absorbed)
Py = Vgip = 36x6 = 216 w (absorbed)

Pe = vel=ig) = 60x(=30) = 1800 w (supplied)
By KVL
Vy+ Vg = Ve
or
Vg = Ve—Vv, = 060-12 =48V
and thus
pp = Vgip = 48x24 = 1152 w (absorbed)
Also by KVL
Vp+t Vg = V¢
or
Vp = Vo—vgp = 060-36 =24V
and thus

Pp = Vpip = 24x6 = 144 w (absorbed)
Check: We must show that Power supplied = Power absorbed

Pc = Py+tPp+pctpp = 288+216+ 1152+ 144 = 1800 w

4. We assign voltages and currents v R, VR,o IRy IR, and i, as shown in the circuit below.

R, 2Q R; 100 x

iR4
+ Ry
C VR, <10 Q
50V 5i R, Vo
Figure 2.63. Circuit for Exercise 4
By KVL,
VR, = 50-2x10 =30V
and by Ohm’s law,
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o= k305,
B2 "R, 6

Therefore, the value of the dependent voltage source is

Sig, = 5x5 =25V

and
vg, = Sig, = 25V

Then,

LTI Y

Re 7R, 10 7
By KCL at Node X

ip = ip,~ip,
where
ip = 10—i, =10-5=54

and thus

ip = ip,—ig, = 5-25=254

with the indicated direction through the dependent source. Therefore,

Pp = 5iR2iD =25%x25 = 625w (absorbed)

5. The simplification procedure starts with the resistors in parallel which are indicated below.

LGl 2
Gt » @

o

O}
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10 10
G I
R,, R,
5 6
10

180/21

R., @ R., R.,— %60/21
@ 180/21

6. We start with the right side of the circuit where the last two resistors are in series as shown below.

Then,
R, +R, = 10+10 = 20 Q
Next,
201120 = 10 Q
10+10 = 20 Q

and so on. Finally, addition of the left most resistor with its series equivalent yields
10+10 = 20 ©
and thus

i=15/20=0.754
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7. We first simplify the given circuit by replacing the parallel resistors by their equivalents. Thus,

5120 = 2220 = 4
5120
and
1040 = 10X40 _ 5
70+ 40

The voltage sources are in series opposing connection and they can be replaced by a single volt-
age source with value 24— 16 = 8 V. The simplified circuit is shown below.

TmASV

VS 4Q
| -
- !
Q< vy
|
+
Now, by the voltage division expression,
4 8
W=yt =3l
and
8 16
et =30
or
16
==V
vy 3

Check: By application of KVL starting at point A and going counterclockwise, we get

8 16
+(—vy)-8==+—=—-8=10
v+ (=vy) 373

8. We first simplify the given circuit by replacing the series resistors by their equivalents. Thus,

5420 = 25 Q
and

10+40 = 50 Q

The current sources are in parallel opposing connection and they can be replaced by a single cur-
rent source with value 24 — 16 = 8 4. The simplified circuit is shown below.
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j 25Q l 50 Q2

8A W iy
By the current division expression,
= 255+050 =8 _I?éA
and
r= 252+550 (=8) = _g 4

Check: By application of KCL starting at point 4 and going counterclockwise, we get

S 16 8
S+iy+iy,=8-—=—-==10

9. We construct the resistance versus temperature plot shown below.

R,y = 5.48 Q R (Q) C/

Ry =632Q

T,y = 20°C

Ty = AT

a

2345 01 0 : o
: |'—T25>|<—TX——| T (°0)
1 1

From the similar triangles acd and abe, we get

Ry 2345+ Tyy+Ty 2345+20+Ty 2545+ Ty

Ry 2345+ Ty 2345+ 20 2545
or
R
AT= Ty = =X x 25452545 = 332 % 25452545 = 36°C
Ry 5.48

10. a. From Table 2.4 we find that the cable size must be 0000 AWG and this can carry up to 235 4.
Also, from Table 2.5 we find that the resistance of this conductor is 0.059 Q/1000 ft at
100°C . Then, the resistance of this conductor that is 1.5 miles long is
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Q 5280

X

1000ft 1 mile

0.059 x 1.5 miles = 0.4673 Q at 100°C

To find the resistance of this cable at 20°C, we use the relation of (2.54). Thus,

Ryy = Ryl +0.004(20 - 100)] = 0.4673(1-0.32) = 0.3178 Q

and the voltage drop on each of these conductors is

v=1iR=220x03178 = 70 V
b. The power absorbed by each conductor is
p=vi=70x220 = 15400w = 154 Kw

c. Table 2.5 gives wire sizes in circular mils. We recall that a circular mil is the area of a circle
whose diameter is 0.001 in . To find the diameter in cm, we perform the following conversion:

SdZ = 5(0.001)2 = 7.854x 107 in’

1 circular mil

2
2 (2.54 cm)

. 2
n

= 7.854x 107 in =5.067x10°% em®

From Table 2.5 we find that the cross section of a 0000 AWG cable is 211,600 circular mils.
Then, the cross-section of this cable in em’ s

5.067x 10° em’

: M 1072 em’
circular mil

211, 600 circular mils x

Therefore, the cable diameter in cm is
d= J1.072 = 1.035 cm
The cross-section circumference of the cable is
nd = nx1.035 = 3.253 cm

and the surface area of the cable is

1.609 Km 10" em

5 2
T mile X Tkm 7.851 x 107 cm

Surface area = ndl = 3.253 cm x 1.5 miles x

Then, the power absorbed per em’ s

_ Total power _ 15,400 w = 0.02 w/em’
2 - - - .
o em’ 7.851 % 10° cm’
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NOTES
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Chapter 3

Nodal and Mesh Equations - Circuit Theorems

his chapter begins with nodal, loop and mesh equations and how they are applied to the solu-

tion of circuits containing two or more node-pairs and two or more loops or meshes. Other

topics included in this chapter are the voltage-to-current source transformations and vice
versa, Thevenin’s and Norton’s theorems, the maximum power transfer theorem, linearity, superposi-
tion, efficiency, and regulation.

3.1 Nodal, Mesh, and Loop Equations

Network Topology is a branch of network theory concerned with the equations required to completely
describe an electric circuit. In this text, we will only be concerned with the following two theorems.

Theorem 3.1

Let N = number of nodes in a circuit; then N -1 independent nodal equations are required to
completely describe that circuit. These equations are obtained by setting the algebraic sum of the
currents leaving each of the N -/ nodes equal to zero.

Theorem 3.2

Let L = M = number of loops or meshes, B = number of branches, N = number of nodes in
a circuit; then L = M = B—- N+ ] independent loop or mesh equations are required to completely
describe that circuit. These equations are obtained by setting the algebraic sum of the voltage drops
around each of the L = M = B— N+ I loops or meshes equal to zero.

3.2 Analysis with Nodal Equations

In writing nodal equations, we perform the following steps:

1. For a circuit containing N nodes, we choose one of these as a reference node assumed to be zero
volts or ground.

2. At each non-reference node we assign node voltages v, v,, ..., v, , where each of these voltages

is measured with respect to the chosen reference node, i.e., ground.

3. If the circuit does not contain any voltage sources between nodes, we apply KCL and write a
nodal equation for each of the node voltages v;, v, ...,v, .
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4. If the circuit contains a voltage source between two nodes, say nodes j and £ denoted as node vari-

ables v; and v, , we replace the voltage source with a short circuit thus forming a combined node

and we write a nodal equation for this common node in terms of both v; and v ; then we relate

the voltage source to the node variables v; and vy

Example 3.1

Write nodal equations for the circuit shown in Figure 3.1, and solve for the unknowns of these equa-
tions using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with
Excel® or MATLAB®. Please refer to Appendix A for discussion and examples.

80 10 Q
AVW——AVVY
| 40 | 6Q |
12A<> § JSACD 24A<>

Figure 3.1. Circuit for Example 3.1

Solution:

We observe that thete are 4 nodes and we denote these as D, @, @), and G (for ground) as shown in
Figure 3.2.

AN
Q) IRAAAR SRERAA N

s i1 l

? PEAN O LG
124 184 24 A
=g |

Figure 3.2. Circuit for Example 3.1

For convenience, we have denoted the currents with a subscript that corresponds to the resistor
value through which it flows through; thus, the current that flows through the 4 Q resistor is

denoted as i,, the current through the 8§ Q resistor is denoted as iz, and so on. We will follow this

practice in the subsequent examples.
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For the circuit of Figure 3.2, we need N—1 = 4—1 = 3 nodal equations. Let us choose node G
(ground) as our reference node, and we assign voltages v,, v,, and v; at nodes @, @, and @ respec-

tively; these are to be measured with respect to the ground node G. Now, application of KCL at
node @ yields

i +ig—12 =0
or

ij+ig = 12 (3.1)

where iy is the current flowing from left to right. Expressing (3.1) in terms of the node voltages, we

get

VL ViV g
4 8

or
1 1 1

or

3v,-v, = 96 3.2)

Next, application of KCL at node @ yields

ig+ig+18 =0

or

ig+iy=—-18 (3.3)

where ig is the current flowing from right to left and i,, is the current that flows from left to

right.

* The direction of the current through the 8 Q resistor from left to right in writing the nodal equation at Node I,
and from right to left in writing the nodal equation at Node 2, should not be confusing. Remember that we wrote
independent node equations at independent nodes and, therefore, any assumptions made in writing the first
equation need not be held in writing the second since the latter is independent of the first. Of course, we could
have assumed that the current through the 8 Q resistor flows in the same direction in both nodal equations. It is
advantageous, however, to assign a (+) sign to all currents leaving the node in which we apply KCL. The advan-
tage is that we can check, or even write the node equations by inspection. With reference to the above circuit and
equation (3.1) for example, since G = 1/R, we denote the coefficients of v; (1/4 and 1/8 siemens) as self conduc-

tances and the coefficient of v, (—1/8) as mutual conductance. Likewise, in equation (3.3) the coefficients of v,
(1/8 and 1/10 siemens) are the self conductances and the coefficients of v; (—1/8) and v3 (—=1/10) are the mutual

conductances. Therefore, we can write a nodal equation at a particular node by inspection, that is, we assign
plus (1) values to self conductances and minus (-) to mutual conductances.
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Expressing (3.3) in terms of node voltages, we get

Vy—V Vy—V
2 1+2 3

8 10

=18

or

1 1,1 1

or

Similarly, application of KCL at node @ yields

or

where i;, is the current flowing from right to left. Then, in terms of node voltages,

Vy—=Vy, V3

+—= =24
10 6
or
/ 1 1
or
_3v,+ 18v, = 720
or

vy=6v, = —240

(3.4)

(3.5)

(3.6)

Equations (3.2), (3.4), and (3.6) constitute a set of three simultaneous equations with three

unknowns. We write them in matrix form as follows:

3 -1 0| M1 96
5 -9 4 v 720
= (3.7)
0 1-6 V3 -240
G v 1
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We can use Cramer’s rule or Gauss’s elimination method as discussed in Appendix A, to solve (3.7)
for the unknowns. Simultaneous solution yields v, = 12 V, v, = =60 V, and v; = 30 V. With

these values we can determine the current in each resistor, and the power absorbed or delivered by
each device.

Check with MATLAB®:

G=[3 -1 0;5 -9 4;0 1 -6]; I=[96 720 -240]; V=G\I;...
fprintf(' \n"); fprintf('v1 = 9%5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

vl = 12.00 volts v2 = -60.00 volts v3d = 30.00 volts
Check with Excel®:

The spreadsheet of Figure 3.3 shows the solution of the equations of (3.7). The procedure is dis-
cussed in Appendix A.

A | B | ¢c | bp|] E |F|] 6 [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 3 -1 0 96

4 G= 5 -9 4 I= 720

5 0 1 -6 -240

6

7 0.417| -0.050| -0.033 12

8 G'=| 0.250| -0.150| -0.100 V= -60

9 0.042| -0.025| -0.183 30

Figure 3.3. Spreadsheet for the solution of (3.7)

Example 3.2

For the circuit of Figure 3.4, write nodal equations in matrix form and solve for the unknowns using
matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples. Then construct a table show-
ing the voltages across, the currents through and the power absorbed or delivered by each device.

Solution:

We observe that there are 4 nodes and we denote these as O, @, @, and G (for ground) as shown in
Figure 3.5.
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40

W
80 0V
60

D

18 A

12V 24 A
Figure 3.4. Circuit for Example 3.2
A Yt
_+ »
O] sq @ O
10V
CIRCENONT
2V 184 24A

®

Figure 3.5. Circuit for Example 3.2 with assigned nodes and voltages

We assign voltages v,, v,, and v; at nodes O, @, and @ respectively; these are to be measured with

respect to the ground node G. We observe that v, is a known voltage, that is, v, = 12 V and thus

our first equation is

(3.8)

Next, we move to node @ where we observe that there are three currents flowing out of this node,
one to the left, one to the right, and one down. Therefore, our next nodal equation will contain three
terms. We have no difficulty writing the term for the current flowing from node @ to node @, and
for the 18 A source; however, we encounter a problem with the third term because we cannot express
it as term representing the current flowing from node @ to node @. To work around this problem,
we temporarily remove the 10 V voltage source and we replace it with a “short” thereby creating a
combined node (or generalized node or supernode as some textbooks call it), and the circuit now looks as

shown in Figure 3.0.

3-6
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T T T T T~ Combined Node
- Ww V2 &
@ e ‘\ @ @ ’ ’ @
1 ----- 0v
© wf @ ez O
= IS A Ls Removed and
2v 24 A replaced by a
short

Figure 3.6. Circuit for Example 3.2 with a combined node

Now;, application of KCL at this combined node yields the equation

or
ig+ig =10
or
ARk B S (3.9)
8
or
1 1 1
or
=3v,+3v,+4v; = 144 (3.10)
To obtain the third equation, we reinsert the 10 V source between nodes @ and ®. Then,
vi=v, = 10 (3.11)

In matrix form, equations (3.8), (3.10), and (3.11) are

* The combined node technique allows us to combine two nodal equations into one but requires that we use the
proper node designations. In this example, to retain the designation of node 2, we express the current iy as
V27V

8

v
. Likewise, at node 3, we express the current i, as Zj
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1 0 0 Vi 12
~3 03 4] |y, 144
Y I O (3.12)
— —
G 174 1

Simultaneous solution yields v, = 12 V, v, = 20 V ,and v; = 30 V . From these we can find the

current through each device and the power absorbed or delivered by each device.
Check with MATLAB:

G=[1 0 0;-3 3 4;0 -1 1]; I=[12 144 10]; V=G\I...
fprintf(' \n'); fprintf('v1 = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

vl = 12.00 volts v2 = 20.00 volts v3 = 30.00 volts
Check with Excel:

A | B ] ¢c | b|] E |F[] G [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 1 0 0 12

4 G= -3 3 4 I= 144

5 0 -1 1 10

6

7 1.000| 0.000| 0.000 12

8 G'=| 0.429| 0.143| -0.571 V= 20

9 0.429| 0.143| 0.429 30

Figure 3.7. Spreadsheet for the solution of (3.12)

Table 3.1 shows that the power delivered is equal to the power absorbed.

3.3 Analysis with Mesh or Loop Equations
In writing mesh or loop equations, we follow these steps:

1. For a circuit containing M = L = B— N+ I meshes (or loops), we assign a mesh or loop current

ij,i ..., 1, , for each mesh or loop.

2. If the circuit does not contain any current sources, we apply KVL around each mesh or loop.
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TABLE 3.1 Table for Example 3.2

Power (watts)
Device Voltage (volts) | Current (amps) | Delivered Absorbed
12 V Source 12 2 24
10 V Source 10 19 190
18 A Source 20 18 360
24 A Source 30 24 720
4 Q Resistor 12 3 36
6 Q Resistor 30 5 150
8 Q) Resistor 8 1 8
Total 744 744

3. If the circuit contains a current source between two meshes or loops, say meshes or loops j and £
denoted as mesh variables ij and i, we replace the current source with an open circuit thus

forming a common mesh or loop, and we write a mesh or loop equation for this common mesh
ot loop in terms of both i and i;. Then, we relate the current source to the mesh or loop vari-

ables l'j and i e

Example 3.3

For the circuit of Figure 3.8, write mesh equations in matrix form and solve for the unknowns using
matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples. Then construct a table show-
ing the voltages across, the currents through, and the power absorbed or delivered by each device.

20 36V 8§Q

@ 40 60 120

2v
. - —()
= 24V
Figure 3.8. Circuit for Example 3.3
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Solution:

For this circuit we need M = L = B—-N+1 = 9-7+1 = 3 mesh or loop equations and we arbi-

trarily assign currents i;, i,, and i; all in a clockwise direction as shown in Figure 3.9.

20 36V 8O 10Q

Figure 3.9. Circuit for Example 3.3

Applying KVL around each mesh we get:

Mesh #1: Starting with the left side of the 2 Q resistor, going clockwise, and observing the passive
sign convention, we get the equation for this mesh as

or

6i,~4i, = 12 (3.13)

Mesh #2: Starting with the lower end of the 4 Q resistor, going clockwise, and observing the pas-
sive sign convention, we get the equation

4(i,—i;)+36+8i,+6(i,—i3) =0

or

Mesh #3: Starting with the lower end of the 6 Q resistor, going clockwise, and observing the pas-
sive sign convention, we get:

6(iy—iy)+10i;+12i,+24 = 0

or

— 6i,+28i; = —24 (3.15)
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Note: For this example, we assigned all three currents with the same direction, i.e., clockwise. This,
of course, was not mandatory; we could have assigned any direction in any mesh. It is advantageous,
however, to assign the same direction to all currents. The advantage here is that we can check, or
even write the mesh equations by inspection. This is best explained with the following observations:

1. With reference to the circuit of Figure 3.9 and equation (3.13), we see that current i; flows
through the 2 Q and 4 Q resistors. We call these the se/f resistances of the first mesh. Their sum,
e, 2+4 = 6 is the coefficient of current i, in that equation. We observe that current 7, also
flows through the 4 Q resistor. We call this resistance the mwutual resistance between the first and
the second mesh. Since i, enters the lower end of the 4 Q resistor, and in writing equation

(3.13) we have assumed that the upper end of this resistor has the plus (+) polarity, then in
accordance with the passive sign convention, the voltage drop due to current i, is —4i, and this

is the second term on the left side of (3.13).

2. In Mesh 2, the self resistances are the 4 Q, 8 Q, and 6 Q resistors whose sum, 18, is the coeffi-
cient of i, in equation (3.14). The 4 Q and 6 Q resistors are also the mutual resistances between
the first and second, and the second and the third meshes respectively. Accordingly, the voltage

drops due to the mutual resistances in the second equation have a minus () sign, ie, —4i; and

_6l.3 .

3. The signs of the coefficients of i, and i; in (3.15) are similarly related to the self and mutual

resistances in the third mesh.

Simplifying and rearranging (3.13), (3.14) and (3.15) we get:

3i;-2i, =6 (3.16)
2i;-9i,+ 3i; = 18 (3.17)
and in matrix form
3 =2 0 I 6
2 -9 3 Ll _ |18 (3.19)
0 3 -14 i 12
R 7 14

Simultaneous solution yields i; = 0.4271,i, = -2.3593 ,and i; = —1.3627 where the negative val-

ues for i, and 7; indicate that the actual direction for these currents is counterclockwise.
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Check with MATLAB:

R=[3 -2 0;2 -9 3;0 3 —14]; V=[6 18 12]; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps', 1(3)); fprintf(' \n')

11 = 0.43 amps 12 = -2.36 amps i3 = -1.36 amps

Excel produces the same answers as shown in Figure 3.10.

A | B | ¢c | b| E |F[ G [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 3 -2 0 6
4 R= 2 -9 3 V= 18
5 0 3 -14 12

6

7 0.397| -0.095| -0.020 0.4271

8 R'=| 0.095 -0.142| -0.031 I=| -2.3593
9 0.020| -0.031| -0.078 -1.3627

Figure 3.10. Spreadsheet for the solution of (3.19)

Table 3.2 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors.

TABLE 3.2 Table for Example 3.3

Power (watts)
Device Voltage (volts) Current (amps) Delivered Absorbed
12 V Source 12.000 0.427 5.124
36 V Source 36.000 2.359 84.924
24 V Source 24.000 1.363 32.712
2 Q Resistor 0.854 0.427 0.365
4 Q Resistor 11.144 2.786 30.964
8 Q Resistor 18.874 2.359 44.530
6 Q Resistor 5.976 0.996 5.952
10 © Resistor 13.627 1.363 18.570
12 Q Resistor 16.352 1.363 22.288
Total 122.760 122.669
3-12 Circuit Analysis I with MATLAB Applications

Orchard Publications



Analysis with Mesh or Loop Equations

Example 3.4

For the circuit of Figure 3.11, write loop equations in matrix form, and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel
or MATLAB. Please refer to Appendix A for procedures and examples. Then, construct a table
showing the voltages across, the currents through and the power absorbed or delivered by each
device.

20 36V 8Q 10Q

(D 10 60 §129

= - (4

Figure 3.11. Circuit for Example 3.4

Solution:

This is the same circuit as that of the previous example where we found that we need 3 mesh or
loop equations. We choose our loops as shown in Figure 3.12, and we assign currents i;, i,,and i;,

all in a clockwise direction.

20 36V 8Q 10Q

Figure 3.12. Circuit for Example 3.4 with assigned loops

Applying of KVL around each loop, we get:

Loop 1 (abgh): Starting with the left side of the 2 Q resistor and complying with the passive sign
convention, we get:
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or

or

Loop 2 (abcfgh): As before, starting with the left side of the 2 Q resistor and complying with the
passive sign convention, we get:
20, +i,+i3)+36+8(i,+i;)+6i,-12 =0
or

or

Loop 3 (abcdefgh): Likewise, starting with the left side of the 2 Q resistor and complying with the
passive sign convention, we get:

20, +i,+i3)+36+8(i,+i3)+10i3+ 12i3+24-12 = 0

or

2i,+10i,+ 32i; = —48
or

ip+5i,+16i; = -24 (3.22)

and in matrix form

3 1 1 l 6
1 85 i) -12
;s 16 i = |y (3.23)
R I V
Solving with MATLAB we get:
R=[3 1 1;1 8 5;1 5 16]; V=[6 —-12 -24]; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps', 1(3)); fprintf(' \n')
il = 2.79 amps i2 = -1.00 amps i3 = -1.36 amps
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Excel produces the same answers.

Table 3.3 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors and the values are approximately the same as those of the previous example.

TABLE 3.3 Table for Example 3.4

Power (watts)

Device Voltage (volts) Current (amps) | Delivered | Absorbed
12 V Source 12.000 0.427 5.124

36 V Source 36.000 2.359 84.924

24V Source 24.000 1.363 32.712

2 Q Resistor 0.854 0.427 0.365
4 Q Resistor 11.146 2.786 31.053
8 Q Resistor 18.872 2.359 44.519
6 Q Resistor 5.982 0.997 5.964
10 Q Resistor 13.627 1.363 18.574
12 Q Resistor 16.352 1.363 22.283
Total 122.760 122.758

Example 3.5

For the circuit of figure 3.13, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples.

20 36V 8§Q 10 Q

CD 10 60 2o

12V
. R
= 54
Figure 3.13. Circuit for Example 3.5
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Solution:

This is the same circuit as those of the two previous examples except that the 24 V voltage source
has been replaced by a 5 A current source. As before, weneed M = L = B-N+1 = 9-7+1 =3

mesh or loop equations, and we assign currents i;, i,, and i; all in a clockwise direction as shown in
Figure 3.14.

20 36V 8§Q 10 Q

Figure 3.14. Circuit for Example 3.5 with assigned currents

For Meshes 1 and 2, the equations are the same as in Example 3.3 where we found them to be

6i,—4i, = 12
or
3i,-2i,= 6 (3.24)
and
or

For Mesh 3, we observe that the current i; is just the current of the 5 A current source and thus our

third equation is simply

iy=5 (3.26)

and in matrix form,

3-16 Circuit Analysis I with MATLAB Applications
Orchard Publications



Analysis with Mesh or Loop Equations

3 -2 0 i 6

2 -9 3 i 18

0o 01 | = s (3.27)
R / v

Solving with MATLAB we get:

R=[8 -2 0;2 -9 3;0 0 1]; V=[6 18 5]; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps', 1(3)); fprintf(' \n')

il = 2.09 amps i2 = 0.13 amps i3 = 5.00 amps

Example 3.6

Write mesh equations for the circuit of Figure 3.15 and solve for the unknowns using MATLAB or

Excel. Then, compute the voltage drop across the 5 4 source.

2Q 36y 80

6Q

20 Q
12V

Figure 3.15. Circuit for Example 3.6

Solution:

Here, we would be tempted to assign mesh currents as shown in Figure 3.16. However, we will
encounter a problem as explained below.

The currents i; and i, for Meshes 3 and 4 respectively present no problem; but for Meshes 1 and 2

we cannot write mesh equations for the currents i; and i, as shown because we cannot write a
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term which represents the voltage across the 5 4 current source. To work around this problem we

temporarily remove (open) the 5 4 current source and we form a “combined mesh” (or generalized mesh
or supermesh as some textbooks call it) and the current that flows around this combined mesh is as
shown in Figure 3.17.

6Q

2V 20Q

18 Q 24V

Figure 3.16. Circuit for Example 3.6 with erroneous current assignments

8Q

2Q 36V

Combined
Mesh

G

6Q

12V

=

120 20 Q)

Iy

12V

Ivve$ . @ 24V
Figure 3.17. Circuit for Example 3.6 with correct current assignments

Now, we apply KVL around this combined mesh. We start at the left end of the 2 Q resistor, and we

express the voltage drop across this resistor as 2i; since in Mesh 1 the current is essentially 7, .
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Continuing, we observe that there is no voltage drop across the 4 Q resistor since no current flows
through it. The current now enters Mesh 2 where we encounter the 36 7 drop due to the voltage
source there, and the voltage drops across the 8§ Q and 6 Q resistors are 8i, and 6i, respectively
since in Mesh 2 the current now is really i,. The voltage drops across the 16 Q and 10 Q resistors
are expressed as in the previous examples and thus our first mesh equation is

20, +36+8i,+6i,+16(i,—i,)+10(i;—i3)—12 =0
or

12i,+ 30i,-10i;,-16i, = —24

or

Now, we reinsert the 5 A current source between Meshes 1 and 2 and we obtain our second equa-
tion as

i—i, =5 (3.29)

For meshes 3 and 4, the equations are

10(i;—ip)+12(i5—i,)+18i3-12 =0
or
and
16(i,—i,)+20i,— 24+ 12(iyj—i3) = 0
or
and in matrix form
6 15 -5 =8| |l 12
I -1 0 0 I 5
5 0-20 ¢ iyl = |-6 (3.32)
0 4 3-12 i -6
H,_/ \_W_J
R I 14
We find the solution of (3.32) with the following MATLAB code.
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R=[6 15 -5 -8;1-1 0 0;5 0 20 6;0 4 3 -12]; V=[-12 5 -6 -6]; I=R\V;...

fprintf(' \n');...

fprintf('i1 = %5.4f amps \t',1(1)); fprintf('i2 = %5.4f amps \t',1(2));...

fprintf('i3 = %5.4f amps \t',1(3)); fprintf('i4 = %5.4f amps',1(4)); fprintf(' \n')

11=3.3975 amps 12=-1.6025 amps 13=1.2315 amps 14=0.2737 amps

Now, we can find the voltage drop across the 5 4 current source by application of KVL around
Mesh 1 using the following relation:

2x33975+4%x(3.3975+1.6025) + v, + 10 x(3.3975-1.2315)-12 = 0

This yields

We can verify this value by application of KVL around Mesh 2 where starting with the lower end of
the 6 w resistor and going counterclockwise we get

(6+8) x 1.6025 — 36 + 4 x (3.3975 + 1.6025) — 36.455 + 16 x (1.6025 + 0.2737) = 0

With these values, we can also compute the power delivered or absorbed by each of the voltage
sources and the current source.

3.4 Transformation between Voltage and Current Sources

In the previous chapter we stated that a voltage source maintains a constant voltage between its ter-
minals regardless of the current that flows through it. This statement applies to an ideal voltage
source which, of course, does not exist; for instance, no voltage source can supply infinite current to
a short circuit. We also stated that a current source maintains a constant current regardless of the ter-
minal voltage. This statement applies to an ideal current source which also does not exist; for
instance, no current source can supply infinite voltage when its terminals are open-circuited.

A practical voltage source has an internal resistance which, to be accounted for, it is represented with an
external resistance Rg in series with the voltage source vg as shown in Figure 3.18 (a). Likewise a

practical current sonrce has an internal conductance which is represented as a resistance R, (or conduc-

tance G ) in parallel with the current source ig as shown in Figure 3.18 (b).
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— AAA— a a
RS

@ O s

’ (@ S

Figure 3.18. Practical voltage and current sources

In Figure 3.18 (a), the voltage of the source will always be vg but the terminal voltage v, will be
v, = Vg— Vg if aload is connected at points a and b. Likewise, in Figure 3.18 (b) the current of
the source will always be ig but the terminal current i, will be i, = ig—ip if aloadis connected

at points a and b.

Now, we will show that the networks of Figures 3.18 (a) and 3.18 (b) can be made equivalent to each
other.

In the networks of Figures 3.19 (a) and 3.19 (b), the load resistor R, is the same in both.

a a
+
Ry + ‘
Lab iab
) o
Vg R, ig R,
p —
(@ () b
Figure 3.19. Equivalent sources
From the circuit of Figure 3.19 (a),
R,
= 3.33
b T RIFR, S (3.33)
and
. Vs
= 3.34
‘ab = ROYR, (3-34)
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From the circuit of Figure 3.19 (b),

RpR

Vp = R IL'(’LiS (3.35)
and
R
Y
lap = Rp+RLlS (3.36)

Since we want v, to be the same in both circuits 3.19 (a) and 3.19 (b), from (3.33) and (3.35) we get:

R, RPRL .

14 = = 1
@b~ RO+ R, R,+R, S

(3.37)

VS—

Likewise, we want i, to be the same in both circuits 3.19 () and 3.19 (b). Then, from (3.34) and
(3.36) we get:

R

oo Vs P 3.38
‘ab = ROYR, R +R,° (3.38)
and for any R, , from (3.37) and (3.38)
and
R, = Ry (3.40)

Therefore, a voltage source vy in series with a resistance Rg can be transformed to a current source

iy whose value is equal to v¢/Rg, in parallel with a resistance R, whose value is the same as Ry.

Likewise, a current soutce ig in parallel with a resistance R, can be transformed to a voltage source

vg whose value is equal to ig x Rg, in series with a resistance whose value is the same as R,.

The voltage-to-current source or current-to-voltage source transformation is not limited to a single
resistance load; it applies to any load no matter how complex.

Example 3.7

Find the current i;, through the 70 Q resistor in the circuit of Figure 3.20.
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— A
20
40 i
— 10 Q)
2v
32V

Figure 3.20. Circuit for Example 3.7

Solution:

This problem can be solved either by nodal or by mesh analysis; however, we will transform the
voltage sources to current sources and we will replace the resistances with conductances except the

10 Q) resistor. We will treat the 70 Q resistor as the load of this circuit so that we can compute the

current i, through it. Then, the circuit becomes as shown in Figure 3.21.

6A 0.5Q

Figure 3.21. Circuit for Example 3.7 where voltage sources have been transformed to current sources

Combination of the two current sources and their conductances yields the circuit shown in Figure
3.22.

Lo

CD 07507 2100

2A

Figure 3.22. Circuit for Example 3.7 after combinations of current sources and conductances

. -1 . .
Converting the 0.75 Q ° conductance to a resistance and performing current-to-voltage source
transformation, we get the circuit of Figure 3.23.
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4/3 Q ‘

L i10
& 100

83V

Figure 3.23. Circuit for Example 3.7 in its simplest form

Thus, the current through the /0 Q resistor is

iy = 95— 417 4
10+4.73

3.5 Thevenin’s Theorem

This theorem is perhaps the greatest time saver in circuit analysis, especially in electronic circuits. It
states that we can replace a two terminal network by a voltage source v, in series with a resistance

Ry as shown in Figure 3.24.

X _/\/W\/—X—

Network A Load R Foad
to be replaced T (Rest (Rest
by a Thevenin Vxy of the CD Yy of the

equ'ival.ent \L circuit) Vg circuit)
circuit
y X
Yy
(a) (b)

Figure 3.24. Replacement of a network by its Thevenin’s equivalent

The network of Figure 3.24 (b) will be equivalent to the network of Figure 3.24 (a) if the load is

removed in which case both networks will have the same open circuit voltages v . and consequently,

y
Vi = Vyy

Therefore,

(3.41)

Vra = ny open
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The Thevenin resistance R, represents the equivalent resistance of the network being replaced by

the Thevenin equivalent, and it is found from the relation

v %
_ xy open _ 'YTH
RTH_ = 24

lxy short lsc

where ig~ stands for short-circuit current.

(3.42)

If the network to be replaced by a Thevenin equivalent contains independent sources only, we can

find the Thevenin resistance Ry by first shorting all (independent) voltage sources, opening all

(independent) current sources, and calculating the resistance looking into the direction that is opposite to

the load when it has been disconnected from the rest of the circuit at terminals x and y .

Example 3.8

Use Thevenin’s theorem to find i;,,p and v;,,p for the circuit of Figure 3.25.

Figure 3.25. Circuit for Example 3.8

Solution:

We will apply Thevenin’s theorem twice; first at terminals x and y and then at x' and ' as shown in

Figure 3.26.

Figure 3.26. First step in finding the Thevenin equivalent of the circuit of Example 3.8

Breaking the circuit at x —y, we are left with the circuit shown in Figure 3.27.
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X
30
CD 6Q < Ry
v
Xy

Figure 3.27. Second step in finding the Thevenin equivalent of the circuit of Example 3.8

Applying Thevenin’s theorem at x and y and using the voltage division expression, we get

6
Vi = Vi = 3+6X12 =8V

Ix6
R = =20
TH|V5=0 3+6

(3.43)

and thus the equivalent circuit to the left of points x and x is as shown in Figure 3.28.

Ry
—NVVWN—X

®

8V

<y
Figure 3.28. First Thevenin equivalent for the circuit of Example 3.8

Next, we attach the remaining part of the given circuit to the Thevenin equivalent of Figure 3.28, and
the new circuit now is as shown in Figure 3.29.

RTH

Figure 3.29. Circuit for Example 3.8 with first Thevenin equivalent
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Now, we apply Thevenin’s theorem at points x' and y' and we get the circuit of Figure 3.30.

RTH

Figure 3.30. Applying Thevenin’s theorem at points x' and y' for the circuit for Example 3.8

Using the voltage division expression, we get
Y [
T XY 7 243410+ 5
[(C+3+5)|[10]+7 =12 Q

8§ =4V

R'ry|

Ve =0

This Thevenin equivalent with the load resistor attached to it, is shown in Figure 3.31.

R'ry ,
X
120
V' .
TH +5v1,04D
(—D YiLo4p R oup
4V -18¢
yf

Figure 3.31. Entire circuit of Example 3.8 simplified by Thevenin’s theorem

The voltage v, p is found by application of the voltage division expression, and the current

i;o4p by Ohm’s law as shown below.

8

Vioap = Tyopxd = L6V
. 4
Lo = 755 = 024

It is imperative to remember that when we compute the Thevenin equivalent resistance, we must
always look towards the network portion which remains after disconnectinf the load at the x and y
terminals. This is illustrated with the two examples that follow.
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Let us consider the network of Figure 3.32 (a).

Begin with s
this series "\
combination 1l

\
Load | Then, compute the >
equivalent resistance
looking to the left of
points x and y

(a)

(b)

Figure 3.32. Computation of the Thevenin equivalent resistance when the load is to the right

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by

shorting the 240 V voltage source, and computing the equivalent resistance looking to the left of
points x and y as indicated in Figure 3.32 (b). Thus,

Ry = (250 + 50)[| 100 = 300x100

=75Q
300 + 100

Now, let us consider the network of Figure 3.33 (a).

Begin with

this series
R combination

Then, compute the
equivalent resistance

looking to the right of
points x and y

Load

(b)

Figure 3.33. Computation of the Thevenin equivalent resistance when the load is to the left

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by

shorting the 240 V voltage source, and computing the equivalent resistance looking to the right of
pointsx and y as indicated in Figure 3.33 (b). Thus,

Ry = (50 + 100)||250 = 120x230

= 9375 2
150 + 250

3-28
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We observe that, although the resistors in the networks of Figures 3.32 (a) and 3.33 (b) have the
same values, the Thevenin resistance is different since it depends on the direction in which we look
into (left or right).

Example 3.9

Use Thevenin’s theorem to find i;,,p and v;,,p for the circuit of Figure 3.34.

24V

Figure 3.34. Circuit for Example 3.9

Solution:

This is the same circuit as the previous example except that a voltage source of 24 V has been
placed in series with the 7 Q resistor. By application of Thevenin’s theorem at points x and y as
before, and connecting the rest of the circuit, we get the circuit of Figure 3.35.

Ry 24V !

YT L0AD
+
C_) Ri04p
8§Q

Figure 3.35. Circuit for Example 3.9 with first Thevenin equivalent

Next, disconnecting the load resistor and applying Thevenin’s theorem at points x' and )" we get
the circuit of Figure 3.36.

There is no current flow in the 7 Q resistor; therefore, the Thevenin voltage across the x' and )'

points is the algebraic sum of the voltage drop across the /0 Q resistor and the 24 V source, that is,

10
o=y, =20 g oy =
Viu = Vey = 373y 045 0 o
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Figure 3.36. Applying Thevenin’s theorem at points x' and y' for the circuit for Example 3.9

and the Thevenin resistance is the same as in the previous example, that is,

Ry = [(2+3+5)|[10]+7 = 12Q
Vig =0

Finally, connecting the load R;, ,p as shown in Figure 3.37, we compute v;,,p and i;,,p as fol-

lows:

R 1y .

X
' 12Q
Viru ;
C") V04D LOAD
— Rro4p
20V 80

y!

Figure 3.37. Final form of Thevenin equivalent with load connected for circuit of Example 3.9

8
Lodp = 7y
20
'Loap = 5%

x(=20) = -8 V

=-14

Example 3.10
For the circuit of Figure 3.38, use Thevenin’s theorem to find i, ,,p and v, o p-

Solution:

This circuit contains a dependent voltage source whose value is twenty times the current through the
6 Q resistor. We will apply Thevenin’s theorem at points a and b as shown in Figure 3.39.
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Figure 3.39. Application of Thevenin’s theorem for Example 3.10

For the circuit of Figure 3.39, we cannot short the dependent source; therefore, we will find the
Thevenin resistance from the relation

v
= Yoc _ %" (3.44)

Rrn i i |
SC LOAD RLaO

To find the open circuit voltage v, = v, , we disconnect the load resistor and our circuit now is

as shown in Figure 3.40.

Figure 3.40. Circuit for finding vy = v, of Example 3.10
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We will use mesh analysis to find v, which is the voltage across the 4 Q resistor. We chose mesh

analysis since we only need three mesh equations whereas we would need five equations had we cho-
sen nodal analysis. Please refer to Exercise 16 at the end of this chapter for a solution requiring nodal
analysis.

Observing that iy = i; —1i,, we write the three mesh equations for this network as

20i,—iy) + 4is+ 10(i5— i) = 0

and after simplification and combination of like terms, we write them in matrix form as

3 -2 0 I, 4
3 -12 5 I, _ 0 (3.46)
10 =15 7 I 0

R 7 V

Using the spreadsheet of Figure 3.41, we find that i; = -3.53 4

A | B | ¢c | D | E F G |[H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

3 3 2 0 4
4 R= 3 -12 5 V= 0
5 10 -15 7 0
7 0.106 -0.165 0.118 0.42
8 R'=[ -0.341 -0.247 0.176 = -1.36
9 -0.882 -0.294 0.353 -3.53

Figure 3.41. Spreadsheet for Example 3.10
Thus, the Thevenin voltage at points a and b is
vy = (=353)x4 = -14.18V

Next, to find the Thevenin resistance Ry, we must first compute the short circuit current [g..

Accordingly, we place a short across points a and b and the circuit now is as shown in Figure 3.42
and we can find the short circuit current ig. from the circuit of Figure 3.43 where ig- = i,
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AN
70 ¢4

40
b

o + | o
100
==

Figure 3.42. Circuit for finding ig- = i, in Example 3.10

Isc

Figure 3.43. Mesh equations for finding ig- = i, in Example 3.10

The mesh equations for the circuit of Figure 3.43 are

—6i,+24i,-10i, = 0
e (3.47)
—diy+ i, = 0
and after simplification and combination of like terms, we write them in matrix form as
3 -2 0 0| |i 4
32125 0 |i, 0
10-15 7 =2 |i] = |0 (3.48)
0 0 -411 | 0
N 4 -
R Ja V
We will solve these using MATLAB as follows:
3-33
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R=[3 2 0 0;3 12 5 0;10 -15 7 —2;0 0 -4 11]; V=[4 0 0 0] I=R\V:

fprintf(' \n');...

fprintf('i1 = %3.4f A\t',1(1,1)); fprintf('i2 = %3.4f A \t',1(2,1));...

fprintf('i3 = %3.4f A \t',1(3,1)); fprintf('i4 = %3.4f A \t',1(4,1));...

fprintf(' \n');...fprintf(' \n")

il = 0.0173 A i2 = -1.9741 A i3 = -4.7482 A
Therefore,

and

VTH

id = -1.7266 A

Figure 3.44. Final form of Thevenin’s equivalent for the circuit of Example 3.10

Finally, with the load R;4p attached to points a and b, the circuit is as shown in Figure 3.45.

82Q 4

Figure 3.45. Circuit for finding v; 5, ,p and i; o ,p in Example 3.10

Therefore, using the voltage division expression and Ohm’s law we get
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8
Vioap = g3 g

. —14.18

x(=14.18) = -7.00 V

3.6 Norton’s Theorem

This theorem is analogous to Thevenin’s theorem and states that we can replace everything, except
the load, in a circuit by an equivalent circuit containing only an independent current source which
we will denote as iy in parallel with a resistance which we will denote as Ry, as shown in Figure

3.40.

Network { foad road
to be replaced T (Rest (Rest
bya Norlon Viy of the @) Vxy of the
equ'zval.enl circuit) i Ry l circuit)
circuit N
y ®
(a) (*)

Figure 3.46. Replacement of a network by its Norton equivalent

The current source iy has the value of the short circuit current which would flow if a short were

connected between the terminals x and ), where the Norton equivalent is inserted, and the resis-
tance R, is found from the relation

v
R, = 2¢ 3.49
N ige G4

where v is the open circuit voltage which appears across the open terminals x and y.

Like Thevenin’s, Norton’s theorem is most useful when a series of computations involves changing
the load of a network while the rest of the circuit remains unchanged.

Comparing the Thevenin’s and Norton’s equivalent circuits, we see that one can be derived from the
other by replacing the Thevenin voltage and its series resistance with the Norton current source and
its parallel resistance. Therefore, there is no need to perform separate computations for each of
these equivalents; once we know Thevenin’s equivalent we can easily draw the Norton equivalent
and vice versa.
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Example 3.11

Replace the network shown in Figure 3.47 by its Thevenin and Norton equivalents.

Iy

3Q 3Q

+> 60

200y V

y

Figure 3.47. Network for Example 3.11

Solution:

We observe that no current flows through the 3 Q resistor; Therefore, iy = 0 and the dependent

current source is zero, i.e., a short circuit. Thus,

Viw = Voc = Vi, = 0
and also

isc =0

This means that the given network is some mathematical model representing a resistance, but we
cannot find this resistance from the expression

Rry = Ry = —
Isc

since this results in the indeterminate form 0/0. In this type of situations, we connect an external
source (voltage or current) across the terminals x and y. For this example, we arbitrarily choose to
connect a 1 volt source as shown in Figure 3.48.

Figure 3.48. Network for Example 3.11 with an external voltage source connected to it.
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In the circuit of Figure 3.48, the / V' source represents the open circuit voltage v, and the current
i represents the short circuit current ig.. Therefore, the Thevenin (or Norton) resistance will be

found from the expression

Ry = Ry=02¢=1V_ 1V (3.50)

Figure 3.49. Circuit for finding iy in Example 3.11

v, —20i % i
N e 3 X+—61+1X= 0 (3.5D)

where

iy = = (3.52)

Simultaneous solution of (3.51) and (3.52) yields v, = 34/25 and iy = 3/25. Then, from (3.50),

/ 25

R:—:
NT3/25 3

Ry =
and the Thevenin and Norton equivalents are shown in Figure 3.50.
Ry
25/3 Q Ry
Ve = 0 iy=02 2530

Figure 3.50. Thevenin’s and Norton’s equivalents for Example 3.11
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3.7 Maximum Power Transfer Theorem

Consider the circuit shown in Figure 3.51. We want to find the value of R, which will absorb

maximum power from the voltage source vy whose internal resistance is Ry.

Figure 3.51. Circuit for computation of maximum power delivered to the load R, ,,

The power p; ,,p delivered to the load is found from

» - i =( R o4p v)( Vg )
LOAD L0AD X Lo4AD Ro+Rypun I\ Rs+ Rypup
or
R oap 2
Proap = ———— Vs (3.53)

2
(Rs+ Ry04p)

To find the value of R} ,p which will make p; ,,p maximum, we differentiate (3.53) with respect to

R; o4p - Recalling that

d d
d(y) _ vﬁ(u)—ua(v)
dx\v V2

and differentiating (3.53), we get

22 2
dproap (Rs+ Ry 04p) Vs—VsR04p(2)(Rs+ R p4p)

= y (3.54)
dR;04p (Rg+R; oup)

and (3.54) will be zero if the numerator is set equal to zero, that is,

2.2 2

(Rs+ Rpoap) Vs —VsRroap(2)(Rg+ Rppp) = 0

or

Rs+Ri04p = 2Ri04p
or
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Rioap = Ry (3.55)

Therefore, we conclude that a voltage source with internal series resistance Rg or a current source
with internal parallel resistance Rp delivers maximum power to aload R; ,,, when R, ,,, = Ry or

R;o4p = Rp. For example, in the circuits of 3.52, the voltage source vy and current source iy

deliver maximum power to the adjustable* load when R; p,p = Rg = Rp = 5 Q

Ry 5Q
Rioap ¥50 Ry Rioap %9 €
Vg i 50

Figure 3.52. Circuits where R, ,p s set to receive maximum power

We can use Excel or MATLAB to see that the load receives maximum power when it is set to the
same value as that of the resistance of the source. Figure 3.53 shows a spreadsheet with various val-
ues of an adjustable resistive load. We observe that the power is maximum when R, ,,p = 5 Q.

The condition of maximum power transfer is also referred to as resistance matching ot impedance match-
ing. We will define the term “impedance” in Chapter 6.

The maximum power transfer theorem is of great importance in electronics and communications
applications where it is desirable to receive maximum power from a given circuit and efficiency is
not an important consideration. On the other hand, in power systems, this application is of no use
since the intent is to supply a large amount of power to a given load by making the internal resis-
tance Ry as small as possible.

3.8 Linearity
A linear passive element is one in which there is a linear voltage-current relationship such as

. d . . d
vp = Rig v, = LEZL ic = Cove (3.56)

*  An adjustable resistor is usually denoted with an arrow as shown in Figure 3.52.
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Rioo PLoao 4 Maximum Power Transfer N
0 0.00 6
1 2.78 5 |
2 408 | g4 /\
3 4.69 g 3 —
4 494 £o.
—> 5 5.00 14
6 4.96 0 : :
7 4.86 _ ’ i Resistance (Ohr1nos)-Linear Scale * 2;
8 4.73
12 :ij 4 . Maximum Power Transfer N
11 4.30 ;f i
12 4.15 s
22
13 4.01 g 1
14 3.88 ° 0 100
15 3.75 \_ Resistance (Ohms) - Log Scale )
16 3.63

Figure 3.53. Spreadsheet to illustrate maximum power transfer to a resistive load

Definition 3.1

A linear dependent source is a dependent voltage or current source whose output voltage or current is
proportional only to the first power of some voltage or current variable in the circuit or a /Znear com-

bination (the sum or difference of such variables). For example, v, = 2v, - 3i, is a linear relation-

Y

nVy .
are non-lineat.

. /
shipbutp = vi = Ri’ = Vv /Randi = ISev
Definition 3.2

A linear circuit is a circuit which is composed entirely of independent sources, linear dependent
sources and linear passive elements or a combination of these.
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3.9 Superposition Principle

The principle of superposition states that the response (a desired voltage or current) in any branch of a
linear circuit having more than one independent source can be obtained as the sum of the responses
caused by each independent source acting alone with all other independent voltage sources replaced
by short circuits and all other independent current sources replaced by open circuits.

Note: Dependent sources (voltage or current) must not be superimposed since their values depend on the volt-
age across or the current through some other branch of the circuit. Therefore, all dependent
sources must always be left intact in the circuit while superposition is applied.

Example 3.12

For the circuit of Figure 3.54, compute i, by application of the superposition principle.

20 6V 8Q 10 Q

e 40 ‘ 60 20

2V s

. l Y
= 54

Figure 3.54. Circuit for Example 3.12

Solution:

Let i'y represent the current due to the 12 V source acting alone, i"4 the current due to the 36 V

m

source acting alone, and i"; the current due to the 5 4 source acting alone. Then, by the principle

of superposition,

sm

s -1

First, to find i'; we short the 36 V voltage source and open the 5 4 current source. The circuit
then reduces to that shown in Figure 3.55.

Applying Thevenin’s theorem at points x and y of Figure 3.55, we obtain the circuit of Figure 3.56
and from it we get
4 x12
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20 8 x 109

12Q

Figure 3.55. Circuit for finding i's in Example 3.12

20 8Q x
-
40
12V
f hd X
- y

Figure 3.56. Circuit for computing the Thevenin voltage to find i's in Example 3.12

Next, we will use the circuit of Figure 3.57 to find the Thevenin resistance.

2Q 8§Q x

Se———

40 Rrn

— hd oY

- y
Figure 3.57. Circuit for computing the Thevenin resistance to find i'; in Example 3.12

4 x2 28
Ry = 8+ ==Q
T 4+2 3

We find the current i'; from Figure 3.58.
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R 100
V1H
6Q 120
8V l"6

Figure 3.58. Circuit for computing i'; in Example 3.12

) 8 12

= s = 5 (3.57)

Next, the current i", due to the 36 V source acting alone is found from the circuit of Figutre 3.59.
6 g gu

20 36V 8§Q 10Q

4Q 6Q 120

Figure 3.59. Circuit for finding i", in Example 3.12

and after combination of the 2 Q and 4 Q parallel resistors to a single resistor, the circuit simplifies
to that shown in Figure 3.60.

36V 8§Q 100

120

Figure 3.60. Simplification of the circuit of Figure 3.59 to compute i" s for Example 3.12
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From the circuit of Figure 3.60, we get

. 36 54
oo 36 _ M, 3.58
YT I 318+6 23 (3.58)

Finally, to find ", we short the voltage sources, and with the 5 4 current source acting alone the

circuit reduces to that shown in Figure 3.61.

20 8O 10Q

12Q

l L
= N

Figure 3.61. Circuit for finding i" s in Example 3.12

Replacing the 2 Q, 4 Q, and 8§ Q resistors by a single resistor, we get

2X4+8=2—8§2
2+4 3

and the circuit of Figure 3.61 reduces to that shown in Figure 3.62.

ANN—
100
28 o l 60 §129
3
l-m
()34
= _/

Figure 3.62. Simplification of the circuit of Figure 3.59 to compute i"; for Example 3.12

s

We will use the current division expression in the circuit of Figure 3.62 to find i";. Thus,

w2873 o _ 70

g = 28/3+6X( 5) - 23 (359)
Therefore, from (3.57), (3.58), and (3.59) we get
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o 12 54 70 _ 112

or

iy = —4.87 4 (3.60)

and this is the same value as that of Example 3.5.

3.10 Circuits with Non-Linear Devices

Most electronic circuits contain non-linear devices such as diodes and transistors whose 7 - » (cur-
rent-voltage) relationships are non-linear. However, for small signals (voltages or currents) these cir-
cuits can be represented by linear equivalent circuit models. A detailed discussion of these is beyond
the scope of this text; however we will see how operational amplifiers can be represented by equiva-
lent linear circuits in the next chapter.

If a circuit contains only one non-linear device, such as a diode, and all the other devices are linear,
we can apply Thevenin’s theorem to reduce the circuit to a Thevenin equivalent in series with the
non-linear element. Then, we can analyze the circuit using a graphical solution. The procedure is
illustrated with the following example.

Example 3.13

For the circuit of Figure 3.63, the i — v characteristics of the diode D are shown in figure 3.64. We
wish to find the voltage v, across the diode and the current i;, through this diode using a graphical

solution.
Diode; conducts current
Ryy  only in the indicated direction
R AAYAYA e
1 KQ
VTH
O woyp
1V
ip
Figure 3.63. Circuit for Example 3.13
Solution:

The current i), through the diode is also the current through the resistor. Then, by KVL
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1.4
1.2 4
1.0
0.8
0.6 I

0.4
0.2 4 J
0.0

0.00.1 0203 040506 07080910

i (milliamps)

vV, (volts)

Figure 3.64. Diode i-v characteristics

Vetvp =1V

or
Rip, = —vp+1
or
ip = _év0+é (3.61)

We observe that (3.61) is an equation of a straight line and the two points are obtained from it by first
letting v;, = 0, then, i, = 0. We obtain the straight line shown in Figure 3.65 which is plotted on

the same graph as the given diode i — v characteristics.
The intersection of the non-linear curve and the straight line yields the voltage and the current of the

diode where we find that v, = 0.665V and i, = 0.335 mA.

Check:
Since this is a series circuit, i, = 0.335 mA also. Therefore, the voltage drop vj across the resistor is

vp = 1 kQx0.335 mA = 0.335 V. Then, by KVL

vp+vy = 0.335+0.665 = 1V
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Diode Voltage Diode Current

(Volts) (milliamps)
0.00 0.000
0.02 0.000
0.04 0.000 4 |-V Relationship for Circuit of )
0.06 0.000 Example 3.13
0.08 0.000 14
0.10 0.000 1.2 -
0.12 0.000 2 10|
0.14 0.000 € 08 lo=-(1/R)Vo?1/R .~ Diode
0.16 0.000 % 06
0.18 0.000 ~ 04
0.20 0.000 T 02
0.22 0.000 0.0 — =
0.24 0.000 00 0.1 02 03 04 05 06 0.7 0.8 09 1.0
0.26 0.000 | Vp (volts) )
0.28 0.000
0.30 0.000

Figure 3.65. Curves for determining voltage and current in a diode

3.11 Efficiency

We have learned that the power absorbed by a resistor can be found from py = i ’R and this power

is transformed into heat. In a long length of a conductive material, such as copper, this lost power is
) . . . .
known as i "R loss and thus the energy received by the load is equal to the energy transmitted minus

the iR loss. Accordingly, we define ¢fficiency n as

.. Output Output
Efficiency = = =
1 4 7 Input Output + Loss

The efficiency 7 is normally expressed as a percentage. Thus,

. Output Output
% B _ 0 = 22100 = —2222 < 100 3.62
% Efficiency = % n Input % Output+L0SSX (562

Obviously, a good efficiency should be close to 100%

Example 3.14

In a two-story industrial building, the total load on the first floor draws an average of 60 amperes
during peak activity, while the total load of the second floor draws 40 amperes at the same time. The
building receives its electric power from a 480 V' source. Assuming that the total resistance of the
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cables (copper conductors) on the first floor is 1 Q and on the second floor is 1.6 Q, compute the
efficiency of transmission.

Solution:

First, we draw a circuit that represents the electrical system of this building. This is shown in Figure
3.60.

AN

0.80
+—AAN—

0.5Q \
3

60 A i* |40 A

G—) 1st Floor 2nd Floor
= Load Load

AW
0.8Q
AN

Figure 3.66. Circuit for Example 3.14
Power pg supplied by the source:
ps = vg(i; +1i,) = 480 x (60 + 40) = 48 kilowatts (3.63)

Power loss between source and 1st floor load:

2

Pross; = i(05Q+05Q) = 60°x1 = 3.6 kilowatts (3.64)
Power loss between source and 2nd floor load:
Plosss = iX(0.8Q+08Q) = 40°x 1.6 = 2.56 kilowatts (3.65)
Total power loss:
Pioss = Plossi T Plossz = 3.060+2.56 = 6.16 kilowatts (3.66)
Total power p; received by 1st and 2nd floor loads:
DL = Ps—DPloss = 48.00-6.16 = 41.84 kilowatts (3.67)
_ Output 41.84
0 — 0 — — — 0
% Efficiency = % n = Input x 100 5,00 x100 = 87.17 % (3.68)
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3.12 Regulation

The regulation is defined as the ratio of the change in load voltage when the load changes from no
load (NL) to full load (FL) divided by the full load. Thus, denoting the no-load voltage as v,; and

the full-load voltage as v, , the regulation is defined as In other words,

. Vg =V
Regulation = YL _FL

VEL

The regulation is also expressed as a percentage. Thus,

. VNLTV
%Regulation = ———= x 100 (3.69)

Example 3.15

Compute the regulation for the 1st floor load of the previous example.
Solution:

The current drawn by 1st floor load is given as 60 A and the total resistance from the source to the
load as I Q. Then, the total voltage drop in the conductors is 60 x I = 60 V. Therefore, the full-
load voltage of the load is vp;= (480 — 60 = 420 V) and the percent regulation is

Vg =V _
% Regulation = V—FLXJOO = %}XIOO =143 %
FL

3.13 Summary

e When using nodal analysis, for a circuit that contains N nodes, we must write N — / independent
nodal equations in order to completely describe that circuit. When the presence of voltage
sources in a circuit seem to complicate the nodal analysis because we do not know the current
through those voltage sources, we create combined nodes as illustrated in Example 3.2.

e When using nodal analysis, for a circuit that contains M meshes or L loops, B branches, and N
nodes, we must write L = M = B— N+ ] independent loop or mesh equations in order to com-
pletely describe that circuit. When the presence of current sources in a circuit seem to complicate
the mesh or loop analysis because we do not know the voltage across those current sources, we
create combined meshes as illustrated in Example 3.6.
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e A practical voltage source has an internal resistance and it is represented by a voltage source whose
value is the value of the ideal voltage source in series with a resistance whose value is the value of
the internal resistance.

e A practical current source has an internal conductance and it is represented by a current source
whose value is the value of the ideal current source in parallel with a conductance whose value is
the value of the internal conductance.

e A practical voltage source vy in series with a resistance Rg can be replaced by a current source ig

whose value is v¢/ig in parallel with a resistance R, whose value is the same as Ry

e A practical current source ig in parallel with a resistance Rp can be replaced by a voltage source

vg whose value is equal to ig x Rg in series with a resistance Ry whose value is the same as Rp

e Thevenin’s theorem states that in a two terminal network we can be replace everything except the
load, by a voltage source denoted as v, in series with a resistance denoted as Ry . The value of
vy represents the open circuit voltage where the circuit is isolated from the load and Ry, is the

equivalent resistance of that part of the isolated circuit. If a given circuit contains independent
voltage and independent current sources only, the value of Ry, can be found by first shorting all

independent voltage sources, opening all independent current sources, and calculating the resis-
tance looking into the direction which is opposite to the disconnected load. If the circuit contains

dependent sources, the value of R, must be computed from the relation Ry = vy o/ige

e Norton’s theorem states that in a two terminal network we can be replace everything except the
load, by a current source denoted as iy in parallel with a resistance denoted as Ry . The value of

iy represents the short circuit current where the circuit is isolated from the load and R, is the

equivalent resistance of that part of the isolated circuit. If the circuit contains independent voltage
and independent current sources only, the value of Ry can be found by first shorting all indepen-

dent voltage sources, opening all independent current sources, and calculating the resistance look-
ing into the direction which is opposite to the disconnected load. If the circuit contains dependent

sources, the value of Ry, must be computed from the relation Ry = vyo/ige

e The maximum power transfer theorem states that a voltage source with a series resistance Ry or a
current source with parallel resistance Ry delivers maximum power to a load R;,,p when
Rioap = Rs ot Rioup = Ry

e Linearity implies that there is a linear voltage—current relationship.

e A linear circuit is composed entirely of independent voltage sources, independent current sources,
linear dependent sources, and linear passive devices such as resistors, inductors, and capacitors.
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e The principle of superposition states that the response (a desired voltage or current) in any
branch of a linear circuit having more than one independent source can be obtained as the sum
of the responses caused by each independent source acting alone with all other independent volt-
age sources replaced by short circuits and all other independent current sources replaced by open

circuits.

e Efficiency is defined as the ratio of output to input and thus it is never greater than unity. It is
normally expressed as a percentage.

e Regulation is defined as the ratio of vy; — vy, to vy, and ideally should be close to zero. It is

normally expressed as a percentage.
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3.14 Exercises
Multiple Choice
1. The voltage across the 2 Q resistor in the circuit of Figure 3.67 is
A6V
B. 16V
C. -8V
D 32V
E

. none of the above

0

6V

O fm O

SA SA

Figure 3.67. Circuit for Question 1

2. The current i in the circuit of Figure 3.68 is

A. -2 4
B. 54
C. 34
D 44
E. none of the above
(=
20 2Q
® 20 20
v i

Figure 3.68. Circuit for Question 2
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3. The node voltages shown in the partial network of Figure 3.69 are relative to some reference

node which is not shown. The current i is

Al

m o 0 W

—4 4
8/3 4
-5 4
—6 4

none of the above

6V SV
4V —AA @ . 8V
20
G 12V
20
i 8V
6V AN @ | 13V
20

Figure 3.69. Circuit for Question 3

4. The value of the current i for the circuit of Figure 3.70 is

A.

m o 0 W

-3 4
-8 4
-9 4
6 A

none of the above

12V

G 8A |i 30

Figure 3.70. Circuit for Question 4
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5. The value of the voltage v for the circuit of Figure 3.71 is
A4V
B. oV
C. 8V
D 12V

E. none of the above

+ Vx _
NN
2Q
+
2A 20<V D2vy

Figure 3.71. Circuit for Question 5

6. For the circuit of Figure 3.72, the value of & is dimensionless. For that circuit, no solution is pos-

sible if the value of k is

A. 2

B. 1

C. o

D. 0

E. none of the above
AN
40

2AQ> 4Q§V B kv

Figure 3.72. Circuit for Question 6
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7. For the network of Figure 3.73, the Thevenin equivalent resistance R, to the right of terminals

aand b is
A1
B. 2
C. 5
D. 10

E. none of the above

a 20 20
30
Ryy 40
20 20
b 2Q
NN

Figure 3.73. Network for Question 7

8. For the network of Figure 3.74, the Thevenin equivalent voltage V7, across terminals a and b is

A =37V
B. -2V
C. 1V
D 5V
E. none of the above
2V
20 20 Cl 2A
b

Figure 3.74. Network for Question 8
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9. For the network of Figure 3.75, the Norton equivalent current source /y and equivalent parallel

resistance R, across terminals a and b are

A 14,20
B. 1.54,25 Q
C. 44,25Q
D. 04,5Q

E. none of the above

a ' AN

50
50 (DZA Q 24

Figure 3.75. Network for Question 9

10. In applying the superposition principle to the circuit of Figure 3.76, the current i due to the 4 V
source acting alone is

A.84
B.-14
C. 44
D.-24

E. none of the above

AT
20

W@t O

Figure 3.76. Network for Question 10
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Problems

1. Use nodal analysis to compute the voltage across the 18 A current source in the circuit of Figure
3.77. Answer: 1.12 V

4 Q 5Q
oo o]
s +109"
!
(1) +a” (D Zoo” (D
124 184T-! 24 A

Figure 3.77. Circuit for Problem 1

2. Use nodal analysis to compute the voltage v, (, in the circuit of Figure 3.78. Answer: 21.6 V

@36V
12Q 15Q
ANAN——AMY
+
(D 40 (D 6Q3 Voo CD
12A 184 N 24 A

Figure 3.78. Circuit for Problem 2

3. Use nodal analysis to compute the current through the 6 Q resistor and the power supplied (or
absorbed) by the dependent source shown in Figure 3.79. Answers: =3.9 4, -499.17 w

4. Use mesh analysis to compute the voltage v;,, in Figure 3.80. Answer: 86.34 V

5. Use mesh analysis to compute the current through the i;,, resistor, and the power supplied (or

absorbed) by the dependent source shown in Figure 3.81. Answers: —3.9 4, —499.33 w

6. Use mesh analysis to compute the voltage v, , in Figure 3.82. Answer: 0.5 V
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Q]8A
N
120 15Q
Iy
6Q +
. 5
Q) 4Q lso R Q)
12 A
36V 24 A

Figure 3.79. Circuit for Problem 3

120V 240V
DG )
N

40 %39
NVVY NVVY
8§Q 120
+
T
D 0 Oh 5 D
A 36A 1 60 i A
Figure 3.80. Circuit for Problem 4
(\I8A
N
120 15Q
NNV NVVY
Ix
6Q2| + .
D wi “Tw On O
12A 24 A
36V
Figure 3.81. Circuit for Problem 5
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120 15Q
+
4Q 8Q li y
60 X 1002
10Q |
12V 24V

Figure 3.82. Circuit for Problem 6

7. Compute the power absorbed by the 710 Q resistor in the circuit of Figure 3.83 using any method.

Answer: 1.32 w

— AN
2Q
30 6Q
® 00
2v
24V 36V

Figure 3.83. Circuit for Problem 7

8. Compute the power absorbed by the 20 Q resistor in the circuit of Figure 3.84 using any
method. Answer: 73.73 w

2000 pHy

O D 20

20 6A S§A

Figure 3.84. Circuit for Problem 8

9. In the circuit of Figure 3.85:

a. To what value should the load resistor R, ,, should be adjusted to so that it will absorb

maximum power? Answer: 2.4 Q
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b. What would then the power absorbed by R; . be? Answer: 135 w

@36V
120 15Q
ANAN— A
G) 40 Q) 60 Rioap
I2A I8 A

Figure 3.85. Circuit for Problem 9

10. Replace the network shown in Figure 3.86 by its Norton equivalent.
Answers: iy = 0,Ry=23.75 Q

Siy

Figure 3.86. Circuit for Problem 10

11. Use the superposition principle to compute the voltage v,4, in the circuit of Figure 3.87.
Answer: .12V

407 s
—f\/vvv—lw\/ww
AN
s’ +10 o

f
(D se'z (D Zoa’ (D
124 18A T | "

Figure 3.87. Circuit for Problem 11

3-60 Circuit Analysis I with MATLAB Applications
Orchard Publications



Exercises

12. Use the superposition principle to compute voltage v, o, in the circuit of Figure 3.88.

Answer: 21.6 V

@36V
120 15Q
AAN——ANVVY
+
DO i D safw O
12A 184 N 24 A

Figure 3.88. Circuit for Problem 12

13.In the circuit of Figure 3.89, vg, and vy, are adjustable voltage sources in the range

-50< V<50 V,and Ry, and Ry, represent their internal resistances. Table 3.4 shows the results

of several measurements. In Measurement 3 the load resistance is adjusted to the same value as
Measurement 1, and in Measurement 4 the load resistance is adjusted to the same value as Mea-
surement 2. For Measurements 5 and 6 the load resistance is adjusted to I Q. Make the neces-
sary computations to fill-in the blank cells of this table.

TABLE 3.4 Table for Problem 13

Measurement | Switch §; | Switch S, e, W) | ver V) | ipoun (A)
1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open 0 -5
4 Open Closed 0 —42
5 Closed Closed 15 18
6 Closed Closed 24 0

Answers: =15V, -7 A, 11 A,-24V
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—\VVVY
Rg; 1Q A \L
1
/@ R$,2 10 LOAD
Vsi YLo4D

Vs2
(g

Adjustable
Resistive
Load

Figure 3.89. Network for Problem 13

14. Compute the efficiency of the electrical system of Figure 3.90. Answer: 76.6%

AN

4 AAA—
050 ‘
L

0.8Q

100 A i

80 A

1st Floor
Load

2nd Floor
Load

= WW———

0.8Q

AN

Figure 3.90. Electrical system for Problem 14

AN

Y —
050 ‘
L

0.8Q

3]

100 A

15. Compute the regulation for the 2st floor load of the electrical system of Figure 3.91.
Answer: 36.4%

80A

1st Floor
Load

2nd Floor
Load

VW

0.8Q

NV

Figure 3.91. Circuit for Problem 15
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16. Write a set of nodal equations and then use MATLAB to compute i, ,p and v, ,,p for the cir-

cuit of Example 3.10 which is repeated as Figure 3.92 for convenience.
Answers: —0.96 A, -7.68 V

7 Q
20iy .
+| lLoap
100 4Q VLoAD

Ry

-18Q
Figure 3.92. Circuit for Problem 16
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3.15 Answers to Exercises

Multiple Choice

1. E The current entering Node A is equal to the current leaving that node. Therefore, there is no
current through the 2 Q resistor and the voltage across it is zero.

—0

8A

6V

2. C From the figure below, V,-=4V. Also, Vg =Vge =2V and V,, = 10 V. Then,
Vep = Vyp=Vyp=10-2 =8V and Vep = Vgp—Vpe=8-2=06V. Therefore,

i=6/2=34.
4V
©
20 F 20
A C
C’) 20 20
0v
D

3. A From the figure below we observe that the node voltage at A is 6 V' relative to the reference
node which is not shown. Therefore, the node voltage at Bis 6 + 12 = I8 V relative to the

same reference node. The voltage across the resistor is Vg = 18 -6 = 12 V and the direc-

tion of current through the 3 Q resistor is opposite to that shown since Node B is at a higher
potential than Node C. Thus i = -12/3 = -4 4

6V 8
4V AN~ (1Y 8V
A \/
20
N2V
& o
c —i |p 8V
6 V NN @ 13V
30

3-64
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4. E We assign node voltages at Nodes A and B as shown below.

so M 3o P |
i
2v 6Q (DSA 1230
At Node A
VA—I2+Q+VA—VB_0
6 3
and at Node B
3 3
These simplify to
2 1
§VA_§VB=2
and
1 2

Multiplication of the last equation by 2 and addition with the first yields V' = /8 and thus

i=-18/3=-6A4.

5. E Application of KCL at Node A of the circuit below yields

Ay Vx _
e AVAVAVA Ve
20
+
2AG> 20<V vy
-2
‘_,+v vX=2
2 2
or
V—vy =2
Also by KVL
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Vo= v+ 2vy
and by substitution
Vy+ 2Vvy—vy = 2
or
vy =1
and thus
V=vy+2vy=1+2x1 =3V

6. A Application of KCL at Node A of the circuit below yields

AVAYAYAVer
4Q
+

2A<D 4Q§V B kv

A

or

§(2v —kv)=2
and this relation is meaningless if k = 2. Thus, this circuit has solutions only if k# 2.

7. B The two 2 Q resistors on the right are in series and the two 2 Q resistors on the left shown in
the figure below are in parallel.

a 20 20
30

Ryy 40

b 2Q

Starting on the right side and proceeding to the left we get 2+2 = 4, 4[4 =2,2+2 = 4,
A1GB+2012) =413+ =4l4=20Q.
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8. A Replacing the current source and its 2 Q parallel resistance with an equivalent voltage source

in series with a 2 Q resistance we get the network shown below.

@ 2V 4
20
£
4V
b
By Ohm’s law,
i=122 =054
and thus

Vi = vy = 2% 05+ (—4) = =3V

9. D The Norton equivalent current source [, is found by placing a short across the terminals a

and b. This short shorts out the 5 Q resistor and thus the circuit reduces to the one shown
below.

a NV

5Q
l CDZA CT 2A

Ige =1y A

By KCL at Node A,
Iy+2 =2
and thus 7, = 0

The Norton equivalent resistance Ry, is found by opening the current sources and looking to

the right of terminals a and b. When this is done, the circuit reduces to the one shown below.
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a
5Q
5Q
b |

Therefore, Ry, = 5 Q and the Norton equivalent circuit consists of just a 5 Q resistor.

10. B With the 4 V' source acting alone, the circuit is as shown below.

A

__’l T VW
20 20
+
20 C"_L>4V
B

We observe that v, , = 4 V and thus the voltage drop across each of the 2 Q resistors to the

left of the 4 V' source is 2 V with the indicated polarities. Therefore,
i=-2/2=-14
Problems

1. We first replace the parallel conductances with their equivalents and the circuit simplifies to that
shown below.

v, 1207 v, 1597 v,

i ’\/\/\/\/—2—’\/\/\/\/ 3]
+
1 ! -1
() v Drss 60’ (D
12A 184 - 24 A

ma
Applying nodal analysis at Nodes 1, 2, and 3 we get:
Node 1:

16v,—12v, = 12
Node 2:
—12v;+27v,~-15v; = -8
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Node 3:
—15v,+21v; = 24

Simplifying the above equations, we get:

4v; - 3v, =3

—4v;+9v,-5v; = -6
Sv,+7v; =8
Addition of the first two equations above and grouping with the third yields
6v,—5v; = =3
—Sv,+7v; = 8

For this problem we are only interested in v, = v,4 . Therefore, we will use Cramer’s rule to

solve for v,. Thus,

D 3 _
vy = =2 DZ:F 5}:—21+40:19 A:[é 5}_42—25:17
8 7 5 7

and
v, = vga = 19/17 = 112V

2. Since we cannot write an expression for the current through the 36 V' source, we form a com-
bined node as shown on the circuit below.

a B

-
IR BRI

D <0z D safwm D

12 A 184 24 A

At Node 1 (combined node):

Vi iV VsV Vs gn o4 =0
4 12 15 6

and at Node 2,
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VamVi Y27 Vs e
12 15
Also,
Simplifying the above equations, we get:
1 3
VI 5pv2t3pYs = 36
1 3 1

Addition of the first two equations above and multiplication of the third by —1/4 yields

§v1+év3 =18

and by adding the last two equations we get

or

Check with MATLAB:

format rat

R=[1/3 -3/20 7/30; -1/12 3/20 -1/15;1 0 -1];

I=[36 —18 36]

V=R\[;

fprintf(\n'); disp(‘'v1="); disp(V(1)); disp('v2="); disp(V(2)); disp('v3="); disp(V(3))

vil=
288/5

v2=
-392/5

v3=
108/5

3. We assign node voltages v,, v,, v;, v, and current i, as shown in the circuit below. Then,
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and

12A

Simplifying the last two equations above, we get

1
SV

317732 =0
and

—iv +[—9v—iv —iv =0
1217602 153 647

Next, we observe that iy = v1[—2v2, vy = Siy and v, = 36 V. Then v; = %(vl—vz) and by
substitution into the last equation above, we get

119 15 I

]2v1+gév2—]—5x1—2—(v1—v2)—836 =0
or

1 31

V1t gpv: = 6

Thus, we have two equations with two unknowns, that is,

1 !
1 31
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Multiplication of the first equation above by //3 and addition with the second yields

19
or
v, = 240/19
We find v; from
1 1
Thus,
1 240
Vit g =76
or
v, = ~282/19

Now, we find v; from

V:i(v_v)zi(ﬂ_@):_@
3ot 2T 19 9 38

Therefore, the node voltages of interest are:

v, = -282/19V

v, = 240/19 V
v, = —435/38 1
v, =36V

The current through the 6 Q resistor is

icq = VomVy _ 240/19-36 _ 74 _ 2394
6 6 19

To compute the power supplied (or absorbed) by the dependent source, we must first find the
current iy. It is found by application of KCL at node voltage v;. Thus,

iY—24—18+V—3-]_52 =0

or
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_—435/38-240/19

iy = 42

75
_ 45 915/38 _ 1657
75 38
and
o435 1657 72379
- = = - = —499.17
e TIET 745 W

that 1s, the dependent source supplies power to the circuit.

4. Since we cannot write an expression for the 36 4 current source, we temporarily remove it and
we form a combined mesh for Meshes 2 and 3 as shown below.

120 Vm 240V
N @_\
s

4Q @ §3Q

ANAN——AAAN
80 120
o e
2A] i i) ‘zg 6% 24 A
Mesh 1:
i, = 12

Combined mesh (2 and 3):

— 4,4 12i,+ 18i,— 6i,— 8is—12i5 = 0
or
—2i,+ 6iy+ 9iy—3i,—4is—6iy = 0

We now re-insert the 36 4 current source and we write the third equation as

Mesh 4:
Mesh 5:
—8i,+ 12i; = 120
or
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—-2i,+ 3i; = 30
Mesh 6:
—12i;+ 15i5 = =240
or
—4i;+5is = =80

Thus, we have the following system of equations:

i =12
—2i,+ 6iy+ 9i;—3i,—4i;—6ig = 0
iy—is = 36
iy = 24
~2i, + 3i = 30
—4i; +5ig = =80
and in matrix form
100 0 0 0 g 7]
-2 6 9-3-4-6 b 0
0 1-1 00 0 i3 36
0001 00 i = |-24
0-2 0 0 3 0 is 30
L0 0-4 0 0 5 i ;&
R f v

We find the currents i; through i, with the following MATLAB code:

R=[1 00000, 269 -3-4-6..
01100000010 O0;..
0-20030,00-400 5]

V=[12 0 36 —-24 30 -80];

I=R\V;

fprintf(\n');...

fprintf('i1=%7.2f A\t', 1(1));...
fprintf('i2=%7.2f A\t', 1(2));...
fprintf('i3=%7.2f A\t', 1(3));...
fprintf(\n');...
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fprintf('id=%7.2f A\t 1(4));...
fprintf('i5=%7.2f A \t', 1(5));...
fprintf('i6=%7.2f A\t (6));...
fprintf(\n")

il= 12.00 A i2= 6.27 A i3= -29.73 A
id= -24.00 A i5= 14.18 A i6= -39.79 A

Now, we can find the voltage v;, , by application of KVL around Mesh 3. Thus,

120V 240V

:
:

8Q 12Q

12A 24 A

Visd = VioatVea = 12x[(=29.73) = (=39.79)] + 6 x [(=29.73) — (24.00)]
or
Vi 4 = 8634V
To verify that this value is correct, we apply KVL around Mesh 2. Thus, we must show that
Viatvgatvisy =0
By substitution of numerical values, we find that

4x[6.27-12]+8x[6.27-14.18]1+ 86.34 = 0.14

5. This is the same circuit as that of Problem 3. We will show that we obtain the same answers using
mesh analysis.

We assign mesh currents as shown below.
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\I8A
_/

12A

Mesh 1:
i, =12
Mesh 2:
—4i,+22i,-6i;-12i5 = =36
or
-2i,+11i,-3i;—-6i5 = —18
Mesh 3:

—6iy+ 21i;—15is+ 5iy = 36
and since iy = i,—1i5, the above reduces to

or
—i,+21i;—-20i5 = 36
Mesh 4:
iy =-24
Mesh 5:
is =18

Grouping these five independent equations we get:

i =12
—i,+2li; —-20i5 = 36
iy = -24
is =18
and in matrix form,
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70 00 o0 l - 12]
211-30 -6 i ~18
0-1210-20 il | 36
0001 o || ~ |-24
00 00 I ; 18
- - 3] ——
%r_/
R f 4

We find the currents i; through i5 with the following MATLAB code:

R=s[1 0000; 211-30 -6; 0 -1 21 0 -20; ...
000100000 1]

V=[12 -18 36 -24 18]}

[=R\V;

fprintf(\n');...
fprintf('i1=%7.2f A\t', 1(1));...
fprintf('i2=%7.2f A\t', 1(2));...
fprintf('i8=%7.2f A\t 1(3));...
fprintf(\n’);...
fprintf('i4=%7.2f A\t 1(4));...
fprintf('i5=%7.2f A\t I(5));...
fprintf(\n")

il= 12.00 A i2= 15.71 A i3= 19.61 A
i4= -24.00 A i5= 18.00 A

By inspection,

Next,
Siy(iz—iy) = 5(i,—i5)(i;—iy)
5(15.71 = 18.00)(19.61 + 24.00) = —499.33 w

Psi,

These are the same answers as those we found in Problem 3.

6. We assign mesh currents as shown below and we write mesh equations.
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Mesh 1:

24i,-8i,-12i,—24-12 = 0
or

6i,—2i,-3i, =9

Mesh 2:

—8i,+29i,-6i;—-15i, = -24
Mesh 3:
or
Mesh 4: . . o

i,/= 10iy=10(i,—i3)

or

10i,-10i,—i, = 0

Grouping these four independent equations we get:

6i,-2i, -3i,=9
—=8i;+29i,—- 6i;—15i, = 24
=3i,+ 8i; =0
and in matrix form,
6-2 0 -3 g 9
829 —6-15 i -24
0-3 & 0 - |iz = 0
010 -10 -1 i 0
%,_/ %f_/
R )i 14
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We find the currents i; through i, with the following MATLAB code:

R=[6 -2 0 -3; -8 29-6 -15; 0 -3 8 0; 0 10 —10 -1];
V=[9 -24 0 0}
I=R\V;
fprintf(\n');...
fprintf('i1=%7.2f A\t', I(1)
fprintf('i2=%7.2f A \t', 1(2)
1(3)
)

)jee-
2));...
fprintf('i3=%7.2f A\t I(3));...
fprintf('i4=%7.2f A\t 1(4));...

fprintf(\n")
il= 1.94 A i2= 0.13 A i3= 0.05 A id= 0.79 A

)

Now, we find v,,, by Ohm’s law, that is,
The same value is obtained by computing the voltage across the 6 Q resistor, that is,

Voo = 6(iy—i3) = 6(0.13-0.05) = 0.48 V

7. Voltage-to-current source transformation yields the circuit below.

2Q 30 6 Q 100
6A S8A 6A

By combining all current sources and all parallel resistors except the 10 Q resistor, we obtain the

simplified circuit below.

4A

Applying the current division expression, we get

I 4
SN B
e = 0% T g
and thus
2 4y 16 160
Pro = ZJOQ(]O) = (ﬁ) x 10 = EXIO = m = 132w
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8. Current-to-voltage source transformation yields the circuit below.

12V

20 20 Q

12V 30

From this seties circuit,

and thus
48

2
2
DPyo =1(20)= (25) x 20 =

24V
48
=24
25
2304
=5 x20= 7373w

9. We remove R; ,,p from the rest of the rest of the circuit and we assign node voltages v,, v,, and

v;. We also form the combined node as shown on the circuit below.

36V
D,
[ —— 3
NN AN X
v\ a0 21500 s
G) 40 CD 6Q
12A 18 A
Yy
Node 1:
4 12 15 6
or
1 3 7
Node 2:
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= 18
12 15

or

1 3 /

]2\/, + 2—0\/2—3\/3 =-18

Also,

For this problem, we are interested only in the value of v; which is the Thevenin voltage vy,

and we could find it by Gauss’s elimination method. However, for convenience, we will group
these three independent equations, express these in matrix form, and use MATLAB for their
solution.

1 3 1
and in matrix form,
1 3 7
3 20 30 Vi 12
L3 A |18
12 20 15| ° vl T | 36
1 0o -1 —~— "
vV I
G

We find the voltages v, through v; with the following MATLAB code:

G=[1/3 -3/20 7/30; —-1/12 3/20 -1/15; 1 0 -1];

I=[12 -18 36]; V=G\I;

fprintf(\n');...
fprintf('v1=%7.2f V \t', V(1)); fprintf('v2=%7.2f V \t', V(2)); fprintf('v3=%7.2f V \t', V(3));
fprintf('\n')

vl= 0.00 VvV v2= -136.00 V v3= -36.00 V

Thus,
Vg = V3 = =36V
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To find R, we short circuit the voltage source and we open the current sources. The circuit then

reduces to the resistive network below.

12Q 15Q

40 6

¥

We observe that the resistors in series are shorted out and thus the Thevenin resistance is the par-
allel combination of the 4 Q and 6 Q resistors, that is,

41Q16Q =240

and the Thevenin equivalent circuit is as shown below.

&)
6V o240
L AAMA—

Now, we connect the load resistor R, at the open terminals and we get the simple series cir-

cuit shown below.

CD Rooup = 24 Q

6V o240

a. For maximum power transfer,

b. Power under maximum power transfer condition is
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36

2
.2 2
pMAX= ZRLOAD:(m) x24=75 x24=135w

10. We assign a node voltage Node 1 and a mesh current for the mesh on the right as shown below.

At Node 1:

vV, . 5
—+1i, = 5i
4 X X

Mesh on the right:

and by substitution into the node equation above,
—=+iy = 5i
7 X
or
6iy = Siy

but this can only be true if i, = 0.

Then,

To find Ry we inserta I 4 current source as shown below.
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At Node A:

Vg V4~ Vp .
—_ 4t — = 5
VIEENT: Lx

But

and by substitution into the above relation

4 15
or
Qv —]—6v =0
604 158
At Node B:
Vp=V4 VB
5 5
or
1 4

_BVA+75VB =]

For this problem, we are interested only in the value of v, which we could find by Gauss’s elimi-

nation method. However, for convenience, we will use MATLAB for their solution.

19 16
604 158

——I-v +iv =1
15471587

=0
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and in matrix form,

19 16
60 15 M H
1 41 |vgl = |1
5 15| —— ——
G

We find the voltages v, and v, with the following MATLAB code:

G=[19/60 -16/15; —1/15 4/15];
I=[0 1]; V=G\I;
fprintf(\n');...
fprintf('vA=%7.2f V\t', V(1)); fprintf('vB=%7.2f V \t', V(2));
fprintf(\n')
vA= 80.00 V  vB= 23.75 V

Now, we can find the Norton equivalent resistance from the relation

11. This is the same circuit as that of Problem 1. Let V', be the voltage due to the 12 4 current

source acting alone. The simplified circuit with assigned node voltages is shown below where
the parallel conductances have been replaced by their equivalents.

-1 -1
v, 12 Q v, 15Q vy
+
G) 407! V184 60"

124 [

| -
The nodal equations at the three nodes are

16v,—12v, = ]2
—12v;+27v,=15v; = 0
or
Circuit Analysis I with MATLAB Applications 3-85

Orchard Publications



Chapter 3 Nodal and Mesh Equations - Circuit Theorems

=Sv,+7v; =0

Since v, = V';4,, we only need to solve for v,. Adding the first 2 equations above and grouping
with the third we obtain

6V2 — 5V3 = 3
Multiplying the first by 7 and the second by 5 we get

42v,—35v;
—25v,+ 35v;

21
0

and by addition of these we get

\ 21
V2= Visda = 7 4
Next, we let V"5, be the voltage due to the /8 A current source acting alone. The simplified cir-

cuit with assigned node voltages is shown below where the parallel conductances have been
replaced by their equivalents.

20 v, 1507y,
ANV

The nodal equations at the three nodes are

16v,—12vg =0
—12v, +27vg—15v, = —18
—15vg+21ve =0
or
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—4v,+9vp-5v, = -6
—Svp+7ve =0

Since v = V"5, we only need to solve for v;. Adding the first 2 equations above and group-

ing with the third we obtain

6vg—Sve = -6

Multiplying the first by 7 and the second by 5 we get

42vg—35v, = —42
—25vp+35vp =0
and by addition of these we get
—42

vg = Wiy = 77 V

"

Finally, we let v"" ;4 , be the voltage due to the 24 A current source acting alone. The simplified

circuit with assigned node voltages is shown below where the parallel conductances have been
replaced by their equivalents.

AN [Y+ AAN—r
407! vml(‘?A 6Q" CD
‘ 24 A
l _

The nodal equations at the three nodes are

—12v, +27vy—15v, = 0
—15vy+21v, = 24
or
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—4vy+9vy—-5v, =0
=Svy+7v, =8
Since vy = V"5, we only need to solve for vy. Adding the first 2 equations above and grouping
with the third we obtain

0
0

6vy—5v,

=Svy+7v,

Multiplying the first by 7 and the second by 5 we get

42vy—35v,
-25vy+35v,

0
40

and by addition of these we get

" 40
Vy = Visqa = 77 V

and thus

) " " 21 —42 40 19
V18A:V18A+V18A+V18A=1_7+7+1—7=]—7=1-12V

This is the same answer as in Problem 1.

12. This is the same circuit as that of Problem 2. Let Vv's o be the voltage due to the /2 4 current

source acting alone. The simplified circuit is shown below.

12Q 15Q

NA/\/V-T—’\A/V\/*i
G) 40 6Q=Vsa

12A B

The 12 Q and 15 Q resistors are shorted out and the circuit is further simplified to the one
shown below.
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@®

12A

4Q

:

|

6QSVs0

The voltage V' , is computed easily by application of the current division expression and mul-

tiplication by the 6 Q resistor. Thus,

. 4
V6Q = (mXIZ

144

6=y
% 5

Next, we let V"5 , be the voltage due to the 18 4 current source acting alone. The simplified

circuit is shown below. The letters A, B, and C are shown to visualize the circuit simplification

pfOCCSS.
150
2 B 15Q |A
A AN AN B A aan—P
S S 120150
+ +
40 (D 6QS Vsa § §VH6Q 40 CD
I8 A - - 18 A - 18 A
60 60
C C C

The voltage V",  is computed easily by application of the current division expression and mul-

tiplication by the 6 Q resistor. Thus,

4

" =216
\4 6Q = |:4-t—+—6x(_18):|><

===y
5

Now, we let V",  be the voltage due to the 24 4 current source acting alone. The simplified

circuit is shown below.
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12Q 15Q

—— AW
4 Q§ 60 gvmé o (1)

24 A
|

The 12 ©Q and 15 Q resistors are shorted out and voltage V" , is computed by application of

the current division expression and multiplication by the 6 Q resistor. Thus,

oo = (gigx20)x0 =y

Finally, we let v"'s o be the voltage due to the 36 V voltage source acting alone. The simplified
circuit is shown below.

36V
.| o 150 |5
—w 410 120
+ Ct, C 36V
40 60S VvVisa iv
_ 6QSV 6Q 150
c |

=

By application of the voltage division expression we find that

Wea = =2 x(=36) = 108

“4+6 5
Therefore,
iv 144 216 288 108 108
- +" + ™ + — - L == =2]6V
Véao T VeaTVeaTV stV 60 3 3 3 5 3

This is the same answer as that of Problem 2.

13. The circuit for Measurement 1 is shown below.
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RS]
'si e ILoADI
CD 16 A
48V RLOAD]
R, =—S3 -8B_30

eql . - -
iroapr 16

For Measurement 3 the load resistance is the same as for Measurement 1 and the load current is
given as —5 A . Therefore, for Measurement 3 we find that

Vg, = Reql(—5) =3x(=5)=-15V
and we enter this value in the table below.

The circuit for Measurement 2 is shown below.

RSZ
NVVY l
Vg2 10 .
l104D2
CD 6 A
36V Rio4p2
Rqu = 's2 = ig =6Q

For Measurement 4 the load resistance is the same as for Measurement 2 and vy, is given as

—42 V. Therefore, for Measurement 4 we find that

. Vso 42
lLoap2 = =-==-7A
and we enter this value in the table below.
The circuit for Measurement 5 is shown below.
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RSI

e e
v Re,< 10 104D
S1

+

CD Vs2  Vioup RLOAD
5V 10
18V

Replacing the voltage sources with their series resistances to their equivalent current sources
with their parallel resistances and simplifying, we get the circuit below.

IL04D
@) 050 ZR,oup
33A 10
Application of the current division expression yields
) 0.5
lLOAD = mXSS =711 A4
and we enter this value in the table below.
The circuit for Measurement 6 is shown below.
Rg; A
—VVVY
10 | \
R, 2 10 lro4p
+VS1
<_> Vso RLOAD
1Q
24V
We observe that i, will be zero if v, = 0 and this will occur when vy; = —24. This can be

shown to be true by writing a nodal equation at Node A. Thus,

vA—(—24)+vA—24+
1 1

0=20
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orv, =0
Measurement | Switch | Switch
S, S, ve; (V) | ve, (V) | i (A)

1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open -15 0 -5
4 Open Closed 0 —42 -7
5 Closed Closed 15 18 11
6 Closed Closed -24 24 0

14. The power supplied by the voltage source is
ps = vs(i,+iy) = 480(100+ 80) = 86,400 w = 86.4 Kw
The power loss on the 1st floor is

Pross; = i1(0.5+0.5) = 100" x 1 = 10,000 w = 10 Kw

ANAN—
0.8Q
AN
05Q l
L

100 A ' |80A

G—) 1st Floor 2nd Floor
— Load Load

= VWW——

0.8

The power loss on the 2nd floor is

Prosss = i2(0.8+0.8) = 80°x 1.6 = 10,240 w = 10.24 Kw

and thus the total loss is

10+ 10.24 = 20.24 Kw

Total loss

Then

3
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Output power = Input power —power losses = 86.4—20.24 = 66.16Kw

and

. Output 66.16
0 —_ —_ —_ —_ o
% Efficiency = n = ot x 100 = 26 x 100 = 76.6%

This is indeed a low efficiency.
15. The voltage drop on the second floor conductor is

v = Rpi, = 1.6x80 =128V

cond —

AN
0.8Q
3+ AAN——

050 i‘ i1 180A
1100 A

C—D 1st Floor 2nd Floor
= Load Load

e A% "A

0.8 Q
NVVY

and thus the full-load voltage is
Ve = 480—-128 = 352V
Then,

Vyp —V _
% Regulation = —N%}-—-—F—Lx 100 = 4—8%3-2@ x 100 = 36.4%
FL

This is a very poor regulation.

16. We assign node voltages and we write nodal equations as shown below.
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combined node

2V
—+—ANMA—
- v5
v, = 12
VamVi Y2 Y27V
3 6 3
V3—V2 V3—V5 V4—V5 V4—V5 _
3 10 4 7+8

\
where iy = ~2 and thus
6

10

Vs YsTVs VsTVe Vs Ve
5 10 4 7+8
Collecting like terms and rearranging we get
Vi
-1 5 -1
Ay B, 19, 1,
3727307760 6077
10

A, 19 37
103 607" 607

and in matrix form

12
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7 0 0 0 0
-1 5 -1 M o
5 63 00 Vi 12
) L 1319 19 |V 0
3 30 60 60 V3 0
010 1 1 ¢ vy 0
3 0
V5 - -
) ol 19y SR
I 10 60 60 e 1
G
We will use MATLAB to solve the above.
G=[1 0 0 0 O:...
-1/3 5/6 -1/3 0 0;...
0 -1/3 13/30 19/60 -19/60:;...
0 -10/3 1 -1 0;...
0 0 —-1/10 —19/60 37/60];
I=[12 0 0 0 0]; V=G\I;
fprintf(\n');...
fprintf('vl = %7.2f V \n',V(1));...
fprintf('v2 = %7.2f V \n',V(2));...
forintf('v3 = %7.2f V \n',V(3));...
fprintf('v4 = %7.2f V\n',V(4));...
fprintf('vb = %7.2f V\n',V(5));...
fprintf(\n'); fprintf(\n')
vl = 12.00 V
v2 = 13.04 Vv
v3 = 20.60 V
vd = -22.87 V
vh = -8.40 Vv
Now,
. Vy=v —22.87-(-8.40
iLop = 42 = ]5( ) = _0.96 4
and
3-96 Circuit Analysis I with MATLAB Applications

Orchard Publications



Chapter 4

Introduction to Operational Amplifiers

his chapter is an introduction to amplifiers. It discusses amplifier gain in terms of decibels (@B)

and provides an overview of operational amplifiers, their characteristics and applications.

Numerous formulas for the computation of the gain are derived and several practical examples
are provided.

4.1 Signals

A signal is any waveform that serves as a means of communication. It represents a fluctuating electric
quantity, such as voltage, current, electric or magnetic field strength, sound, image, or any message
transmitted or received in telegraphy, telephony, radio, television, or radar. A typical signal which var-
ies with time is shown in figure 4.1 where f(#) can be any physical quantity such as voltage, current,
temperature, pressure, and so on.

S
‘\/IJ\\ f

Figure 4.1. A signal that changes with time

4.2 Amplifiers

An amplifier is an electronic circuit which increases the magnitude of the input signal. The symbol of
a typical amplifier is a triangle as shown in Figure 4.2.

4

in vOth
i l
Electronic ;melifier
Figure 4.2. Symbol for electronic amplifier

An electronic (or electric) circuit which produces an output that is smaller than the input is called an
attenuator. A resistive voltage divider is a typical attenuator.
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An amplifier can be classified as a voltage amplifier, current amplifier, or power amplifier.

The gain of an amplifier is the ratio of the output to the input. Thus for a voltage amplifier,

Output Voltage
Input Voltage

Voltage Gain =

or

G, = 24 (4.1)

The current gain G; and power gain G, are defined similarly.

Note 1: Throughout this text, the common (base 10) logarithm of a number x will be denoted as
log(x) while its natural (base €) logarithm will be denoted as In(x).

4.3 Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels (dB). For instance, we say that an amplifier has /0 dB power gain or a transmission line
has a power loss of 7 dB (or gain —7 dB). If the gain (or loss) is 0 dB, the output is equal to the
input.

We must remember that a negative voltage or current gain G, or G, indicates that there is a 180°

phase difference between the input and the output waveforms. For instance, if an amplifier has a
gain of =100 (dimensionless number), it means that the output is 180 degrees out-of-phase with the
input. Therefore, to avoid misinterpretation of gain or loss, we use absolute values of power, voltage
and current when these are expressed in dB.

By definition,

Pout (4.2)
Pin

dB = 10log

Therefore,
10 dB represents a power ratio of 70

10n dB represents a power ratio of 10"
It is useful to remember that

20 dB represents a power ratio of 700
30 dB represents a power ratio of /000
60 dB represents a power ratio of /000000
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Also,
1 dB represents a power ratio of approximately 7.25
3 dB represents a power ratio of approximately 2

7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance, 4 dB = 3 dB + 1 dB which is equivalent to
a power ratio of approximately 2 x 1.25 = 2.5. Likewise, 27 dB = 20 dB + 7 dB and this is equiv-
alent to a power ratio of approximately /00 x 5 = 500.

Since y = Zogxz = 2logx and p = v?/R = i’R,if welet R = I, the dB values for voltage and cur-
rent ratios become:

2

dB, = 10log| omt|” = 20l0g| out (4.3)
Vin Vin
and
dB, = 10log|-2w!|” = 20log| out (4.4)
Lin Lin
Example 4.1
Compute the gain in dB, for the amplifier shown in Figure 4.3.
Pin Pout
Iw 10w
Figure 4.3. Amplifier for Example 4.1
Solution:
dB. = 10l0g22 = 1010g20 = 10l0g10 = 10x 1 = 10 dBw
w ] T
n
Example 4.2
Compute the gain in dB,, for the amplifier shown in Figure 4.4, given that log2 = 0.3.
Vin Vout
1v ‘ 2v
Figure 4.4. Amplifier for Example 4.2
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Solution:
y

dB, = 20log out _ 2010g§ = 20log0.3 = 20x 0.3 = 6 dBv

Vin

4.4 Bandwidth and Frequency Response

Like electric filters, amplifiers exhibit a band of frequencies over which the output remains nearly
constant. Consider, for example, the magnitude of the output voltage ‘v o m‘ of an electric or elec-

tronic circuit as a function of radian frequency ® as shown in Figure 4.5.

1“’vouA

0.707 r - - -

| |

|
| Bandwidth —————— |
| |
| |

Figure 4.5. Typical bandwidth of an amplifier

As shown above, the bandwidth is BW = ®,— o, where o, and o, are the lower and upper cutoff fre-

quencies respectively. At these frequencies, |v out‘ = J2/2 = 0.707 and these two points are known

as the 3-dB down ot half-power points. They derive their name from the fact that power
p=v2/R=iFR,and for R =1 and v = J2/2 = 0.707 or i = J2/2 = 0.707, the power is
1/2, that is, the power is “halved”. Alternately, we can define the bandwidth as the frequency band
between half-power points.

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the input
as shown in Figure 4.6.

In Out
% Gain Amplifier Out @— Gain Amplifier
+ +
Feedback Circuit

Partial Output Feedback Entire Output Feedback
Figure 4.6. Gain amplifiers used with feedback

Feedback Path

In Figure 4.6, the symbol 2 (Greek capital letter sigma) inside the circle denotes the summing point
where the output signal, or portion of it, is combined with the input signal. This summing point may
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be also indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the sum-
ming point implies positive feedback which means that the output, or portion of it, is added to the
input. On the other hand, the negative (=) sign implies negative feedback which means that the output,
or portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feed-
back since positive feedback causes circuit instability.

4.5 The Operational Amplifier

The operational amplifier or simply op amp is the most versatile electronic amplifier. It derives it name
from the fact that it is capable of performing many mathematical operations such as addition, multi-
plication, differentiation, integration, analog-to-digital conversion or vice versa. It can also be used
as a comparator and electronic filter. It is also the basic block in analog computer design. Its symbol

is shown in Figure 4.7.

2—+

Figure 4.7. Symbol for operational amplifier

As shown above the op amp has two inputs but only one output. For this reason it is referred to as
differential input, single ended output amplifier. Figure 4.8 shows the internal construction of a typical op
amp. This figure also shows terminals V. and V. These are the voltage sources required to

power up the op amp. Typically, V. is +15 volts and Vi is =15 volts. These terminals are not

shown in op amp circuits since they just provide power, and do not reveal any other useful informa-
tion for the op amp’s circuit analysis.

4.6 An Overview of the Op Amp

The op amp has the following important characteristics:
1. Very high input impedance (resistance)
2. Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4. Frequency response from DC to frequencies in the MHz range
5. Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selection
of passive devices such as resistors, capacitors, diodes, and so on.
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Vee

1 NON-INVERTING INPUT
2 INVERTING INPUT
3 OUTPUT
o—4
@)

gﬂl 71
N

) lVEEv

Figure 4.8. Internal Devices of a Typical Op Amp

anl
—

|

|

An op amp is said to be connected in the znverting mode when an input signal is connected to the
inverting (-) input through an external resistor R;, whose value along with the feedback resistor Ry

determine the op amp’s gain. The non-inverting (+) input is grounded through an external resistor R
as shown in Figure 4.9.

For the circuit of Figure 4.9, the voltage gain G| is

G = out _ __[ 4.5)
Y Vin Rin
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R.

124

V. + —o
- >+ Vout

Figure 4.9. Circuit of Inverting op amp

Note 2: The resistor R connected between the non-inverting (+) input and ground serves only as a
current limiting device, and thus it does not influence the op amp’s gain. It will be omitted
in our subsequent discussion.

Note 3: The input voltage v;, and the output voltage v_ . as indicated in the circuit of Figure

t
4.9, should not be interpreted as open circuits; these designations imply that an input
voltage of any waveform may be applied at the input terminals and the corresponding
output voltage appears at the output terminals.

As shown in the formula of (4.5), the gain for this op amp configuration is the ratio —R,/R;, where
Rf is the feedback resistor which allows portion of the output to be fed back to the input. The

minus (=) sign in the gain ratio —R/R;, implies that the output signal has opposite polarity from

that of the input signal; hence the name inverting amplifier. Therefore, when the input signal is pos-
itive (+) the output will be negative (-) and vice versa. For example, if the input is +1 volt DC and
the op amp gain is 100, the output will be —100 volts DC. For AC (sinusoidal) signals, the output will
be 180 degrees out-of-phase with the input. Thus, if the input is 1 volt AC and the op amp gain is 5,
the output will be —5 volts AC or 5 volts AC with 180 degrees out-of-phase with the input.

Example 4.3

Compute the voltage gain G, and then the output voltage v out for the inverting op amp circuit

shown in Figure 4.10, given that v;, = I mV.Plot v; and v  , as mV versus time on the same set

t
of axes.
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Solution:

f
R, 120 KO
AN A
Vin +20 KQ \—‘
_ + + Vour

Figure 4.10. Circuit for Example 4.3

This is an inverting amplifier and thus the voltage gain G, 1s

or

and since

the output voltage is

or

v

out

Ry 120KQ
R, 20KQ
G,=-6

v
Gv — VO.MI
n
= vain =—6x1
Vour = —6mV

The voltages v;, and v, are plotted as shown in Figure 4.11.

Vout / VN (millivolts)

NS hhbbhoan

7

VIN= 1mV

Vout = —6 mV

Time

Figure 4.11. Input and output waveforms for the circuit of Example 4.3

4-8
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Example 4.4

Compute the voltage gain G, and then the output voltage v, . for the inverting op amp circuit

shown in Figure 4.12, given that v; = sint mV. Plot v, and v, , as mV versus time on the same

set of axes.
Ry
v, [ i0ka |
Vin_Ti_ 20 KQer\_T_‘ v,
Figure 4.12. Circuit for Example 4.4
Solution:

This is the same circuit as that of the previous example except that the input is a sine wave with
unity amplitude and the voltage gain G is the same as before, that is,

G - Ry 120KQ _

v R, 20 KQ

mn

-6

and the output voltage is

= G v. = —6xsint = —6sint mV

Vout V' in

The voltages v, and v, are plotted as shown in Figure 4.13.

Time —>

Vour/ Vi (millivolts)

Figure 4.13. Input and output waveforms for the circuit of Example 4.4

An op amp is said to be connected in the non-inverting mode when an input signal is connected to the
non-inverting (+) input through an external resistor R which serves as a current limiter, and the
inverting () input is grounded through an external resistor R, as shown in Figure 4.14. In our sub-

sequent discussion, the resistor R will represent the internal resistance of the applied voltage v, .
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out

= A v

Figure 4.14. Circuit of non-inverting op amp

For the circuit of Figure 4.14, the voltage gain G, is
R
G, = =1+t (4.6)
in

As indicated by the relation of (4.6), the gain for this op amp configuration is / + R/ R;, and there-

fore, in the non-inverting mode the op amp output signal has the same polarity as the input signal;
hence, the name non-inverting amplifier. Thus, when the input signal is positive (+) the output will
be also positive and if the input is negative, the output will be also negative. For example, if the input
is +1 mV DC and the op amp gain is 75, the output will be +75 mV DC . For AC signals the output
will be in-phase with the input. For example, if the inputis 0.5 V' AC and the op amp gain is
G,=1+19KQ/1 KQ = 20, the output will be /0 V AC and in-phase with the input.

Example 4.5

Compute the voltage gain G, and then the output voltage v out for the non-inverting op amp circuit

shown in Figure 4.15, given that v, = I mV. Plot v;, and v, , as mV versus time on the same set

of axes.

Ry
R;, 20 KQ @
= AAMA—+ + Vour
- -

Figure 4.15. Circuit for Example 4.5
Solution:

The voltage gain G is

4-10 Circuit Analysis I with MATLAB Applications
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v R
G :—Out=]+—f:]+120KQ=I+6=7
v V. R. 20 KQ
and thus

I
Q@
<
I

7x 1 mV=7mV

The voltages v;, and v_ . are plotted as shown in Figure 4.16.

/

Vout = 7 mV

Vin=1mV

~

Time ———

Vour / Vi (millivolts)
o = N W » OO N ©

Figure 4.16. Input and output waveforms for the circuit of Example 4.5

Example 4.6

Compute the voltage gain G, and then the output voltage v, . for the non-inverting op amp circuit

shown in Figure 4.17, given that v; = sint mV. Plot v, and v, as mV versus time on the same

set of axes.
Ry
R;y 20 KQ {KQ
= AN T+
vm+ R i out
1- -
Figure 4.17. Circuit for Example 4.6
Solution:

This is the same circuit as in the previous example except that the input is a sinusoid. Therefore, the
voltage gain G, is the same as before, that is,

v R,
G = wout _ gL o 120KQ o5
v = R 20 KQ

124 mn
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and the output voltage is

Y =G v. = 7xsint = 7sint mV

out v'in

The voltages v;, and v, are plotted as shown in Figure 4.18.

Vout = 7sint

/

Viy = sint

VouTt /VIN (ml”IVO“S)

Figure 4.18. Input and output waveforms for the circuit of Example 4.6

Quite often an op amp is connected as shown in Figure 4.19.

B >—o
AN+ + v
+ R B out

in —

Figure 4.19. Circuit of unity gain op amp

For the circuit of Figure 4.19, the voltage gain G, is

and thus

Time ——

“4.7)

(4.8)

For this reason, the op amp circuit of Figure 4.19 it is called wnity gain amplifier. For example, if the
input voltage is 5 mV DC the output will also be 5 mV DC, and if the input voltage is 2 mV AC,

the output will also be 2 mV AC. The unity gain op amp is used to provide a very high resistance

between a voltage source and the load connected to it. An example will be given in Section 4.8.
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4.7 Active Filters

An active filter is an electronic circuit consisting of an amplifier and other devices such as resistors
and capacitors. In contrast, a passive filter is a circuit which consists of passive devices such as resis-
tors, capacitors and inductors. Operational amplifiers are used extensively as active filters.

A low-pass filter transmits (passes) all frequencies below a eritical (cutoff’) frequency denoted as o, and

attenuates (blocks) all frequencies above this cutoff frequency. An op amp low-pass filter is shown in
Figure 4.20 and its frequency response in Figure 4.21.

T i

Figure 4.20. A low-pass active filter

Low Pass Filter Frequency Respone

<— Ideal

0.8 1
— < Half-Power Point
4
= 0.6
= .
>8 04 | <— Realizable

0.2 4

0 o )

Radian Frequency (log scale)
Figure 4.21. Frequency response for amplitude of a low-pass filter

In Figure 4.21, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) low-pass filter characteristics. The vertical scale

represents the magnitude of the ratio of output-to-input voltage v, /v, , that is, the gain G . The
cutoff frequency w,. is the frequency at which the maximum value of v, /v, which is unity, falls

to 0.707 x G, and as mentioned before, this is the a/f power or the -3 dB point.
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A high-pass filfer transmits (passes) all frequencies above a critical (cutoff) frequency o, and attenu-

ates (blocks) all frequencies below the cutoff frequency. An op amp high-pass filter is shown in Fig-
ure 4.22 and its frequency response in Figure 4.23.

eI
AN N —
| + i
Vin Vout
Figure 4.22. A high-pass active filter
High-pass Filter Frequency Response
1.0 4
Ideal ——
0.8 |
— Half-Power Point
=z
= 0.6
~ Realizable —>
2
ZO 0.4
0.2 -
0.0

¢

Radian Frequency (log scale)

Figure 4.23. Frequency response for amplitude of a high-pass filter

In Figure 4.23, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) high-pass filter characteristics. The vertical scale

represents the magnitude of the ratio of output-to-input voltage v, /v, , that is, the gain G . The

in>
cutoff frequency . is the frequency at which the maximum value of v, /v, which is unity, falls to

0.707 x G, i.e., the half power or the -3 dB point.

A band-pass filter transmits (passes) the band (range) of frequencies between the critical (cutoff) fre-

quencies denoted as ®; and ®,, where the maximum value of G, which is unity, falls to 0.707 x G,

while it attenuates (blocks) all frequencies outside this band. An op amp band-pass filter and its fre-
quency response are shown below. An op amp band-pass filter is shown in Figure 4.24 and its fre-
quency response in Figure 4.25.
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e
1%

in v

1
T

Figure 4.24. An active band-pass filter

Band Pass Filter Frequency Response

0.8
0.7
0.6 4
0.5 4
0.4 4
0.3 4
0.2 4
0.1 A

094 Ideal —> \

<— Half-Power Points

[Vout / Vinl

Realizable —>

[T )
Radian Frequency (log scale)

Figure 4.25. Frequency response for amplitude of a band-pass filter

A band-elimination or band-stop or band-rejection filter attenuates (rejects) the band (range) of frequen-
cies between the critical (cutoff) frequencies denoted as ®; and ®,, where the maximum value of

G,, which is unity, falls to 0.707 x G, while it transmits (passes) all frequencies outside this band.

An op amp band-stop filter is shown in Figure 4.26 and its frequency response in Figure 4.27.
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- u

out

Band Elimination Active Filter Circuit

Figure 4.26. An active band-elimination filter

Band-Elimination Filter Frequency Response

1. [

0.9 1 Ideal —>

0.8 §

0.7 4 = H
0.6 -
0.5 -
0.4
0.3 -
0.2

0.1 4

alf-Power Points

Realizable ——

[Vour / Vil

®1 (O)]

Radian Frequency (log scale)

Figure 4.27. Frequency response for amplitude of a band-elimination filter

4.8 Analysis of Op Amp Circuits

The procedure for analyzing an op amp circuit (finding voltages, currents and power) is the same as
for the other circuits which we have studied thus far. That is, we can apply Ohm’s law, KCL and
KVL, superposition, Thevenin’s and Norton’s theorems. When analyzing an op amp circuit, we must
remember that in any op-amp:

a. The currents into both input terminals are gero

b. The voltage difference between the input terminals of an op amp is zero

c. For circuits containing op amps, we will assume that the reference (ground) is the common terminal of the
two power supplies. For simplicity, the power supplies will not be shown.
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We will provide several examples to illustrate the analysis of op amp circuits without being con-
cerned about its internal operation; this is discussed in electronic circuit analysis books.
Example 4.7

The op amp circuit shown in Figure 4.28 is called snverting op amp. Prove that the voltage gain G is

as given in (4.9) below, and draw its equivalent circuit showing the output as a dependent source.

f
— AN
Rin !
v, 4+ 1. -
in T i >+V0m
— _I

R —

G =2 - [ (4.9)

Proof:
No current flows through the (-) input terminal of the op amp; therefore the current i which flows
through resistor R;, flows also through resistor Ry Also, since the (+) input terminal is grounded

and there is no voltage drop between the (=) and (+) terminals, the (-) input is said to be at virtual
ground. From the circuit of Figure 4.28,

Vour = _Rfi
where
i = in
in
and thus
R
- __r
Vout = — ==V
ou Rln mn
or
G = Your _ _ﬁ
v V. R.
n 12
Circuit Analysis I with MATLAB Applications 4-17

Orchard Publications



Chapter 4 Introduction to Operational Amplifiers

The input and output parts of the circuit are shown in Figure 4.29 with the virtual ground being the
same as the circuit ground.

Figure 4.29. Input and output parts of the inverting op amp

These two circuits are normally drawn with the output as a dependent source as shown in Figure
4.30. This is the equivalent circuit of the inverting op amp and, as mentioned in Chapter 1, the dependent
source is a Voltage Controlled Voltage Source (VCVS).

out
in

Figure 4.30. Equivalent circuit of the inverting op amp
Example 4.8

The op amp circuit shown in Figure 4.31 is called non-inverting op amp. Prove that the voltage gain G,

is as given in (4.10) below, and draw its equivalent circuit showing the output as a dependent source

A
EmAVAVAVAVau
R, \
— —t e v
v;; t out

(4.10)
4-18
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Proof:

Let the voltages at the (—) and (+) terminals be denoted as v, and v, respectively as shown in Figure
4.32.

Vi

—— L V2 \—.
— — 1y +v
+
Vin

=

Figure 4.32. Non-inverting op amp circuit for derivation of (4.10)
By application of KCL at v,

or

i;+i, =0
_I_+ out 0
R.

(4.11)

There is no potential difference between the (-) and (+) terminals; therefore, v, -v, = 0 or
v; = v, = v, Relation (4.11) then can be written as

vﬂ+ in~ Yout -0
Ri By
or
(L+ L)v, _ Your
R, R m Ry
Rearranging, we get
G, = Your _ 1+ -R—f

and its equivalent circuit is as shown in Figure 4.33. The dependent source of this equivalent circuit
is also a VCVS.

Circuit Analysis I with MATLAB Applications
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in

Figure 4.33. Equivalent circuit of the non-inverting op amp

Example 4.9

If, in the non-inverting op amp circuit of the previous example, we replace R;, with an open circuit

(R;, —> o) and Ry with a short circuit (R— 0), prove that the voltage gain G, is
G = Vou _ | (4.12)

and thus

v = . (4.13)

Proof:

With R;, open and R, shorted, the non-inverting amplifier of the previous example reduces to the

circuit of Figure 4.34.

out

|
T
Lo+]

3
|

Figure 4.34. Circuit of Figure 4.32 with R;, open and Rf shorted

The voltage difference between the (+) and (=) terminals is zero; then v, . = v, .

v R
We will obtain the same result if we consider the non-inverting op amp gain G, = out — g4 R—f—

in in

Then, letting Re— 0, the gain reduces to G, = I and for this reason this circuit is called wnity gain
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amplifier or voltage follower. 1t is also called buffer amplifier because it can be used to “buffer” (isolate)
one circuit from another when one “loads” the other as we will see on the next example.

Example 4.10
For the circuit of Figure4.35

a. With the load R, disconnected, compute the open circuit voltage v,
b. With the load connected, compute the voltage v; ,,p across the load R; ,,p

c. Insert a buffer amplifier between a and b and compute the new voltage v, ;4 across the same

a
2V 7 KQ
5 KQ Rioap
Vi, 5 KQ
b
=
Figure 4.35. Circuit for Example 4.10
Solution:

a. With the load R; ,,p disconnected the circuit is as shown in Figure 4.36.

a

2V 7 KQ

5KQ Rioap
Y S5KQ

in
| b
' 1

Figure 4.36. Circuit for Example 4.10 with the load disconnected

The voltage across terminals z and 4 is

5 KQ

VT et x 12 =5V
b= 7KQ+5 KO

b. With the load R, ,p reconnected the circuit is as shown in Figure 4.37.
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2V 7 KQ

5KQ RLOAD
SKQ

in
b
1

Figure 4.37. Circuit for Example 4.10 with the load reconnected

v o= SKQISKQ iy sy
LOAD = 7 KO+ 5 KQ || 5 KQ

Here, we observe that the load R, ,p “loads down” the load voltage from 5 V' to 3.16 V' and

this voltage may not be sufficient for proper operation of the load.

c. With the insertion of the buffer amplifier between points a and b and the load, the circuit now is
as shown in Figure 4.38.

a _—
A AYAY + .
7 KQ
12V RLOAD
5KO 5V 5 KQ Vioap = Vap = Sy
vin —
b L

Figure 4.38. Circuit for Example 4.10 with the insertion of a buffer op amp

From the circuit of Figure 4.38, we observe that the voltage across the load is 5 V' as desired.

Example 4.11

The op amp circuit shown in Figure 4.39 is called summing circuit or summer because the output is the
summation of the weighted inputs. Prove that for this circuit,

Vini Vin2
Vour = R (—+—J (4.14)
o s Rinl Rin2
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—AAN—
Rin]
— AN~
RinZ
&
Vini
Vinz

Figure 4.39. Two-input summing op amp circuit

Proof:

We recall that the voltage across the (-) and (+) terminals is zero. We also observe that the (+) input
is grounded, and thus the voltage at the (=) terminal is at “virtual ground”. Then, by application of
KCL at the (-) terminal, we get

zn1+ zn2+ out =0
Rinl RinZ Rf

and solving for v, we get (4.14). Alternately, we can apply the principle of superposition to derive

this relation.

Example 4.12

Compute the output voltage v out for the amplifier circuit shown in Figure 4.40.

A A
R, Re™ "1 Mo
+
Rin3 +
30 KQ Vout
Vin3 t -
4mV 10mv

Figure 4.40. Circuit for Example 4.12
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Solution:

Letv be the output due to v, , acting alone, v be the output due to v, , acting alone, and

outl out2

Vo3 D€ the output due to v;, ; acting alone. Then by superposition,

vout = vout] + voutZ + vout3

First, with v, , acting alone and v, , and v, ; shorted, the circuit becomes as shown in Figure 4.41.

R,
1 MQ
Rinl
—AAMA ~
10 KQ "
Vini +
R.
(D in2 Rm3 voutl
T 20 KQ -
I'mv 30 KQ

Figure 4.41. Circuit for Example 4.12 with v;, , acting alone

We recognize this as an inverting amplifier whose voltage gain G| is
G, =1MQ/10 KQ = 100
and thus
= (100)(-1 mV) = —100 mV (4.15)

voutl

Next, with v, , acting alone and v,,, and v,,; shorted, the circuit becomes as shown in Figure

4.42.

The circuit of Figure 4.42 as a non-inverting op amp whose voltage gain G, is
G,=1+1MQ/10KQ = 101

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Figure
4.43.
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R,
Rin] [ MQ

— A -

10 KQ +
RinZ Rin3 +
20 KQ 30 KO Vout?
vin2 -

4mV

=

Figure 4.42. Circuit for Example 4.12 with v, , acting alone

Rin2 + To V(+)
20 KQ Ri”3

Vina 30 KQ

4mV ry

Figure 4.43. Voltage divider circuit for the computation of v, with v, , acting alone

Then,
R.
in3 30 KQ
= — = ———=x4mV = 24 mV
'O TR ER, . m T 50k "
and thus
vy = 10124 mV = 2424 mV (4.16)

Finally, with v, . acting alone and v, , and v, , shorted, the circuit becomes as shown in Figure
4.44.

The circuit of Figure 4.44 is also a non-inverting op amp whose voltage gain G, is
Gv =1+1MQ/10 KQ = 101

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Figure
4.45.
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R,

1 MQ

out3

Figure 4.44. Circuit for Example 4.12 with v, , acting alone

To vy,

Figure 4.45. Voltage divider circuit for the computation of v, with v;, ; acting alone

Then,
R,
in2 20 KQ
= M, = 10mV =4my
'O TR OWR, . m T 50k " "
and thus
v s = 101 x4 mV = 404 mV (4.17)

Therefore, from (4.15), (4.16) and (4.17),

Vour = Vours F Vours ¥ Vours = — 100+ 242.4 + 404 = 546.4 mV

Example 4.13

For the circuit shown in Figure 4.46, derive an expression for the voltage gain G in terms of the

external resistors R;, R,, R;, and Ry
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l___: : : : +
Vin R2 +
I B
=
Figure 4.46. Circuit for Example 4.13
Solution:
We apply KCL at nodes v, and v, as shown in Figure 4.47.
in +

®) %

Figure 4.47. Application of KCL for the circuit of Example 4.13

Atnode v;:
Vi—=Vin Y17 Vour -0
or
(i + L v, = L _out
R, R R, Ry
or
R1+Rfv _ Rfv,.n+R1vOm
RiR; ) R/R;
or
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Rev,, +R
y, = LYinT "1 Vout (4.18)
R+ R,

At node v,:

or

3 4.19
R, +R; ( )

<
)
1l

and since v, = v,, we rewrite (4.19) as

R.v.
y, = —3lin (4.20)
R,+R;

Equating the right sides of (4.18) and (4.20) we get

Rfvin+R1V0ut — R3vin
R, +Rf R,+R;
ot
R3vin
Rfvl-n+R1vom = R2+R3(R1 +Rf)

Dividing both sides of the above relation by R, v,

. and rearranging, we get

and after simplification

G, = Lou _ RiRs= Ry 21)

4.9 Input and Output Resistance
The input and output resistances are very important parameters in amplifier circuits.

The input resistance R;, of a circuit is defined as the ratio of the applied voltage vg to the current ig

drawn by the circuit, that is,

R, = .8 (4.22)
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Therefore, in an op amp circuit the input resistance provides a measure of the current ig which the
amplifier draws from the voltage source vg. Of course, we want ig to be as small as possible;

accordingly, we must make the input resistance R;, as high as possible.

Example 4.14

Compute the input resistance R;, of the inverting op amp amplifier shown in Figure 4.47 in terms

of R, and Rf-

* Vour
€L = ES
Figure 4.48. Circuit for Example 4.14

Solution:
By definition,

=5 (4.23)

in -
Lg

and since no current flows into the minus (=) terminal of the op amp and this terminal is at virtual
ground, it follows that

Vs
jo = S (4.24)
SR,
From (4.23) and (4.24) we observe that
R;, = R, (4.25)

It is therefore, desirable to make R, as high as possible. However, if we make R; very high such as
10 MQ, for a large gain, say 100, the value of the feedback resistor R, should be 1 GQ. Obviously,

this is an impractical value. Fortunately, a large gain can be achieved with the circuit of Problem 8.

Example 4.15

Compute the input resistance R;, of the op amp shown in Figure 4.49.
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+ Vour
€

Figure 4.49. Circuit for Example 4.15

Solution:

In the circuit of Figure 4.49, v, is the voltage at the minus (-) terminal; not the source voltage vy.
Therefore, there is no current iy drawn by the op amp. In this case, we apply a test (hypothetical)

current iy as shown in Figure 4.49, and we treat v;, as the source voltage.

|
=

Figure 4.50. Circuit for Example 4.15 with a test current source

We observe that v, is zero (virtual ground). Therefore,

By definition, #be output resistance R ,,, is the ratio of the open circuit voltage to the short circuit current, that is,

A%
R,, = ﬂ (4.26)
Isc

The output resistance R, is not the same as the load resistance. The output resistance provides a mea-

sure of the change in output voltage when a load which is connected at the output terminals draws
current from the circuit. It is desirable to have an op amp with very low output resistance as illus-
trated by the following example.
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Example 4.16

The output voltage of an op amp decreases by /0% when a 5 KQ load is connected at the output

terminals. Compute the output resistance R ;.

Solution:

Consider the output portion of the op amp shown in Figure 4.51.

R

out

+

out

I
I
I

|
Ing®

Figure 4.51. Partial circuit for Example 4.16

With no load connected at the output terminals,

Vour = Voc = Gvi, 4.27)

out

With a load R;,p connected at the output terminals, the load voltage v, ,,p 1S

Ri04p
Vio4p = R 4R, XV out (4.28)
and from (4.27) and (4.28)
ViodD = ———-—-————RLOAD x G v, (4.29)
Ryt Rroap
Therefore,
Yroap _ g9 _ I KOQ
Voc R, +5 KQ
and solving for R, , we get
R,, = 3550

We observe from (4.29) thatas R, — 0, relation (4.29) reduces to v; ., = G,v;, and by compar-

ison with (4.27), we see that v, ,p = Vor
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4.10 Summary

e A signal is any waveform representing a fluctuating electric quantity, such as voltage, current, elec-
tric or magnetic field strength, sound, image, or any message transmitted or received in telegraphy,
telephony, radio, television, or radar. al that changes with time.

e An amplifier is an electronic circuit which increases the magnitude of the input signal.

e The gain of an amplifier is the ratio of the output to the input. It is normally expressed in decibel
(dB) units where by definition dB = 10log|p,,,/P; |

e Frequency response is the band of frequencies over which the output remains fairly constant.

e The lower and upper cutoff frequencies are those where the output is 0.707 of its maximum
value. They are also known as half-power points.

e Most amplifiers are used with feedback where the output, or portion of it, is fed back to the input.
e The operational amplifier (op amp) is the most versatile amplifier and its main features are:

1. Very high input impedance (resistance)

2. Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4. Frequency response from DC to frequencies in the MHz range
5. Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selec-
tion of passive devices such as resistors, capacitors, diodes, and so on.

e The gain of an inverting op amp is the ratio —R/R;, where R is the feedback resistor which
allows portion of the output to be fed back to the minus (-) input. The minus (-) sign implies that
the output signal has opposite polarity from that of the input signal.

e The gain of an non-inverting op amp is / +R/R;, where Ry is the feedback resistor which
allows portion of the output to be fed back to the minus (-) input which is grounded through the

R,, resistor. The output signal has the same polarity from that of the input signal.

e In a unity gain op amp the output is the same as the input. A unity gain op amp is used to provide
a very high resistance between a voltage source and the load connected to it.

e Op amps are also used as active filters.
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A low-pass filter transmits (passes) all frequencies below a critical (cutoff) frequency denoted as
o and attenuates (blocks) all frequencies above this cutoff frequency.

e A high-pass filter transmits (passes) all frequencies above a critical (cutoff) frequency w,, and
attenuates (blocks) all frequencies below the cutoff frequency.
e A band-pass filter transmits (passes) the band (range) of frequencies between the critical (cutoff)

frequencies denoted as ®; and ®,, where the maximum value of G which is unity, falls to

0.707 x G, while it attenuates (blocks) all frequencies outside this band.

e A band-elimination or band-stop or band-rejection filter attenuates (rejects) the band (range) of
frequencies between the critical (cutoff) frequencies denoted as ®; and ®,, where the maximum

value of G, which is unity, falls to 0.707 x G, while it transmits (passes) all frequencies outside
this band.

e A summing op amp is a circuit with two or more inputs.
e The input resistance is the ratio of the applied voltage v¢ to the current ig drawn by the circuit,
thatis, R;, = v¢/ig

e The output resistance (not to be confused with the load resistance) is the ratio of the open circuit
voltage when the load is removed from the circuit, to the short circuit current which is the cur-

rent that flows through a short circuit connected at the output terminals, thatis, R, = v,/igc
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4.11 Exercises

Multiple Choice

1. In the op amp circuit of Figure 4.52 v,, = 2V, R,, = 1 KQ, and it is desired to have
Vour = 8 V. This will be obtained if the feedback resistor R, has a value of

A. 1 KQ
B. 2 KQ
C. 3KQ
D. 4 KQ

E. none of the above

B S AVAVAVA e + Vour
R _

+

Vin
$=
Figure 4.52. Circuit for Question 1

2. In the circuit of Figure 4.53 v;, = 6 V, R;, = 2 KQ,and R, = 3 KQ. Then v,,, will be

A -9V
B. 9V
C. 4V
D 4V
E. none of the above
— AAMAN—
R;, R,

.
_:T_— ° out

v

Figure 4.53. Circuit for Question 2
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3. In the circuit of Figure 4.54 iy = 2 mA and Rf = 5 KQ.Then v,,, will be

A oV
B. oV
C. 10V
D -10V
E. none of the above
—/\Aléj\[/\/_

+1

@is + out

Figure 4.54. Circuit for Question 3

4. In the circuit of Figure 4.55 ig = 4 m4 and R = 3 KQ. Then v,,, will be
A oV
B. oV
C. indeterminate
D -2V

E. none of the above

out

Figure 4.55. Circuit for Question 4

5. In the circuit of Figure 4.56 v;,, = 4 V, R,, = 12 KQ, R, = 18 KQ, and R; o p = 6 KQ. Then
i will be
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A. =1 mA

B. 1 m4

C. —-4/3 m4

D. 4/3 mA

E. none of the above

— NV
R;, R,
Vi".—{\/\/\/\/f; —1 .

v
‘
Rio4p ou

Figure 4.56. Circuit for Question 5

6. In the circuit of Figure 4.57 v,, = 1 V and all resistors have the same value. Then v, will be
A =2V

2V

-4V

4V

m o 0 W

none of the above

Figure 4.57. Circuit for Question 6
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7. In the circuit of Figure 4.58 Vin, = 2V, v, )= 4V,and R;, = R, = 1 KQ.Then v,,, will be

A.

m o 0 W

in
=2V

2V

sV

8V

none of the above

— VN
R,, Rf
PN
— 4" +/+ + vout
jpe— vi}’lZ

Figure 4.58. Circuit for Question 7

8. In the circuit of Figure 4.59 v, = 30V. Then v,,, will be

A.

m o 0 W

=5V

10V
=15V
=90V

none of the above

e VAVAYAY e
10 KQ
— "V VAV
10 KQ 10 KQ 20 KQ
AN VVVY -
vt 1
1 10KQ =

Figure 4.59. Circuit for Question 8

e
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9. For the circuit of Figure 4.60, the input resistance R;, is

A. 1 KQ
B. 2 KQ
C. 4 KQ
D. 8§ KQ

E. none of the above

e AVAVAVA o
4 KO 4 KQ
— ANV >
Vip + 1
- —Rin + +
— 2 KQ

__/\/\/\/\/— Vout

2 KQ -
1 KQ =

Figure 4.60. Network for Question 9

10. For the circuit of Figure 4.61, the current i is

A.—40 4
B. 40 4
C. -400 4
D. 400 4
E. none of the above
y 10 Q
<> 2L 40vy
24 h

Figure 4.61. Network for Question 10
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Problems

1. For the circuit of Figure 4.62, compute v, . Answer: =0.9 V

——gy%g—— 10 KO 90 KQ
3 KO

Vins ! AN
+

+ | + Vout2
10mV + + ‘j' _
— — Voutl — _an —
= _ I _I

Figure 4.62. Circuit for Problem 1

2. For the circuit of Figure 4.63, compute g, . Answer: 4uA

\

__/\/\/W ’ ’ +
60 mv 4 KQ Lska
+
C) 3 KQ 6 KQ 5 KQ

1
Figure 4.63. Circuit for Problem 2

-—

3. For the circuit of Figure 4.64, R. ., R

in1> Rins»>and R, . represent the internal resistances of the input
voltages v;,,, V;,,, and v; . respectively. Detive an expression for v, , in terms of the input

voltage sources and their internal resistances, and the feedback resistance R.

f

V. V. V.
. _ in3 in2 inl
AI’ISWCf. voul‘ = Rf(_ - —_— = —)
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Rin]
RinZ Rin3
Vout
Vini -
Vin2 Vin3

Figure 4.64. Circuit for Problem 3

4. For the circuit of Figure 4.65, compute v, .. Answer: =40 mV’

10 KQ 50 KQ

I:::::: +
20 KQ

CDM mv § wko o

Figure 4.65. Circuit for Problem 4

5. The op-amp circuit of Figure 4.66 (a) can be represented by its equivalent circuit shown in Figure

4.66 (b). For the circuit of Figure 4.67 (c), compute the value of R; so that it will receive maxi-
mum power. Answer: 3.75 KQ

R2 Vout
R
1
e AYAYAVAY, \ " N 5 i
- —V. out
vt — |2 VR
in + + m

Figure 4.66.
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20 KQ
— AV

5 KQ

15 KQ v

(c) -

Figure 4.67. Circuits for Problem 5

6. For the circuit of Figure 4.68, compute V5o using Thevenin’s theorem. Answer: 20 mV

AN
84 KQ
100 KQ
2KQ | 4KQ N

.
o + +
Vout
+ —
72 mv 5KQ Svikg < 20 KQ €1

Figure 4.68. Circuit for Problem 6

7. For the circuit of Figure 4.69, compute the gain G, = v_ /v, . Answer: —(2/37)

u

Figure 4.69. Circuit for Problem 7
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8. For the circuit of Figure 4.70, show that the gain is given by

% R
G, = ot o 1 [R5+R3(—§+IH
R R,

Vin 1

R,
+°|—’\/\/\/\/
Vin
Figure 4.70. Circuit for Problem 8
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4.12 Answers to Exercises

Multiple Choice

1. C For v,, =2 and v,, = 8, the gain must be G, = 4 or I+R/R;, = 4. Therefore,
R, = 3 KQ

2.A v = —Rf/Rmxvm =-9V

out
3. D All current flows through R, and the voltage drop across itis (2 mA x 5 KQ) = -10 V

4. E All current flows through R and the voltage drop across itis 4 mA4A x 3 KQ = 12 V. Since

this circuit is a unity gain amplifier, it follows that v, = 12 V also.

5.C v,,, = —-(18/12)yx4 = -6 V. Therefore, i;pup = Vour/Rroap = =6 V/6 KQ = —1 mA.
Applying KCL at the plus (+) terminal of v,,,, we get

_ 6V, _—6V-4V 4

- 1
'T KO T ISKQO+I2KQ 3773

6. D The gain of each of the non-inverting op amps is 2. Thus, the output of the first op amp is
2 V and the output of the second is 4 V.

7. E By superposition, v due to Vin, acting alone is -2 V and v due to Vin, acting alone is

out;

8 V. Therefore, v,,, = -2+8 =6V

out,

8. B We assign node voltage v, as shown below and we replace the encircled port by its equiva-

lent.v, = 30 V. Then v, will be

We now attach the remaining resistors and the entire equivalent circuit is shown below.
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Application of KCL at Node A yields

vA—30+\2+vA—(—2vA) _
10 5 10

and thus v, = 30/6 = 5V

Therefore,

Vou = —2v, = =10V

o

NOTE: For this circuit, the magnitude of the voltage is less than the magnitude of the input
voltage. Therefore, this circuit is an attenuator, not an amplifier. Op amps are not
configured for attenuation. This circuit is presented just for instructional purposes.
A better and simpler attenuator is a voltage divider circuit.

9. C The voltage gain for this circuitis 4 KQ/4 KQ = [ and thus v,,, = —v;,. The voltage v at

the minus (=) input of the op amp is zero as proved below.

— ANV
4 KO . 4 KQ
— ANV >
Vin ¥ ——i + T
— +
S pp— 2 KO
AN S Vour
2 KQ _
1 KQ —
V="Vip + V- (_Vl'n) =0
4 4
or
v =20
Then
l' - vll‘l
4 KQ
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and

10. A For this circuit, vy = —10 V and thus 40vy, = =400 V. Then, i = —400/10 = —40 A

Problems
1.
Vours = —(27/3)x 10 = =90 mV
and thus
Vina = Vour = =90 mV
Then

v, o= (1 + ?_g) X (=90) = ~0.9 V

2. We assignR; o p, V;,and v, o ,p as shown below.

X

AYAAY |+ |
60 mV 4 KQ + + | ke
3 KQ 6 KO< v, YLo4D
Re

5 KQ

3KQI6 KQ =2 KQ

and by the voltage division expression

2 KQ

VI T TKQO+2 KO

x 60 mV = 20 mV
and since this is a unity gain amplifier, we get

Vioap = V; = 20 mV
Then
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g = LoD _ 20mV _ 20 107
Rioap 3 KQ 5%x10°

=4x10°4 = 44

3. By superposition

Voutr = Voutl + Vout2 + Vout3
where
R,
Vv = ——Lv.
outl -0 R inl
Vin2 = inl
Viny = 0

We observe that the minus (=) is a virtual ground and thus there is no current flow in R;,; and

R,,,. Also,
R/'
1% = ——V.
out?2 in2
inl 0 RinZ
Vin3 = 0
and
% = - Rf -V, )
out3 0 - R in3
inl in3
Vin2 = 0
Then,

4. We assign voltages v_ and v, as shown below.

10 KO
o 20 KQ
CD m %40 KQ out
L
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At the minus (-) terminal
v —-40mV v_-v,,

+
10 KQ 50 KQ

ot
6 , 1 vt:4><]0_6
37— 3" ou
50x 10 50x10
At the plus (+) terminal
—40 mV
v, my.o v
20 KQ 40 KQ
ot
S = 2x107
3
40x 10
ot
L, = 80x10”
' 3

Since v, = v_ we equate the nodal equations and we get

Vour = 4% 10°°

6 (80x103)_ I
50x 10° 3 50x 10°

Multiplication by 50 x I 0’ yields

2x80x10° x50x10°
50 x 10°

v, = 4x10°x 5010’

or
v = —40 mV

out —
Check with (4.21) using MATLAB:

R1=10000; R2=20000; R3=40000; Rf=50000; Vin=40*10/(-3);
Vout=(R1*R3-R2*Rf)*Vin/(R1*(R2+R3))

Vout =
-0.0400

5. We attach the 5 KQ, 15 KQ, and R, resistors to the equivalent circuit as shown below. By

Thevenin’s theorem
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A
5 KQ a
+
<—> N ]Ovin 15 KQ
V. V,
in | 2KQ
b
15 KQ
Vi = Yoc = Ve = 5RO 15 kO 0Vin)

or

Because the circuit contains a dependent source, we must compute the Thevenin resistance using
the relation Ryy = vyy/ige where igo is found from the circuit below.

—— A
5 KQ a
N 70w, I5KQ ||
v ; Isc
b

We observe that the short circuit shorts out the /5 KQ and thus

—10v; _
ZSC = 5 K‘;lzn = _2 x ]0 3vin
Then
-7.5v,,
Ry = — = 3.75 KQ
-2x10 "v,,

and the Thevenin equivalent circuit is shown below.

— A
Ry = 3.75 KQ

0"

Vru

Therefore, for maximum power transfer we must have R; ,,p = Ryy = 3.75 KQ
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6. This is a non-inverting op amp whose equivalent circuit is shown below.

For this circuit v;, = Vsgo and the value of the VCVS is

R 100
(] +E£]V5KQ = (1 + ‘27)"51@ = 6Vsko

m

Attaching the external resistors to the equivalent circuit above we get the circuit below:

84 KQ

12 KQ

72 mV

b
=

To find the Thevenin equivalent at points a and b we disconnect the 5 KQ resistor. When this is

done there is no current in the 4 KQ and the circuit simplifies to the one shown below.

12 KQ 84 KQ

By KVL
(12 KQ+84 KQ)i+ 6vspq = 72 mV
or
72 mV—6vsgq
1 =
(12 KQ+ 84 KQ)
Also
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72 mV— 6v5KQ)

Vig = Vap = Vskq = 72 mV—(12 KQ)i = 72 mV —-12 KQ( 96 KO

72mV -9 mV+§v5Kg2
or
3

and thus

Vig = Vap = Vsgq = 252 mV

The Thevenin resistance is found from Ry = v, /ige Where ig. is computed with the termi-
nals @ and b shorted making vsg = 0 and the circuit is as shown on the left below. We also per-

form voltage-source to current-source transformation and we get the circuit on the right below.

12 KQ
miVAVAVAVay
4 KQ
+ 12 KQ
<> 84 KQS — D § 1 KQ
_ a .
72mV l 6 nA 84 KQ . l
Isclb 'scTb
Now
12 KQ | 84 KQ = 10.5 KQ
and by the current division expression
10.5 KQ 126
| =1 = A = — ud
isc =lw = g5 karqk0 O = o 1
Therefore,
Ry = 2€ = _22_ _ s3k0
=i 126/29

and the Thevenin equivalent circuit with the 5 KQ resistor is shown below.

a
+
@
Vo = 252 mV
TH b
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Finally,

Viko = 58+5><252 = 20 mmV

7. We assign node voltages v, and v, as shown below and we write node equations observing that

v, = 0 (virtual ground).

Node 1:

Vi=Vig V=V

out Vi~ 0 + Vy —
200 KQ 40 KQ 50 KQ 50 KQ

or

V.
( ] + ] + ] + 1 )V[ — 114 + Vout
200 KQ 40 KQ 50 KQ 50 KQ 200 KQ 40 KQ

Multiplication of each term by 200 KQ and simplification yields

1
v, = ﬁ(vin +5v,,,)

Node 2:
0-v, N 0-v,,; _
50 KQ 40 KQ
or
5
v = _Zvoul
Equating the right sides we get
1 5
ﬁ(vin + 5v0ut) = _Zvout
or
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37 1

2_8‘}0ut = _ﬁvin

Simplifying and dividing both sides by v;, we get

8. We assign node voltages v; and v, as shown below and we write node equations observing that

v, = 0 (virtual ground).

R,
+°|—’\/\/\/\/
Vin
Node 1:
0-v;,, 0-v, _ 0
R, R
or
Ry
vy = _ITlvm
Node 2:
V)= 0 2 + V2= Vour 0
Ry R, R
or
(Lol L), - Yo
5 =
R; R, R; R;
or
v, = ! v
27 Rs/R;+Rs/R + 1 "
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Equating the right sides we get

I
Ry/R,+R,/R,+1 °" ~

Simplifying and dividing both sides by v;, we get

v
G, = _out _ _L[R5+R3(
vin R]

R3
_R_Ivin

=)

4
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NOTES
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Chapter 5

Inductance and Capacitance

his chapter is an introduction to inductance and capacitance, their voltage-current relation-
ships, power absorbed, and energy stored in inductors and capacitors. Procedures for analyz-
ing circuits with inductors and capacitors are presented along with several examples.

5.1 Energy Storage Devices

In the first four chapters we considered resistive circuits only, that is, circuits with resistors and con-
stant voltage and current sources. However, resistance is not the only property that an electric circuit
possesses; in every circuit there are two other properties present and these are the inductance and the
capacitance. We will see through some examples that will be presented later in this chapter, that
inductance and capacitance have an effect on an electric circuit as long as there are changes in the
voltages and currents in the circuit.

The effects of the inductance and capacitance properties can best be stated in simple differential
equations since they involve the changes in voltage or current with time. We will study inductance
first.

5.2 Inductance

Inductance is associated with the magnetic field which is always present when there is an electric cur-
rent. Thus, when current flows in an electric circuit the conductors (wires) connecting the devices in
the circuit are surrounded by a magnetic field. Figure 5.1 shows a simple loop of wire and its mag-
netic field represented by the small loops.

Figure 5.1. Magnetic field around a loop of wire

The direction of the magnetic field (not shown) can be determined by the left-hand rule if conven-
tional current flow is assumed, or by the right-hand rule if electron current flow is assumed. The
magnetic field loops are circular in form and are referred to as /Znes of magnetic flux. The unit of mag-
netic flux is the weber (Wb).
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In a loosely wound coil of wire such as the one shown in Figure 5.2, the current through the wound
coil produces a denser magnetic field and many of the magnetic lines link the coil several times.

Figure 5.2. Magnetic field around several loops of wire

The magnetic flux is denoted as ¢ and, if there are N turns and we assume that the flux ¢ passes
through each turn, the total flux, denoted as A, is called flux linkage. Then,

» = No (3.1

Now;, we define a linear inductor one in which the flux linkage is proportional to the current through
it, that is,

r=Li (5.2)
where the constant of proportionality L is called inductance in webers per ampere.

We also recall Faraday’s law of electromagnetic induction which states that

d\
y = —

= 53
o (5.3)
and from (5.2) and (5.3),
di
v=1L = (5.4)

Alternately, the inductance L is defined as the constant which relates the voltage across and the cur-
rent through a device called zzductor by the relation of (5.4).

The symbol and the voltage—current* designations for the inductor are shown in Figure 5.3.

N 117 )
L

I

Figure 5.3. Symbol for inductor

*  In the first four chapters we have used the subscript LOAD to denote a voltage across a load, a current through
a load, and the resistance of a such load as R, ,,, to avoid confusion with the subscript L which henceforth will

denote inductance. We will continue using the subscript LOAD for any load connected to a circuit.
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For an inductor, the voltage-current relationship is

v = L= (5.5)

where v; and i; have the indicated polarity and direction. Obviously, v; has a non-zero value only

when i; changes with time.

The unit of inductance is the Henry abbreviated as H . Since

=YL _volts (5.6)
di, amperes )
i seconds

we can say that one henry is the inductance in a circuit in which a voltage of one volt is induced by a current
changing at the rate of one ampere per second.

By separation of the variables we rewrite (5.5) as

1
di, = Zdet 5.7)
and integrating both sides we get:
i(1) I¢!
j di; = ZI v, dt
i(ty) ty
or
. . _ 1!
i,()—i,(t,) = L.[IOVLdl‘
or
] t
i(t) = Z.[ v, dt+i,(t,) (5.8)
ly

where i;(¢,), more often denoted as i;(0), is the current flowing through the inductor at some ref-

erence time usually taken as ¢ = 0, and it is referred to as the zuitial condition.

We can also express (5.8) as

t 0 t
i) = 1] v = 1] v+ 1] v (5.9)
—© —0 0
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where the first integral on the right side represents the initial condition.

Example 5.1

The current i;(¢) passing through a 50 mH inductor is shown in Figure 5.4.

a. Compute the flux linkage A at ¢ = 2,5, 9,and 1/ ms

b. Compute and sketch the voltage v, (¢) for the time interval —oo <t < 14 ms

i (?)

25

201
151

(mA)

T f t (ms)

Figure 5.4. Waveform for Example 5.1

Solution:
a. The flux linkage A is directly proportional to the current; then from (5.1) and (5.2)
A= No =1Li
Therefore, we need to compute the currentzat ¢t = 2ms, t = Sms,t = 9ms,and t = 11 ms

For time interval 0 <t<3 ms, i = mt+ b where m is the slope of the straight line segment, and

b is the i — axis intercept which, by inspection, is 25 mA . The slope m is

_—20-25 _
3-0

=15

and thus

3 ms

i) = ~151+25 (5.10)

At t = 2 ms, (5.10) yields i = =5 mA . Then, the flux linkage is
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= Li=50x107 x(=5)x 10"

and
Moy = =250 uWb (5.11)
For the time interval 3<t< 6 ms,i = mt+ b where
m = 15-(=20) _ 35
3-0 3
and thus
3
i= 3 t+b
To find b we use the fact thatat t = 3 ms, i = =20 mA as seen in Figure 5.4. Then,
=20 = 33 x3+b
3
from which b = -55.
Thus, the straight line equation for the time interval 3 <¢< 6 ms is
.6 ms 35
0,5 ms = ?1—55 (5.12)
and therefore at ¢t = 5 ms, i = 10/3 mA, and the flux linkage is
A= Li= 50x10‘3x1—30x10‘3
or
500
M5 = = uwb (5.13)
Using the same procedure we find that
i" = —12.50+90 (5.14)
Also,
/0 = 7.50-70 (5.15)
and with (5.15),
Mg = Li = =125 pWb (5.16)
Likewise,
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12 ms
i7" = -2.51+30 (5.17)
and with (5.17),
MyZypms = Li=125uWb (5.18)
b. Since

to compute and sketch the voltage v, () for the time interval —o <¢< 14 ms, we only need to

differentiate, that is, compute the slope of the straight line segments for this interval. These were
found in part (a) as (5.10), (5.12), (5.14), (5.15), and (5.17). Then,

slope| . _,=0
vL| )= L xslope = 0 (5.19)
-0 <<
slopel,_,_, - =—-15mA/ms = —15A4/s
-3 v
Vel g T L xslope = 50x 10 A/sx(—]5 A/s) = =750 mV (5.20)
slopel,  _o == 35/3mAd/ms = 35/3 A/s
v, = Lxslope = 50x 107 x(35/3) = 583.3 mV (5.21)
3<t<6 ms
slopel, _, g, = —12.5 mA/ms = —12.5 A/s
v, = Lxslope = 50x 107 x(=12.5) = 625 mV (5.22)
6<t<8 ms
slopelg_,_1pms = 75 mA/ms = 7.5 A/s
v| = Lxslope = 50x 107 x7.5 = 375 mV (5.23)
8§<t<10 ms
slope|,, ., 1pps = —2.5mA/ms = =25 A/s
v, = Lxslope = 50x 107 x(=2.5) = —125 mV (5.24)
10<t< 12 ms
slope| ), oy yms =0
5-6 Circuit Analysis I with MATLAB Applications
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VL‘12<1<14 . L xslope = 0 (5.25)

We now have all values given by (5.19) through (5.25) to sketch v, as a function of time. We can

do this easily with a spreadsheet such as Excel as shown in Figure 5.5.

t v (t)
-5.000
-4.950
-4.900
-4.850
-4.800
-4.750
-4.700
-4.650
-4.600
-4.550
-4.500

Voltage waveform for Example 5.1

@
o
o

)
s
S

Voltage (m

[cNeoNoNeoNoNolNolNolNolNo)

o

Figure 5.5. Voltage waveform for Example 5.1

Example 5.2

The voltage across a 50 mH inductor is as shown on the waveform of Figure 5.6, and it is given that
the initial condition is i;(¢)) = i;(0) = 25 mA. Compute and sketch the current which flows

through this inductor in the interval -5 <¢< 5 ms

v (2) 1.75/3

(V)
0.625 /

0.5001
03751 -----{------1 -
0.250+
0.125+

— — - : : —+——> ¢ (ms)
0125+ -----+-------]----1
—0.2501
—0.3751
—0.500
~0.625F - -
—0.750

Figure 5.6. Waveform for Example 5.2
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Solution:

The current i;(¢) in an inductor is related to the voltage v, (¢) by (5.8) which is repeated here for

convenience.
t

(1) = 1] vdi+iyey)

)
where i;(¢)) = i;(0) = 25 mA is the initial condition, that is,

i| = 25 mA

L —0<t<0

From the given waveform,
vi| =075V
0<t<3 ms
Then,

1 3 ms _3
(=0.75)dt + 25 x 10

1L0<z<3ms 50><]0_3J.0

-3
20(—0. 75t|(3) <10 ) +25% 107 = 20(=2.25x 107°)+20x 0+ 25 x 10~

= 45x 107 425% 107 =—20x 107 = —20 m4

that is, the current has dropped lineatly from 25 mA4 at t = 0 to —20 mA at t = 3 ms as shown in
Figure 5.7.

il(1) 1 (mA)
25

201
151
107
54

0
—51
—107
_15 ]
—207

t—t—t—t—t———t—+—t—1+—> ¢ (ms)

Figure 5.7. Inductor current for 0 <t <3 ms, Example 5.2

The same result can be obtained by graphical integration. Thus,
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1 3 ms
—(Area + initial condition
t=3ms L( |f = 0)

20(=0.750x 3x 107°) + 25 x 107 = —20 mA

and the value of iL| . —20 mA now becomes our initial condition for the time interval
t=3 ms

3<t<6 ms.

Continuing with graphical integration, we get

1 6ms, . .. ..
Z(Area|t_m;) + initial condition

iL|t= 6 ms

= 20(1'775 x 3 x 10*3) —20x 107 =15 ma

and now the current has increased linearly from —20 mA4 at t = 3 ms to 15 mA att = 6 ms as

shown in Figure 5.8.

i (1)
25

(mA)

201
151

} f f f —t— t t (ms)

Figure 5.8. Inductor current for 0 <t < 6 ms, Example 5.2

For the time interval 6 <t <& ms, we get

. 1 8ms, . .. ..
i L(Area‘t= 6) + initial condition

t=8 ms

20(=0.625x 2 x 107°)+ 15 % 107 = —10 mA

Therefore, the current has decreased linearly from 15 mA4 at t = 6 ms to —10 mA att = 8 ms as
shown in Figure 5.9.

Circuit Analysis I with MATLAB Applications 5-9
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25

201

Figure 5.9. Inductor current for 0 <t <8 ms, Example 5.2

For the time interval § ms <t < 10 ms we get

1 10 ms
=(A4rea + initial condition
t=10 ms L( |f =8 )

2000.375x 2x 10°)=10x 10~ = 5 mA4

that is, the current has increased linearly from —/0 mA att = 8 ms to 5 mA at t = 10 ms as shown

in Figure 5.10.

Finally, for the time interval 10 ms <t <12 ms we get

1 12 ms
=(A4rea + initial condition
t=12 ms L( ’t=10)

20(=0.125x 2% 107°)+5x 107 = 0

that is, the current has decreased linearly from 5 mA4 at t = 10 ms to 0 mA at t = 12 ms and

remains at zero for t> 12 ms as shown in Figure 5.11.
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iL(t) (mA)

I t (ms)

—51
—107
_15 .
—207

Figure 5.10. Inductor current for 0 <t < 10 ms, Example 5.2

25

201
151

— t(ms)

Figure 5.11. Inductor current for 0 <t< 12 ms, Example 5.2

Example 5.2 confirms the well known fact that #he current through an inductor cannot change instanta-
neously. This can be observed from the voltage and current waveforms for this and the previous
example. We observe that the voltage across the inductor can change instantaneously as shown by
the discontinuities at ¢t = 0, 3,6, 8, 10, and 12 ms. However, the current through the inductor
never changes instantaneously, that is, it displays no discontinuities since its value is explicitly
defined at all instances of time.

5.3 Power and Energy in an Inductor

Power in an inductor with inductance L is found from
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. dipy . o dip
py = v = (LE)’L = LILE (5.26)

and the energy in an inductor, designated as W, is the integral of the power, that is,

.t i ai, i(1)
w,|' = pdt=1L i~ Ldt = i, di,
‘to J‘fo '[i(fo) dt '[i(f())
or
i(7)
t 1,2 1,22 2
/4 ‘ = SLi; = EL[ZL(t)—lL(tO)]
) i(ty)
or
Y 2
W (t)-W. (1)) = EL[ZL(t)_lL(to)]
and letting i, = 0 at ¢t = 0, we get the energy stored in an inductor as
1,22
Wy(0) = 3Li,(1) (5.27)

Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring.

Electric circuits that contain inductors can be simplified if the applied voltage and current sources
are constant as shown by the following example.

Example 5.3

. . . . * -
For the circuit shown in Figure 5.12, compute v,, v,, and v;, after steady-state conditions have

been reached. Then, compute the power absorbed and the energy consumed by the 5 mH inductor.
Solution:

Since both the voltage and the current sources are constant, the voltages and the currents in all
branches of the circuit will be constant after steady-state conditions have been reached.

Since

di
v, = L=

- ;4 —
7 L%(constant) =0

* By steady state conditions we mean the condition (state) where the voltages and currents, after some transient dis-
turbances, have subsided. Transients will be in Chapter 10.
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+
T 8§ Q
+
C_) @) & 5mH
24V %3577111 15A
30 mH 20 mH
+ V=
——OOOOTL_AAA/N/ 00000 =
10 QO
12 Q
60 mH 15mH

Figure 5.12. Circuit for Example 5.3

then, all voltages across the inductors will be zero and therefore we can replace all inductors by
short circuits. The given circuit then reduces to the one shown in Figure 5.13 where the 3 Q and

6 Q parallel resistors have been combined into a single 2 Q resistor.

Figure 5.13. Circuit for Example 5.3 after steady-state conditions have been reached

Now, in Figure 5.13, by inspection, v, = 0 since the /2 Q resistor was shorted out by the 60 mH

inductor. To find v, and v,, let us first find v, and v using nodal analysis.

At Node v,

-2 -

Vaz29 Va4 VaTVs _

4 9 5+2

or
(1+£+£)v L6 (5.28)
4 9 74 7F

At Node vy
Circuit Analysis I with MATLAB Applications 5-13
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VB_VA—]5+VB =0

5+ 2 8
or
i 1N
L, +(;+§)v3 =I5 (5.29)

We will use the MATLAB code below to find the solution of (5.28) and (5.29).

format rat % Express answers in rational form
G=[1/4+1/9+1/7 —1/7; -1/7 1/7+1/8]; 1=[6 15]'; V=G\I;
disp('vA="); disp(V(1)); disp('vB="); disp(V(2))

VA=
360/11
vB=
808/11
Therefore,
vy =360/11V
vp = 808/11V
V, = V-V, = —448/11'V
v;=v,=808/11V
and
p5mH= V5mHXi5mH= 0><i5mH= 0
that is,
Ps mn = 0 watts
Also,
v\? ~ 5
Ws mn = éLié mi = éL(ﬁ) = 05x5% 107 x (8088/”)
or

Ws oy = 0211J

5.4 Combinations of Series and Parallel Inductors

Consider the circuits of figures 5.14 (a) and 5.14 (b) where the source voltage v is the same for both

circuits. We wish to find an expression for the equivalent inductance which we denote as Lg, q in
terms of L, L,, ..., Ly in Figure 5.14 (a) so that the current 7 will be the same for both circuits.
5-14 Circuit Analysis I with MATLAB Applications
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(b)
Figure 5.14. Circuits for derivation of equivalent inductance for inductors in series

From the circuit of Figure 5.14 (a),

di di di _
L’dz+L2dt+”'+Lth = Vg
or
di
(L’+L2+"'+LN)c7t = vg (5.30)
From the circuit of Figure 5.14 (b),
di
Equating the left sides of (5.30) and (5.31) we get:

Thus, inductors in series combine as tesistors in series do.

Next, we will consider the circuits of Figures 5.15 (a) and 5.15 (b) where the source current ig is the

same for both circuits. We wish to find an expression for the equivalent inductance which we denote
as L

circuits.

Peq interms of L, L,, ..., Ly in Figure 5.15 (a) so that the voltage v will be the same for both

s[ 2 VL
@ |

! 3

(a) (b)

| «— <—>4
100000J
100000J
S
LS
=

Peq

Figure 5.15. Circuits for derivation of equivalent inductance for inductors in parallel

From the circuit of Figure 5.15 (a)
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ip+ir)+ .. +iy =g

or

1! 1! 1!
— vdt + — vdt+ ... + — vdt = ig
g vaep] ol

or

From the circuit of Figure 5.15 (b)

! J.tvdt=is

Peq® —0

L

Equating the left sides of (5.33) and (5.34) we get:

1

Peq

+ L
LN

=Lyl
L, L,

L

and for the special case of two parallel inductors
. B L IL 5
Peg = ———
O Ly+L,

Thus, inductors in parallel combine as resistors in parallel do.

Example 5.4

(5.33)

(5.34)

(5.35)

(5.36)

For the network of Figure 5.16, replace all inductors by a single equivalent inductor.

o (00001 (00001

; Leq % 125 mH 60 mH %

45 mH 30 mH
(0000 (0000

35mH 40 mH

ngO mH

(000001 )

90 mH 15 mH

Figure 5.16. Network for Example 5.4
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Solution:

Starting at the right end of the network and moving towards the left end, we find that
60 mH | 120 mH = 40 mH, 30 mH || 15 mH = 10 mH, 40 mH+ 35 mH = 75 mH, and also
45 mH || 90 mH = 30 mH . The network then reduces to that shown in Figure 5.17.

. (00000
75 mH

HLeq g 125 mH g 40 mH
s (00000 00000
30 mH 10 mH

Figure 5.17. First step in combination of inductances

Finally, with reference to Figure 5.17, (40 mH + 35 mH + 10 mH) || 125 mH = 62.5 mH , and
Leq = 30 mH+62.5 mH = 92.5 mH as shown in Figure 5.18.

HLeq 92.5 mH

Figure 5.18. Network showing the equivalent inductance of Figure 5.16

5.5 Capacitance

In Section 5.2 we learned that inductance is associated with a zagnetic field which is created when-
ever there is current flow. Similatly, capacitance is associated with an electric field. In a simple circuit we
can represent the entire capacitance with a device called capacitor, just as we considered the entire
inductance to be concentrated in a single inductor. A capacitor consists of two parallel metal plates
separated by an air space or by a sheet of some type of insulating material called the dzeectric.

Now;, let us consider the simple series circuit of Figure 5.19 where the device denoted as C, is the
standard symbol for a capacitor.
Rg S
Vs
C
—

/_-

Figure 5.19. Simple circuit to illustrate a charged capacitor
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When the switch S closes in the circuit of Figure 5.19, the voltage source will force electrons from
its negative terminal through the conductor to the lower plate of the capacitor and it will accumulate
negative charge. At the same time, electrons which were present in the upper plate of the capacitor will
move towards the positive terminal of the voltage source. This action leaves the upper plate of the
capacitor deficient in electrons and thus it becomes positively charged. Therefore, an electric field has
been established between the plates of the capacitor.

The distribution of the electric field set up in a capacitor is usually represented by lines of force sim-
ilar to the lines of force in a magnetic field. However, in an electric field the lines of force start at the
positive plate and terminate at the negative plate, whereas magnetic lines of force are always com-
plete loops.

Figure 5.20 shows the distribution of the electric field between the two plates of a capacitor.

+ + 4+ + 4+ +

Figure 5.20. Electric field between the plates of a capacitor

We observe that the electric field has an almost uniform density in the area directly between the
plates, but it decreases in density beyond the edges of the plates.

The charge g on the plates is directly proportional to the voltage between the plates and the capaci-
tance C is the constant of proportionality. Thus,

g = Cv (5.37)

and recalling that the current 7 is the rate of change of the charge ¢, we have the relation

i=99 _ 4oy
dt  dt
or
. dvc
lc = C—(Zt— (538)

where i and v in (5.38) obey the passive sign convention.

The unit of capacitance is the Farad abbreviated as I and since
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C = l_c _ amperes (5.39)
dve volts '
ai seconds

we can say that one farad is the capacitance in a circuit in which a current of one ampere flows when the volt-
age is changing at the rate of a one volt per second.

By separation of the variables we rewrite (5.38) as

dve = Lidi (5.40)
C
and integrating both sides we get:

ve(?) t

[ ave= éjlgicdz

ve(ty)

or

Ir'.
vel(t) = velty) = EI i dt
Iy

or

Ip'.
vel(t) = —C-,.[t icdt +ve(t)) (5.41)

where v(¢,) is the initial condition, that is, the voltage across a capacitor at some reference time

usually taken as t = 0, and denoted as v(0).

We can also write (5.41) as
It e’ It
ve(t) = Ej_wzcdt = a[_oozcdt + Ejo iodt
where the initial condition is represented by the first integral on the right side.

Example 5.5

The waveform shown in Figure 5.21 represents the current flowing through a / pF capacitor.
Compute and sketch the voltage across this capacitor for the time interval 0 <t <4 ms given that
the initial condition is v(0) = 0.
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ic(t) (mA)

1.00 —
0.75 -1
0.50 -
0.25 -

0 t(ms)
—-0.25 +

~0.50 1
~0.75 +
~1.00 - ----

Figure 5.21. Waveform for Example 5.5

Solution:

The initial condition v-(0) = 0, establishes the first point at the coordinates (0, 0) on the v(t)
versus time plot of Figure 5.22.

Next,
Jolx107 ve(0)
vc‘t=lms B CJ.() lcdt+ 0
or
_ _1_( 1><10_3) _ -3 -3
vc‘tzlms—CArea|t=0 _1><10_6(1X10 x1x107) = 1volt

and this value establishes the second point of the straight line segment passing through the origin as
shown in Figure 5.22.

ve(t) V)

1.00 +------ ‘
0.75 T
0.50 +
0.25 +
0 i I f f t(ms)
—025 + 1 2 3 4

—0.50 +
—0.75 T
—1.00

Figure 5.22. Straight line segment for 0 <t < 1 ms of the voltage waveform for Example 5.5
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This value of 1 volt at t = I ms becomes our initial condition for the time interval I < ¢< 2. Con-
tinuing, we get

_i( 1x10’3)
vC‘t:st_ CArea|t:0 + /

S — (=1 x 107 x(2=1)x 107)+ 1 = 0 volts
1% 10

Thus, the capacitor voltage then decreases linearly from 1 volt att = I ms to 0 volts att = 2 ms
as shown in Figure 5.23.

Vc(t)

100 == ,
0.75 T
0.50 +
0.25 +

O I| T T T t (ms)
—025 + 1 2 3 4

-0.50 1
-0.75 T
-1.00

Figure 5.23. Voltage waveform for 0 <t <2 ms of Example 5.5

There is no need to calculate the values of the capacitor voltage v, at t = 3 ms and at t = 4 ms
because the waveform of the current i, starts repeating itself at = 2 ms, and the initial conditions

and the areas are the same as before. Accordingly, the capacitor voltage v, waveform of figure (b)

starts repeating itself also as shown in Figure 5.24.
Vc(t)

100 f------ ,
0.75 T
0.50 +
0.25 +

¥ t (ms)
—0.25 L+ 1 2 3 4

-0.50 T
-0.75 T
—1.00

Figure 5.24. Voltage waveform for 0 <t <4 ms of Example 5.5
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Example 5.5 has illustrated the well known fact that #he vo/tage across a capacitor cannot change instan-
taneously. Referring to the current and voltage waveforms for this example, we observe that the cur-

rent through the capacitor can change instantaneously as shown by the discontinuities at

t = 1,2,3,and 4 ms in Figure 5.21. However, the voltage across the capacitor never changes

instantaneously, that is, it displays no discontinuities since its value is explicitly defined at all instances

of time as shown in Figure 5.24.

5.6 Power and Energy in a Capacitor

Power in a capacitor with capacitance C is found from

. (Cd"c)
Pc =Vclc = V¢ at

and the energy in a capacitor, denoted as W is the integral of the power, that is,

Wl = [ pedt = €| ver Cdt = c| " vedv,

ly t v(tp) v(ty)

i(t) ]

= SCLV(D-v(1p)]

or

Welt) = Welty) = SCO0~(1)))

and letting v- = 0 at t = 0, we get the energy stored in a capacitor as

Wty = écvé(t)

Like an inductor, a capacitor is a physical device capable of storing energy.

(5.42)

It was stated earlier that the current through an inductor and the voltage across a capacitor cannot
change instantaneously. These facts can also be seen from the expressions of the energy in an induc-
tor and in a capacitor, equations (5.27) and (5.42) where we observe that if the current in an inductor

or the voltage across a capacitor could change instantaneously, then the energies W, and W would

also change instantaneously but this is, of course, a physical impossibility.

Example 5.6

In the circuit of figure 5.25, the voltage and current sources are constant.
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a. Compute i;; and v,

b. Compute the power and energy in the 2 uF capacitor.

60 mH 10 O 20 mH

Figure 5.25. Circuit for Example 5.6

Solution:

a. The voltage and current sources are constant; thus, after steady-state conditions have been
reached, the voltages across the inductors will be zero and the currents through the capacitors
will be zero. Therefore, we can replace the inductors by short circuits and the capacitors by open
circuits and the given circuit reduces to that shown in Figure 5.26.

R, R;
I T
R, — i 5Q I5A
R Q
70 £, ™ 2

Figure 5.26. First simplification of the circuit of Example 5.6

We can simplify the circuit of figure 5.26 by first exchanging the 15 4 current source and resistor

Ry for a voltage source of 15 x 8 = 120 V in series with Rg as shown in Figure 5.27. We also

combine the series-parallel resistors R, through R,. Thus, Req =M4+2)|(7+5) = 4Q.But
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now we observe that the branch in which the current i, ; flows has disappeared; however, this

presents no problem since we can apply the current division expression once 7 shown in Figure
5.27, is found. The simplified circuit then is

. Req R8
i MM AN
4Q 8 Q
T R L+
(JD i Yo G)
_ ; ) T
24V Rs 60— 3] 120V
S iVAYAYAYe
10 ©

Figure 5.27. Final simplification of the circuit of Example 5.6

We can apply superposition here. Instead, we will write two mesh equations and we will solve
using MATLAB. These in matrix form are

=L

format rat; R=[20 —6; -6 14]; V=[24 -120]; I=R\V; disp(‘i1="); disp(I(1)); disp(‘i2="); disp(I(2))
il=
-96/61
i2=
-564/61

Solution using MATLAB:

Therefore, with reference to the circuit of Figure 5.28

Ry S 80

Figure 5.28. Circuit for computation of i; ; and v, for Example 5.6
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- ——] == =-05254
=G0 sl T e TP
and
Vez = 6(—9—6+5ﬁ() = 208 _ ys03 v
61 61
b.
pZHF:VZuFXi2pF=VC2X0=0
and
2
W2HF=éCvguF:0.5x2x]0_6x(g§%?) = 2mJ

5.7 Capacitance Combinations

Consider the circuits of figures 5.29 (a) and 5.29 (b) in which the source voltage v is the same for
both circuits. We want to find an expression for the equivalent capacitance which we denote as Cg,,

in terms of C;, C,, ..., Cy in Figure 5.29 (a) so that the current / will be the same in both circuits.

Figure 5.29. Circuits for derivation of equivalent capacitance for capacitors in series

From the circuit of Figure 5.29 (a),

or
¢t 1", Lt
EIJ-_OOde+ Czj_wldt+ e C—NJ-_wzdt = vg
or
1 1 )i ) L
(Lol o L) i = vy (5.43)
C] C2 CN j—oo

From the circuit of Figure 5.29 (b)
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] t
idt = v (5.44)
CSeq'[—oo S

Equating the left sides of (5.43) and (5.44) we get:

= —+—=+..+— (5.45)
CSeq C] CZ CN

and for the special case of two capacitors in series

CIC2
= —1 < 5.46
Seq C1+C2 ( )

Thus capacitors in series combine as resistors in parallel do.

Next, we will consider the circuits of figures 5.30 (a) and 5.30 (b) where the source current ig is the

same for both circuits. We wish to find an expression for the equivalent capacitance which we denote
as Cp,, in terms of C), C,, ..., Cy in Figure 5.30 (a) so that the voltage v will be the same in both

i Lo b
C@ | 1’1\/

circuits.

™ CPeq

| €<— <—>+

A,

\Q/

)
0

)
é’)

@

| &— < —>+

)]

(a) (b)

Figure 5.30. Circuits for derivation of equivalent capacitance for capacitors in parallel

From the circuit of Figure 5.30 (a),
T R

or
dv dv dv _ .
C, dt+c2dt+"'+Cth = ig
or
dv _ .
(C1+C2+"'+CN)E = ig (5.47)
From the circuit of Figure 5.30 (b),
dv .
Cpeq 7 = ls (5.48)

Equating the left sides of (5.47) and (5.48) we get:
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Thus, capacitors in parallel combine as resistors in series do.

Example 5.7
For the network of Figure 5.31, replace all capacitors by a single equivalent capacitor.
. I I/
I\ I\
15 pF 30 uF
—c 1 L
eq 560 T~ ; F ™ T~
2927 n 3 uF
37 uF K
8 uF |/ Y 2 uF
I\ I\
K ==

Figure 5.31. Network for Example 5.7
Solution:

Starting at the right of the network and moving towards the left, we find that 3 uF || I pF = 4 pF,
2 WF || 4 uF = 6 uF, 15 pF in series with 30uF = 10uF, and 8 uF || 12 uF = 20 pF. The
network then reduces to that shown in Figure 5.32.

|/
5 10 \F
Ceq 560 " |
E— wWE A~ 4 nF
6 uF
20 uF |/ 1
AN I\

Figure 5.32. First step in combination of capacitances
Next, the series combination of 10,4,and 6uF capacitors yields 60/31 pF and
60/31 WF|| 560/31 pF = 20 pF. Finally, the series combination of 20 pF and 20 pF yields
Ceq = [0 pF as shown in Figure 5.33.

—C,, ;:20 uF

Figure 5.33. Network showing the equivalent inductance of Figure 5.16
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5.8 Nodal and Mesh Equations in General Terms

In Examples 5.3 and 5.6 the voltage and current sources were constant and therefore, the steady-
state circuit analysis could be performed by nodal, mesh or any other method of analysis as we
learned in Chapter 3. However, if the voltage and current sources are time-varying quantities we
must apply KCL or KVL in general terms as illustrated by the following example.

Example 5.8

Write nodal and mesh equations for the circuit shown in Figure 5.34.

. (300001
R, /J-:c k
R,
Vsi
Vszl

Figure 5.34. Circuit for Example 5.8

Solution:
Nodal Analysis:

We assign nodes as shown in Figure 5.35. Thus, we need N— 1 = 5—1 = 4 nodal equations.

\%

Vi ’ Vs
R, _L L
—~C
\%

4

R2
Vsi
Vs2
==
vo -_

Figure 5.35. Nodal analysis for the circuit of Example 5.8

At Node 1:
Vi = Vsi
At Node 2:
V,—V d I¢!
2R1 Ty Cc_l';‘(vz_ Vy) +ZI_OO(v2— vy)dt = 0

At Node 3:

I¢! V3

Zj_w(v3—v2)dt+§; =0
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At Node 4:
Vg = Vs
Mesh Analysis:

We need M = B—1 = 6-5+1 = 2 mesh equations. Thus, we assign currents i, and i, as

. (OO
Ri /‘L c "
. RZ
Vs2 |

Figure 5.36. Mesh analysis for the circuit of Example 5.8

shown in Figure 5.306.

For Mesh 1:
t
Ri+if (i) —i,)dt—ve,—ve, = 0
i) Uimh 517 Vs2

For Mesh 2:

t
Lc%’?*Rz"z”v*éj (i,—ipdt =0

In both the nodal and mesh equations, the initial conditions are included in the limits of integration.
Alternately, we can add the initial condition terms and replace the lower limit of integration —co with
zero in the integrodifferential equations above.

5.9 Summary

Inductance is associated with a magnetic field which is created whenever there is current flow.

The magnetic field loops are circular in form and are called lines of magnetic flux. The unit of
magnetic flux is the weber (Wh).

The magnetic flux is denoted as ¢ and, if there are IN turns and we assume that the flux ¢ passes

through each turn, the total flux, denoted as A, is called flux linkage. Then, A = No

For an inductor, the voltage-current relationship is v; = L(di;/dt)

e The unit of inductance is the Henry abbreviated as H.

e Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring,

Circuit Analysis I with MATLAB Applications 5-29
Orchard Publications



Chapter 5 Inductance and Capacitance

The energy stored in an inductoris W, (t) = (1/ 2)Lii(t)

The current through an inductor cannot change instantaneously.

e In circuits where the applied voltage source or current source are constants, after steady-state con-
ditions have been reached, an inductor behaves like a short circuit.

e Inductors in series combine as resistors in seties do.
e Inductors in parallel combine as resistors in parallel do.
e Capacitance is associated with an electric field.

e A capacitor consists of two parallel metal plates separated by an air space or by a sheet of some
type of insulating material called the dielectric.

e The charge g on the plates of a capacitor is directly proportional to the voltage between the plates
and the capacitance C is the constant of proportionality. Thus, ¢ = Cv

e In a capacitor, the voltage-current relationship is i = C(dv/dt)

e The unit of capacitance is the Farad abbreviated as F.

e Like an inductor, a capacitor is a physical device capable of storing energy.
e The energy stored in a capacitor is W(t) = (1/2)C vzc(t)

e The voltage across a capacitor cannot change instantaneously.

e In circuits where the applied voltage source or current source are constants, after steady-state con-
ditions have been reached, a capacitor behaves like an open circuit.

e Capacitors in series combine as resistors in parallel do.
e Capacitors in parallel combine as resistors in series do.

e In a circuit that contains inductors and/or capacitors, if the applied voltage and current sources
are time-varying quantities, the nodal and mesh equations are, in general, integrodifferential equa-
tions.
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5.10 Exercises
Multiple Choice
1. The unit of inductance is the
A. Farad
B. Ohm
C. mH
D. Weber
E. None of the above
2. The unit of capacitance is the
A. uF
B. Ohm
C. Farad
D. Coulomb
E. None of the above
3. Faraday’s law of electromagnetic induction states that
A. A = No
B. A =1Li
C. v = L(di/dt)
D. v = dAr/dt
E. None of the above
4. In an electric field of a capacitor, the lines of force
A. are complete loops
B. start at the positive plate and end at the negative plate
C. start at the negative plate and end at the positive plate

D. are unpredictable

E. None of the above
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5. The energy in an inductor is
A. (1/2)(Li)

B. (1/2)(Lv°)

C. v,

D. dissipated in the form of heat
E. None of the above

6. The energy in a capacitor is
A. (1/2)(Ci)

B. (1/2)(CY)

C. viic

D. dissipated in the form of heat
E. None of the above

7. In an inductor
A. the voltage cannot change instantaneously
B. the current cannot change instantaneously
C. neither the voltage nor the current can change instantaneously
D. both the voltage and the current can change instantaneously
E. None of the above

8. In a capacitor
A. the voltage cannot change instantaneously
B. the current cannot change instantaneously
C. neither the voltage nor the current can change instantaneously
D. both the voltage and the current can change instantaneously
E. None of the above

9. In the circuit of Figure 5.37 after steady-state conditions have been established, the current i

through the inductor will be
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I
ONELE Y

is 154

Figure 5.37. Circuit for Question 9
A. 04

B. © 4
C. 254

D 54
E. None of the above

10. In the circuit of Figure 5.38 after steady-state conditions have been established, the voltage v,

across the capacitor will be

4
Sliov

Figure 5.38. Circuit for Question 10
A0V
B. oV
C.-10V
D. 10V

E. None of the above

Problems

1. The current i; flowing through a 10 mH inductor is shown by the waveform of Figure 5.39.
a. Compute and sketch the voltage v, across this inductor for ¢ > 0

b. Compute the first time after + = 0 when the power p; absorbed by this inductor is

p; = 50 pw Answer: t = 5 ms
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c. Compute the first time after ¢+ = 0 when the power p; absorbed by this inductor is

p; = =50 pw Answer: t = 25 ms

Ip A (mA)
10 ------ .

t (ms)

Figure 5.39. Waveform for Problem 1

2. The current i flowing through a I pF capacitor is given as i-(¢) = cos100t mA, and it is

known that v-(0) = 0

a. Compute and sketch the voltage v across this capacitor for ¢ > 0

b. Compute the first time after t = 0 when the power p. absorbed by this capacitor is
pe = 5 mw. Answer: 7.85 ms

c. Compute the first time after # = 0 when the power p. absorbed by this capacitor is

pe = =5 mw. Answer: 23.56 ms

3. For the network of Figure 5.40, compute the total energy stored in the series combination of the
resistor, capacitor, and inductor at t = 10 ms if:

—100t —10 V. Answer:3.4 mJ

a. i(t) = 0.1e mA and it is known that v (0)

b. i(¢) = 0.5cos5t mA and it is known that v-(0) = 0. Answer:50 pJ

ve(?)
_/\/\/\/\,_JUUOWL_““K -

—
(1) R L ¢
5Q 04mH 100 pF

Rest of the Network

Figure 5.40. Network for Problem 3

4. For the circuit of Figure 5.41, compute the energy stored in the 5 mH inductor at t = [ s given
that i(0) = 0. Answer: I mJ
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— i(?)
(00001 (OUU00
5SmH 3 mH

10 mH 7 mH
vs(D | 10e™ mV

Figure 5.41. Circuit for Problem 4
5. For the circuit of Figure 5.42, replace all capacitors with an equivalent capacitance C, q and then
compute the energy stored in C, g At = I ms given that vo(0) = 0 in all capacitors.

Answer: 10 pJ

[ U/
I\ I\
10 WF 3ur
<ZE> R T~ 6 uF
is(t) | 10 pA 8 uF

Figure 5.42. Circuit for Problem 5

6. Write nodal equations for the circuit of Figure 5.43.

Lo
v (t)CD %——‘é L

Figure 5.43. Circuit for Problem 6

7. Write mesh equations for the circuit of Figure 5.44.

14
I\

Figure 5.44. Circuit for Problem 7
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5.11 Answers to Exercises
Multiple Choice
1. E Henry

. C

e I S R R
g m > ® g

A
9.E -54
10. D
Problems

1. a. In an inductor the voltage and current are related by v, = L(di;/dt) = L x slope. Thus, we

need to compute the slope of each segment of the given waveform and multiply it by L.

Ai i} -

v| "™ = Lxslope = Lo = 10x 107 x ==—== = 10 mV/
0 At

Likewise,

20 ms
VL‘JO = Lxslope = Lx0=0mV

-3
T L xslope = 10 x 107 x [=10-(10)]x 10 _ A4 _ —10 mV
Llg

(40-20)x 107 s

50 ms

VL‘40 = Lxslope = Lx0 =0mV

10 ms 0—(-10)]x10° 4 _

v ™ = Lxslope = 10% 107 x| — 10 mv
0 (60-50)x 107" s
The current, voltage, and power waveforms are shown below.
5-36 Circuit Analysis I with MATLAB Applications

Orchard Publications



Answers to Exercises

LN (mA)
10| ------
10 mH : 40 50 /
B ; | | rms)
i (1) l
vi'T mv) |
10 ———
T ; t (ms)
v (t) 0 10 20 30 40 50 60
B T R
Pr
100
pL = Vi / t(ms)
0 60
-100

b. From the power waveform above, we observe that p;, = v;i; = 50 uw occurs for the first

time at point A where t = 5 ms

c. From the power waveform above, we observe that p;, = v;i; = —50 pw occurs for the first

time at point A where ¢t = 25 ms

2. a. For this problem C =1 pF = 10° F and the current i~ is a sinusoid given as

ic(t) = cos100t mA as shown below. The voltage v-(f) across this capacitor is found from

t t
ve(t) = ij ic de+ve(0) = 10°](107)cos 100vdt +0
C 0 0
t 10° t
= 103j cos 100tdt = “—sin100t| = 10sin 100t
, 100 )
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ic(1)

(mA)/

cos 100t

t(s)

and the waveform of v(#) is shown below.

Vc(t)
")
10 |- - - > 10sin 100t

Now, o7 =2n or o = 2n/T. Then, I()sinz%tt = 10sinl100t or 2n/T = 100 and

T=2n/100 ot T = n/50

b. Since v(t) is a sine function and i-(¢) a cosine function, the first time after zero that their
product will be positive is in the interval 0 < ¢<n/200 where we want p = vpio = 5 mw or
pe = (10sin1006)(107 cos 100t) = 5x 107 w

or
pc = (10sin100t)(cos100t) = 5w

Recalling that
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sin2x = 2sinxcosx
it follows that
pc = Ssin200t = 5w

or
sin200t = 1
or
-1
=i L _ M2 N 097855 = 7.85 ms
200 200 400
c. The time where p. = =5 mw will occur for the first time is 7.85 ms after t = n/200 s or

after ¢t = 1000m/200 ms = 5n ms. Therefore, p. = -5 mw will occur for the first time at

t=785+5n =785+1571 = 23.56 ms

3. a. There is no energy stored in the resistor; it is dissipated in the form of heat. Thus, the total
energy is stored in the capacitor and the inductor, that is,

Wy= W, +We = éLif+§cvé
where
i, =i(t) = 01"
and
I¢h. a0t —100%
velt) = Z’jo ic dt+va(0) = 10 jo 0.1 ar — 10
10° x 0.1 _100 t 1007)” 100
= ———= M 0= 1067 = 10— 107" - 10
~100 , '
or
velt) = —10"
Then,
1 -3 -100t.2 1 —4 —100t,2
T’t:mm_zxo.ww x(0.1e ) +§><10 x (=10e )

_4 _1.2 _1.2
25x10 "'[(0.1e ) +(=10e ") | =34 mJ

We’ve used MATLAB as a calculator to obtain the answer, that is,

WT=2.5*10N-4)*((0.1*exp(—1))"2+((—10)*exp(-1))"2);
fprintf(* \n"); fprintf(WT=%7.4f J',WT); fprintf(' \n')

WT= 0.0034 J

b. For this part
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i; = i(t) = 0.5cos5t mA

and

t t
ve(t) -IC-I ic de+ve(0) = 10°x 107[ ScosStde+0
0 0

. t .
= sm5r|0 = sin5t

Then,
= W, + W, = é x 0.4 % 107 x (0.5 cos 51)° +§ x 107 x (sin5t)’

=
|

2 .2
cos St+ sin” 5t
%/—/

0.5 x 10‘4{ } = 0.05 mJ =50 pJ

1

We observe that the total power is independent of time.

4. Starting with the right side and proceeding to the left, the series-parallel combination of
7+3=10,101110 = 5,and 5+ 5 = 10 mH reduces the given circuit to the one shown below.

10 mH
vs(D | 10 mV

The current i;(¢) is

. 1 ! . 1 -3 ! —T | —10 —t
zL(t):ZIO der+lL(0):mx10x10 Ioe dt = —e |0:e ’t:I—e

Then,

_ 1

_3 _12
Wsmnl,_, , = 3 L =25x107 x(I-€¢ ) ~1mJ

_ —t.2
x5x107°(1-e"|

6. We assign node voltages v, v,, and v; as shown below.

Vi
—~ C R,
C_D v, »——K V3
T C
vs(?) R, ’ L
Then,
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%
RI

Il
S

d d

V-V, d It

7. We assign mesh currents i;, i,, and i; as shown below.

|/
c, I\

Then,
It N I P
. di, d,. .
1! d
— | (i;-i;))dt+L,—=(i;—i,)+R,i; =0
Czj‘_oo 37h 203782 23
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NOTES
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Chapter 6

Sinusoidal Circuit Analysis

his chapter is an introduction to circuits in which the applied voltage or current are sinusoidal.

The time and frequency domains are defined and phasor relationships are developed for resis-

tive, inductive and capacitive circuits. Reactance, susceptance, impedance and admittance are
also defined. It is assumed that the reader is familiar with sinusoids and complex numbers. If not, it
is strongly recommended that Appendix B is reviewed thoroughly before reading this chapter.

6.1 Excitation Functions

The applied voltages and currents in electric circuits are generally referred to as exwitations or driving
functions, that is, we say that a circuit is “excited” or “driven” by a constant, or a sinusoidal, or an
exponential function of time. Another term used in circuit analysis is the word response; this may be
the voltage or current in the “load” part of the circuit or any other part of it. Thus the response may
be anything we define it as a response. Generally, the response is the voltage or current at the output
of a circuit, but we need to specify what the output of a circuit is.

In Chapters 1 through 4 we considered circuits that consisted of excitations (active sources) and
resistors only as the passive devices. We used various methods such as nodal and mesh analyses,
superposition, Thevenin’s and Norton’s theorems to find the desired response such as the voltage
and/or current in any particular branch. The circuit analysis procedute for these circuits is the same
for DC and AC circuits. Thus, if the excitation is a constant voltage or current, the response will also
be some constant value; if the excitation is a sinusoidal voltage or current, the response will also be
sinusoidal with the same frequency but different amplitude and phase.

In Chapter 5 we learned that when the excitation is a constant and steady-state conditions are
reached, an inductor behaves like a short circuit and a capacitor behaves like an open circuit. How-
ever, when the excitation is a time-varying function such as a sinusoid, inductors and capacitors
behave entirely different as we will see in our subsequent discussion.

6.2 Circuit Response to Sinusoidal Inputs

We can apply the circuit analysis methods which we have learned in previous chapters to circuits
where the voltage or current sources are sinusoidal. To find out how easy (or how difficult) the pro-
cedure becomes, we will consider the simple series circuit of Example 6.1.

Example 6.1

For the circuit shown in Figure 6.1, derive an expression for v-(¢) in terms of V,, R, C, and ®

where the subscript p is used to denote the peak or maximum value of a time varying function, and the

Circuit Analysis I with MATLAB Applications 6-1
Orchard Publications



Chapter 6 Sinusoidal Circuit Analysis

sine symbol inside the circle denotes that the excitation is a sinusoidal function.

R

Q

i(?)

Vg = Vpcosmt

e

Figure 6.1. Circuit for Example 6.1

Solution:
By KVL,
Vet Ve = Vg (6.1)
where
and
. dve
ie=Cg
Then,
dve
Vp = RCW
and by substitution into (6.1) we get
dv,
RCW +ve=vg = V,cosot (6.2)

As we know, differentiation (and integration) of a sinusoid of radian frequency o results in another

sinusoid of the same frequency ® . Accordingly, the solution of (6.2) must have the form
ve(t) = Acos(wt+0) (6.3)

where the amplitude 4 and phase angle 0 are constants to be determined from the circuit parame-
ters of ¥,, R, C, and . Substitution of (6.3) into (6.2) yields

~A®RCsin(wt+0) + Acos(wt +0) = Vpcoswt (6.4)

and recalling that

sin(x +y) = sinxcosy + cosxsiny
and

cos(x+y) = cosxcosy— sinxsiny
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we rewrite (6.4) as

—AORCsinwtcos® —AndRCcosmtsin® + Acoswtcos® — Asinotsin® = Vpcosmt

Collecting sine and cosine terms, equating like terms and, after some more tedious work, solving for
amplitude 4 and phase angle 6 we get:

14
velt) = —L——cos(wt-tan"'(0RC)) (6.5)

JI+(oRC)

Obviously, analyzing circuits with sinusoidal excitations when they contain capacitors and/or induc-
tors, using the above procedure is impractical. We will see on the next section that the complex excita-
tion function greatly simplifies the procedure of analyzing such circuits. Complex numbers are dis-
cussed in Appendix B.

The complex excitation function does not imply complexity of a circuit; it just entails the use of
complex numbers. We should remember also that when we say that the imaginary part of a complex
number is some value, there is nothing “imaginary” about this value. In other words, the imaginary
part is just as “real” as the real part of the complex number but it is defined on a different axis. Thus
we display the real part of a complex function on the axis of the reals (usually the x-axis), and the
imaginary part on the imaginary axis or the y-axis.

6.3 The Complex Excitation Function

We recall that the derivatives and integrals of sinusoids always produce sinusoids of the sawze frequency
but different amplitude and phase since the cosine and sine functions are 90 degrees out-of-phase.
Thus, if

v(t) = Acos(wt+0)

then
D _ o dsin(or +0)
dt
and if
i(t) = Bsin(ot+¢)
then
% = oBcos(wt+ )

Let us consider the network of Figure 6.2 which consists of resistors, inductors and capacitors, and
it is driven (excited) by a sinusoidal voltage source v¢(?).
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i t
s Lo4p(?)

Excitation Linear Network +
Consisting of Q
Resistors, S| Ve 04p(t)
~
Vg (1) Inductorfv and a
Capacitors

Figure 6.2. General presentation of a network showing excitation and load

*
Let us also define the voltage across the load as v, , p()  as the response. As we know from Chap-
ter 5, the nodal and mesh equations for such circuits are integrodifferential equations, and it is shown

in differential equations textbooks! that the forced response or particular solution of these circuits have the
form

v, p(t) = Acos(wt) + Bsin(wt)

We also know from Euler’s identity that

jot

Acosot + jAsinot = Ae (6.6)

and therefore, the real component is the response due to coswt and the imaginary component is the
response to sinot We will use Example 6.2 to illustrate the ease by which we can obtain the
response of a circuit, which is excited by a sinusoidal source, using the complex function

ol . . . . - . .
Ae’ approach. In this text, we will represent all sinusoidal variations in terms of the cosine func-
tion.
Example 6.2

Repeat Example 6.1, that is, find the capacitor voltage v (¢) for the circuit of Figure 6.3 using the

complex excitation method.

R

Q

r TN
i) | Vel
Vg = Vpcosmt

Figure 6.3. Circuit for Example 6.2

* Some textbooks denote the voltage across and the current through the load as v, and i; respectively. As we stated
previously, in this text, we use the v; 4, and iy o 4p notations to avoid confusion with the voltage v; across and

the current i; through an inductor.

7 This topic is also discussed in Circuit Analysis Il with MATLAB® Applications by this author

6-4 Circuit Analysis [ with MATLAB Applications
Orchard Publications



The Complex Excitation Function

Solution:

Since

cosmt = Re{e]m}
we let the excitation be

ve(t) Vpej of
and thus the response will have the form

Vc(t) — Vcej(wt"’q))

As in Example 6.1,

dv :
RCEQ +ve = Vpejm (6.7)
or
RCL(V /D) 4y /OO =y o
dt p
or

(oRC+ Ve =y

The last expression above shows that radian frequency o is the same for the response as it is for the
excitation; therefore we only need to be concerned with the magnitude and the phase angle of the
response. Accordingly, we can eliminate the radian frequency o by dividing both sides of that

. [0t . L .
expression by e’®" and thus the input-output (excitation-response) relation reduces to

. [0}
(oRC+ 1)V’ =7,

from which

Vce = - = ., =
JoORC+ 1 /] + 02BN (@RO)] /1 o RC

This expression above shows the response as a function of the maximum value of the excitation, its

jo _ v, Vv, Vv, e—j[mn”(mRC)]

radian frequency and the circuit constants R and C.

If we wish to express the response in complete form, we simply multiply both sides by e’ and
we get

Vcej(wt+<p) _ Vg ej[mt— tan " (0RC)]
J1+0’RC?

Finally, since the excitation is the real part of the complex excitation, we use Euler’s identity on both
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sides and equating reals parts, we get

v
ve(t) = Vecos(ot+¢) = —pcos[mt—tan_l(mRC)]

2.2 2

NI+ RC
The first part of the above procedure where the excitation-response relation is simplified to ampli-
tude and phase relationship is known as #me-domain to frequency-domain transformation; the second part
where the excitation-response is put back to its sinusoidal form is known as frequency-domain to tinze-
domain transformation. For brevity, we will denote the time domain as the t—domain, and the fre-

quency domain as the jo — domain .

If a sinusoid is given in terms of the sine function, we must first convert it to a cosine function.
Thus,

m(t) = Asin(ot+0) = Acos(ot+06—90°) (6.8)

and in the jo —domain it is expressed as

M= 4" 2 4s00-90°) 6.9)

where M represents a phasor (rotating vector) voltage V or current I* .

In summary, the ¢t — domain, to jo —domain transformation procedure is as follows:

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity

3. Extract the magnitude and phase angle from it.

Example 6.3
Transform the sinusoid v(¢) = 10sin(100t— 60°) to its equivalent jo —domain expression.
Solution:

For this example, we have

v(t) = 10sin(100t - 60°) = 10cos(100t — 60° — 90°)

or

v(t)= 10cos(100t—150°) = Re{wej(wof—wo )}
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Since the jo — domain contains only the amplitude and phase, we extract these from the bracketed

term on the right side of the above expression, and we get the phasor V' as
v = 107" = 102-150°

The jo —domain to t—domain transformation procedure is as follows:
1. Convert the given phasor from polar to exponential form
2. Add the radian frequency o multiplied by ¢ to the exponential form

3. Extract the real part from it.

Example 6.4
Transform the phasor I = 120/-90° to its equivalent time-domain expression.
Solution:

First, we express the given phasor in exponential form, that is,

I=120/-90° = 120¢7°°

Next, adding the radian frequency o multiplied by ¢ to the exponent of the above expression we
get

i(t)= 120/ =7")

and finally we extract the real part from it. Then,
i(f) = Re{]ZOej(wt_ 20 )} = 120cos(oi—90°) = 120sinot
We can add, subtract, multiply and divide sinusoids of the same frequency using phasors as illus-

trated by the following example.

Example 6.5

It is given that i,(t) = 10cos(120nt+ 45°) and i,(¢t) = 5sin(120nt—45°). Compute the sum
i(t) = i;,(0)+i,(2).
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Solution:

As a first step, we express i,(#) as a cosine function, that is,
i,(t) = Ssin(120nt-45°) = 5cos(120nt—45° — 90°) = Scos(120nt—135°)
Next, we perform the ¢t — domain to jo —domain transformation and we obtain the phasors

I,=10445° and I,=5/-135°

and by addition,

I=1,+1, = 10£45°+5/-135° = 10(“/2 [) +5(_£2_j-@)
2 > /7

or

I= 5(£2+J{) = 5/45°

and finally transforming the phasor I into the ¢ — domain , we get
i(t) = 5cos(120nt+ 45°)

Also, for brevity, in our subsequent discussion we will designate resistive, inductive and capacitive
circuits as R, L, and C respectively.

6.4 Phasors in R, L, and C Circuits

The circuit analysis of circuits containing R, L, and C devices, and which are excited by sinusoidal
sources, is considerably simplified with the use of phasor voltages and phasor currents which we will
represent by the boldface capital letters V' and I respectively. We will now derive ¥V and I phasor
relationships in the jo —domain. We must always remember that phasor quantities exist only
in the jo —domain.

1. V and I phasor relationship in R branches

Consider circuit 6.4 (a) below where the load is purely resistive. We know from Ohm’s law that
vr(?) = Rip(t) where the resistance R is a constant. We will show that this relationship also holds

for the phasors V, and I, shown in circuit 6.4 (b), that is, we will prove that

Vi = RI,
Proof:

In circuit 6.4 (a) we let v (#) be a complex voltage, that is,
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ve(?) | N + Vs | ANVVWA- +
6 _TO0u0. @ vg (1) 6 _OO000. 3 Vi
>

ll i
Ve(t) = Rip(t) = Vpcos(mt+9) Ve = RI,

(a) t—domain network (b) jo—domain (phasor) network

Figure 6.4. Voltage across a resistive load in t — domain and jo —domain

Vpef'(““d’) = ¥, cos (ot +9) +jV,sin(ot +¢) (6.10)

and since R is a constant, it will produce a current of the same frequency o and the same phase ¢ i
whose form will be

jlot+) . .

Ipe = Ipcos((ot+¢) +]Ipsm(o)t+¢)

and by Ohm’s law,
v, O = Ry SOV 6.11)
Transforming (6.11) to the jo — domain , we obtain the phasor relationship

Jo _ py JO _
Vpe = Rlpe or Vpéd) = Rlpéd)

Since the phasor current I is zn-phase with the voltage V' (both I and V have the same phase ¢ ), we
let

V, 20 = Vg and 1,26 =1,

and it follows that

Ve = RI, (6.12)

Therefore, the phasor V and I relationship in resistors, obeys Ohm’s law also, and the current
through a resistor is always in—phase with the voltage across that resistor.

Example 6.6

For the network of Figure 6.5, find i, (#) when vy (¢) = 40sin(377t—75°).

* The phase will be the same since neither differentiation nor integration is performed here.
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vg(?) AW +
I— 4’<— R=5Q_

Ve (t) = 40sin(377t—75°)

Figure 6.5. Voltage across the resistive load of Example 6.6

Solution:

We first perform the ¢t — domain to jo —domain i.e., vg(t) & Vg transformation as follows:

V(1) = 40sin(377t — 75°) = 40cos (377t — 165°) < Vg = 40L—165°

Then,
V _ o
IR = —R = 4—04 165 = 84—]65014
R 5
Therefore,
I,=82-165° A4 ig(t) = 8cos(377t—165°) = 8sin(377t—75°) A
&
jo —domain t—domain

Alternately, since the resistance R is a constant, we can compute i, () directly from the ¢ —domain
expression for vy (t), that s,
ve(?) _ 40sin(377t—75°) _

in(0) = = ; = 8sin(377t—75°) A

2. V and I phasor relationship in L branches

Consider circuit 6.6 (a) below where the load is purely inductive.

ve(?) L AMA + Vs A +
@ _(TO000L @%n(ﬂ @ _(O0000L 3 Vv,
<>

L

C | e = —t

di, V, = jolL,
(@) t—domain network (b) jo—domain (phasor) network

Figure 6.6. Voltage across an inductive load in t — domain and jo — domain

We will prove that the relationship between the phasors ¥, and I; shown in circuit 6.6 (b) is

6-10 Circuit Analysis [ with MATLAB Applications
Orchard Publications



Phasors in R, L, and C Circuits

V, = joLI, (6.13)
Proof:
In circuit 6.6 (a) we let v;(#) be a complex voltage, that is,
Vpej(qu)) = Vpcos(mt+¢) +ijSin(cot+¢) (6.14)

and recalling that if x(¢) = sin(ot+ ¢) then dx/dt = wcos(wt + ¢), that is, differentiation (or inte-

gration) does not change the radian frequency o or the phase angle ¢, the current through the
inductor will have the form

]pej(mﬂb) = Ipcos(o)t+¢) +j]psin((ot+¢) (6.15)
and since
di
v, (1) = Ld—f
then,
jot+) . d o jlot+d), _ . J(ot+0)
Ve = Ldt(ll’e ) = joLle (6.16)

Next, transforming (6.16) to the jo — domain , we obtain the phasor relationship

Jjo _ . Jjo _
Vpe —]coLIpe or Vpéd) —]oaL[pAd)

and letting
V,Z0=V, and I, 2o =1,

we get

V, = joLI, (6.17)

The presence of the j operator in (6.17) indicates that the voltage across an inductor leads the cur-
rent through it by 90°.

Example 6.7

For the network of Figure 6.7, find i, (#) when v, (¢) = 40sin(2t-75°).

Solution:

We first perform the ¢t —domain to jo —domain i.e., v;(t) < V; transformation as follows:
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s

L
v, (1) = 40sin(2t - 75°)

ve(?) AN T [+
5 0. @ éVL(t)
=5

mH

Figure 6.7. Voltage across the inductive load of Example 6.7

v, (1) = 40sin(2t—75°) = 40cos(2t— 165°) <V, = 40£-165° mV
and

P (40/-165°)x 10> _ 40/—165°
= L -

= - 3 = — = 4/-255° = 4/£105° A

Therefore,

I, =4/105° 4 i;(t) =4cos(2t+ 105°) = 4sin(2t - 165°) A
=
jo —domain t—domain

3. V and I phasor relationship in C branches

Consider circuit 6.8 (a) below where the load is purely capacitive.

vs(2) AN —Jj Vg AN +
@ W00 iC}/\Vc ) @ W, Ia;<VC
<——>

| 6 C | 6

dv I, = joCV
je(1) = C=£ T
(@) t—domain network (b) jo—domain (phasor) network

Figure 6.8. Voltage across a capacitive load in t —domain and jo — domain

We will prove that the relationship between the phasors ¥V and I, shown in the network of Figure
6.8 (b) is

Proof:

In circuit 6.8 (a) we let v(#) be a complex voltage, that is,
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Jjot+¢) _ R
Vpe = Vpcos(mt+¢) +]Vpsm(cot+¢)

then the current through the capacitor will have the form

(ot o
Ipej((D ) Ipcos(o)t+¢) +]Ipsm(mt+¢)
and since
dv
ic(t) = Tf
then
jor+¢) _ d Jjor+d), _ . J(or+9)
1,e = Cdt(VPe ) = ]mCVpe (6.19)

Next, transforming (6.19) to the jo — domain, we obtain the phasor relationship

Jjo _ . Jo _
Ipe —]coCVpe or Ipé(]) —]mCVpLd)
and letting
]péd) =1, and Vpéq) =V:

we get

The presence of the j operator in (6.26) indicates that the current through a capacitor leads the volt-
age across it by 90°.

Example 6.8

For the circuit shown below, find i-(f) when v(¢) = 170cos(60nt—45°).

Vs(t) AN +
6 oL i@;<vc(t)

] 4<— C=106 nF

ve(t) = 170cos (60t —45°)

Figure 6.9. Voltage across the capacitive load of Example 6.8

Solution:

We first perform the t —domain to jo —domain i.e., vo(t) < V- transformation as follows:
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velt) = 170cos(60mt — 45°) < Ve = 170 £-45°

Then,
I, = joCVeq=jx60nx 106 x 107 x 170£-45° = 1 £90° x 3.4 x 107 x 1/-45°
= 3.4x 107 245° = 3.4245° mA
Therefore,
I.=3.4/45° m4 io(t) = 3.4cos(60n +45°) mA
jo —domain = t—domain

6.5 Impedance

Consider the t —domain circuit in Figure 6.10 (a) and its equivalent phasor circuit shown in Figure

6.10 (b).

)+

0T

(a) t—domain network (b) jo—domain (phasor) network
ve(t) = Rip(?) <« Ve = IR
. di V, = joLl
VL(I) = Lc_i_l L
. T
_ 1t €7 joC
ve(t) = CI_Oozdt «—> J
vp(D) +v (D +ve(l) = ve(t) <> Vet Vi+Ve= Vg
. di I¢t ., . 1
Rl(t)+Lc—Z—[+—éJ._wldt— vg(1) RI+]0)LI+jm—CI= Vg
<>
Integrodifferential Equation Algebraic Equation
(Very difficult to work with) (Much easier to work with)

Figure 6.10. The t —domain and jo —domain relationships in a series RLC circuit

The last equation of the phasor circuit may be written as

(R+ij+_L 1=V
Jjw
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and dividing both sides of (6.26) by I we obtain the #zpedance which, by definition, is

V
Impedance = Z = Phasor Voltage _ _S _ R+jcoL+,L (6.21)
Phasor Current 1 joC

Expression (6.21) is referred to as Obms law for AC Circuits.
Like resistance, the unit of impedance is the Ohm (Q).

We can express the impedance Z as the sum of a real and an imaginary component as follows:

Since
1 _1j_ .
- = <" = = = —]
2
J J J j
then
Lo L
joC e
and thus
Z=R +j(coL - —IE) (6.22)
®
We can also express (6.22) in polar form as
Z= |[R"+|\oL-—| ZLtan |olL-—|/R (6.23)
® oC

We must remember that #he zmpedance is not a phasor; it is a complex quantity whose real part is the
resistance R and the imaginary partis oL — I/wC, that s,

Re{Z} =R and Im{Z} = oL - - (6.24)
oC

The imaginary part of the impedance Z is called reactance and it is denoted with the letter X. The

two components of reactance are the nductive reactance X, and the capacitive reactance X -, i.e.,

X=X, +X. = oL-1/0C (6.25)
X, = oL (6.26)
X. = 1/0C (6.27)

The unit of the inductive and capacitive reactances is also the Ohm (Q).
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In terms of reactances, the impedance can be expressed as

Z = R+jX = R+j(X,-Xp) = R + (X, -Xp) Ztan '[(X, -X)/R] (6.28)

By a procedure similar to that of Chapter 2, we can show that impedances combine as resistances do.

Example 6.9

For the circuit below, find the current i(¢) given that v¢(¢) = 100cos(100t-30°).

s Yome  cl+
T~

vg(1) = 100cos(1001 — 30°)

Figure 6.11. Circuit for Example 6.9
Solution:

If we attempt to solve this problem in the time-domain directly, we will need to solve an integrodif-
ferential equation. But as we now know, a much easier solution is with the transformation of the

given circuit to a phasor circuit. Here, ® = 100 rad/s and thus

joL = jX, =j100x 0.1 = j10 Q

and
1 i . 1

-
10°x 10° x 1070

= 100

Also,
Vi = 100£-30°

and the phasor circuit is as shown in Figure 6.12.

Figure 6.12. Phasor circuit for Example 6.9

From the phasor circuit of Figure 6.12
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Z = 547107100 = 5-j90 = 5>+ 90° Ltan™'(=90/5) = 90.14./-86.82°
and

V °
[ = S 2 _100£-30°  _ gy 0300 - (-86.82°)]
Z  90.14/-86.82°
Therefore,

I=1.11/56.82°<i(t) = 1.11cos(100t+ 56.82)

6.6 Admittance

Consider the ¢ — domain circuit in Figure 6.13 (a) and its equivalent phasor circuit shown in Figure

6.13 (b).

1\ % R T L C /r + R I L C
ONEY §¢ T —— v 2 %i T~
] . . i-(t
OV T oo O [ T T |
(a) t—domain network (b) jo —domain (phasor) network
ig(t) = Gv(1) <« I; = GV
. d -
i) = ci - I = joCV
l
. It I, = sz
i (1) = ZJ_det R jo
i) +i,(0) +ip(t) = ig(t) «— Ip+ 1 +1c = I
dv 1! . . 1
Gu(n+ C+ 7 vdi=ig() GV +joCV + oV =1
<
Integrodifferential Equation Algebraic Equation
(Very difficult to work with) (Much easier to work with)

Figure 6.13. The t —domain and jo —domain relationships in a parallel RLC circuit

The last equation of the phasor circuit may be written as
1 .
G+ sjocly =1 6.29
( +ij +jo g (6.29)

Dividing both sides of (6.29) by V', we obtain the admittance, that is, by definition
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1
Admittance = Y = Phasor Current _ S _ G+.L+jooC -1 (6.30)
Phasor Voltage V joL Z

Here we observe that the admittance Y is the reciprocal of the impedance Z as conductance G is

the reciprocal of the resistance R.

: : . . . -1
Like conductance, the unit of admittance is the siemens or mho (Q 7).

As with the impedance Z, we can express the admittance Y as the sum of a real component and an
imaginary component as follows:

Y = G+j(wc_mil) (6.31)

and in polar form

Y = ch + (oaC— lezétan_I[(wC— (,)]J /GJ (6.32)

Like the impedance Z, the admittance Y it is not a phasor, it is a complex quantity whose real part is the

conductance G and the imaginary partis oC — -]—L , that is,
o)

Re{Y} =G and Im{Y} = mc_alz (6.33)

The imaginary part of the admittance Y is called susceptance and it is denoted with the letter B. The

two components of susceptance are the capacitive susceptance B and the inductive susceptance B , that is,

B=B.+B, = oC—1/0l (6.34)
Be = oC (6.35)
B, = 1/oL (6.36)

The unit of the susceptances B and B; is also the siemens (Q_I) .

In terms of susceptances, the admittance Y can be expressed as

Y= G+jB = G+j(Bo-B,) = G’ +(Be—B,) Ztan " [(Bo—B,)/G] (6.37)

By a procedure similar to that of Chapter 2, we can show that admittances combine as conductances
do.
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Duality is a term meaning that there is a similarity in which some quantities are related to others.
The dual quantities we have encountered thus far are listed in Table 6.1.

TABLE 6.1 Dual quantities

Series Parallel
Voltage Current
Resistance Conductance
Thevenin Norton
Inductance Capacitance
Reactance Susceptance
Impedance Admittance

Example 6.10

Consider the series and parallel networks shown in Figure 6.14. How should their real and imaginary

terms be related so that they will be equivalent?

__/\/\A/\,__W
R L
Z—> A

Jla

Yy —> G L —~c

Figure 6.14. Networks for Example 6.10

Solution:

For these circuits to be equivalent, their impedances Z or admittances ¥ must be equal. Therefore,

i / G I R-jX _ R-jX _ _R X

= = = - = +JB
Z R+jX

and equating reals and imaginaries we get

= . — = = —
R+JX R=jX 2 ¥ R+X R+X

G = = and B =X (6.38)
R+ X R+ X
Relation (6.38) is worth memorizing;
Example 6.11
Compute Z and Y for the network of Figure 6.15.
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i

Z,Y—> G L —~ C
10" 2 ’ js

Figure 6.15. Network for Example 6.11
Solution:

Since this is a parallel network, it is easier to compute the admittance Y first. Thus,

Y = G+_L+jc0C =4-j2+j5 = 4+j3 = 5£36.9°
JjoL

Since the impedance is the reciprocal of admittance, it follows that

Lo _ 1 95,3690 = 0.16-j0.12
Y 5/36.9°

Example 6.12
Compute Z and Y for the circuit shown below. Verify your answers with MATLAB.

Ll C]
370 N AN
i3 N
—-i8Q 2 100 200
R, R,
Z Y—>

L, 8 jsa T
J c, 716 Q

Figure 6.16. Network for Example 6.12

Solution:

Let the given network be represented as shown in Figure 6.17 where Z, = jI3—-j8 = j5,

Then,
Z=17+ 225 _ 54 U0+9)20-j16) _ ;5 (11.18£26.6°)(25.61£-387°)
Z,+ 7, 10+/5+20-j16 31.95/-20.1°
= j5+896,8° =j5+887+j1.25=887+j6.25=10.85,35.2°
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Figure 6.17. Simplified network for Example 6.12

and

1 1

Y=== ——M—
Z 10.85135.2°

= 0.092£-35.2° = 0.0754—-j0.531

Check with MATLAB:
z1=j*5; z2=10+j"5; z8=20-j*16; z=z1+(22*23/(z2+23)) % Find impedance z

zZ =

8.8737+ 6.25371
y=1/z % Find admittance y
y =

0.0753- 0.05311i

6.7 Summary
e Excitations or driving functions refer to the applied voltages and currents in electric circuits.

e A response is anything we define it as a response. Typically response is the voltage or current in
the “load” part of the circuit or any other part of it.

e If the excitation is a constant voltage or current, the response will also be some constant value.

e If the excitation is a sinusoidal voltage or current, in general, the response will also be sinusoidal
with the same frequency but with different amplitude and phase.

o If the excitation is a time-varying function such as a sinusoid, inductors and capacitors do not
behave like short circuits and open circuits respectively as they do when the excitation is a con-
stant and steady-state conditions are reached. They behave entirely different.

e Circuit analysis in circuits where the excitation is a time-varying quantity such as a sinusoid is very
difficult and thus impractical in the ¢ — domain .

e The complex excitation function greatly simplifies the procedure of analyzing such circuits when
excitation is a time-varying quantity such as a sinusoid.

e The procedure where the excitation-response relation is simplified to amplitude and phase rela-
tionship is known as time-domain to frequency-domain transformation.
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e The procedure where the excitation-response is put back to its sinusoidal form is known as fre-
quency-domain to time-domain transformation.

e For brevity, we denote the time domain as the ¢—domain, and the frequency domain as the

jo —domain.

e If a sinusoid is given in terms of the sine function, it is convenient to convert it to a cosine function
using the identity m(t) = Asin(ot+0) = Acos(wt+6—90°) before converting it to the

jo —domain.
e The t—domain to jo —domain transformation procedure is as follows:
1. Express the given sinusoid as a cosine function
2. Express the cosine function as the real part of the complex excitation using Euler’s identity
3. Extract the magnitude and phase angle from it.
e The jo —domain to t—domain transformation procedure is as follows:
1. Convert the given phasor from polar to exponential form
2. Add the radian frequency o multiplied by ¢ to the exponential form
3. Extract the real part from it.

e The circuit analysis of circuits containing R, L, and C devices, and which are excited by sinusoidal
sources, is considerably simplified with the use of phasor voltages and phasor currents which we
represent by the boldface capital letters V' and I respectively.

e Phasor quantities exist only in the jo — domain

e In the jo —domain the current through a resistor is always in—phase with the voltage across that
resistor

e In the jo — domain the current through an inductor lags the voltage across that inductor by 90°
e In the jo — domain the current through a capacitor leads the voltage across that capacitor by 90°

e In the jo — domain the impedance Z is defined as

- Phasor Voltage _ ZS‘ _ R+j0)L+.L

Impedance
Phasor Current 1 joC

e Like resistance, the unit of impedance is the Ohm (Q).

e Impedance is a complex quantity whose real part is the resistance R, and the imaginary part is
oL - 1/wC, that is,
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Re{Z} =R and Im{Z} = oL — -
oC

e In polar form the impedance is expressed as

2 -1
7 = /\/R2+(c0L——]— Ztan (mL——I—J/R
w

)

e The imaginary part of the impedance Z is called reactance and it is denoted with the letter X. The

two components of reactance are the inductive reactance X; and the capacitive reactance X, iL.e.,

1
X = XL—XC = (DL_(D_C

e The unit of the inductive and capacitive reactances is also the Ohm (Q).

o In the jo — domain the admittance Y is defined as

1
Phasor Current _ S _ g, 1 ,ioc=1

Phasor Voltage V joL Z

Admittance = Y =

e The admittance Y is the reciprocal of the impedance Z as conductance G is the reciprocal of the

resistance R.
) . ) ) -1
e The unit of admittance is the siemens or mho (Q ).
e The admittance Y is a complex quantity whose real part is the conductance G and the imaginary

partis ©C — L , that is,
ol

Re{Y} =G and Im{Y} = wC—-L
ol

e The imaginary part of the admittance Y is called susceptance and it is denoted with the letter B.

The two components of susceptance are the capacitive susceptance B and the inductive suscep-
tance B, that is,

1
B=B,.-B, = oC-—
¢ L @ ol

e In polar form the admittance is expressed as

Y = /\/G2+(mC—m]l)ZLtan_I[(mC—@]J/G}

e The unit of the susceptances B and B; is also the siemens (Qfl) .
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e Admittances combine as conductances do.

e In phasor circuit analysis, conductance is not necessarily the reciprocal of resistance, and suscep-
tance is not the negative reciprocal of reactance. Whenever we deal with resistance and reactance
we must think of devices in series, and when we deal with conductance and susceptance we must
think of devices in parallel. However, the admittance is always the reciprocal of the impedance

e The ratio V/I of the phasor voltage to the phasor current exists only in the jo — domain and it is
not the ratio v(¢)/i(t) in the t — domain . Although the ratio v(#)/i(¢) could yield some value, this

value is not impedance. Similarly, the ratio i(¢)/v(¢) is not admittance.

e Duality is a term meaning that there is a similarity in which some quantities are related to others.
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6.8 Exercises
Multiple Choice
1. Phasor voltages and phasor currents can be used in the ¢ — domain if a circuit contains
A. independent and dependent sources with resistors only
B. independent and dependent sources with resistors and inductors only
C. independent and dependent sources with resistors and capacitors only
D. independent and dependent sources with resistors, inductors, and capacitors
E. none of the above

2. If the excitation in a circuit is a single sinusoidal source with amplitude 4, radian frequency o,
and phase angle 6, and the circuit contains resistors, inductors, and capacitors, all voltages and all
curtrents in that circuit will be of the same

A. amplitude 4 but different radian frequency o and different phase angle 6
B. radian frequency o but different amplitude 4 and different phase angle 6
C. phase angle 8 but different amplitude 4 and different radian frequency o
D. amplitude 4 same radian frequency ® and same phase angle 6

E. none of the above

3. The sinusoid v(¢) = 120sin(wt+ 90°) in the jo —domain is expressed as
AV = 1206/
B. V = 120"
C. V= 120"

D. v = 120"
E. none of the above

4. A series RLC circuit contains two voltage sources with values v,(t) = 100cos(10t+45°) and
v,(t) = 200sin(5t-60°) . We can transform this circuit to a phasor equivalent to find the cur-

rent by first replacing these with a single voltage source v(¢) = v,(f) + v,(¢) whose value is
A. v(t) = 300cos(15t-15°)

B. v(#) = 100cos(5t+ 105°)
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C. v(t) = 150cos(7.5t—15°)
D. v(¢) = 150cos(7.5t+ 15°)
E. none of the above

5. The equivalent impedance Z,, of the network of Figure 6.18 is

A 1+j1
B. 1-jI
C. -l
D 2+/0
E. none of the above

—AAAN—T0000

20 jos5Q
Loy —  —2Q A~ 2Q

Figure 6.18. Network for Questions 5 and 6
6. The equivalent admittance Y, p of the network of Figure 6.18 is

A. 4-15

16 .6

B. %4"]7}

12 .2
C. 3—7+‘]37

D 2-;2

E. none of the above

7. The resistance of a coilis R = 1.5 Q and the inductance of that coilis L = 5.3 mH . If a current
of i(t) = 4coswt A flows through that coil and operates at the frequency of / = 60Hz, the pha-
sor voltage V across that coil is

A, 10£53.1°V
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B. 6£0°V

C. 5.3x10°290° v
D. 6.8£45°V
E. none of the above

8. A resistor with value R = 5 Q is in series with a capacitor whose capacitive reactance at some

particular frequency o is - X, = -5 Q. A phasor current with value I = 8£0° 4 is flowing

through this series combination. The ¢ —domain voltage across this series combination is
A. 80cosot

B. 80sinwt

C. 56.6cos(mwt—45°)

D. 56.6cos(wt+45°)

E. none of the above

. -1 .. . . .
9. A conductance with value G = 0.3 Q  is in parallel with a capacitor whose capacitive suscep-

tance at some particular frequency o is jB, = j0.3 o’ A phasor voltage with value

V = 10£0° is applied across this parallel combination. The ¢ —domain total current through

this parallel combination is
A. 3cosot +j3sinmt

B. 3coswt—j3sinmt

C. Ssin(wt+53.2°)

D. Scos(wt+53.2°)

E. none of the above

10. If the phasor I = je‘j(n/2)

, then in the t—domain i(t) is
A. cos(ot+m/2)

B. sin(ot+mn/2)

C. —cosot

D. —sinwt

E. none of the above
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Problems

1. Express the sinusoidal voltage waveform of Figure 6.18 as v(#) = Acos(ot+0), that is, find 4,
o, and 0. Answer: v(¢) = 2cos(1000t + 36.1°)

v(v) 162V
22 =
- m\ /0.94 ms
/ 0 t (ms)

Figure 6.19. Circuit for Problem 1

2. The current i(¢) through a device decays exponentially as shown by the waveform of Figure 6.20,

and two values are known as indicated. Compute (1), that is, the current at ¢ = [ ms

Answers: i(f) = 50¢ " mA, 23.62 mA

i (mA)

i =15.00 mA at 1.605 ms

/ | = 5.27 mA at 3.000 ms

t (ms)

Figure 6.20. Circuit for Problem 2

3. At what frequency f is the network of Figure 6.21 operating if it is known that
vg = 120coswt V and i = 12cos(wt—36.9°) A? Answer: [ = 5.533 KHz

Figure 6.21. Circuit for Problem 3
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4. In the circuit of Figure 6.22, vy = Vcos(2000t+6) V and the symbols V and A inside the cir-

cles denote an AC woltmeter and ammeter respectively. Assume that the ammeter has negligible
internal resistance. The variable capacitor C is adjusted until the voltmeter reads 25 V and the
ammeter 5 A. Find the value of the capacitor. Answer: C = 89.6 pF

A
R>2Q
Vs Other Part
@ of the
Network v L % 0.5 mH

C
L
T~

Figure 6.22. Network for Problem 4

5. For the circuit shown on Figure 6.23, is it possible to adjust the variable resistor R; and the vari-
able capacitor C so that Z;,, and Y,y have the same numerical value regardless of the operating

frequency? If so, what are these values? Answer: Yes, it C = I Fand R, = 1 Q

Vs Other Part Zy —

") | wetwork % .

Figure 6.23. Network for Problem 5

* Voltmeters and Ammeters are discussed in Chapter 8. For this exercise, it will suffice to say that these
instruments indicate the magnitude (absolute) values of voltage and current.
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6.9 Answers to Exercises

Multiple Choice

1.E Phasors exist in the jo —domain only
2.B

3.D

4. E The voltage sources v,(¢) and v,(¢) operate at different frequencies. Therefore, to find the

current we must apply superposition.

5. E 3-j0.5 This value is obtained with the MATLAB code z1=2+0.5j; z2=2*(-2j)/(2-2));
z=71+22

z = 3.0000-0.50001
6.C
7T.A o =2nf=2nx60 = 377r/s,jX; = joL =j><377><5.3><10_3 =j2Q
Z=15+j2 =25£5313°,V =ZI = 2.5/53.13°x4/20° = 10£53.13°
8.C
9.D
10.C
Problems
1. The t— axis crossings define half of the period T. Thus, 7/2 = 2.2+ 0.94 = 3.14 ms, and one
petiod is T = 6.28 ms. The frequencyis f = 1/T = 10°/6.28 = 10°/2n. Then, ® = 2nf or
o= 2nx 10°/27 = 1000 /s

Next, we find the phase angle 6 from the figure above observing that n/2+0 = 2.2 ms

/1.62V

0.94 ms

0 t (ms)

or
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2n rad y 180° m
6.28x 107 s mrad 2

(es]
Il

2.2ms —g =22x107 sx

_ 2.2x2x180°

T _126.1°-90° = 36.1°
6.28 2

Finally, we find the amplitude 4 by observing thatat ¢t = 0, v = 1.62 V, that s,

v(0) = 1.62 = Acos(0+ 36.1°)
or

1.62

= i = 2V
cos 36.1°
Therefore,

v(t) = 2cos(1000t + 36.1°)

2. The decaying exponential has the form i(¢) = Ae* mA where the time is in ms and thus for
this problem we need to compute the values of 4 and a using the given values. Then,
~(1.605 x 107)a

i,2 1605 ms = 19 mAd = de

and

) B L —(3.000% 107 )a
l|t=3.000 ms = 5.27 mA = Ae

Division of the first equation by the second yields

3
—(1.605 x 10 ")a
e ( )

A _ 15 mA
-3
Ae—(3.000><10 Yoo 3.27 mA
or
o~ (1605 x 1070+ (3.000x 10y _ 15
5.27
or
e1.395x10_3a _ 15
5.27
or
13 ®
ln(5-27 = [.395x 10 o
or
3
o = InUs/527)x 10" _ oo
1.395
and thus
i(t) = Ae " m4
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To find the value of 4 we make use of the fact that i, 5, = 927 mA. Then,

—750x 3% 107
e

527 =4
or
5.27%x 107"
A - =
-2.25
e
or
A= 00504 = 50mA
Therefore,
i(t) = 50¢7" ma
and
-3
i,_, =507 = 23.62mA
= ms

3. The equivalent phasor circuit is shown below.

In the jo — domain Vg = 120£0° V, I = 12/-36.9° 4, joL = j10 o, and —j/oC= —j10°/®
Then,

V o
7= L8 _12020°V_ _ ;0 36090
T ~ 127-36.9° 4

and
1Zl = 10 = R’ + (oL - 1/0C)’

or

R’ +(0L-1/0C)’ = 100
or

8+ (oL - 1/0C) = 100
or

(0L —1/0C) = 36
or
ol-1/0C = 6
or
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or

o’ —6x10°0-10" = 0

Solving for ® and ignoring the negative value, we get

o 6x10°+ 36 10°+ 4x 10°

= 34,765 r/s
2

and
f= L 2 3LTOII/S _ 5 533 1p = 5533 KHz
2n 27n

Check: joL = j34.765, —j/oC = —j28.765

Z = R+j(oL—-1/(0C)) = 8+j(34.765 28.765) = 8 +j6 = 10/36.9°
and

12020°

= ——— = [2/-36.9°
10£36.9°

4. Since the instruments read absolute values, we are only need to be concerned the magnitudes of
the phasor voltage, phasor current, and impedance. Thus,

W = |ZIlI = 25 = JR +(0L—1/0C) x5
or
—4

M’

2 2 2 S5x 10 ?
25" = [R +(0)L—1/03C)]><25:[4+(1— C )Jx25

250 x 107 , 625 1078
CZ

100+ 25 - =625

and after simplification we get

500C°+250x 10°°C=625x10° = 0
Using MATLAB, we get

p=[500 250*10/\(—4) —625*10/(-8)]; r=roots(p)
and this yields C = 89.6 uF
The second root of this polynomial is negative and thus it is discarded.

5. We group the series devices as shown below.
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N

Thus Z, = R;+jo,Z, = 1 —j/(oC), and

, _ZiZy _ Ryxjo)—j/eC)
N Z,+Z,  Ry+jo+1-j/oC

and at any frequency ®

_ Ri+jo+1-j/eC
(R, +jo)(I-j/oC)

1
Yiy = >—
Ziy

Therefore, if the condition Y,y = Z; is to hold for all frequencies, the right sides of Z;, and
Y,y must be equal, that is,

(R;+jo)(I-j/oC)  R;+jo+1-j/oC
R, +jo+1—j/oC (R, +jo)(I-j/oC)

[(R, +jo)(I-j/0C)]’

[R,+jo+1-j/0C]’
(R, +jo)(1-j/wC) = R, +jo+1-j/oC

R Ry ]—R I+ 1

(R,+£)+j(m—&) +jo = (R,+J)+j(oo—i)
C oC oC

Equating reals and imaginaries we get

R+l R, 1
C oC oC

From the first equation above we get C = I F and by substitution of this value into the second
equation we get R, = 1 Q
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Chapter 7

Phasor Circuit Analysis

his chapter begins with the application of nodal analysis, mesh analysis, superposition, and

Thevenin’s and Norton’s theorems in phasor circuits. Then, phasor diagrams are introduced,

and the input-output relationships for an RC low-pass filter and an RC high-pass filter are
developed.

7.1 Nodal Analysis

The procedure of analyzing a phasor* circuit is the same as in Chapter 3, except that in this chapter
we will be using phasor quantities. The following example illustrates the procedure.

Example 7.1

Use nodal analysis to compute the phasor voltage V,, = V, -V for the circuit of Figure 7.1.

V, Vp
30
T /o 20 J
8Q
S ©
50°4 | 6 QA 30T~ l
J l 1020° 4

Figure 7.1. Circuit for Example 7.1

Solution:

As before, we choose a reference node as shown in Figure 7.2, and we write nodal equations at the
other two nodes 4 and B. Also, for convenience, we designate the devices in series as

Z,,Z,,and Z; as shown, and then we write the nodal equations in terms of these impedances.
Z, =4-j6 = 7211/£-56.3°
Z, = 2+j3 = 3.606.56.3°

Zs; = 8-j3 = 8544.-20.6°

* A phasor is a rotating vector
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\L 10£0° 4

Figure 7.2. Nodal analysis for the circuit for Example 7.1

By application of KCL at V,

vV, V,-V
A4 B - 5,00
Z Z,
or
1, 1 ) 1
=+ V=5V =5£0° 7.1
(ZI z,) 4z, "t b
or
Z,+Z2) i
L2y Ly = 5,0°
( 77 V, 22VB 520
and by substitution for Z; and Z, we get
4—-j6+2+j3 1 o
L / Ve = 520

VvV, -
(7.211/-56.3)(3.606256.3°) 4~ 3.606.256.3°

6_]3 o — o
26.040°VA_(0’2774_56'3 YWy =520
6.708/-26.6° o _ o
6.0 V,—(0.277£-56.3°)Vy = 5£0
(0.2582-26.6°)V ,—(0.277 £-56.3°)Vy = 5£0° (7.2)
Next, at Vjp:
Ve=V, V
B AL B - _10L0°
ZZ Z3
or
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1 (1 1)
=V, +|=+= |V, = -10£0° 7.3
z, 4 \z, 2,8 )

In matrix form (7.1) and (7.3) are

(L + L ) 1
Z1 2 Zr Va2 | 5 (7.4)
1 (L L ) Ve 1=

Z, Z, Z;
We will follow a step-by-step procedure to solve these equations using Cramer’s rule, and we will
use MATLAB®" to verify the results.

We rewrite (7.3) as

Ly (ZQ+Z3)V = 10£180°
_ZZ 4 ¥ ZZZS B
1 2+j3+8-j3
- V, = 10£180°
36065635 4" (3.606256.3°)(8.544/-20.6°) B
o 10 o
—(0.277£-56.3°)V ; + ==———ee—V, = 10£180

30.810,35.7°" B

—(0.277£-56.3°)V ; +(0.325£-35.7°)V = 10£180° (7.5)
and thus with (7.2) and (7.5) the system of equations is

(0.258£-26.6°)V ,— (0.277£-56.3°)V = 520°

7.6
—(0.277£-56.3°)V , + (0.325£=-35.7°)Vy = 10£180° (7.6)
We find V, and Vj from
D
V,=-1 7.7
= (7.7)
and
D
v, = 2 7.8
= (7.8)
The determinant A is
* If unfamiliar with MATLAB, please refer to Appendix A
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A= ‘ (0.258 £-26.6°) —(0.277 £~56.3°)
(0.277£-56.3°) (0.325/-35.7°)
= (0.258 £-26.6°) - (0.325.£-35.7°) = (0.277 £~56.3°) - (=0.277 £~56.3)
= (0.084£-62.3°) — (0.077 £~112.6) — (0.039 — j0.074) — (- 0.023 — j0.071)
= (0.062-70.003 = 0.062£-2.8°)

Also,
D, = 520° —(0.277£-56.3°)
102180° (0.325/-35.7°)
= (5£0°)(0.3252-35.7°) - (10£180°)[—(0.277 £=56.3°)]
= (1.625£-35.7°+2.770£123.7°) = 1.320 — j0.948 + (— 1.537 +j2.305)
=-0217+;1.357 =1374/99.1°
and

D, = ‘ (0.258/-26.6°) 5.0°

—(0.277£-56.3°) 10£180°
(0.258£-26.6°)(10£180°) — (—0.277 £~56.3°)(5 £0°)
2.580£153.4° + 1.385/-56.3° = (= 2.307 + j1.155 + 0.769 — j1.152)
— 1.358 +j0.003 = 1.358 £179.9°

Therefore, by substitution into (7.7) and (7.8), we get

_ Dy 1.374299.1°

4= = = 22.1612101.9° = —4.570+21.685
A 0.062£-2.8°

and

D o

V= 22 = L38LI7097 _ 54807, 177.3° = — 24.780 - j1.169

A 0.062£-2.8°

Finally,
Vg =V,—Vg=—4570+j21.685 (- 24.780—j1.169)
= 2021 +j22.85 = 30.5£48.5°

Check with MATLAB:
z1=4-j*6; z2=2+j*3; z3=8-j*3; % Define z1, z2 and z3
Z=[1/z1+1/z2 -1/z2; -1/z2 1/z2+1/z3]; % Elements of matrix Z
I=[5 —-10]; % Column vector |

V=2\l; Va=V(1,1); Vb=V(2,1); Vab=Va-Vb; % Va =V(1), Vb = V(2) are also acceptable
% With fprintf only the real part of each parameter is processed so we will use disp
fprintf(' \n"); disp(‘'Va ="); disp(Va); disp('Vb ="); disp(Vb); disp('Vab ="); disp(Vab);
fprintf(* \n');
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Va -4.1379 + 19.65521

Vb -22.4138 - 1.03451
Vab = 18.2759 + 20.68971

These values differ by about 10% from the values we obtained with Cramer’s rule where we
rounded the values to three decimal places. MATLAB performs calculations with accuracy of 15
decimal places, although it only displays four decimal places in the short (default) number display
format. Accordingly, we should accept the MATLAB values as more accurate.

7.2 Mesh Analysis

Again, the procedure of analyzing a phasor circuit is the same as in Chapter 3 except that in this
chapter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.2

For the circuit of Figure 7.3, use mesh analysis to find the voltage V,,,, that is, the voltage across

the 10£0° current source.

2 39
T +
410 50 !
5£0°4] 6 QT 3 QT l %
1020° 4

Figure 7.3. Circuit for Example 7.2

Solution:

As in the previous example, for convenience, we denote the passive devices in series as
Z,,Z,,and Z; , and we write mesh equations in terms of these impedances. The circuit then is as

shown in Figure 7.4 with the mesh currents assigned in a clockwise direction.
We observe that the voltage across the /10£0° current source is the same as the voltage across the
8 Q and —j3 Q series combination.
By inspection, for Mesh 1,
1, = 520° (7.9)
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+

!

V] 04

|

1020° A

l

Figure 7.4. Mesh analysis for the circuit of Example 7.2
By application of KVL around Mesh 2,

or
—(4-jO); + (14-j6)I,—(8—j3)I; = 0
Also, by inspection for Mesh 3,
I, = 1020°

and in matrix form, (7.9), (7.10), and (7.11) are written as

1 0 0 1 5

~(4-j6) (14-j6) —(8-j3)| || = | 0
0 0 1 I, 10

We use MATLAB for the solution of 7.12."

Z=[1 0 0; —(4-*6) 14-*6 —(8-*3); 0 0O 1J;

V=[5 0 10];

1=2\V; i1=1(1); i2=1(2); i3=I(3); fprintf( \n');

disp(i1 ="); disp(i1); disp(i2 = '); disp(i2); disp(ii3 = *); disp(i3); fprintf( \n');

il =5 i2 = 7.5862 - 1.03451 i3 = 10

Therefore, the voltage across the /0.£0° A current source is

Vips = Zs(1,—15) = (8—j3)(7.586—j1.035— 10) = — 22.417 - j1.038

We observe that this is the same value as that of the voltage ¥ in the previous example.

(7.10)

(7.11)

(7.12)

* As we experienced with Example 7.1, the computation of phasor voltages and currents becomes quite tedious.
Accordingly, in our subsequent discussion we will use MATLAB for the solution of simultaneous equations with

complex coefficients.
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7.3 Application of Superposition Principle

As we know from Chapter 3, the superposition principle is most useful when a circuit contains two
or more independent voltage or current sources. The following example illustrates the application

of the superposition principle in phasor circuits.

Example 7.3
Use the superposition principle to find the phasor voltage across capacitor C, in the circuit of Fig-
ure 7.5.
l 10£0° A4
Figure 7.5. Circuit for Example 7.3
Solution:

Let the phasor voltage across C, due to the 5£0° A current source acting alone be denoted as

V', , and that due to the 10£0° 4 current source as V" -,. Then,

_ 1 "
Veo = Viea+ Ve

With the 5£0° 4 current source acting alone, the circuit reduces to that shown in Figure 7.6.

T 20 J3Q
80

5/0° 4 16 Q/\ Q/'\ Vies

Figure 7.6. Circuit for Example 7.3 with the 5 £0° A current source acting alone

By application of the current division expression, the current I', through C, is

, 4-j6 5,00 = 7.211/-56.3

I = ST 5/0° = 2.367£-33.1°
2T 4 j6+2+3+8—j3 15.232/-23.2°

The voltage across C, with the 520° current source acting alone is
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V'es = (73)(2.367£-33.1°) = (3£-90°)(2.367 £-33.1°)

7.102£-123.1° = - 3.878 —j5.949

(7.13)

Next, with the /10£0° A current source acting alone, the circuit reduces to that shown in Figure 7.7.

20 J3Q
40 50
6 QA ~ 3 1 Ve l
J lcz 10£0° 4

Figure 7.7. Circuit for Example 7.3 with the 10£0° A current source acting alone

and by application of the current division expression, the current I" -, through C, is

I 4—-j6+2+j3
T 4_j6+2+3+8—3
_ 6.708/-26.6°
T 15.232/-23.2°

(~10£0°)
10£180° = 4.404£176.6°

The voltage across C, with the /0£0° current source acting alone is
V'oy = (=j3)(4.404£176.6°) = (3£-90°)(4.404£176.6°)
= (13.213£86.6 = 0.784 + j13.189)
Addition of (7.13) with (7.14) yields

Ve, = Vi + V'y = —3.878—75.949 + 0.784 +j13.189

or

Ve, ==3.094+57.240 = 7.873£113.1°

7.4 Thevenin’s and Norton’s Theorems

(7.14)

(7.15)

These two theorems also offer a very convenient method in analyzing phasor circuits as illustrated by

the following example.

Example 7.4

For the circuit of Figure 7.8, apply Thevenin’s theorem to compute I, and then draw Norton’s

equivalent circuit.
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17020°V

Figure 7.8. Circuit for Example 7.4

Solution:

With the 700 Q resistor disconnected, the circuit reduces to that shown in Figure 7.9.

oK 2
170£0° V
7200 Q 50 Q

Figure 7.9. Circuit for Example 7.4 with the 100 Q resistor disconnected

By application of the voltage division expression,

7200 170./0° 200£90° ] o o .
= —— = —— 4 = I . 42 = I II
J 55 + 200 70£0 31731767° 70£0 56.46 /23 44 +j61.13
and
50 50
V, = ————170£0° = 170£0° = 76£63.4° = 34 +j68
27 50-5100 111.82(—63.4)° *J

Then, from (7.16) and (7.17),

or

Vg = 110-j6.87 = 110.21 /-3.6°

(7.16)

(7.17)

(7.18)

Next, we find the Thevenin equivalent impedance Z;; by shorting the 170£0° V voltage source.

The circuit then reduces to that shown in Figure 7.10.
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- X
—j100 © \/ —j100 ©
85 Q 85 Q 7200 © 85 Q
Y X Y
X Zrn
—> _ \/
j200 Q 50 Q Jj200 Q 50 Q 50 O \
" —100
Y

Figure 7.10. Circuit for Example 7.4 with the voltage source shorted

We observe that the parallel combinations j200 || 85 and 50 || j100 are in series as shown in Figure
7.11.

X
7200 Q 85Q
Ztn —>
500 T~ =100 Q
Y

Figure 7.11. Network for the computation of Z;; for Example 7.4

From Figure 7.11,
_ 85200 , 50 x (j100)
TH ™ 85+j200  50-;100

and with MATLAB,
Zth=85*200j/(85+200j) + 50*(—100j)/(50-100j)

Zzth =
1.1200e+002 + 1.0598e+0011

or
Zry = 112.0+j10.6 = 112.5£5.4° Q

The Thevenin equivalent circuit is shown in Figure 7.12.
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I'1
L

= 110-6.87

Y

Figure 7.12. Thevenin equivalent circuit for Example 7.4

With the 100 Q resistor connected at X-Y, the circuit becomes as shown in Figure 7.13.

X
112Q jl0.6Q l
IX

Vo= 110-j6.87 100 Q
Y

Figure 7.13. Simplified circuit for computation of I in Example 7.4
We find I using MATLAB:
Vth=110-6.87); Zth=112+10.6j; Ix=Vth/(Zth+100);
fprintf(' \n'); disp('Ix ="); disp(Ix); fprintf(' \n');
Ix = 0.5160 - 0.05821i

that is,

Vru
Iy = — = 0516-0.058 = 0.519/-6.4° 4 (7.19)

Zpy+ 100 Q

The same answer is found in Example C.18 of Appendix C where we applied nodal analysis to find
IX'

Norton’s equivalent is obtained from Thevenin’s circuit by exchanging V;,, and its series Z,,; with

I, in parallel with Z,; as shown in Figure 7.14. Thus,

g2 Yon _ 110212-3.6° _ 66 go 4
N Zey o 112.525.4° '

and
Zy = Zpy = 112.525.4° Q
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ol é
I_i_l

L

4

Figure 7.14. Norton equivalent circuit for Example 7.4

7.5 Phasor Analysis in Amplifier Circuits

Other circuits such as those who contain op amps and op amp equivalent circuits can be analyzed
using any of the above methods.

Example 7.5

Compute iy(¢) for the circuit below where v, () = 2cos(300000t) V.

— A .
20 50Q S ix(0)
— AN
o 100
] o f + +
f\) —~vc(t) KEJ 4Q
0.2 mH 10/3 uF ve(l)

Figure 7.15. Circuit for Example 7.5

Solution:

As a first step, we perform the ¢ — domain, to jo —domain transformation. Thus,

X, = joL = j0.2x 107 x30x 10° = j6

and
. .1 . 1 .
_JXC = —j— = - = —]10
oC 30><]03><%)><10_6
Also,
and the phasor circuit is shown in Figure 5.16.
7-12 Circuit Analysis I with MATLAB Applications
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— AW

% 100 ®V
Vin 8Q ¢

+
—j10 Q) <\J 4Q
Y 5V,

Figure 7.16. Phasor circuit for Example 7.5

(03
X
)
Y
L1+

At Node @:

Vi-2£00 ¥, ViVe Vi-5Ve

+ — + =0 (7.20)
2 8+j6 10 50

and since

I__ 186 _ 856 _ 4.3
8+j6  8+j6 8-j6 100 50 ’30

the nodal equation of (7.20) simplifies to

35_.1) 1, o
(50 2V -tve = 120 (7.21)
At Node @:
VC_V1+ Ve _
10 10
or
_ L (L -L) _
[0V1+ 7070 Ve=10 (7.22)
At Node @:

We use MATLAB to solve (7.21) and (7.22).

G=[35/50 —j*3/50; —1/5 1/10+j*1/10]; I=[1 0]; V=G\|;

Ix=5"V(2,1)/4; % Multiply Vc by 5 and divide by 4 to get current Ix
maglx=abs(lx); theta=angle(Ix)*180/pi; % Convert current Ix to polar form

fprintf(' \n'); disp(' Ix ="); disp(Ix);...

fprintf('maglx = %4.2f A \t', maglx); fprintf(‘theta = %4.2f deg \t', theta);...

fprintf(' \n'); fprintf(' \n");

Ix = 2.1176 - 1.75461i maglx = 2.75 A theta = -39.64 deg

Circuit Analysis I with MATLAB Applications 7-13
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Therefore,
I=275/-39.6°< i(t) = 2.75cos(30000¢ — 39.6°)

Example 7.6

Compute the phasor V_ , for the op amp circuit of Figure 7.17.

ﬂy
\
40

— N N\AN—— AN\

1 i 50 _.T
V., =420°V A~ v

10 Q 10Q out
! ¢.

Figure 7.17. Circuit for Example 7.6

Solution:

We assign phasor voltages V', and V" as shown in Figure 7.18, and we apply KCL at these nodes,

while observing that V| = = v’

14
I\
VI
b AANA—
W s V. A
V., =420°V AT~ © !
.= VIS

" 10Q 100 Vour

Figure 7.18. Application of KCL for the circuit of Example 7.6

At Node @:

V1_4400+ V- Vout+ V- Vout+ V -0

4 -5 5 —10
or
G- 120

(20+J]0 Vi=(L 475 Vo = 120 (7.23)
At Node @,
7-14 Circuit Analysis I with MATLAB Applications
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V,=V = Vout
and thus,
Vout+ Vout_ Vl 4 Vout_ VI -0
10 5 —j5
or
1 .]) (3 .])
—=+j= |V —+j= |V =0 7.24
(5”5 17\30™75 ) our (7.:24)

Solving (7.23) and (7.24) with MATLAB we get:

format rat

G=[9/20+j*3/10 -1/5-*1/5; —-1/5-*1/5 3/10+j*1/5]; I=[1 0]; V=G\|;
fprintf(' \n');disp(‘V1 ="); disp(V(1,1)); disp(‘Vout ="); disp(V(2,1));
format short

magV=abs(V(2,1)); thetaV=angle(V(2,1))*180/pi;

fprintf('maglx = %5.3f A \t', maglx); fprintf(‘theta = %4.2f deg \t', theta);...
fprintf(* \n'); fprintf(' \n')

V1l = 68/25 - 24/251i Vout = 56/25 - 8/251
maglIx = 2.750 A theta = -39.64 deg
Therefore,
Vo = 2.2632-8.13° (7.25)

7.6 Phasor Diagrams

A phasor diagram is a sketch showing the magnitude and phase relationships among the phasor volt-
ages and currents in phasor circuits. The procedure is best illustrated with the examples below.

Example 7.7
Compute and sketch all phasor quantities for the circuit of Figure 7.19.
20 Jj3Q
_"‘/\/\/\/\/—_"'mwo’m;

Figure 7.19. Circuit for Example 7.7
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Solution:

Since this is a series circuit, the phasor current I is common to all circuit devices. Therefore, we
assign to this phasor current the value I = 1£0° and use it as our reference as shown in the phasor
diagram of Figure 7.20. Then,

Ve = (2Q)(1£0°) = 2£0°V
V, = (j3Q)(1£0°) = j3 = 3/90°V

Ve = (55 Q)(1£0°) = —j5 = 54-90° V
Ve = Vio+(V,+ V) = 2-j2 = 2/2/-45°
Vi
Vi I=120°
VL+VC r-- " ‘I
VS=VR+(VL+VC)
Ve

Figure 7.20. Phasor diagram for the circuit of Example 7.7

Example 7.8
Compute and sketch all phasor quantities for the circuit of Figure 7.21.
| | |

I, I

I L

;\

10Q [j20Q |—10Q

| —<—+

I

Figure 7.21. Circuit for Example 7.8
Solution:
Since this is a parallel circuit, the phasor voltage V is common to all circuit devices. Therefore let us

assign this phasor voltage the value V = 1.20° and use it as our reference phasor as shown in the
phasor diagram of Figure 7.22. Then,
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I, = 120°/10 = 100£0° mA
I, = 120°/j20 = 1£0°/20£90° = 50£-90° m
1. = 120°/(-j10) = 1£0°/10£-90° = 100£90° mA

Io+1, = 50290° mA
Iy = Ip+(p+1,) = 100+/50 = 111.8/26.6°

A SO IIS=IR+(IC+IL)

V=120°

Iy

I,

Figure 7.22. Phasor diagram for Example 7.8

We can draw a phasor diagram for other circuits that are neither series nor parallel by assigning any
phasor quantity as a reference.

Example 7.9

Compute and sketch all phasor voltages for the circuit of Figure 7.23. Then, use MATLAB to plot
these quantities in the ¢ — domain .

N Vri Vi
AN H T = N
20 3Q I,
Vs N +
@ ~Ve 5Q< Ve
_isQ|- -~

Figure 7.23. Circuit for Example 7.9

Solution:

We will begin by selecting I, = 1.£0° 4 as our reference as shown on the phasor diagram of Fig-
utre 7.24. Then,
Vis = 5 Qxlp,=5x120° = 5£0°
V, =j3 Qxly,=3290°x120° = 3.290°
Vo=V, + Vi, = 5£0°+3290°=5+,3 = 5.83/£31°
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(5.83 /31°
524-90°

233Z121°+10£0° =-1.2+j2+10=88+j2=9/12.8°

v,
Viy = 2Qx1, = 2(Io+ 1) = 2(—%+1R2) = +540°)
-

and
Vi=Vy, +Ve=88+j2+5+j3 = 13.8+)5 = 14.7220°

Ve = 583431°

Ve = 14.7220°
V, = 3290°
Ve, = 9212.8°

Veo = S£0° I, = 1£0°4

Figure 7.24. Phasor diagram for Example 7.9

Now, we can transform these phasors into time-domain quantities and use MATLAB to plot them.
We will use the voltage source as a reference with the value Vg = 1£0°, and we will apply nodal

analysis with node voltages V, V), and V; assigned as shown in Figure 7.25.

V1+R1 V2+

rmLm -
20 l j3Q ¢IR2
/\Vc 5Q VRZ
1400 ]5Q ’

Figure 7.25. Circuit for Example 7.9 with the voltage source taken as reference

The node equations are shown below in matrix form.

W 0 0 ]
|4
(Ll 1) 1 I
2 2 -5 j3 j3 v,
oL (L Tl
J3 J3
L | V I
G
The MATLAB code is as follows:
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nter the non-zero values of the G matrix

1)=1

)_—1/2

(2,2)=1/2-1/5j+1/3];

(2,3)=—1/3;;
)=—1/3j;

G(3 3)=1/3j+1/5;

% E
G(1,
G21
G22
G(2,3
G(3,2

% Enter all values of the | matrix

I=[1 O 0]

Yo

% Compute node voltages

V=G\|;

%

VR1=V(1)-V(2);

VL=V(2)-V(3);

% Compute magnitudes and phase angles of voltages

magV1=abs(V(1)); magV2=abs(V(2)); magV3=abs(V(3));

phaseV1=angle(V(1))*180/pi; phaseV2=angle(V(2))*180/pi; phaseV3=angle(V(3))*180/pi;
magVR1=abs(VR1); phaseVR1=angle(VR1)*180/pi;

magVL=abs(VL); phaseVL=angle(VL)*180/pi;

Yo

% Denote radian frequency as w and plot wt for 0 to 2*pi range

wt=linspace(0,2*pi);
V1=magV(1)*cos(wt-phaseV(1));
V2=magV(2)*cos(wt-phaseV(2));
V3=magV(3)*cos(wt-phaseV(3));

VR1t=magVR1*cos(wt-phaseVR1);

VLt=magVL*cos(wt-phaseVL);

%

% Convert wt to degrees

deg=wt*180/pi;

Yo

% Print phasor voltages, magnitudes, and phase angles

fprintf(' \n');

% With fprintf only the real part of each parameter is processed so we will use disp
disp('V1 ="); disp(V(1)); disp('V2 ="); disp(V(2)); disp('V3 ="); disp(V(3));

disp('VR1 ="); disp(VR1); disp(‘VL ="'); disp(VL);

fprintf('magV1 = %4.2f V\t', magV1); fprintf(‘(magV2 = %4.2f V \t', magV2);
fprintf('magV3 = %4.2f V', magV3); fprintf(' \n'); fprintf(' \n");

fprintf('phaseV1 = %4.2f deg \t', phaseV1);

fprintf('phaseV2 = %4.2f deg \t', phaseV2); fprintf('phaseV3 = %4.2f deg', phaseV3);
fprintf(' \n'); fprintf(' \n');

fprintf('magVR1 = %4.2f V \t', magVR1); fprintf('‘phaseVR1 = %4.2f deg ', phaseVR1);
fprintf(' \n'); fprintf(‘ \n");

fprintf('magVL = %4.2f V \t', abs(VL)); fprintf('‘phaseVL = %4.2f deg ', phaseVL);
fprintf(' \n');

%

plot(deg,V1,deg,V2,deg,V3,deg,VR1t,deg,VLt)

fprintf(' \n');

vl =1

V2 0.7503 - 0.12961i
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V3 = 0.4945 - 0.42631
VR1 = 0.2497 + 0.12961
VL = 0.2558 + 0.29671

magvVl = 1.00 V magV2 = 0.76 V magV3 = 0.65 V
phaseVl = 0.00 deg phasevV2 = -9.80 deg phaseV3 = -40.76 deg
magVR1l = 0.28 V phaseVR1 = 27.43 deg

magVL = 0.39 V phaseVL = 49.24 deg

and with these values we have

vg(t) = v,(1) = cosat v,(t) = 0.76cos(ot—9.8°) v;(t) = 0.65cos(ot—40.8°)
Ve (1) = 0.28cos(wt+27.4°) v, (t) = 0.39cos(wt+49.2°)

These are plotted with MATLAB as shown in Figure 7.26.

400
Figure 7.26. The t—domain plots for Example 7.9

7.7 Electric Filters

The characteristics of electric filters were introduced in Chapter 4 but are repeated below for conve-

nience.

Analog filters are defined over a continuous range of frequencies. They are classified as low-pass, high-
pass, band-pass and band-elimination (stop-band). Another, less frequently mentioned filter, is the a/l-pass
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ot phase shift filter. It has a constant amplitude response but is phase varies with frequency. This is
discussed in Szgnals and Systems with MATILAB Applications, ISBN 0-9709511-3-2, by this author.

The ideal amplitude characteristics of each are shown in Figure 7.27. The ideal characteristics are
not physically realizable; we will see that practical filters can be designed to approximate these char-
acteristics. In this section we will derive the passive RC low and high-pass filter characteristics and
those of an active low-pass filter using phasor analysis.

‘@_’ Vout
Vin Vin
/ RY10) R I
PASS (CUTOFF) STOP PASS
BAND BAND BAND BAND
(O] 0
(O o,
Ideal low— pass filter Ideal high—pass filter
‘ Vout ‘ Vout
Vin Vin
- - - 1
STOP | PASS | stOoP PASS | STOP | PASS
BAND | BAND | BAND BAND | BAND | BAND
(0] 0]
®; @, @ 0,
Ideal band— pass Filter Ideal band — elimination filter

Figure 7.27. Amplitude characteristics of the types of filters

A digital filter, in general, is a computational process, or algorithm that converts one sequence of
numbers representing the input signal into another sequence representing the output signal.
Accordingly, a digital filter can perform functions as differentiation, integration, estimation, and, of
course, like an analog filter, it can filter out unwanted bands of frequency. Digital filters are dis-
cussed in Signals and Systems with MATLAB Applications by this author, Orchard Publications.

7.8 Basic Analog Filters

An analog filter can also be classified as passive or active. Passive filters consist of passive devices such
as resistors, capacitors and inductors. Active filters are, generally, operational amplifiers with resis-
tors and capacitors connected to them externally. We can find out whether a filter, passive or active,
is a low-pass, high-pass, etc., from its the frequency response that can be obtained from its transfer
function. The procedure is illustrated with the examples that follow.

Example 7.10

Derive expressions for the magnitude and phase responses of the series RC network of Figure 7.28,
and sketch their characteristics.
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N+

a

A,
|/|+

~

in out

Figure 7.28. Series RC network for Example 7.10

Solution:

By the voltage division expression,

_ 1/jeoC
out = R+ 1/joC ™

and denoting the ratio V,,,/V;, as G(jo), we get

LN Vout _ 1 _ ]
GUO= 3" = TjeRC
in e (4 1+ R°C?) Zatan(oRC) 7.26)
= éé—atan(mRC)
1+’ R°C
The magnitude of (7.20) is
[T [ M e — — (7.27)
il JI+0’RC
and the phase angle 6, also known as the argument, is
Vout
0= arg{G(jw)}= arg( % ) = —atan(®RC) (7.28)

We can obtain a quick sketch for the magnitude |G(jo)| versus ® by evaluating (7.27) at ® = 0,
® = 1/RC,and ® - «. Thus,

as 0 = 0, |G(jo) =1
for @ = 1/RC,|G(jw) = 1/42 = 0.707
andas @ — o, |G(jo)| =0

To obtain a smooth curve, we will use a spreadsheet such as Microsoft Excel to plot |G(jo)| versus

radian frequency for several values of ®. This is shown in Figure 7.29 where, for convenience, we let
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RC = 1. The plot shows that this circuit is an approximation, although not a good one, to the
amplitude characteristics of a low-pass filter.

o IG(jo)l
0.000 1
0.020 0.9998
0.040 0.9992
0.060 0.9982 1
0.080 0.99682 05
0.100 0.99504 06
0.120 0.99288 04
0.140 0.99034 o
0.160 0.98744
0.180 0.98418
0.200 0.98058
0.220 0.97664

Series RC Low-pass Filter Frequency
Response

IG(joo)

: /Half-power point
(IG(jo)|=0.707)

RC=1

1/RC  Radian Frequency ()

Figure 7.29. Amplitude characteristics of a series RC low-pass filter

We can also obtain a quick sketch for the phase angle, i.e., 0 = arg{G(jw)} versus o by evaluating
of (11.3)atw = 0, ® = I/RC, ® = —-1/RC, ® > —0 and ® —> 0. Thus,

as ® > 0, 0= —atan0 = 0°

forw = 1/RC, 0 = —atanl = —45°
foro = —-1/RC, 0 = —atan(-1) = 45°
as ® > -, 0 = —atan(-o) = 90°
and as ® >0, 0 = —atan(w) = -90°

We use Excel to plot 0 versus radian frequency for several values of ®. This is shown in Figure

7.31 where, again for convenience, we let RC = ]

Example 7.11

The network of Figure 7.30 is also a series RC circuit, where the positions of the resistor and capac-
itor have been interchanged. Derive expressions for the magnitude and phase responses, and sketch
their characteristics.

Figure 7.30. RC network for Example 7.11
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® 0

-12.00 85.24 Series RC Low-Pass Filter
-11.98 85.23 Phase Angle 0 versus
-11.96 85.22 90.00

-11.94 85.21 S

-11.92 85.20 T 4500

-11.90 85.20 %

-11.88  85.19 g’ 0.00

-11.86 85.18 ®

11.84  85.17 g

-11.82 85.16 -90.00

-11.80 85.16 8 6 -4 -2 0 2 4 6 8
-11.78 85.15 Radian Frequency (»)
-11.76  85.14

-11.74  85.13

Figure 7.31. Phase characteristics of a series RC low-pass filter

Solution:

R
| R — /g
oMt R+ 1/joC ™
or

Vow _ _joRC  _ joRC+w’R°C’ _ oRC(j + ®RC)

G(jo) = = —— =
Vie  1+joRC 14 o’RC? 1+’ RC
ORCA1+0 R C 2 atan =) ; ] (7.29)
= = Aatan( )
I+0’RC’ P ®RC
'R’ C
The magnitude of (7.29) is
. 1
IG(jo)| = ————— (7.30)
| [+ — 12 2
o' R C
and the phase angle or argument, is
. 1
0= arg{G(o)} = alan(mRC) (7.31)
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We can obtain a quick sketch for the magnitude |G(jo)| versus ® by evaluating (7.30) at ® = 0
o = I/RC,and ® — « . Thus,

b

as o — 0, |G(jo) =0
for o = I/RC, |G(jw)| = 1/J2 = 0.707
andas ® = o, |G(jo) =1

Figure 7.32 shows |G(jo)| versus radian frequency for several values of ® where RC = I. The
plot shows that this circuit is an approximation, although not a good one, to the amplitude charac-
teristics of a high-pass filter.

o |G(jo)l
0.000 1E-07 Series RC High-Pass Filter
0.020 0.02 |G(jo)| versus &

0.040 0.03997
0.060 0.05989 .
0.080 0.07975 o) = Halt-power point
0.100  0.0995 0o "F (G(w)=0.707)

0.120 0.11915

[G(jo)l

0.140 0.13865 2‘2‘ RC=1
0.160 0.15799 <

0.180 0.17715 0 I w ‘ ‘
0.200 0.19612 1/RC  Radian Frequency (o)

0.220 0.21486

Figure 7.32. Amplitude characteristics of a series RC high-pass filter

We can also obtain a quick sketch for the phase angle, i.e.,, 8 = arg{G(jw)} versus ®, by evaluat-
ing (7.31)at® = 0, ® = I/RC, ® = -1/RC, ® > - ,and ® — o . Thus,

as ® —> 0, 6= —atan0=(°

forw = 1/RC, 6 = —atanl = —45°
for ® = -1/RC, 0 = —atan(-1) = 45°

as ® > -, 0 = —atan(-») = 90°
andas @ >, 0 = —atan(xo) = -90°

Figure 7.33 shows the phase angle 0 versus radian frequency for several values of o, where
RC =1
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® 0
-12.000 -4.7636417 Series RC High-pass Filter
-11'980 _4'7715577 Phase Angle 6 versus o
-11.960 -4.7794999 90

-11.940 -4.7874686
-11.920 -4.7954638
-11.900 -4.8034858

45

Phase Angle 0 (deg)
o

-11.880 -4.8115345 ~ RC=1
-11.860 -4.8196102 -45 1

-11.840  -4.827713 \

-11.820  -4.835843 -90 h

-11.800 -4.8440004 4 6 4 2 0 2 4 6 8
-11.780 -4.8521853 Radian Frequency (o)

-11.760 -4.8603978
-11.740 -4.8686381

Figure 7.33. Phase characteristics of an RC high-pass filter

7.9 Active Filter Analysis

We can analyze active filters, such as those we discussed in Chapter 4, using phasor circuit analysis.

Example 7.12

Compute the approximate cut-off frequency of the circuit of Figure 7.34 which is known as a Mu/t-
Ple Feed Back (MEB) active low-pass filter.

Figure 7.34. Low-pass filter for Example 7.12

Solution:
We write the phasor circuit nodal equations as follows:

At Node @:

vl_vin+ ‘.}1 + Out+v1_v2 =0 (732)
R, 1/GoC) R, R,
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At node @:
v G (7.33)
R; 1/(oC,)
and since v, = 0 (virtual ground), relation (7.33) reduces to
v; = (-JoR;Cy)v, ., (7.34)
and by substitution of (7.34) into (7.32), rearranging, and collecting like terms, we get:
1,1 1 . . 1 1
K E + R—z + R_3 +joC, )(—J@R3C2) - k‘j"out = E;Vin (7.35)
or
v
out — - - - 1 - (7.36)
Vin RK—+—+—+'C)—'RC ——J
1 JjoC; J(-joR;C))
R, R, Ry R,
By substitution of given values of resistors and capacitors, we get
Your _ 1
Vin  2x 105[( L_ij2sx10e )(—j5 x 10% x 108 0) - —1 J
20 x 10 4% 10
or
14 —
Gjo)l= 24 = ! (737)

Vin  25%x10 %0’ —j5x 1070 + 5
and now we can use MATLAB to find and plot the magnitude of (7.37) with the following code.

w=1:10:10000; Gjw=—1./(2.5.*10.M~6).*W.A2-5.*].*10./(—3).*W+5);
semilogx(w,abs(Gjw)); grid; hold on

xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');

title('Magnitude Vout/Vin vs. Radian Frequency')

The plot is shown in Figure 7.35 where we see that the cutoff frequency occurs at about
700 rad/s . We observe that the half-power point for this plotis 0.2 x 0.707 = 0.141 .
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Magnitude Vout/Vin vs. Radian Frequency
0.2 =

0.16

0.14

0.12

0.1 \
0.08

|Vout/Vin|

0.04

0.02

0 1 2 3 4
10 10 10 10 10

Radian Frequency w

Figure 7.35. Plot for the magnitude of the low-pass filter circuit of Example 7.12

7.10 Summary

e In Chapter 3 we were concerned with constant voltage and constant current sources, resistances
and conductances. In this chapter we were concerned with alternating voltage and alternating cur-
rent sources, impedances, and admittances.

e Nodal analysis, mesh analysis, the principle of superposition, Thevenin’s theorem, and Norton’s
theorem can also be applied to phasor circuits.

e The use of complex numbers make the phasor circuit analysis much easier.

e MATLAB can be used very effectively to perform the computations since it does not require any
special procedures for manipulation of complex numbers.

e Whenever a branch in a circuit contains two or more devices in series or two or more devices in
parallel, it is highly recommended that they are grouped and denoted as z;, z,, and so on before

writing nodal or mesh equations.

e Phasor diagrams are sketches that show the magnitude and phase relationships among several pha-
sor voltages and currents. When constructing a phasor diagram, the first step is to select one pha-
sor as a reference, usually with zero phase angle, and all other phasors must be drawn with the cor-
rect relative angles.

e The RC low-pass and RC high-pass filters are rudimentary types of filters and are not used in prac-
tice. They serve as a good introduction to electric filters.
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7.11 Exercises

Multiple Choice

1.

In the circuit of Figure 7.36 the phasor voltage V is
A 2+j0V

B.1+j0V

C. 10V

D I1+jV

E. none of the above

-tl-j0.5Q
10

<

T

s

Figure 7.36. Circuit for Question 1

. In the circuit of Figure 7.37 the phasor current I is

A 0+2 4
B. 0-j24
C. 1+j04
D. 2+j24

E. none of the above

Figure 7.37. Circuit for Question 2

3. In the circuit of Figure 7.38 the voltage across the capacitor C, is

A. 8x 10" sin(2000t + 90°) V

B. J/50c0s(2000t - 45°) V
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C. J50cos(2000t + 45°) V

D. J/50c0s(2000t + 90°) V

E. none of the above

LI CI
— AN (050001 |/
40 3mH N LL
vs(t) S0 WE 8 5 muH
) e,
8sin(2000t + 90°) .
100 pF

Figure 7.38. Circuit for Question 3

4. In the circuit of Figure 7.39 the current i-(¢) through the capacitor is

A. 4sin2000¢t

B. 4sin(2000t + 180°)
C. /32¢os(2000t-45°)

D. /32¢0s(20001 + 90°)

E. none of the above

is(1) jéc

TN

1Q 500 uF | 0.5 mH

ig(t) = 4cos2000t

Figure 7.39. Circuit for Question 4
5. The Thevenin equivalent voltage V;, at terminals A and B in the circuit of Figure 7.40 is
A, 10£-90°V
B. 10£-53.13°V
C. 10£53.13°V
D. 10£-45°V

E. none of the above
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_(T0000L A
v, 49 24
() ==-j5Q
10£0°V
B

Figure 7.40. Circuit for Questions 5 and 6

6. The Thevenin equivalent impedance Z;;; at terminals A and B in the circuit of Figure 7.40 is

A 244 Q
B. 4+j20
C. 4-2Q
D. -5 Q

E. none of the above

7. In the circuit of Figure 7.41 the phasor voltage V. is

A, 5£4-90°V
B. 5£4-45°V
C. 4£-53.1°V
D. 4453.1°V

E. none of the above

Vs

&

20£0°V

(°F

) Y

=4 Q

Figure 7.41. Circuit for Question 7

8. In the circuit of Figure 7.42 the phasor voltage VR5 0 1s

A. 2040V

B. 0+,/20V
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C. 20420V

D. 8080 V

E. none of the above

I +

+
@ 40 j4Q§VX S Vs

420° 4 2, 4

A 4 @

Figure 7.42. Circuit for Question 8
9. In the circuit of Figure 7.43 the phasor voltage V , is
A 2+0V
B. 4+0V
C. 40V
D 1+j1V

E. none of the above

i5Q 10 Q VWV
/ 50 100

Vin )—r_ﬂ(—HD—

VO ur i

Figure 7.43. Circuit for Question 9
10. In the circuit of Figure 7.44 the ¢ — domain voltage v ,5(?) is
A. 1.89cos(wt +45°) V
B. 0.53cos(wt—-45°) V
C. 2cosot V

D. 0.5cos(wt+53.1°) V
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E. none of the above

|/ (GO0
I\ A 20
Vg ~
@ 2Q 20
2/0°V
B

Figure 7.44. Circuit for Question 10

Problems

1. For the circuit of Figure 7.45, ig(t) = 2cos 1000t A. Compute v, 5(¢) and i-(?).

A

£Xe) 6Q zjc(t)

20mH A ==1000/6 uF
) Zso

is(1) ] 20
70

B

Figure 7.45. Circuit for Problem 1

2. Write nodal equations and use MATLAB to compute i-(¢) for the circuit of Figure 7.46 given
that vg(t) = 12cos(1000t + 45°) V.

100 uF

Figure 7.46. Circuit for Problem 2

3. Write mesh equations and use MATLAB to compute i, (¢) for the circuit of Figure 7.47 given
that v¢(¢) = 100cos(10000t + 60°) V.
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—AN\A— ANV
4Q 2Q
100 50
+ j—/\/\/\/\/—‘
@ % i, (1)
— 2 mH L 10 uF
vs(1) 200 " ;; "

Figure 7.47. Circuit for Problem 3
4. For the circuit of Figure 7.48, it is given that vg,(t) = 40cos(5000t+ 60°) V and
vg,(t) = 60sin(5000t + 60°) V. Use superposition to find v (¢).

L o _&/&/\/_,_&/&/\,_Limm_
2mH  10Q 250 SmH
+ + +
@ A ve® @
ve, (0] 20 nF ~ | vs2(0)

Figure 7.48. Circuit for Problem 4
5. For the circuit of Figure 7.49, find v.(¢t) if vy, =I5V, vgy(t) = 20cos1000t V, and
ig(t) = 4cos2000t 4. Plot v (t) using MATLAB or Excel.

(000001 (00000
1 mH 2mH
10 Q) ’
Vsi 7
T i @
f 500 pF is(t)

Figure 7.49. Circuit for Problem 5

0. For the circuit of Figure 7.50, find the value of Z, ;, which will receive maximum power.
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+ | /

7

Figure 7.50. Circuit for Problem 6

Vg

7. For the circuit of Figure 7.51, to what value should the load impedance Z, ;, be adjusted so that it

will receive maximum power from the voltage source?

£

7,
5Q

—AAAA—

js B
_

@ 20Q

170£0°

[000T0L

Figure 7.51. Circuit for Problem 6

8. For the circuit of Figure 7.52, draw a phasor diagram which shows the voltage and current in
each branch.

4Q 10 QQ 5Q

Figure 7.52. Circuit for Problem 8

9. For the op amp circuit of Figure 7.53, v, () = 3cos 1000t V. Find v, (7).
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RZ
+—2AAAA—
R, 3 KQ
AN
1T Iko T
Vi (1) V(D)
b N

Figure 7.53. Circuit for Problem 9
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7.12 Answers to Exercises

Multiple Choice

1.E V=V, +V, where V, = 1£0°%xj1/2 = jl1/2V and V is found from the nodal equa-

V. V
tion —€+ =€ = 140 or (1+))V¢ = 1 ot Ve = ! 1

~J I+j

J

xj:j = 2_ = é—jé V. Therefore,
Vo=jl/2+1/2-j1/2 = 1/2+j0V

2. C Denoting the resistor in series with the voltage source as z;, the resistor in series with the

capacitor as z,, and the resistor in series with the capacitor as z;, the equivalent impedance is

2y = me i USIDUSID 2 g

Z,+ 23 I-jl+1+jl 2
and
V
1=28=2%0_ 7,04
VA 2+j0

3. B 8sin(2000t+ 90°) = 8cos2000t < 820° V, joL, = j6, joL,=j4, —j/oC, =,

—j/oC; = —jI and the phasor equivalent circuit is shown below.

LI CI
___ (O0000L
—AAMA—TT “( L
40 Jj6Q 10
Vgt - 40
) c,
8L0°V \1 /‘\ 550

e . Ve  8+j0 _ 8+j0 4—j4  32-j32 .
Z=4+j6-j1+j4—j5=4+j4, I===220" - : = J22 — 1]
JOIETITT) a Z  4+j4  4+j4 4-j4 32 /

J502-45° < J50c0s(2000t — 45°) V

and thus VC2 = —5x(1-j)=5-j5

4. D 4c0s2000t<420°, G = 1/R=1Q" joC =j1 Q" —j/oL = -1 Q" and the pha-
sor equivalent circuit is shown below.

° ®

I 1 QJ JIC ’ Q—I
-

T

4/0° A Jj1Q
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5. B

6. C

7.D I

8. E

9.B

Denoting the parallel combination of the conductance and inductance as ¥, = I —jI and

using the current division expression for admittances we get

c =J%-IS = # = jIx4/0° = 1/90°x420° = 4/90° A
1 J —J
and thus

ig(t) = 4cos (2000t + 90°) A
By the voltage division expression

_ -5 10/0° = 5/-90°x 1020° _ 50£-90°
AB — s e - - -
4+j2—j5 4—;3 5/-36.9°

= [10£-53.1°V

Vin
We short the voltage source and looking to the left of points A and B we observe that the

capacitor is in parallel with the series combination of the resistance and inductance. Thus,

g (G(E+)2) _ 10-j20 _ 1020 443 _ 100-/50 _
4+j2-j5 4-53 4-j3 4+)3 25

4-j2

_20£0° _ 20£0°
X7 4+j3 7 5/36.9°

= 4/-36.9°, 41, = 16/-36.9°

and

4 _36.9°
o= X 2 10223697 _ /530

s gsge e e SO0 X 32 e o 35 g5
4+j4 J32£45° 32

VR5Q = 2Vyx 5 = 20x J32445° = 20@(%2 +j§2) = 80+80

Vour: = —JI,—gx 120° = j2x1£0° = 2£90° x 1£0° = 2£90°

and

Vour s = —_]j—gx Vour = =2 x220° = 2/-90°x 2/90° = 420° = 4+j0

10. A We write the nodal equation at Node A for V,, as

7-38
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V,g—220°
AB 0 +Ké§+ Vs _
- 2 242

I )
Stjt |V, = 2290°
(2 1T j2) e

Voo 2/90° _2790°  _ 2290°
AB " 1 2+4j+1/4—j/4  3/4+j3/4  1.06/45°

or V,p = 1.89/45° and in the t —domain v z(t) = 1.89cos(wt+ 45°)

Problems

1. We transform the current source and its parallel resistance to a voltage source series resistance,
we combine the series resistors, and we draw the phasor circuit below.

| 1020° vV

=B
For this phasor circuit, Vg = 2£0°x5 = 10£0°V, joL = j103 x20x 107 = j20 Q and
—j/oC = —j/(10°x10°/6x 10 = —j6,z, = 5Q, z, = (15+20) Q,and z; = (8-j6) Q

ViVg Vi=1020° V,~Vy

=0
Z2 Z] Z3
(L 1,1y, lo0
Z; %2 %3 Z]
(Lo L Ly, = 1020°_ 5 00
5 15+j20 8-j6 5
and
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2.0° _ 2/0°
+ 1 + / 0.2+ 0.04£-53.1°+ 0.1.£36.9°
25/53.1° 10£-36.9°

2£0°
0.2+ 0.04 cos 53.1° — j0.045in53.1° + 0.1 c0s 36.9° + j0.1 5in 36.9°
220° _ 2200
0.2+ 0.04 % 0.6-0.04 x 0.8+ 0.1 x 0.8 +j0.1 x 0.6 0.304 +,0.028

_ 240
0.305£5.26°

Vi
0.2

=6.55/4-5.26°

Then, in the t —domain v z(t) = 6.55cos(1000 + 5.26°).

Also,
V _ o
I = 4 = 0PL320° _ 655,31 70
Z3 10£-36.9°
and
io(f) = 0.655c0s(1000 + 31.7°)
Check with MATLAB:

z1=5; z2=15+20j; z3=8-6j; VA=(10+0j)/(z1*(1/21+1/22+1/23)); fprintf(' \n');...
fprintf('magVA = %5.2f V \t',abs(VA));...
fprintf('phaseVA = %5.2f deg \t',angle(VA)*180/pi); fprintf(' \n'); fprintf(' \n');

magVA = 6.55 V phaseVA = -5.26 deg
2. The equivalent phasor circuit is shown below where joL = j103><5><10_3 =j5 and
i/oC = —j/(10°x107") = 510
Z]
—AAAN
4Q
+
)
Tl 124£45°
z
Node V;:
V,—V - -
i S+V] V2+E+V1 Vs
Z] Z3 Z2 Z7
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or
(L+i+i+i)V1_iV2_iV3=iVS
zZp z; z3 Zy Z3 Zy7 Z;
Node V,:
V,-V, V, V,-V
2 1 Y2 72 ER)
Z3 Z, Zs
or
Ly (L1 L)y Ly oy
Z3 Z3 Zy Zs Zs
Node V;:
V.-V, V.-V, V,-V
3 2,73 1,72 3_ 0
Zs Zy Z6
or

_iVJ_iV2+(i+i+i)V3 =0

Zy7 Zs Zs Zg Zy
and in matrix form
(i+i+i+i) 1 1
Z; z; z3 zy z3 Zy7 % ]V
1 Vs
_i (i+i+i) _i . VZ = Z
Z3 Z3 Zy4 Zs Zs y 0
3
1 1 (i+i+i) 0
Zy Zs Zs Zg Z7

Shown below is the MATLAB code to solve this system of equations.

Vs=12*(cos(pi/4)+j*sin(pi/4)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=5j; z5=5; z6=-10j; z7=2;...
Y=[1/z1+1/z22+1/z3+1/z7 -1/z3 -1/z7;...

—1/z3 1/z3+1/z4+1/z5 -1/25;...

-1/z7 -1/z5 1/z5+1/26+1/z7];...

I=[Vs/z1 0 0]; V=Y\I; Ic=V(3)/z6;...

maglc=abs(lc); phaselc=angle(lc)*180/pi;...

disp('V1="); disp(V(1)); disp('V2="); disp(V(2));...

disp('V3='); disp(V(3)); disp('lc="); disp(Ic);...

format bank % Display magnitude and angle values with two decimal places
disp(‘'maglc="); disp(maglc); disp('‘phaselc="); disp(phaselc);...
fprintf(' \n');

vVl = 5.9950 - 4.87891
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5.9658 - 0.59601
5.3552 - 4.42031

V2

V3

Ic = 0.4420 + 0.53551
magIc = 0.69
phaselIc = 50.46

Therefore, I. = 0.69£50.46° < i (1) = 0.69cos(1000t + 50.46°) A

3. The equivalent phasor circuit is shown below where jolL = j104><2>< 107 = j20 and

/oC = —j/(10°x10x 10°%) = 10

Vg = 100£60°

Mesh 1, :
(z;+z) =z, = Vg
Mesh 1,:
(zj+zy+z)l,—z3 03—z 0, = 0
Mesh 1;:
—zd )zl + (zy v z3+z )3 —z, 0, = 0
Mesh 1,:

—zsly—z A3+ (zy+z5+z5)l, = 0

and in matrix form
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z;+2z, 0 -z, 0 I, Ve
0 z,+z,+z, —Z3 —Zs L |y
-z, —Z3 Zy,+z3+2, -z I 0
0 —z5 -z, zy+z5+z4 |1, 0

Shown below is the MATLAB code to solve this system of equations.

Vs=100*(cos(pi/3)+j*sin(pi/3)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=20j; z5=5; z6=-10j; z7=2;...

Z=[z1+z2 0 -z2 O0;...

0 z3+z5+z7 -z3 -z5;...

-z2 —-z3 72+z3+z4 -z4;...

0 -z5 -z4 z4+z5+z6];...

V=[Vs 0 0 0]; I=2\V; IL=I(3)-I(4);...

maglL=abs(IL); phaselL=angle(IL)*180/pi;...

disp('l1="); disp(I(1)); disp('12="); disp(l(2));...

disp('13="); disp(I(3)); disp('14="); disp(l(4));...

disp('IL="; disp(IL);...

format bank % Display magnitude and angle values with two decimal places
disp(‘'maglL="); disp(maglL); disp(‘phasellL="); disp(phaselL);...
fprintf(' \n');

I1 5.4345 - 3.41101

I2 = 4.5527 + 0.70281i

I3 = 4.0214 + 0.23691

I4 = 7.4364 + 1.91571

IL= -3.4150- 1.67871

magIL = 3.81

phaseIl, = -153.82

Therefore, I, = 3.81/-153.82° < i,(t) = 3.81 cos(104t——153.82°)

4. The equivalent phasor circuit is shown below where
. . 3 -3 .
JoL, = j5x10"x2x10" = jI0
. . 3 -3
JoL, = j5x10"x5x10" = j25

—j/o0C = —j/(5x10°x 20x 107°) = 10
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____(30000L
V., JI0Q 190
+ +
(V) 0ol -
40260° V

+| Vs>
Ve )
60£(-30)° V

We let Vo = Vi + V" where V. is the capacitor

voltage due to V§; acting alone, and V" is the

capacitor voltage due to Vy, acting alone. With Vg, acting alone the circuit reduces to that

shown below.

z
00000 ZI 00000 ?
V
S1 + 23 _—+
™ W
(v 10| ¢
40£60° V
By KCL
VeV, KC Kc_ 0
Z; Z; z3
(i+i L) _ Vs
Z; Zp Zz3 ¢ Z
Vs, Vs,
Ve = T 1 1Y) -z
zl-(-—+—+—) (1 —I+—I)
Z; %2 %3 Z, Zz3
and with MATLAB

Vs1=40%(cos(pi/3)+j*sin(pi/3)); z1=10+10j; z2=

36.7595 - 5.29621

Vic
Therefore,

—10j; z3=25+25j; V1c=Vs1/(1+z1/z2+21/z3)

Vi. = 36.76-j530 V

Next, with Vg, acting alone the circuit reduces to that shown below.

7-44
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z; Z;
00000 00000
+ + | Vs2
e @
10 Q| — b
60£(-30)° V
By KCL
&.}.V_'C.FKC;____VSJ:O
Z; 2 Z3
V
(i.}-i-}-i)V’C:_SZ
Z; Z; Z3 Z3
v = Vs, _ Vs,
23~(i+i+i) (Z—3+Z—3+1)
Z; Z; z3 zZ; Z,
and with MATLAB

Vs2=60*(cos(pi/6)—j*sin(pi/6));...

z1=10+10j; z2=—10j; z3=25+25j; V1¢=36.7595-5.2962j;...
V2c=Vs2/(z3/z1+z3/z2+1); Vc=V1c+V2c; fprintf(' \n');...
disp('V1c ="); disp(V1c); disp('V2c =); disp(V2c);...
disp('Vc=V1c+V2c"); fprintf(' \n'); disp('Vc ='); disp(Vc);...
fprintf('magVc = %4.2f V \t',abs(Vc));...

fprintf('phaseVc = %4.2f deg \t',angle(Vc)*180/pi);...
fprintf(' \n"); fprintf(' \n');

Vlic = 36.7595 - 5.29621

V2c = -3.1777 - 22.05571
Vc = Vlc+V2c
Vc = 33.5818 - 27.35191
magvVc = 43.31 V phaseVc = -39.16 deg
Then,
Vo= Ve+ V' = 335872735 = 43.31£27.35°
and
ve(t) = 43.31cos(5000t—27.35°)
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5. This circuit is excited by a DC (constant) voltage source, an AC (sinusoidal) voltage source, and
an AC current source of different frequency. Therefore, we will apply the superposition principle.
Let Vi be the capacitor voltage due to vg,; acting alone, V'~ the capacitor voltage due to vg,()
acting alone, and V7. the capacitor voltage due to ig(#) acting alone. Then, the capacitor voltage
due to all three sources acting simultaneously will be Vi = Vi + Vi + V'

With the DC voltage source acting alone, after steady-state conditions have been reached the

inductors behave like short circuits and the capacitor as an open circuit and thus the circuit is sim-
plified as shown below.

—ANVVA
10Q I
+
— +
O n g
15V | - B
By the voltage division expression
Ve =V, - . 5=5VDC
T T Rsq T 10+5 T T
and
Ve(t) = 5V DC

Next, with the sinusoidal voltage source v,(#) acting alone the reactances are
. .23 -3 .
jo, L, =j10"x1x10" =jIQ
. 03 -3 _ .
jo,L, =jI10"x2x10" = j2Q
—j/®,C = /(100 x5x107") = —j2 Q

and the equivalent phasor circuit is as shown below.
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Z; Z3
30000 00000
VS2 + +
2 A=
() G10al - ¢
20£0° V
By KCL
VeV, Ve Ve _,
Z; Z; z3
V
(i+i+_l_)[/"c__s_2
Z; Zp Z3 Z
v = Vs> _ Vs,
o (L+led) (1424%)
Z; 2y z3 Z, Z3
and with MATLAB

Vs2=20+0j; z1=10+j; z2=—-2j; z3=5+2j; V2c=Vs2/(1+z1/z2+2z1/z3); fprintf(' \n');...
disp('V2c ="); disp(V2c); fprintf('magV2c = %4.2f V \t',abs(V2c));...
fprintf('phaseV2c = %4.2f deg \t',angle(V2c)*180/pi); fprintf(' \n'); fprintf(' \n');

V2c = 1.8089 - 3.53621
magV2c = 3.97 V phaseV2c = -62.91 deg
Then,

V'e = 1.81-j3.54 = 3.97/-62.9°
and

V(1) = 3.97cos (1000t — 62.9°)

Finally, with the sinusoidal current source ig(#) acting alone the reactances are
. . 3 -3 .
Jo,L, = j2x10"x1x10" =j2Q
. . 3 3 _
Jo,L, = j2x 10" x2x 10" = j4 Q

Sji/0,C = —j/(2x10°x5x 107") = —j1 O
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and the equivalent phasor circuit is as shown below where the current source and its parallel resis-
tance have been replaced with a voltage source with a series resistor.

20£0° V
By KCL
V" VH Vl"_V
__£.|.__C.|._g____5;3 =0
21 22 Z3
V
(L+i+i)V"C: _S53
Z; Z; Z3 Z3
VHC: VS3 — VS3
23.(i+i+i) (Z—3+Z—3+1)
Z; Z; Z3 zZ; Z,
and with MATLAB

Vs3=20+0j; z1=10+2j; z2=—j; z3=5+4j; V3c=Vs3/(z3/z1+23/z2+1); fprintf(' \n');...
disp('V3c ="); disp(V3c); fprintf('magV3c = %4.2f V \t',abs(V3c));...
fprintf('phaseV3c = %4.2f deg \t',angle(V3c)*180/pi); fprintf(' \n'); fprintf(' \n');

V3c = -1.4395 - 3.11701

magV3c = 3.43 V phaseV3ic = -114.79 deg
Then,
V' = —1.44-j3.12 = 3.43/-114.8°
or
V'e(t) = 3.43cos(2000t - 114.8°)
and

Vell) = Ve V() + V(1) = 5+ 3.97cos (1000t — 62.9°) + 3.43 cos (20001 — 114.8°)

These waveforms are plotted below using the following MATLAB code:

wt=linspace(0,2*2*pi); deg=wt*180/pi; V1c=5;
V2¢=3.97.*cos(wt-62.9.*pi./180);
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V3c=3.43.*cos(2.*wt—114.8."pi./180); plot(deg,V1c,deg,V2c,deg,V3c, deg,Vic+V2¢c+V3c)

10 | ve(t) -

) 0 100 200 300 400 500 600 700 800

6. Since Zg and Z, ,,, are complex quantities, we will express them as Zg = Re{Zy} +jIm{Z}
and Z; oup = RelZ; o p} +jIm{Z; o p} Where Re and Im denote the real and imaginary com-

ponents respectively.
We want to maximize

2
Vs

(Zs+Z04p)

2
Vs Z1 04D

[Re{Zs} +jIm{Zg} +j(Re{Z,p p} +j1m{ZLOAD})]2

2 7 _ 7
Proap = P LOAD *ZLioyp = 5 4L0AD

The only that can vary are Re{Z;,,p} and Im{Z;,,,} and we must consider them indepen-

dently from each other.

From the above expression we observe that p; ,,, will be maximum when the denominator is
minimum and this will occur when Im{Z, , ,,} = —Im{Zg} , thatis, when the imaginary parts of

Z;o4p a0d Zg cancel each other. Under this condition, p; ,,p simplifies to

2
Vs Rio4p

Proap = >
(Rs+Rp04p)
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and, as we found in Chapter 3, for maximum power transfer R;,,, = Rg. Therefore, the load
impedance Z; ., will receive maximum power when
= *
Zioap = Zs
that is, when Z; , , is adjusted to be equal to the complex conjugate of Zg.

7. For this, and other similar problems involving the maximum power transfer theorem, it is best to
replace the circuit with its Thevenin equivalent. Moreover, we only need to compute Z;.

For this problem, to find Z;;; we remove Z; ,,, and we short the voltage source. The remaining

circuit then is as shown below.

Z3

Zs

We observe that z; is in parallel with z, and this combination is shown as z,, in the simplified cir-

cuit below.

But this circuit cannot be simplified further unless we perform Wye to Delta transformation
which we have not discussed. This and the Delta to Wye transformation are very useful in three-
phase circuits and are discussed in Cireuit Analysis 11 with MATI.AB Applications by this author.

Therefore, we will compute Z;; using the relation Z,; = Vi /1o where V- is the open circuit
voltage, that is, V;; and I, is the current that would flow between the terminals when the load is

replaced by a short. Thus, we will begin our computations with the Thevenin voltage.

We disconnect Z; ,,p from the circuit at points X and Y as shown below.
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EQ 20 Q

170£0°

We will replace the remaining circuit with its Thevenin equivalent. Thus, with Z, ,,, discon-

nected the circuit simplifies to that shown below.

4Q X

Now, we will find

Q
At Node 1:
V,-Ve. V, V, -V
1 S, 21 2 _ 9
Z; Z; Z3
V
(i+i+i)V1_iV2=_S
zZ; z; zj Z3 zy
At Node 2:
V,-V, V, V
2 1+_2+_2=0
—i%+(i+i+i)%
Z3 Z3 Zy4 Zs
and with MATLAB

Vs=170; z1=4; z2=20; z3=10; z4=5j; z5=5-10;j;...
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Y=[1/z1+1/22+1/z3 -1/z3; -1/z3 1/z3+1/z4+1/25]; 1=[Vs/z1 0]; V=Y\l; V1=V (1); V2=V(2);...
VX=V1; VY=(5/z5)*V2; VTH=VX-VY; fprintf(' \n');...

disp('V1 ="); disp(V1); disp('V2 ="); disp(V2);...

disp(‘'VTH ="); disp(VTH); fprintf('magVTH = %4.2f V ',abs(VTH));...

fprintf('phaseVTH = %4.2f deg ',angle(VTH)*180/pi); fprintf(' \n'); fprintf(' \n');

V1 = 1.1731e+002 + 1.1538e+0011

V2 = 44.2308+46.15381

VIH = 1.2692e+002 - 1.5385e+0011
magVTH = 127.85 V phaseVTH = -6.91 deg

Thus, Vg = 127.85/-6.91°

Next, we must find I~ from the circuit shown below.

+ Vs
)
~141, 20 Q)
17020°

We will write four mesh equations as shown above but we only are interested in phasor current 1,,.

Observing that a and b are the same point the mesh equations ate

(z;+z))1;—z,1, = Vy
-z, +(zy+z5+zg)I3—2z51, = 0
and in matrix form
zZ;+ 2, -z, 0 0 I, V
-z, Z,+z3+z, -z, —Z3 I, 1o
0 -z Zy+vzs+z5 —Zs I; 0
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With MATLAB

Vs=170; VTH=126.92-15.39j; z1=4; z2=20; z3=10; z4=>5j; z5=5; z6=—10;j;...

Z=[z1+z2 -z2 0 0; -z2 z2+z3+z4 -z4 -z3; 0 —z4 z4+z5+26 -z5; 0 -z3 —z5 z3+2z5];...
V=[Vs 0 0 0I; I1=2\V; 1=I(1); 12=1(2); 13=I(3); 14=I(4);...

ZTH=VTH/4; fprintf(' \n"); disp('l1 = "); disp(11); disp('12 = "); disp(12);...

disp('I3 = ); disp(13); disp('14 ="); disp(l4); disp('ZTH ="); disp(ZTH); fprintf(' \n');

I1 = 15.6745 - 2.63001
I2 = 10.3094 - 3.15591
I3 = -1.0520 + 10.73021
I4 = 6.5223 + 1.47281

ZTH = 18.0084 - 6.42601
Thus, Z;y = 18.09—-j6.43 Q and by Problem 6, for maximum power transfer there must be

8. We assign phasor currents as shown below:.

4Q 10Q 5Q

We choose I as a reference, that is, we let

I, = 120° 4
Then,

V=520V
and since I = I

Ve =1./(-j10) = 1£0°-10£-90° = 10£-90° V

Next,
V, = Vs+ Ve =520°+10£-90° = 5+ (—j10) = 5-j10 = 11.18/-63.4° V
and
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I, = V,/j5 = (11.18/-63.4°)/(5£90°) = 2.24/-153.4° = -2~ A

Now

Iy=1+I3=-2-j+1=—-1-j=2/-135°4
and

Vig= 10xJ2/-135° = 10x (=1-j) = =10—-j10 V
Continuing we find

V= Vi+V, =—-10-j10+5-j10 = —=5-j20 V

and
I,y = V,/20 = (-5-j20)/20 = —-0.25—j A
Also,
I,=Ty+1,)=-025—j-1—j=-125-j24
and
V,=4I,= 4x(-125-j2) = —-5-j8 V
Finally,

Vo=V, +Vy = —5-j8-5-j20 = —10—28 = 29.73/-109.7° V

The magnitudes (not to scale) and the phase angles are shown below.

The phasor diagram above is acceptable. However, it would be more practical if we rotate it by
109.7° to show the voltage source V; as reference at 0° as shown below.
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9. The equivalent phasor circuit is shown below where z;, = R; = 1 KQ, z, = R, = 3 KQ, and

2y = /0C = —/(10° x 0.25x 10°°) = —j4 KQ

e

A1
1Ko |y 3 KQ
+ z; o
Viy = 3Z£0°V VOTUT
b N

Application of KCL yields
V- V[N+ V- VOUT+ V- VOUT —

0
Z] z; Z3
and since ¥V = 0 the above relation reduces to
1 1 -Vin
( —+ —) Vour = —
Zy; Z3 Z;
or
% _ -Vin Vi
our < =
- (Lel) (Za3)
Z2 Z3 22 23
and with MATLAB

Vin=3; z1=1000; z2=3000; z3=—4000j; Vout=-Vin/(z1/z2+z1/z3);...

fprintf(' \n'); disp('Vout ="); disp(Vout); fprintf('magVout = %5.2f V \t',abs(Vout));...
fprintf('phaseVout = %5.2f deg \t',angle(Vout)*180/pi); fprintf(' \n'); fprintf(' \n');
Vout = -5.7600 + 4.32001

magVout = 7.20 V phaseVout = 143.13 deg

Thus,
Vouyr = —5.76+j4.32 = 7.2/143.13° V
and
Vou(t) = 7.2cos(1000t + 143.13°) V
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NOTES
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Chapter 8

Awverage and RMS Values, Complex Power, and Instruments

his chapter defines average and effective values of voltages and currents, instantaneous and
average power, power factor, the power triangle, and complex power. It also discusses electri-
cal instruments that are used to measure current, voltage, resistance, power, and energy.

8.1 Periodic Time Functions

A periodic time function satisfies the expression

&) = f(t+nT) (8.1)

where n is a positive integer and T is the period of the periodic time function. The sinusoidal and
sawtooth waveforms of Figure 8.1 are examples of periodic functions of time.

\/cosmt / \ / /\ /cos(mt+e)

<— T ‘ T ‘ T T
Figure 8.1. Examples of periodic functions of time

Other periodic functions of interest are the square and the triangular waveforms.
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8.2 Average Values

The average value of any continuous function f(#) such as that shown in Figure 8.2 over an interval
ast<h,

(0

a b

Figure 8.2. A continuous time function f(t)

is defined as

L (areal’) (8.2)

b
e = =] fdt = =

The average value of a periodic time function f(t) is defined as the average of the function over one period.

Example 8.1

Compute the average value of the sinusoid shown in Figure 8.3, where v, denotes the peak (maxi-

mum) value of the sinusoidal voltage.

V() )
V, — V,sinot

0 x 32 [/ ot
/2 :

T

Figure 8.3. Waveform for Example 8.1

Solution:
By definition,

] T [ ol ) _VB 21 .

Vive = T'[o v(t)dt = c)TJ-O V,sinotd(wt) = 2“"-0 sinotd(ot)
2n 0
4 14
= L(-cosot)| ==EL(cosot)| ==L(I-1)=0

2n 0 21 o 2n
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as expected since the net area of the positive and negative half cycles is zero.

Example 8.2

Compute the average value of the balf-wave rectification waveform shown in Figure 8.4.

Half-Wave Rectifier Waveform

lesina)t/\ /
TC 2n

«—— T — Radians

Current (1)

Figure 8.4. Waveform for Example 8.2
Solution:

This waveform is defined as

I sinot O<ot<mn
=17

(8.3)
0 T<ot<2n
Then, its average value is found from
] 2n ) _ ] T ) 2n
1, = 5;.[0 Ipsznwtd(wt) = 27TU0 Ipsznwtd(wt)+jn Od(wt)} 0

1 1 1 1
L(_ ™o L O_2ri_(—n=2
27c( cosot|,) choscot|7I 275[1 (-] -

In other words, the average value of the half-wave rectification waveform is equal to its peak value
divided by =.

8.3 Effective Values

The effective current 1 off of a periodic current waveform i(¢) is defined as the current which produces

heat in a given resistance R at the same average rate as a direct (constant) current /., that is,

Average Power = P, = Rlezﬂ = lec (8.5)

Also, in a periodic current waveform i(¢), the instantaneous power is
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p(1) = Ri(0) (8.6)
and
1 ' 1 ! R '
P,.= ?J. p(dt = ?j Ri*dt = ?J‘ P dt (8.7)
0 0 0
Equating (8.5) with (8.7) we get
R T
2 .2
Rl = ?J‘ i“dt
0
or
2 I¢T 2
or
; T
.2 / .2
Ieﬁ’ = %J‘ i“dr = IRoot Mean Square = IRMS = Ndve(i) (88)
0

Caution 1: In general, ave(i2 ) #(iy, e)z since the expression ave(i2 ) implies that the function /
must 