
Complex Analysis

1 The field of complex numbers
The set of complex numbers is denoted by C. The cartesian representation of z ∈ C is z = x+iy

with x, y ∈ R and i2 = −1. The real and imaginary parts of z are Re (z) = x and Im (z) = y,
respectively. Addition and multiplication of complex numbers (defined in a predictable way)
satisfy all the properties we would have expected — meaning that C is a field. The polar
representation of z ∈ C is z = reiθ with r ≥ 0 and θ ∈ R. We call r = |z| the modulus
of z and θ = arg(z) — not necessarily unique — an argument of z. We have r =

√
x2 + y2

and tan(θ) = y/x. De Moivre’s theorem states that (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ),
or in simplified form, that (eiθ)n = einθ — this uses Euler formula eiϕ = cos(ϕ) + i sin(ϕ).
Note also the identities cos(θ) = (eiθ + e−iθ)/2 and sin(θ) = (eiθ − e−iθ)/(2i). In general, one
has Re (z) = (z + z̄)/2, Im (z) = (z − z̄)/(2i), and |z|2 = zz̄. Here z̄ = x − iy = re−iθ is the
complex conjugate of z. The fundamental theorem of algebra ensures that every nonconstant
polynomial p(z) = anz

n + · · · + a1z + a0 has a complex roots (in turn, that every polynomial
with complex coefficients has all its roots in C, i.e., C is algebraically closed).
A possible argument goes along those lines: pick z0 ∈ C such that |p(z0)| = minz∈C |p(z)| and
suppose |p(z0)| > 0; write that p equals its Taylor polynomial at z0, i.e., p(z0) +

∑n
j=k bj(z− z0)j

where bk 6= 0; note that
∑n

j=k+1 |bj |ρj < |bk|ρk < |p(z0)| for ρ > 0 sufficiently small; observe
that p(z0) + bk(z − z0)k describes k times the circle {|ζ − p(z0)| = |bk|ρk} when z describes the
circle {|z − z0| = ρ}, hence there exists z1 with |z1 − z0| = ρ such that p(z0) + bk(z1 − z0)k lies
between 0 and p(z0), so that |p(z0) + bk(z1 − z0)k| = |p(z0)| − |bk|ρk; derive a contradiction from

|p(z1)| ≤ |p(z0) + bk(z1 − z0)k|+ |
n∑

j=k+1

bj(z1 − z0)j | ≤ |p(z0)| − |bk|ρk +
n∑

j=k+1

|bj |ρj < |p(z0)|.

Another possible argument involves Cauchy formula for holomorphic functions (see below):
suppose that p does not vanish on C, so that q = 1/p is holomorphic on C; for R > 0 sufficiently
large to have |p(z)| ≥ (|an| − |an−1|/|z| − · · · |a0|/|z|n)|z|n ≥ |an||z|n/2 whenever |z| = R, a
contradiction follows from

0 < |q(0)| =
∣∣∣∣ 1

2πi

∮
|z|=R

q(z)dz

z

∣∣∣∣ ≤ 1

2π

∮
|z|=R

dz

|z||p(z)|
≤ 1

2π

∮
|z|=R

2 dz

|an|Rn+1
=

2

|an|Rn
−→
R→∞

0.

2 Holomorphic functions
A function f defined on an open subset of C is differentiable at z0 if one can make sense of

f ′(z) = lim
z→z0

f(z)− f(z0)

z − z0
.

In particular, the limit is independent of how z0 is approached. If the function f of the variable
z = x+ iy is differentiable at z0 = x0 + iy0, then it satisfies the Cauchy–Riemann equations

∂Re f

∂x
(x0, y0) =

∂Im f

∂y
(x0, y0) and

∂Re f

∂y
(x0, y0) = −∂Im f

∂x
(x0, y0).

A converse holds provided the first-order partial derivatives are continuous.
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A function f is called holomorphic at z0 if it is differentiable in some neighborhood of z0 (i.e.,
whenever |z − z0| < r for some r > 0). Every power series

∑∞
n=0 cn(z − z0)n with radius of

convergence R > 0 defines a holomorphic function on {|z − z0| < R}. Conversely, every holo-
morphic function is analytic, i.e., locally representable by powers series (hence holomorphic
and analytic are synonymous terms for complex functions). This fact shows that holomorphic
functions are infinitely differentiable and that their zeros are isolated (unless the function
vanishes everywhere).

Let G be a simply connected open region, let γ be a simple closed path oriented counterclock-
wise and contained in G, and let z0 ∈ C be inside γ. If f is holomorphic in G, then it satisfies
Cauchy integral formulas

(1)
∮
γ
f(z)dz = 0,

∮
γ

f(z)dz

z − z0
= 2πif(z0),

∮
γ

f(z)dz

(z − z0)n
= 2πif (n)(z0) for all integer n ≥ 0.

Cauchy formula implies Liouville’s theorem, which states that a function f holomorphic and
bounded on C is constant. Indeed, if γ is the circular contour oriented counterclockwise with
center 0 and radius R large enough so that |z − z0|, |z − z1| ≥ R/2, then, for all z0, z1 ∈ C,

|f(z0)− f(z1)| =
∣∣∣∣ 1

2πi

∮
γ
f(z)

(
1

z − z0
− 1

z − z1

)
dz

∣∣∣∣ =

∣∣∣∣z0 − z12πi

∮
γ

f(z)

(z − z0)(z − z1)
dz

∣∣∣∣
≤ |z0 − z1|

2π

∮
γ

max(|f |)
(R/2)2

dz =
4|z0 − z1|max(|f |)

R
−→
R→∞

0.

Cauchy formula also implies the maximum principle, which sates that, if f is homomorphic
on {|z − z0| ≤ r}, then

max
|z−z0|≤r

|f(z)| = max
|z−z0|=r

|f(z)|.

3 Meromorphic functions
If a function is holomorphic on an annulus A = {r < |z − z0| < R} for some R > r ≥ 0, then f

has a unique Laurent expansion at z0 of the form

f(z) =

∞∑
n=−∞

cn(z − z0)n, z ∈ A.

A function f holomorphic in some punctured neighborhood of z0 (i.e., an annulus where r = 0)
but not at z0 is said to have an isolated singularity at z0. These can be of three different
kinds: removable singularity if cn = 0 for all n < 0 (for instance sin(z)/z at z0 = 0), poles if
c−m 6= 0 and cn = 0 for all n < −m, in which case m is called the order of the pole (for instance
rational functions at z0 equal to a zero of the denominator), and essential singularities if
inf{n : cn 6= 0} = −∞. A function which is holomorphic in an open subset G of C except
possibly for poles is said to be meromorphic in G.
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Let G be a a simply connected open region and let γ be a simple closed path oriented counter-
clockwise and contained in G. Cauchy residue theorem states that, if f is meromorphic in G

with all its poles z1, . . . , zN inside γ, then∮
γ
f(z)dz = 2πi

N∑
k=1

Res(f, zk),

where the residue Res(f, zk) of f at zk is defined as the coefficient c−1 of (z − zk)
−1 in the

Laurent expansion of f at zk. It follows that, if f is holomorphic on G and does not vanish

on γ, then the number of zeros of f inside γ equals
1

2πi

∮
γ

f ′(z)

f(z)
dz. From here, we can deduce

Rouché’s theorem which states that, if f and g are holomorphic in G and if |f(z)| > |g(z)| on γ,
then f and f + g have the same number of zeros (counting multiplicity) inside γ.

4 Exercises

Ex.1: Find the set of all z ∈ Cn such that |z|+ |z + 1| = 2.

Ex.2: Prove the identity

cosn(θ) =
1

2n

n∑
k=0

(
n

k

)
cos((n− 2k)θ).

Ex.3: Prove the necessity of the Cauchy–Riemann equations.

Ex.4: Establish the fundamental integral∮
γ(z0,r)

(z − z0)ndz =

{
0 if n 6= −1,

2πi if n = −1,

where γ(z0, r) denotes the circular contour oriented counterclockwise with center z0 and
radius r. Derive (informally) formulas (1) with γ = γ(z0, r) for analytic functions.

Ex.5: Use the maximum principle to prove Schwarz lemma: if f is holomorphic on {|z| = 1},
if M := max

|ζ|=1
|f(ζ)|, and if f(0) = 0, then |f(z)| ≤M |z| whenever |z| ≤ 1.

Ex.6: Use Cauchy residue theorem to evaluate∮
γ

dz

1 + z4
,

where γ is the semicircle {|z| = R, Im (z) ≥ 0} ∪ [−R,R] oriented counterclockwise.
Deduce the value of the integral ∫ ∞

0

dx

1 + x4
.

3


	The field of complex numbers
	Holomorphic functions
	Meromorphic functions
	Exercises

