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In classical mechanics, a particle has an exact, sharply defined position and an
exact, sharply defined momentum at all times. Quantum mechanics is a different
fundamental formalism, in which observables such as position and momentum
are not real numbers but operators; consequently there are uncertainty relations,
e.g. ∆x∆p & ~, which say that as some observables become more sharply defined,
others become more uncertain. Experiments show that quantum mechanics, not
classical mechanics, is the correct description of nature.

Here is a summary of the essentials of quantum mechanics, focussing on the
case of a single non-relativistic particle (eg an electron) in one dimension. This is
not a complete review of everything you need to know: it is a quick outline of the
basics to help you get oriented with this challenging subject.

1. States. The state of the system is given by a wavefunction ψ(x). The
wavefunction is complex, and gives the amplitude for finding the particle at
position x. The probability density is the square modulus of the amplitude,
so in one dimension the probability to find the particle located between x
and x+ dx is

P (x)dx = |ψ(x)|2dx . (1)

This means that if you start off with an “ensemble” of identical copies of
the system, all with the same wavefunction ψ(x), and in each member you
measure the position of the particle, then you will get different results from
different members of the ensemble. The probability of getting particular
answers is given by (1). A physical state must be normalized, so that all the
probabilities add up to 1: ∫

|ψ(x)|2dx = 1 . (2)

However, for some purposes we will find it convenient to use unnormalized
states.

2. Operators. Each observable corresponds to a linear operator. A linear
operator is something that acts on a state and gives another state, ie it
changes one function into another.

position operator x̂ defined by x̂ψ(x) = xψ(x)

momentum operator p̂ defined by p̂ψ(x) = −i~∂ψ
∂x

(3)
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For example, when the position operator acts on the state ψ(x) = 1/(a2+x2),
it gives x/(a2 + x2), while the momentum operator gives 2i~x/(a2 + x2)2.

Linearity means that an operator Ŷ acts on a sum of two states in the obvious
way:

Ŷ
(
ψ(x) + φ(x)

)
= Ŷ ψ(x) + Ŷ φ(x) (4)

3. Expectation values. The expectation value of an observable Y in a normalized
state ψ is

〈ψ|Ŷ |ψ〉 =

∫ ∞
−∞

ψ∗(x)Ŷ ψ(x) dx (5)

This means that if you have an ensemble of identical copies of the system, all
with the same wavefunction ψ(x), then when you measure the value of the
observable Y in all the members, the average value that you get is 〈ψ|Ŷ |ψ〉
(sometimes written 〈Ŷ 〉ψ, or even 〈Ŷ 〉, if it is obvious from the context which
state to use).

So the average position of a particle in a normalized state ψ(x) is

〈ψ|x̂|ψ〉 =

∫ ∞
−∞

ψ∗(x) x̂ψ(x) dx =

∫ ∞
−∞

ψ∗(x)xψ(x) dx =

∫ ∞
−∞

x|ψ(x)|2 dx

(6)
which is just what you would expect from Eq. (1).

4. Eigenvalues and eigenstates. Each operator Ŷ has a set of eigenvalues y
which are the possible values you can get on doing a measurement of Y .
Any measurement of Y must yield one of the eigenvalues. Each eigenvalue y
is associated with an eigenstate φy(x), which is the state for which the value
of Y is exactly y, with no uncertainty. So if you create an ensemble of systems
that are all in the same state, namely the Y -eigenstate φy(x), then when you
measure the value of the observable Y , each member of the ensemble will give
you the same answer, namely y. You can find the eigenstates and eigenvalues
of an operator from the eigenvalue equation,

Ŷ φy(x) = y φy(x) (7)

This equation says that if φy(x) is the eigenstate with eigenvalue y, then

acting on φy(x) with the operator Ŷ just gives the same state back, but
multiplied by the eigenvalue y. Physically, φy(x) is the state in which the
observable Y has the definite value y. Note that the eigenvalues of an
operator that coresponds to an observable are always real, since they are
possible values of that physical observable.
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For example, the eigenstates of the momentum operator are plane waves
ψp(x) = eipx/~:

p̂ eipx/~ = −i~ ∂
∂x

eipx/~ = p eipx/~ (8)

The eigenstates of the position operator are δ-functions, ψx1(x) = δ(x− x1).
The function δ(x−x1) is zero everywhere except at x = x1 where it is infinite,
so x̂ δ(x − x1) = x δ(x − x1) = x1 δ(x − x1). (The formal definition of the
δ-function is:

∫
δ(x− x1)f(x) dx = f(x1) for any function f .)

Note that the eigenstates of the position and momentum operators are not
normalizable, so they are not themselves physically allowed states for a
system, but they are the building blocks for allowed states, since you can
build normalizable states out of them, e.g. wavepackets.

5. Resolving a state into eigenstates. The eigenstates of any operator Ŷ form
a complete orthonormal basis of states, so you can write any state ψ(x) in
terms of them:

ψ(x) =
∑
y

Ayφy(x) or ψ(x) =

∫
A(y)φy(x)dy (9)

Ay or A(y) is the amplitude for the value of the observable Y for a particle in
the state ψ(x) to be y. So when you make a measurement of the observable
Ŷ on a system in the state ψ(x):

discrete eigenvalues: |Ay|2 = probability to get the value y
continuous eigenvalues: |A(y)|2 dy = probability to get y to y + dy

(10)

The only question is: for a given state ψ, how do you express it in terms
of eigenstates of Y , i.e. how do you calculate the coefficients Ay or A(y)?
Actually, thanks to the orthonormality property this is easy: you multiply
the state by the complex conjugate of the eigenstate of Ŷ with eigenvalue y,
and integrate:

Ay or A(y) =

∫
φy(x)∗ψ(x) dx . (11)

Using (10) you then know the probability of getting any of the allowed values
when you perform a measurement of Y on a particle in state ψ. This follows
from the orthonormality property of the eigenstates:∫

φy1(x)∗φy2(x) dx =

{
δ(y1 − y2) continuous eigenvalue spectrum
δy1,y2 discrete eigenvalue spectrum

(12)

6. Measurement. If a system has been prepared in a state ψ(x), and you measure
the value of some observable Y in that system, then
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• The result of your measurement is one of the eigenvalues of the
corresponding operator Ŷ .

• The probability to get any particular value (ym, say) is given by the
amount of the corresponding eigenstate φym(x) that is contained in ψ(x)
(see item 5 above).

• After you have made the measurement, the wavefunction of the system
is changed: it is now φym(x), the eigenstate of Ŷ corresponding to the

value of Ŷ that you obtained. So if you immediately measure Y again
you will get the same answer as before. This is the “collapse of the
wavefunction” that gives rise to apparent paradoxes like “Schrödinger’s
cat”.

7. The uncertainty principle. Now you can see (qualitatively) how the
uncertainty principle arises. The eigenstates of one operator are not in
general the same as the eigenstates of a different operator. So when you
make a state with a definite value of one observable, it will in general not
have a definite value of the other observables. For example, a plane wave,
which is an eigenstate of the momentum operator, has a definite value of
the momentum. But plane waves are completely spread out in space, so the
plane wave contains all eigenstates of the position operator, so the position
is then completely uncertain.

8. Time evolution. The evolution through time of a state is determined by
the energy operator, usually called the “Hamiltonian” Ĥ, via the “time-
dependent Schrödinger equation”:

Ĥψ = i~
∂ψ

∂t
(13)

For a spinless non-relativistic particle of mass m in a one-dimensional
potential V (x) the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂) = − ~2

2m

∂2

∂x2
+ V (x) (14)

9. Energy eigenstates. Because time evolution is so important, the energy
eigenstates are particularly important. As you would expect from (7), these
are defined by

ĤψE(x) = EψE(x) (15)

which is called the “time-independent Schrödinger equation”, but is really
just the standard equation for the Hamiltonian (i.e. energy) operator’s
eigenvalues and eigenstates. You can apply the time-dependent Schrödinger
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equation to the energy eigenstates, and show that they have simple time
dependence: they oscillate at a frequency determined by their energy.

ψE(x, t) = ψE(x, 0)e−iEt/~ (16)

So the easiest way to evolve a state forward in time is to resolve it into energy
eigenstates, and let each eigenstate oscillate at its own frequency:

ψ(x, 0) =
∑
E

AE ψE(x)

⇒ ψ(x, t) =
∑
E

AE ψE(x)e−iEt/~
(17)

The tricky part of this is that you have to calculate the eigenstates and
corresponding eigenvalues of the Hamiltonian. This is not always easy to do,
but once it is done you have solved the system: you know exactly how it will
behave.

5


