
An Introduction to Iterative Learning Control

Kevin L. Moore, EGES 504/604A Seminar, Colorado School of Mines, January 24, 2006

Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

An Introduction to
Iterative Learning Control Theory

Presenter:

Kevin L. Moore – Colorado School of Mines

Contributors:

YangQuan Chen - Utah State University

Hyo-sung Ahn - Utah State University

CSM EGES 504/604A Colloquium

Golden, CO — 24 Jamuary 2006



An Introduction to Iterative Learning Control

Kevin L. Moore, EGES 504/604A Seminar, Colorado School of Mines, January 24, 2006

Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

Outline

• Introduction

– Control System Design: Motivation for ILC

– Iterative Learning Control: The Basic Idea

– Some Comments on the History of ILC

• The “Supervector” Notation

• The w-Transform: “z-Operator” Along the Repetition Axis

• ILC as a MIMO Control System

– Repetition-Domain Poles

– Repetition-Domain Internal Model Principle

• The Complete Framework

– Repetition-Varying Inputs and Disturbances

– Plant Model Variation Along the Repetition Axis



An Introduction to Iterative Learning Control

Kevin L. Moore, EGES 504/604A Seminar, Colorado School of Mines, January 24, 2006

Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

Control Design Problem 
 
 
 

 
 
 
 
 
 
 
Given:  System to be controlled. 
 
Find:  Controller (using feedback). 
 
Such that: 1) Closed-loop system is stable. 
   2) Steady-state error is acceptable. 
   3) Transient response is acceptable. 

 
System to be 

controlled 

 

Controller
Reference Error Input Output
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Motivation for the Problem of Iterative Learning Control 
 
 
• Transient response design is hard: 
 

1) Robustness is always an issue: 
- Modelling uncertainty. 
- Parameter variations. 
- Disturbances. 

2) Lack of theory (design uncertainty): 
- Relation between pole/zero locations and transient response. 
- Relation between Q/R weighting matrices in optimal control and transient 

response. 
- Nonlinear systems. 

 
• Many systems of interest in applications are operated in a repetitive fashion. 
 
• Iterative Learning Control (ILC) is a methodology that tries to address the 

problem of transient response performance for systems that operate repetitively.
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Systems that Execute the Same Trajectory Repetitively 

Step 1: Robot at rest, waiting for workpiece.

Step 3: Robot moves to desired 
location 

Step 2: Workpiece moved into position.

Step 4: Robot returns to rest and 
             waits for next workpiece.
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Errors are Repeated When 
Trajectories are Repeated 
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•A typical joint angle trajectory for the example might look like this: 
 
 
 
 
 
 
 
 
 
•Each time the system is operated it will see the same overshoot,  
  rise time, settling time, and steady-state error.  
 
•Iterative learning control attempts to improve the transient response by
 adjusting the input to the plant during future system operation based   
 on the errors observed during past operation. 
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Iterative Learning Control

• Standard iterative learning control scheme:

System
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• A typical ILC algorithm has the form: uk+1(t) = uk(t) + γek(t + 1).

• Standard ILC assumptions include:

– Stable dynamics or some kind of Lipschitz condition.

– System returns to the same initial conditions at the start of each trial.

– Each trial has the same length.
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A Simple Example

• For the nominal plant:

xk+1 =

[
−0.8 −0.22

1 0

]
xk +

[
0.5
1

]
uk

yk = [1, 0.5]xk

• Track the reference trajectory:
Yd(j) = sin(8.0j/100)

• We use the standard “Arimoto” algorithm:

uk+1(t) = uk(t) + γek(t + 1)

with four different gains: γ = 0.5, γ = 0.85, γ = 1.15, γ = 1.5
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A Simple Example (cont.)
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• In all cases, ILC converges well.

• Without knowing an accurate model of the plant, we achieve “perfect” tracking by iteratively updating
the input from trial to trail.
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ILC Research History

• ILC has a well-established research history:

– More than 1000 papers:
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– At least four monographs.

– Over 20 Ph.D dissertations.



First ILC paper- in Japanese (1978)

**
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ILC Research History (cont.)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Miscellaneous

Robots

Rotary 
systems

Process
control

Bio-applications

Actuators

Semiconductors
Power systems

 
By application areas.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Miscellaneous

Robots

Rotary 
systems

Process
control

Bio-applications

Actuators

Semiconductors
Power systems

 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Structure

Update
rule

Typical

Robust
Optimal

Adaptive

Mechanical
nonlinearity

Neural

ILC for control

Miscellaneous

 By theoretical areas.



An Introduction to Iterative Learning Control

Kevin L. Moore, EGES 504/604A Seminar, Colorado School of Mines, January 24, 2006

Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

Selected ILC Industrial Applications

• ILC patents in hard disk drive servo:

– YangQuan Chen’s US6,437,936 “Repeatable runout compensation using a learning algorithm
with scheduled parameters.”

– YangQuan Chen’s US6,563,663 “Repeatable runout compensation using iterative learning con-
trol in a disc storage system.”

• Robotics:

– Michael Norrlöf’s patent on ABB robots. US2004093119 “Path correction for an industrial
robot.”

• Gantry motion control:

– Work by Southampton Sheffield Iterative Learning Control (SSILC) Group (described this after-
noon).

See “Iterative Learning Control Survey: 1998-2004,” Hyosung Ahn, CSOIS Technical Report # ..., Logan,
UT 2005, for more information on the literature of ILC.



Control Engineering - History and ILC
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ILC Problem Formulation

• Standard iterative learning control scheme:
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• Goal: Find a learning control algorithm

uk+1(t) = fL(previous information)

so that for all t ∈ [0, tf ]
lim
k→∞

yk(t) = yd(t)

• We will consider this problem for discrete-time, linear systems.



LTI ILC Convergence Conditions - 1

• Theorem: For the plant yk = Tsuk, the linear time-invariant learning control algorithm

uk+1 = Tuuk + Te(yd − yk)

converges to a fixed point u∗(t) given by

u∗(t) = (I − Tu + TeTs)
−1Teyd(t)

with a final error

e∗(t) = lim
k→∞

(yk − yd) = (I − Ts(I − Tu + TeTs)
−1Te)yd(t)

defined on the interval (t0, tf ) if
‖Tu − TeTs‖i < 1

• Observation:

– If Tu = I then ‖e∗(t)‖ = 0 for all t ∈ [to, tf ].

– Otherwise the error will be non-zero.



LTI Learning Control - Nature of the Solution

• Question: Given Ts, how do we pick Tu and Te to make the final error e∗(t) as “small” as
possible, for the general linear ILC algorithm:

uk+1(t) = Tuuk(t) + Te(yd(t)− yk(t))

• Answer: Let T ∗n solve the problem:

min
Tn

‖(I − TsTn)yd‖

It turns out that we can specify Tu and Te in terms of T ∗n and the resulting learning controller
converges to an optimal system input given by:

u∗(t) = T ∗nyd(t)

• Conclusion:The essential effect of a properly designed learning controller is to produce the
output of the best possible inverse of the system in the direction of yd.
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ILC as a Two-Dimensional Process

• Suppose the plant is a scalar discrete-time dynamical system, described as:

yk(t + 1) = fS[yk(t), uk(t), t]

where

– k denotes a trial (or execution, repetition, pass, etc.).

– t ∈ [0, N ] denotes time (integer-valued).

– yk(0) = yd(0) = y0 for all k.

• Use a general form of a typical ILC algorithm for a system with relative degree one:

uk+1(t) = fL[uk(t), ek(t + 1), k]

where

– ek(t) = yd(t)− yk(t) is the error on trial k.

– yd(t) is a desired output signal.
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ILC as a Two-Dimensional Process (cont.)

• Combine the plant equation with the ILC update rule to get:

yk+1(t + 1) = fS[yk(t), uk+1(t), t] = fS[fL[yk(t), uk(t), ek(t + 1), k], t]

• Changing the notation slightly we get:

y(k + 1, t + 1) = f [yk(t), u(k, t), e(k, t + 1), k, t]

• Clearly this is a 2-D system:

– Dynamic equation indexed by two variables: k and t.

– k defines the repetition domain (Longman/Phan terminology).

– t is the normal time-domain variable.

• But, ILC differs from a complete 2-D system design problem:

– One of the dimensions (time) is a finite, fixed interval, thus convergence in that direction (tradi-
tional stability) is always assured for linear systems.

– In the ILC problem we admit non-causal processing in one dimension (time) but not in the other
(repetition).

• We can exploit these points to turn the 2-D problem into a 1-D problem.
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The “Supervector” Framework of ILC

• Consider an SISO, LTI discrete-time plant with relative degree m:

Y (z) = H(z)U(z) = (hmz−m + hm+1z
−(m+1) + hm+2z

−(m+2) + · · · )U(z)

• By “lifting” along the time axis, for each trial k define:

Uk = [uk(0), uk(1), · · · , uk(N − 1)]T

Yk = [yk(m), yk(m + 1), · · · , yk(m + N − 1)]T

Yd = [yd(m), yd(m + 2), · · · , yd(m + N − 1)]T

• Thus the linear plant can be described by Yk = HpUk where:

Hp =


h1 0 0 . . . 0
h2 h1 0 . . . 0
h3 h2 h1 . . . 0
... ... ... . . . ...

hN hN−1 hN−2 . . . h1


• The lower triangular matrix Hp is formed using the system’s Markov parameters.

• Notice the non-causal shift ahead in forming the vectors Uk and Yk.
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The “Supervector” Framework of ILC (cont.)

• For the linear, time-varying case, suppose we have the plant given by:

xk(t + 1) = A(t)xk(t) + B(t)uk(t)

yk(t) = C(t)xk(t) + D(t)uk(t)

Then the same notation again results in Yk = HpUk, where now:

Hp =


hm,0 0 0 . . . 0

hm+1,0 hm,1 0 . . . 0
hm+2,0 hm+1,1 hm,2 . . . 0

... ... ... . . . ...
hm+N−1,0 hm+N−2,1 hm+N−3,2 . . . hm,N−1


• The lifting operation over a finite interval allows us to:

– Represent our dynamical system in R1 into a static system in RN .
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The Update Law Using Supervector Notation

• Suppose we have a simple “Arimoto-style” ILC update equation with a constant gain γ:

– In our R1 representation, we write:

uk+1(t) = uk(t) + γek(t + 1)

– In our RN representation, we write:

Uk+1 = Uk + ΓEk

where

Γ =


γ 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
... ... ... . . . ...
0 0 0 . . . γ


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The Update Law Using Supervector Notation (cont.)

• Suppose we filter with an LTI filter during the ILC update:

– In our R1 representation we would have the form:

uk+1(t) = uk(t) + L(z)ek(t + 1)

– In our RN representation we would have the form:

Uk+1 = Uk + LEk

where L is a Topelitz matrix of the Markov parameters of L(z), given, in the case of a “causal,”
LTI update law, by:

L =


Lm 0 0 . . . 0

Lm+1 Lm 0 . . . 0
Lm+2 Lm+1 Lm . . . 0

... ... ... . . . ...
Lm+N−1 Lm+N−2 Lm+N−3 . . . Lm


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The Update Law Using Supervector Notation (cont.)

• We may similarly consider time-varying and noncausal filters in the ILC update law:

Uk+1 = Uk + LEk

• A causal (in time), time-varying filter in the ILC update law might look like, for example:

L =


n1,0 0 0 . . . 0
n2,0 n1,1 0 . . . 0
n3,0 n2,1 n1,2 . . . 0
... ... ... . . . ...

nN,0 nN−1,1 nN−2,2 . . . n1,N−1


• A non-causal (in time), time-invariant averaging filter in the ILC update law might look like, for

example:

L =



K K 0 0 · · · 0 0 0
0 K K 0 · · · 0 0 0
0 0 K K · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · K K 0
0 0 0 0 · · · 0 K K
0 0 0 0 · · · 0 0 K


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The ILC Design Problem

• The design of an ILC controller can be thought of as the selection of the matrix L.

– For a causal ILC updating law, L will be in lower-triangular Toeplitz form.

– For a noncausal ILC updating law, L will be in upper-triangular Toeplitz form.

– For the popular zero-phase learning filter, L will be in a symmetrical band diagonal form.

– L can also be fully populated.

• The supervector notation can also be applied to other ILC update schemes. For example:

– The Q-filter often introduced for stability (along the iteration domain) has the R1 representation:

uk+1(t) = Q(z)(uk(t) + L(z)ek(t + 1))

– The equivalent RN representation is:

Uk+1 = Q(Uk + LEk)

where Q is a Toeplitz matrix formed using the Markov parameters of the filter Q(z).
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w-Transform: the “z-Operator” in the Iteration Domain

• Introduce a new shift variable, w, with the property that, for each fixed integer t:

w−1uk(t) = uk−1(t)

• For a scalar xk(t), combining the lifting operation to get the supervector Xk with the shift operation
gives what we call the w-transform of xk(t), which we denote by X(w)

• Then the ILC update algorithm:

uk+1(t) = uk(t) + L(z)ek(t + 1)

which, using our supervector notation, can be written as Uk+1 = Uk + LEk can also be written as:

wU(w) = U(w) + LE(w)

where U(w) and E(w) are the w-transforms of Uk and Ek, respectively.

• Note that we can also write this as
E(w) = C(w)U(w)

where

C(w) =
1

(w − 1)
L

.
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ILC as a MIMO Control System

• The term

C(w) =
1

(w − 1)
L

is effectively the controller of the system (in the repetition domain). This can be depicted as:
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Higher-Order ILC in the Iteration Domain

• We can use these ideas to develop more general expressions ILC algorithms.

• For example, a “higher-order” ILC algorithm could have the form:

uk+1(t) = k1uk(t) + k2uk−1(t) + γek(t + 1)

which corresponds to:

C(w) =
γw

w2 − k1w − k2

• Next we show how to extend these notions to develop an algebraic (matrix fraction) description of
the ILC problem.
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A Matrix Fraction Formulation

• Suppose we consider a more general ILC update equation given by (for relative degree m = 1):

uk+1(t) = D̄n(z)uk(t) + D̄n−1(z)uk−1(t) + · · · + D̄1(z)uk−n+1(t) + D̄0(z)uk−n(t)

+Nn(z)ek(t + 1 + Nn−1(z)ek−1(t + 1 + · · · + N1(z)ek−n+1(t + 1) + N0(z)ek−n(t + 1)

which has the supervector expression

Uk+1 = D̄nUk + D̄n−1Uk−1 + · · · + D̄1Uk−n+1 + D̄0Uk−n

+NnEk + Nn−1Ek−1 + · · · + N1Ek−n+1 + N0Ek−n

• Aside: note that there are a couple of variations on the theme that people sometimes consider:

– Uk+1 = Uk + LEk+1

– Uk+1 = Uk + L1Ek + L0Ek+1

These can be accomodated by adding a term Nn+1Ek+1 in the expression above, resulting in the
so-called “current iteration feedback,” or CITE.
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A Matrix Fraction Formulation (cont.)

• Applying the shift variable w we get:

D̄c(w)U(w) = Nc(w)E(w)

where

D̄c(w) = Iwn+1 − D̄n−1w
n − · · · − D̄1w − D̄0

Nc(w) = Nnw
n + Nn−1w

n−1 + · · · + N1w + N0

• This can be written in a matrix fraction as U(w) = C(w)E(w) where:

C(w) = D̄−1
c (w)Nc(w)

• Thus, through the addition of higher-order terms in the update algorithm, the ILC problem has
been converted from a static multivariable representation to a dynamic (in the repetition domain)
multivariable representation.

• Note that we will always get a linear, time-invariant system like this, even if the actual plant is
time-varying.

• Also because D̄c(w) is of degree n + 1 and Nc(w) is of degree n, we have relative degree one in the
repetition-domain, unless some of the gain matrices are set to zero.
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ILC Convergence via Repetition-Domain Poles

• From the figure we see that in the repetition-domain the closed-loop dynamics are defined by:

Gcl(w) = Hp[I + C(w)Hp]
−1C(w)

= Hp[(w − 1)D̄c(w) + Nc(w)Hp]
−1Nc(w)

• Thus the ILC algorithm will converge (i.e., Ek → a constant) if Gcl is stable.

• Determining the stability of this feedback system may not be trivial:

– It is a multivariable feedback system of dimension N , where N could be very large.

– But, the problem is simplified due to the fact that the plant Hp is a constant, lower-triangular
matrix.
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Repetition-Domain Internal Model Principle

• Because Yd is a constant and our “plant” is type zero (e.g., Hp is a constant matrix), the internal
model principle applied in the repetition domain requires that C(w) should have an integrator effect
to cause Ek → 0.

• Thus, we modify the ILC update algorithm as:

Uk+1 = (I −Dn−1)Uk + (Dn−1 −Dn−2)Uk−1 + · · ·
+(D2 −D1)Uk−n+2 + (D1 −D0)Uk−n+1 + D0Uk−n

+NnEk + Nn−1Ek−1 + · · · + N1Ek−n+1 + N0Ek−n

• Taking the “w-transform” of the ILC update equation, combining terms, and simplifying gives:

(w − 1)Dc(w)U(w) = Nc(w)E(w)

where

Dc(w) = wn + Dn−1w
n−1 + · · · + D1w + D0

Nc(w) = Nnw
n + Nn−1w

n−1 + · · · + N1w + N0
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Repetition-Domain Internal Model Principle (cont.)

• This can also be written in a matrix fraction as:

U(w) = C(w)E(w)

but where we now have:

C(w) = (w − 1)−1D−1
c (w)Nc(w)

• For this update law the repetition-domain closed-loop dynamics become:

Gcl(w) = H

(
I +

I

(w − 1)
C(w)H

)−1
I

(w − 1)
C(w),

= H [(w − 1)Dc(w) + Nc(w)H ]−1Nc(w)

• Thus, we now have an integrator in the feedback loop (a discrete integrator, in the repetition domain)
and, applying the final value theorem to Gcl, we get Ek → 0 as long as the ILC algorithm converges
(i.e., as long as Gcl is stable).
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Higher-Order ILC in the Iteration Domain, Revisited

• A key feature of our matrix fraction, algebraic framework is that it assumes use of higher-order ILC.

• At the ’02 IFAC World Congress a special session explored the value that could be obtained from
such algorithms:

– One possible benefit could be due to more freedom in placing the poles (in the w-plane).

– It has been suggested in the literature that such schemes can give faster convergence.

– However, we can show dead-beat convergence using any order ILC. Thus, higher-order ILC can
be no faster than first-order.

• One conclusion from the ’02 IFAC special sessions is that higher-order ILC is primarily beneficial
when there is repetition-domain uncertainty.

• Several such possibilities arise:

– Iteration-to-iteration reference variation.

– Iteration-to-iteration disturbances and noise.

– Plant model variation from repetition-to-repetition.

• The matrix fraction, or algebraic, approach can help in these cases.
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Iteration-Varying Disturbances

• In ILC, it is assumed that desired trajectory yd(t) and external disturbance are invariant with respect
to iterations.

• When these assumptions are not valid, conventional integral-type, first-order ILC will no longer work
well.

• In such a case, ILC schemes that are higher-order along the iteration direction will help.

• Consider a stable plant

Ha(z) =
z − 0.8

(z − 0.55)(z − 0.75)

• Let the plant be subject to an additive output disturbance

d(k, t) = 0.01(−1)k−1

• This is an iteration-varying, alternating disturbance. If the iteration number k is odd, the disturbance
is a positive constant in iteration k while when k is even, the disturbance jumps to a negative constant.

• In the simulation, we wish to track a ramp up and down on a finite interval.
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Example: First-Order ILC
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Example: Second-Order, Internal Model ILC
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A Complete Design Framework

• We have presented several important facts about ILC:

– The supervector notation lets us write the ILC system as a matrix fraction, introducing an
algebraic framework.

– In this framework we are able to discuss convergence in terms of pole in the iteration-domain.

– In this framework we can consider rejection of iteration-dependent disturbances and noise as well
as the tracking of iteration-dependent reference signals (by virtue of the internal model principle).

• In the same line of thought, we can next introduce the idea of iteration-varying models.
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Iteration-Varying Plants

• Can view the classic multi-pass (Owens and Edwards) and linear repetitive systems (Owens and
Rogers) as a generalization of the static MIMO system Yk = HpUk into the dynamic (in iteration)
MIMO system, so that

Yk+1 = A0Yk + B0Uk

becomes
H(w) = (wI − A0)

−1B0

• Introduce iteration-varying plant uncertainty, so the static MIMO system Yk = HpUk becomes the
dynamic (in iteration) and uncertain MIMO system, such as

Hp = H0(I + ∆H)

or
Hp ∈ [H, H ]

or
Hp = H0 + ∆H(w)

or
Hp(w) = H0(w)(I + ∆H(w))

· · · etc. · · ·
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Complete Framework

)(ILC wC

)(wCCITE

)1(
1
−w )(wHp

)(wHΔ

-

)(wD )(wN

)(wYd
)(wY)(wU)(wE

• Yd(w), D(w) and N(w) describe, respectively, the iteration-varying reference, disturbance, and noise
signals. Hp(w) denotes the (possibly iteration varying) plant.

• ∆Hp(w) represents the uncertainty in plant model, which may also be iteration-dependent.

• CILC(w) denotes the ILC update law.

• CCITE(w) denotes any current iteration feedback that might be employed.

• The term 1
(w−1) denotes the natural one-iteration delay inherent in ILC.
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Outline

• Introduction

– Control System Design: Motivation for ILC

– Iterative Learning Control: The Basic Idea

– Some Comments on the History of ILC

• The “Supervector” Notation

• The w-Transform: “z-Operator” Along the Repetition Axis

• ILC as a MIMO Control System

– Repetition-Domain Poles

– Repetition-Domain Internal Model Principle

• The Complete Framework

– Repetition-Varying Inputs and Disturbances

– Plant Model Variation Along the Repetition Axis



Categorization of algorithms

Yr D N C H

Constant 0 0 Γ(w − 1)−1 Hp Classic approach (asymptotical)

Constant 0 0 Γ(w − 1)−1 Hp Owens’ multipass (asymptotical)

Yr(z) D(w) 0 C(w) Hp General (asymptotical)

Yr(z) D(z) 0 C(w) H(w) + ∆(w) Frequency uncertainty. (asymptotical)

Yr(z) 0 w(t), v(t) C(w) Hp Stochastic ILC. (asym, monotone)

Yr(z) 0 w(t), v(t) Γ(w − 1)−1 Hp Least quadratic ILC. (asym)

Yr(z) 0 0 Γ(w − 1)−1 HI Interval (monotone)

Yr(z) D(z) w(t), v(t) C(w) H(z) + ∆H(z) Time domain H∞ (asymptotical)

Yr(z) D(w) w(k, t), v(k, t) C(w) H(w) + ∆H(w) Iterative domain H∞ (asymptotical)

Yr(z) 0 w(k, t), v(k, t) Γ(k) Hp + ∆H(k) Iteration varying uncertainty (monotone)

Yr(z) 0 H̃ Γ Hp Intermittent measurement

Yr(w) 0 0 Γ(w − 1)−1 Hp Periodically-I.V.-reference(asymptotical)

Yr(w) 0 0 Γ(w − 1)−1 Hp Periodically-I.V.-reference(monotonic)

**



Experimental test: Setup
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Impulse responses and desired trajectory
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