1 The field of complex numbers The set of complex numbers is denoted by $\mathbb C$. The cartesian representation of $z\in\mathbb C$ is z=x+iy with $x,y\in\mathbb R$ and $i^2=-1$. The real and imaginary parts of z are $\mathrm{Re}\,(z)=x$ and $\mathrm{Im}\,(z)=y$, respectively. Addition and multiplication of complex numbers (defined in a predictable way) satisfy all the properties we would have expected — meaning that $\mathbb C$ is a field. The polar representation of $z\in\mathbb C$ is $z=re^{i\theta}$ with $r\geq 0$ and $\theta\in\mathbb R$. We call r=|z| the modulus of z and $\theta=\arg(z)$ — not necessarily unique — an argument of z. We have $r=\sqrt{x^2+y^2}$ and $\tan(\theta)=y/x$. De Moivre's theorem states that $(\cos(\theta)+i\sin(\theta))^n=\cos(n\theta)+i\sin(n\theta)$, or in simplified form, that $(e^{i\theta})^n=e^{in\theta}$ — this uses Euler formula $e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)$. Note also the identities $\cos(\theta)=(e^{i\theta}+e^{-i\theta})/2$ and $\sin(\theta)=(e^{i\theta}-e^{-i\theta})/(2i)$. In general, one has $\mathrm{Re}\,(z)=(z+\bar z)/2$, $\mathrm{Im}\,(z)=(z-\bar z)/(2i)$, and $|z|^2=z\bar z$. Here $\bar z=x-iy=re^{-i\theta}$ is the complex conjugate of z. The fundamental theorem of algebra ensures that every nonconstant polynomial $p(z)=a_nz^n+\cdots+a_1z+a_0$ has a complex roots (in turn, that every polynomial with complex coefficients has all its roots in $\mathbb C$, i.e., $\mathbb C$ is algebraically closed). A possible argument goes along those lines: pick $z_0 \in \mathbb{C}$ such that $|p(z_0)| = \min_{z \in \mathbb{C}} |p(z)|$ and suppose $|p(z_0)| > 0$; write that p equals its Taylor polynomial at z_0 , i.e., $p(z_0) + \sum_{j=k}^n b_j (z-z_0)^j$ where $b_k \neq 0$; note that $\sum_{j=k+1}^n |b_j| \rho^j < |b_k| \rho^k < |p(z_0)|$ for $\rho > 0$ sufficiently small; observe that $p(z_0) + b_k (z-z_0)^k$ describes k times the circle $\{|\zeta - p(z_0)| = |b_k| \rho^k\}$ when z describes the circle $\{|z - z_0| = \rho\}$, hence there exists z_1 with $|z_1 - z_0| = \rho$ such that $p(z_0) + b_k (z_1 - z_0)^k$ lies between 0 and $p(z_0)$, so that $|p(z_0) + b_k (z_1 - z_0)^k| = |p(z_0)| - |b_k| \rho^k$; derive a contradiction from $$|p(z_1)| \le |p(z_0) + b_k(z_1 - z_0)^k| + |\sum_{j=k+1}^n b_j(z_1 - z_0)^j| \le |p(z_0)| - |b_k|\rho^k + \sum_{j=k+1}^n |b_j|\rho^j < |p(z_0)|.$$ Another possible argument involves Cauchy formula for holomorphic functions (see below): suppose that p does not vanish on \mathbb{C} , so that q=1/p is holomorphic on \mathbb{C} ; for R>0 sufficiently large to have $|p(z)| \geq (|a_n|-|a_{n-1}|/|z|-\cdots |a_0|/|z|^n)|z|^n \geq |a_n||z|^n/2$ whenever |z|=R, a contradiction follows from $$0 < |q(0)| = \left| \frac{1}{2\pi i} \oint_{|z| = R} \frac{q(z)dz}{z} \right| \le \frac{1}{2\pi} \oint_{|z| = R} \frac{dz}{|z||p(z)|} \le \frac{1}{2\pi} \oint_{|z| = R} \frac{2 dz}{|a_n|R^{n+1}} = \frac{2}{|a_n|R^n} \underset{R \to \infty}{\longrightarrow} 0.$$ ## 2 Holomorphic functions A function f defined on an open subset of \mathbb{C} is differentiable at z_0 if one can make sense of $$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$ In particular, the limit is independent of how z_0 is approached. If the function f of the variable z = x + iy is differentiable at $z_0 = x_0 + iy_0$, then it satisfies the Cauchy–Riemann equations $$\frac{\partial \operatorname{Re} f}{\partial x}(x_0,y_0) = \frac{\partial \operatorname{Im} f}{\partial y}(x_0,y_0) \quad \text{and} \quad \frac{\partial \operatorname{Re} f}{\partial y}(x_0,y_0) = -\frac{\partial \operatorname{Im} f}{\partial x}(x_0,y_0).$$ A converse holds provided the first-order partial derivatives are continuous. A function f is called holomorphic at z_0 if it is differentiable in some neighborhood of z_0 (i.e., whenever $|z-z_0| < r$ for some r > 0). Every power series $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ with radius of convergence R > 0 defines a holomorphic function on $\{|z-z_0| < R\}$. Conversely, every holomorphic function is analytic, i.e., locally representable by powers series (hence holomorphic and analytic are synonymous terms for complex functions). This fact shows that holomorphic functions are infinitely differentiable and that their zeros are isolated (unless the function vanishes everywhere). Let G be a simply connected open region, let γ be a simple closed path oriented counterclockwise and contained in G, and let $z_0 \in \mathbb{C}$ be inside γ . If f is holomorphic in G, then it satisfies Cauchy integral formulas $$\textbf{(1)} \quad \oint_{\gamma} f(z)dz = 0, \quad \oint_{\gamma} \frac{f(z)dz}{z - z_0} = 2\pi i f(z_0), \quad \oint_{\gamma} \frac{f(z)dz}{(z - z_0)^n} = 2\pi i f^{(n)}(z_0) \ \text{ for all integer } n \geq 0.$$ Cauchy formula implies Liouville's theorem, which states that a function f holomorphic and bounded on $\mathbb C$ is constant. Indeed, if γ is the circular contour oriented counterclockwise with center 0 and radius R large enough so that $|z-z_0|, |z-z_1| \geq R/2$, then, for all $z_0, z_1 \in \mathbb C$, $$|f(z_0) - f(z_1)| = \left| \frac{1}{2\pi i} \oint_{\gamma} f(z) \left(\frac{1}{z - z_0} - \frac{1}{z - z_1} \right) dz \right| = \left| \frac{z_0 - z_1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)(z - z_1)} dz \right|$$ $$\leq \frac{|z_0 - z_1|}{2\pi} \oint_{\gamma} \frac{\max(|f|)}{(R/2)^2} dz = \frac{4|z_0 - z_1| \max(|f|)}{R} \xrightarrow{R \to \infty} 0.$$ Cauchy formula also implies the maximum principle, which sates that, if f is homomorphic on $\{|z-z_0| \le r\}$, then $$\max_{|z-z_0| \le r} |f(z)| = \max_{|z-z_0| = r} |f(z)|.$$ ## 3 Meromorphic functions If a function is holomorphic on an annulus $A = \{r < |z - z_0| < R\}$ for some $R > r \ge 0$, then f has a unique Laurent expansion at z_0 of the form $$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n, \qquad z \in A.$$ A function f holomorphic in some punctured neighborhood of z_0 (i.e., an annulus where r=0) but not at z_0 is said to have an isolated singularity at z_0 . These can be of three different kinds: removable singularity if $c_n=0$ for all n<0 (for instance $\sin(z)/z$ at $z_0=0$), poles if $c_{-m}\neq 0$ and $c_n=0$ for all n<-m, in which case m is called the order of the pole (for instance rational functions at z_0 equal to a zero of the denominator), and essential singularities if $\inf\{n:c_n\neq 0\}=-\infty$. A function which is holomorphic in an open subset G of $\mathbb C$ except possibly for poles is said to be meromorphic in G. Let G be a simply connected open region and let γ be a simple closed path oriented counterclockwise and contained in G. Cauchy residue theorem states that, if f is meromorphic in Gwith all its poles z_1, \ldots, z_N inside γ , then $$\oint_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}(f, z_k),$$ where the residue $\mathrm{Res}(f,z_k)$ of f at z_k is defined as the coefficient c_{-1} of $(z-z_k)^{-1}$ in the Laurent expansion of f at z_k . It follows that, if f is holomorphic on G and does not vanish on γ , then the number of zeros of f inside γ equals $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz$. From here, we can deduce Rouché's theorem which states that, if f and g are holomorphic in G and if |f(z)| > |g(z)| on g, then g have the same number of zeros (counting multiplicity) inside g. ## 4 Exercises Ex.1: Find the set of all $z \in \mathbb{C}^n$ such that |z| + |z + 1| = 2. Ex.2: Prove the identity $$\cos^{n}(\theta) = \frac{1}{2^{n}} \sum_{k=0}^{n} {n \choose k} \cos((n-2k)\theta).$$ Ex.3: Prove the necessity of the Cauchy–Riemann equations. Ex.4: Establish the fundamental integral $$\oint_{\gamma(z_0,r)} (z-z_0)^n dz = \begin{cases} 0 & \text{if } n \neq -1, \\ 2\pi i & \text{if } n = -1, \end{cases}$$ where $\gamma(z_0, r)$ denotes the circular contour oriented counterclockwise with center z_0 and radius r. Derive (informally) formulas (1) with $\gamma = \gamma(z_0, r)$ for analytic functions. Ex.5: Use the maximum principle to prove Schwarz lemma: if f is holomorphic on $\{|z|=1\}$, if $M:=\max_{|\zeta|=1}|f(\zeta)|$, and if f(0)=0, then $|f(z)|\leq M\,|z|$ whenever $|z|\leq 1$. Ex.6: Use Cauchy residue theorem to evaluate $$\oint_{\gamma} \frac{dz}{1+z^4},$$ where γ is the semicircle $\{|z|=R, \operatorname{Im}(z)\geq 0\}\cup [-R,R]$ oriented counterclockwise. Deduce the value of the integral $$\int_0^\infty \frac{dx}{1+x^4}.$$