
Socially Optimal Mining Pools

Ben A. Fisch∗ Rafael Pass† abhi shelat‡

Abstract

Mining for Bitcoins is a high-risk high-reward activity. Miners, seeking to reduce their vari-
ance and earn steadier rewards, collaborate in so-called pooling strategies where they jointly
mine for Bitcoins. Whenever some pool participant is successful, the earned rewards are appro-
priately split among all pool participants. Currently a dozen of different pooling strategies (i.e.,
methods for distributing the rewards) are in use for Bitcoin mining.

We here propose a formal model of utility and social welfare for Bitcoin mining (and analo-
gous mining systems) based on the theory of discounted expected utility, and next study pooling
strategies that maximize the social welfare of miners. Our main result shows that one of the
pooling strategies actually employed in practice—the so-called geometric pay pool—achieves the
optimal steady-state utility for miners when its parameters are set appropriately.

Our results apply not only to Bitcoin mining pools, but any other form of pooled mining or
crowdsourcing computations where the participants engage in repeated random trials towards
a common goal, and where “partial” solutions can be efficiently verified.

∗Stanford University, bfisch@stanford.edu
†Cornell University, rafael@cs.cornell.edu
‡Northeastern University, a.shelat@northeastern.edu

1

ar
X

iv
:1

70
3.

03
84

6v
1

 [
cs

.G
T

]
 1

0
M

ar
 2

01
7

1 Introduction

In recent years, crowd-sourcing of computation—where anyone can contribute to a computation-
ally heavy task—has grown in popularity. For instance, in the SETI@home project, users search
for extraterrestrial life by analyzing radio telescoping data; or in the Rosetta@home project, users
process data to discover new proteins. In both of these examples, however, the participating users
freely volunteer computing resources. With the advent of Bitcoin, a new type of computational
crowdsourcing emerged: in place of altruism, users are incentivized to participate in the compu-
tation by receiving a reward (paid in Bitcoins) for performing the work. Bitcoin [Nak08] is a
digital currency system that enables users to transact without a central authority. In absence of
a trusted central monitor, the system relies on external monitors called “miners” who perform in-
tensive computation—searching for a solution to a computation puzzle—to operate the system. To
incentivize participation, miners receive rewards for any puzzle they solve. The reward incentive in
Bitcoin has an exceedingly high variance (the puzzles are difficult to solve), and as shown in [PSS16],
this is inherent in the Bitcoin system. As a result, miners typically collaborate by forming mining
pools to reduce their variance. Currently, miners use many different types of pooling strategies.

The focus of this work is to determine the optimal mining pooling strategies. While our focus
is on Bitcoin, our results apply to any form of mining that involves random trials and where
demonstration of partial work is possible. One can even imagine applications to non-computational
forms of mining (e.g., gold mining, oil drilling). The hope is that insight from analyzing the Bitcoin
mining system will also be useful to incentivize other types of crowdsourced computation (such as
those mentioned above).

We begin with an overview of Bitcoin system and then proceed to formalize the pool-design
problem. We refer the reader to [BMC+15] for a more detailed description of the Bitcoin system.

1.1 Overview of Bitcoin

The Bitcoin reward system Bitcoin uses a distributed consensus protocol to maintain in a pub-
lic ledger called the blockchain which stores the valid transaction history. Participants broadcast
transactions over a peer-to-peer network, while agents called miners collect blocks of transactions,
verify their integrity, and append them to the blockchain. Miners are required to produce a com-
putationally intensive proof-of-work in order to append a block to the blockchain. This mechanism
makes it difficult for malicious miners controlling less than a majority of the system’s computational
power to rewrite history (as long as the mining hardness is appropriately set [GKL15,PSS16]). The
system incentivizes miners by rewarding them with newly minted coins for each block they add to
the chain.

The proof-of-work consists of finding a partial pre-image for a cryptographic hash function H.
Roughly, given a block with contents b, a miner must find a value r from a large domain X such
that H(b||r) < d. Miners successively sample random values in X until they find a solution to
this cryptographic puzzle. The value d determines the block difficulty, or the probability p that a
random r ∈ X will satisfy the puzzle. The current difficulty is set so that in expectation, the entire
group of miners succeed in mining a single block every 10 minutes (and as shown by the analysis
in [PSS16], the mining difficulty cannot be significantly decreased without making the protocol
vulnerable to attacks.)

As a consequence, based on the hardness parameters for 2015, an individual miner with state-
of-the-art mining hardware will in expectation mine a single block once every 687 days [LBS+15]!

2

Moreover, the process of mining is memoryless. A miner who has not received any reward after
687 days must still wait another 687 days on average to receive a reward. Thus, the income of an
individual miner has a very high variance. The number of blocks produced by a miner working at
a continuous rate h (measured in hashes per second) for a time period t is well approximated by
a Poisson distribution with mean λ = pht. The miner receives expected reward λB with variance
λB2, where B is the reward per block.

Mining pools. Miners seeking to reduce their variance and earn steadier incomes join mining
pools. Participating in a pool is called pool mining and mining alone is called solo mining. Whenever
a pool miner wins a reward, the reward is shared among all the pool’s participating miners. Pools
require a trusted operator to monitor participation and manage the allocation of rewards. The rough
idea is to have the pool operator monitor how much work each individual participant contributes
to the pool, and then whenever some participant manages to mine a block, the operator receives
the block reward in proxy and then allocates the reward among the pool participants based on how
much work they contributed.

Monitoring the effort of participating miners, however, is a nontrivial task. Unless miners
are assumed to be honest, simply asking miners to report their effort leads to free riding : riders
will claim to have done work even if they have not. To overcome this problem, miners instead
demonstrate their effort by submitting partial proofs-of-work called shares, which are simply block
hashes that satisfy a lower difficulty parameter, i.e. shares are a “near-solution” to the original
computational puzzle. We distinguish such shares from full solutions which we simply refer to as
blocks.

To prevent pool participants from stealing the block-mining reward whenever they find a full
solution, the block owner identity is incorporated into the proof-of-work. Pools only accept proofs-
of-work, partial or complete, that incorporate the identity of the pool as the block owner. Otherwise,
miners could submit only partial proofs to the pool and send their complete proofs to the Bitcoin
network for a solo reward.

The principal question we consider now is:

How should a pool operator allocate block rewards to the pool participants so as to max-
imize their social welfare?

If miners are risk neutral, then solo mining is optimal. But if miners are risk averse (technically,
have a concave utility function), then pooling strategies may improve their utility by decreasing the
variance of their rewards. From here on, we refer to the pool’s strategy for allocating the reward
as the allocation rule. Indeed, several popular pooling strategies with different allocation rules are
currently in use:1

• In the proportional pay scheme, the reward of a block is split among all the participants in
the pool proportionally to the number of shares they submitted to the pool—in other words,
the rewards are split evenly among the shares in the pool, and the pool is then “emptied” for
the next round.

• The Pay-Per-Last-N-Shares (PPLNS) pool is similar, except that the block reward is always
distributed evenly among the last N shares submitted to the pool (without ever “emptying”
the pool).

1See https://en.bitcoin.it/wiki/Comparison_of_mining_pools for a comprehensive list of popular pools.

3

https://en.bitcoin.it/wiki/Comparison_of_mining_pools

• Score based pooling mechanisms generalize PPLNS pools, and distribute block rewards over
preceding shares contributed to the pool according to some weighting function. PPLNS can
be viewed as a score based pooling mechanism that uses a step weighting function. Rewards
in the Slush’s pool and the geometric pool are concentrated at the winning block and decay
exponentially over the preceding shares.

Some pools do not allocate rewards immediately, and instead invest rewards in a central pool
fund. These funds may be used to incentivize future participation in the pool at a risk-free rate
(Pay-Per-Share (PPS) pools). PPS pools absorb all the variance of their participants, and in order
to survive with high probability they must heavily discount the risk-free rate. This is not a pure
pooling mechanism because it assumes a financier. In this paper, we restrict our attention to pure
pooling mechanisms.

Definition 1.1 (Informal Definition). A pure pooling mechanism is an allocation rule that assigns
fractional rewards to all shares preceding a block, including the block share itself. The allocation-rule
may depend on the state of the pool.

1.2 Our Results

In its current state of affairs, the Bitcoin mining pool ecosystem is a collection of seemingly ad-
hoc mining pool strategies with ad-hoc parameters, and there is no consensus as to which pool
mechanism is “optimal”. As far as we are aware, there are no published theories on optimal mining
pool strategies even among a restricted class of strategies. Towards this goal, we put forward
a formal model of utility of pooling strategies for computation/mining, and derive the pooling
strategy that maximizes miners’ utility. We demonstrate that for the most commonly used utility
function, a power utility function, the geometric pool is optimal if the parameters of the geometric
pool are appropriately set. As mentioned above, the geometric pool is one that is used in practice
(although not necessarily with the optimal parameters).

Modeling mining pools. In order to analyze the question of what the optimal pooling strategy
is, we must first specify a model for measuring the utility of a pool participant. We start by viewing
Bitcoin mining pool shares as financial investments that receive a cashflow from the pool. Different
pools represent different investment packages, each varying the risk, value, and timing of payoffs.
According to the expected utility (EU) theory, risk-averse agents have a concave utility function,
most commonly the power utility u(x) = xα, and prefer assets X that maximize the expected
utility E[u(X)]. We use the standard discounted expected utility (DEU) [Sam37] model for ranking
the utility of sequences of time-separated payoffs, which exponentially discounts utilities occurring
t steps in the future by δt for some constant discount parameter δ.

DEU is well suited for modeling the utility of a single share that a miner contributes to a pool.
However, when an individual miner contributes multiple shares to one or more pools over time,
the utility of the shares is not in general separable (see §2.3 for a discussion). However, we argue
that the utility of shares is approximately separable when the miner controls a sufficiently small
portion of the pool’s computational power. It is reasonable to restrict our attention to large pools
of relatively small miners. The core principle of mining pools is that small miners with high mining
reward variance join large pools in order to reduce their reward variance.

4

Defining Optimality. Our goal is to find pooling strategies that maximize the social welfare
of all miners. How do we measure social welfare? A general pool may, for example, distribute
rewards in an arbitrary way that benefits some miners at the expense of others. In contrast, in a
perfectly fair pooling strategy, all shares receive equal utility. Many natural pool strategies don’t
quite achieve perfect fairness, but do achieve steady-state fairness, where the expected utility of
pool shares converges to a steady-state utility in the lifetime of the pool. For example, in a PPLNS
pool the first N shares earn a higher expected reward than all shares, but all subsequent shares
have the same “steady-state” expected reward/utility. Likewise, geometric pools are steady-state
fair, although convergence does not occur in finitely many steps as in PPLNS.

Since our goal is to focus on the social welfare of the pool miners as a whole, we exclude pools
that do not at least achieve fairness in the limit, i.e. pools that do not have a well defined steady
state utility. We define the social-welfare of a steady-state pool to be its steady-state utility. We
refer to a pool as steady-state optimal if it achieves the optimal steady-state utility.

Definition 1.2 (Informal Definition). The social welfare of a pool is the pool’s steady-state utility
if it exists, and 0 otherwise.

Main Theorems. In general, pools may have a complex reward allocation that depends on the
pool’s state including the history of prior reward allocations in the pool. In practice, all the pooling
strategies that are used in practice except for proportional pay are significantly simpler: they use
a fixed rule that is independent of the history of the pool to allocate rewards to the miners who
contributed previous shares to the pool. We can represent such fixed-rule pools by an infinite length
vector ~X where Xi denotes the fractional reward allocated to the miner who contributed the ith
share preceding a reward-earning block.

Definition 1.3. A fixed-rule pool is a pool that has a fixed allocation rule such that whenever
a block reward is earned the pool distributes a fixed fraction Xi of the reward to the ith pool share
preceding the block share, where i ≥ 0.

Fixed-rule pools are indeed preferable, and as we show in our first theorem, we can limit our
study to such objects without any loss of generality. In particular, for any concave utility function,
if there exists a steady-state optimal fixed-rule pool (i.e., a specific fixed-rule pool that is optimal
among the set of fixed-rule pools), then this pool is also steady-state optimal among all pools.

Theorem 3.1. For any concave real-valued utility function u, time-discounting parameter δ < 1,
and block reward B, if there exists a steady-state optimal fixed-rule pool then this pool is steady-state
optimal.

In our main theorem, we then characterize an optimal steady-state pooling strategy for a com-
mon family of utility functions. In Fig. 1, we illustrate Thm. 3.3 by graphing the results of simu-
lating each type of pool for 1 billion shares and then computing the discounted expected utility for
each share as a function of the miner’s utility function, i.e., the miner’s risk parameters α. Each
experiment was run 50 times, and the dots reflect the average of each experiment, whereas the solid
lines represent our analytical results.

Theorem 3.3. For the utility function u(x) = xα where 0 < α < 1, the geometric pool with
allocation rule Xi = B(1− δ1/1−α)δi/1−α is steady-state optimal.

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

Risk α

D
is
co
u
n
te
d
E
x
p
ec
te
d
U
ti
li
ty

Geometric (Sim)
Geometric

PPLNS (opt N)

PPLNS (opt N)
Proportional Pay

PPLNS (N = 10000)

PPLNS (N = 1000)
Solo

1
Figure 1: Expected value of each share for various mining pool schemes as a function of risk
tolerance α for the power utility function u(x) = xα. The win rate is p = 10−5, discount rate
d = 0.99999, and reward B = 106. Dotted lines represent simulated data, smooth lines represent
analytically-derived results. The area in green represents the range for PPLNS ranging from N = 1
(solo) to the optimal values for N for a given α.

Intuitively, the geometric pools achieves a slightly higher DEU per share than the optimal pay-
per-last-N scheme because it distributes the block reward in a non-uniform manner, with some
shares receiving more rewards than PPLNS, and many many more shares receiving less. Fig. 2
shows sample payoff structures for a few parameters of these schemes.

Incentive compatibility The question of incentive compatibility in mining pools has been ad-
dressed to some degree in several other works [Ros11, LBS+15, SBBR16, LJG15, Eya15], but in
general remains largely open. The well-known counterexample to incentive compatibility is the
proportional pay pool, which is vulnerable to pool hopping. The optimal pool we derive is not vul-
nerable to pool hopping [Ros11]. Block rewards in a proportional pay pool are distributed evenly
among all shares submitted per block period. Thus, as the block period length (number of shares in
a block period) increases, the utility of contributing shares to the pool decreases. If a block period
grows beyond a certain point, participating miners achieve a better expected utility by solo mining
(or mining for a different pool). There are several other known attacks in the context of competing
pools. Some of these attacks enable miners to boost their rewards at the expense of other more
honest participants [Eya15,LJG15,JLG+14].

While current research suggests that achieving incentive compatibility in a system of competing
pools is extremely difficult, one can even ask the simpler question of whether a single pool is
incentive compatible (i.e., with respect to deviations to solo-mining). In fact, the optimal pool that
we derive is incentive compatible in this sense. The steady-state utility of the optimal pool is, by
virtue of being optimal, superior to the utility of solo mining. Furthermore, since the pool share
utility in the optimal pool is monotonic non-increasing in its convergence to the steady-state utility,

6

20.7 46 67.5 105

·103

1.48

4.8

10

·10−5

Shares

P
ay

o
ff

(f
ra

ct
io

n
of
B

)

Geometric, α = 0.9
PPLNS, α = 0.9, N = 20715
Geometric, α = 0.7
PPLNS, α = 0.7, N = 67547

1
Figure 2: Share payoff fraction for geometric scheme and PPLNS. The geometric scheme pays some
shares more than PPLNS, but pays many more shares less than PPLNS. The PPLNS schemes
depicted use optimal choices of N for the risk parameters and for the power utility function; the
win rate is p = 10−5, discount rate d = 0.99999.

the pool share utility is always better than the utility of solo mining. Hence, miners participating
in this pool will never be incentivized to switch to solo mining at any point in time.

2 The Utility Model

2.1 Mining Pools

A miner invests work in repeated attempts to solve a computationally difficult puzzle in order to win
a prize. After every repeated attempt, the miner learns whether or not the attempt was successful.
Previous attempts do not affect future attempts, and thus, at every renewed attempt the miner
has the same probability of receiving an award. This is similar to a player in a scratchcard lottery
who repeatedly purchases cards, scratching off each card before purchasing the next. If every card
purchase is a Bernoulli trial with success parameter p, then the number of wins out of N trials has
a Binomial distribution with expectation pN and variance p(1− p)N .

Monitoring mining work. In Bitcoin mining, the analog of a scratchcard purchase is an invest-
ment of work. Just as a scratchcard lottery pool operator would count purchased cards, Bitcoin
mining pool operators monitor the work of their participating miners. Currently, operators esti-
mate participants’ work rates by collecting partial proofs-of-work called shares. Producing a share
is significantly easier than producing a block, but sufficiently difficult so that miners cannot feasibly
produce shares without honestly attempting to produce a valid block.

7

Rewarding shares. The pool operator collects shares in an inherently sequential manner, and
we assume that the history of shares submitted to the pool is common knowledge among all par-
ticipants. Each share wins a reward with independent probability p.

A pool mechanism is a rule for distributing block rewards over past and future shares. The
reward of an individual share is a sum over rewards it receives from past or future shares, as well
as any reward it generates and keeps for itself when it is a valid block.

Formally, we define a reward allocation rule as a probabilistic function of the pool’s state. The
pool’s state includes the history of shares contributed to the pool and their outcomes (i.e. partial
or valid block). We can denote this state σ = (t, ht), where t is the number of shares, and ht is a
binary vector of length t indicating if each previous share was a block. The output of the allocation
rule is a collection of random variables denoting reward payments to specific shares (i.e. the miners
who contributed those shares). We restrict our definition to pure pooling strategies in which the
reward is immediately allocated to miners who previously contributed shares to the pool (i.e no
future payments).

Definition 2.1. An allocation rule is a function A(t, ht) = {X(t,ht)
i }0≤i≤t where X

(σ)
i is a random

variable denoting the value allocated to the contributor of the pool’s ith share when the pool wins a
block reward B in state σ = (t, ht).

2.2 Risk-Aversity and Time-Discounting

Risk-averse utility. Expected utility (EU) theory gives a way to order preferences of consump-
tion balancing expected value and risk. Given a random variable X representing the value of a
consumption, EU calculates assigns X an ordinal value by calculating the expectation E[u(X)] for
a von Neumann-Morgenstern utility function u. The function u maps consumptions to the real line,
and determines the marginal increase in utility as the quantity of a consumption increases. A von
Neumann-Morgenstern utility function only uniquely characterizes second order behavior; it is only
defined up to affine linear transformations. One common family of utility functions is the power
utility u(x) = xα for α > 0. Each function in this family is increasing on (0,∞) and α determines
its concavity/convexity. There is a strong connection between α and the risk-aversity of an agent.
A risk-neutral agent will have a linear utility function. When u is linear, E[u(X)] = u(E[X]), and
thus the ordinal value of X is only dependent on its expected value. A risk-averse agent will have
a concave utility function. When u is concave, E[u(X)] ≤ u(E[X]) by Jensen’s inequality and
E[u(X)] monotonically decreases as the variance of X increases for fixed E[X].

Time-discounting. When sharing their risk across time-separated shares, miners need a way to
assess the present value of their shares. Time-discounting captures factors such as the waiting time
for future cash flow and the risk of pool termination. Consider as an example the PPLNS strategy.
Miners commit to paying the preceding N − 1 shares a 1/N fraction of their block reward B if
they win. The miner expects only pB/N in immediate compensation for his work, but assuming
the miners producing the next N shares do the same, the miner’s expected reward is pB. The
variance of each payment is p(1 − p)(B/N)2, and since the payments are independent the total
variance is p(1−p)B2/N , which is a factor 1/N lower than the solo mining variance. It would seem
that as N becomes infinitely large the variance disappears while the expected reward remains the
same. However, the miner also expects to wait an infinite amount of time to recover any noticeable
reward.

8

Discounted expected utility. The classic model for calculating the expected total utility of
intertemporal consumptions is the discounted expected utility (DEU) model. The DEU formula
calculates a present expected utility of time-separated consumptions (c1, ..., ck), where each ct
occurs in the time period t, and u is a von Neumann-Morgenstern utility function:

DEU(c1, ..., ck) =
k∑
t=0

E[u(ct)]δ
t

The value δ < 1 is at time-discounting parameter, and is generally chosen to be close to 1.
Note that the DEU summation converges even as k → ∞. There are many implicit axioms in
the DEU model formula, see [FL02] for a comprehensive overview. In particular, since the DEU
model treats utility as linearly additive over time-separated consumptions, it implicitly assumes
that the consumer is risk-neutral to aggregated utilities over time, even if the consumer is risk-
averse in each time period. Intertemporal risk-aversion has also been considered in the economics
literature and there are modified DEU models where aggregation of discounted utilities is nonlinear
[FL02,EZ89,KP78].

2.3 Player Utility

Validity of DEU. For the DEU model to be valid, the time separation between events must
be sufficiently high. Cashflows in Bitcoin mining pools come from shares, but the time separation
between individual pool shares may be quite small depending on the size of the pool. For simplicity
we will assume that the time separation between pool shares, which is determined by the difficulty
parameter of mining a share and the number of users in the pool, is sufficiently high. More generally,
to address the issue of time-separation between shares we can bundle pool shares into periods. The
events of the DEU sum would be cashflows occurring in successive periods.

The DEU model is well suited for modeling the utility of a single share that a miner contributes
to a pool, but how do we account for multiple shares submitted by the same miner? If the utilities
of a miner’s separate shares are additively separable then the miner’s overall utility is simply the
sum of the individual utilities. However, in general, a miner’s pool shares are not separable. As an
extreme example, consider a miner who controls the entire pool and simulates the proportional pay
pool over its shares, where each share earns an equal fraction of the total reward. Looking only at
individual shares gives the false illusion that the miner now achieves a higher utility. In reality, the
miner has decreased the variance of each individual share’s earnings by increasing the covariance
of all the share earnings.

Thus, in order for the DEU approach to be valid for multiple shares submitted by the same
miner, we additionally assume that each miner does a small amount of work compared with the
rest of the pool. Specifically, we assume that the rate at which any individual miner contributes
shares to the pool is small compared to the overall pool share rate. This is to ensure that the (time
discounted) cashflow to a pool share from other shares submitted by the same miner is negligible
compared to the (time discounted) cashflow received from shares submitted by the other miners.
This is essentially multiselves approach, which assumes that miners act as a new independent agent
each time they contribute a new share to the pool, seeking to maximize utility in that moment.

DEU of a pool share. Let the random variable Xi denote the reward that the share accrues
during the ith period following the submission of the share. The variable X0 is the reward that the

9

share generates and keeps for itself.

Definition 2.2. Given discount parameter δ and utility function u, the discounted expected utility
of a pool share is:

U =
∑
i≥0

E[u(Xi)]δ
i

2.4 Pool Optimality

We say that a pool strategy achieves steady-state fairness if the utility of contributing pool shares
converges with overwhelming probability.

Definition 2.3. A pool strategy is steady-state fair if the sequence {Uk} converges in R, where Uk
denotes the expected utility of the kth pool share. The limit point of limk→∞ Uk is the steady-state
utility of the pool.

Steady-state optimality. In any class C of steady-state fair strategies, we can define the steady-
state optimal strategies of C as the set of strategies in C that have the highest steady-state utility.

Definition 2.4. A pool strategy p is steady-state optimal for a class C of steady-state fair pool
strategies if and only if p ∈ arg maxx∈C limk→∞E[U(x)k].

3 The Optimal Pool

In this section we show how to derive a steady-state optimal pool for honest risk-averse players.
The parameters of the optimal pool will depend on the choice of utility function u, time-discounting
factor δ, and fixed block reward B. The main results of this section applies to any general utility
function u that is concave and real-valued. We first show a relationship between steady-state
optimal pools and fixed-rule pools–a pool that allocates block rewards according to a fixed rule,
independent of the pool’s state. Specifically, we prove that if there exists an optimal fixed-rule
pool then it is also steady-state optimal. The optimal fixed-rule pool is a solution to a convex
optimization problem that depends on u, δ, and B. We solve this optimization problem explicitly
for the power utility function u(x) = xα (0 < α < 1), which yields a geometric pool whose
parameters depend on α.

Our results are the following three theorems:

Theorem 3.1. For any concave real-valued utility function u, time-discounting parameter δ < 1,
and block reward B, if there exists an optimal fixed-rule pool then this pool is steady-state optimal.

Proof. In Lemma 3.1 we show that if a pool has steady-state utility U then for every ε there exists
a fixed-rule pool that has utility at least U − ε. Therefore, U is bounded by the supremum of
fixed-rule pool utilities. If there exists an optimal fixed-rule pool then by definition it achieves this
supremum and hence its utility is an upper bound on the steady-state utility of any steady-state
fair pool.

10

Theorem 3.2. There exists an optimal fixed-rule pool if and only if there is a solution to the
following convex optimization problem:

arg max
~x

∑
i≥0

u(xi)δ
i subject to

∑
i≥0

xi ≤ B, ∀i xi ≥ 0

If it exists, the solution {xi}i≥0 is the optimal fixed-rule pool.

Theorem 3.3. For the power utility functions there is a fixed-rule geometric pool that is steady-
state optimal. The parameters of this geometric pool are determined by the block reward B, the
risk-aversity parameter 0 < α < 1 of the utility function u(x) = xα, and the time-discounting
factor δ. Specifically, this geometric pool has the allocation rule Xi = B(1− δ1/1−α)δi/1−α.

3.1 Fixed-rule pools

Fixed-rule pools have several nice properties: they are perfectly fair, and the expected reward of
any share in the pool is bounded.

Claim 1. For fixed allocation rules
∑

t≥k E[X
(t)
k] ≤ B for any k.

Proof. Suppose towards contradiction that
∑

i≥0E[X
(k+i)
k] = B̂ > B for some k. By defini-

tion of a limit, for any ε > 0 there exists Nε such that |∑Nε
i=0E[X

(k+i)
k] − B̂| < ε. Setting

ε = (B̂ − B)/2 implies
∑Nε

i=0E[X
(k+i)
k] > B. However, using the property of fixed allocation

rules,
∑Nε

i=0E[X
(k+i)
k] =

∑Nε
i=0E[XNε

i] ≤ B. This is a contradiction.

In a pool with a fixed allocation rule {Xi}, we can express the utility of any share in terms of
the allocation rule variables as follows:

U =
∑
i≥0

pE[u(Xi)]δ
i (1)

Since every share has the same expected utility, by definition the pool is perfectly fair.

Claim 2. Every pool with a fixed allocation rule is perfectly fair.

3.1.1 Proof of Theorem 3.2

The utility of any share in a fixed-rule pool with allocation rule {Xi} is
∑

i≥0 pE[u(Xi)]δ
i for

variables Xi ≥ 0 where
∑

i≥0E[Xi] ≤ B (Claim 1). Therefore, the optimal fixed-rule pool is the
solution to:

arg max
~X

∑
i≥0

E[u(Xi)]δ
i subject to

∑
i≥0

E[Xi] ≤ B, ∀i E[Xi] ≥ 0

By Jensen’s inequality, for concave u we have E[u(Xi)] ≤ u(E[Xi]), and equality holds when
Xi are scalars or u is linear. Thus it suffices to solve the optimization for scalars xi as follows:

11

arg max
~y

∑
i≥0

u(yi)δ
i subject to

∑
i≥0

yi ≤ B, ∀i yi ≥ 0

If a solution exists then it defines the allocation rule of an optimal fixed-rule pool. Conversely,
if some pool with allocation rule {X∗i } is optimal, then the pool with allocation rule {E[X∗i]} is
necessarily optimal, hence it is a solution to the above optimization problem.

Finally, to show that this is a convex optimization problem we will prove that the objective
function f(~y) =

∑
i u(yi)δ

i is concave. Since u is concave, for any ~y(1), ~y2
(2) and scalar t it

holds that f(t~y(1) + (1 − t)~y(2)) =
∑

i u(ty
(1)
i + (1 − t)y(2)i)δi ≤ ∑i tu(y

(1)
i)δi + (1 − t)u(y

(2)
i)δi =

tf(~y(1)) + (1− t)f(~y(2)).

3.2 Steady-state pools to fixed-rule pools

Lemma 3.1. For any steady-state fair pool p that has steady-state share utility Up and any ε > 0
there exists a fixed-rule pool p′ that has share utility Up′ ≥ Up − ε.

3.2.1 Proof of Lemma 3.1

In fixed-rule pools the distribution of future rewards a miner receives for submitting a share was
independent of state. In more general pools, even steady-state fair pools, this distribution of future
rewards could fluctuate over the state of the pool. The high level idea of this proof is to show that if
the utility of the pool converges then the distribution of future expected rewards converges in some
subsequence of states to a fixed distribution. We use this fixed distribution of expected rewards
to define a fixed-rule pool that allocates to each previous share exactly its expected reward. The
steady-state utility of this subsequence of states will be bounded by the utility of this fixed-rule
pool. Since infinite subsequences of any convergent sequence also converge to the same limit, it
follows that the steady-state utility of the pool is also bounded by the utility of this fixed-rule pool.

If the space containing the sequence of expected reward distributions were sequentially compact,
then existence of a subsequence of states for which reward distributions converge would follow
immediately. However, each expected reward distribution is an infinite vector over R, and infinite
dimensional subspaces of R∞ are not necessarily sequentially compact. Instead, we examine finite-
window pools, which only allocate rewards over preceding shares within some finite window. Due
to time-discounting, every pool can be approximated by a finite-window pool. More precisely, for
any pool we can define the finite-window pool that uses the same allocation rule restricted to the
last N shares, and for any ε > 0 we can choose N sufficiently large so that the utility of any share
in the finite-window pool is within ε of the same share in the original pool. In finite-windows pools
the expected reward distribution is a finite length vector in a closed and bounded subset of RN ,
which by the Bolzano-Weierstrass theorem is sequentially compact. Thus, we can prove that the
utility of all finite-window pool approximations are bounded by the utility of a fixed-rule pool, and
by making ε arbitrarily small we extend this bound to the original pool.

Definition 3.1. A pool has finite window n if its allocation rule A(t, ht) = {X(t,ht)
i }0≤i≤t satisfies

X
(t,ht)
i = 0 for all i ≤ t− n. A finite-window pool has a finite window n for some n ∈ N.

Notation.

12

• U (σ) denotes the expected utility of a share submitted to the pool in state σ = (t, ht).

• U t denotes the a priori expected utility of the tth share submitted to the pool, i.e. U t =
E[U (t,ht)] over the distribution of ht.

• ~rt = (rt0, ..., r
t
d−1) denotes an expected reward vector of the tth share in a pool of finite window

d where rti denotes that the a priori expected reward the tth share receives from the t + ith
share.

• Rt denotes the a priori expected reward of the tth share submitted to the pool. In a pool of
finite window Rt = |~rt|1 =

∑
i r
t
i.

• Given a pool p let p(d) denote the finite-window pool that truncates the allocation rule of p to

the last d shares, i.e. in any state p(d) has the same allocation X
(t,ht)
i as p for t − d < i ≤ t

and X
(t,ht)
i = 0 for all i ≤ t− d.

Definition 3.2. Let p and p′ be two pools with kth share utility Uk and U ′k respectively. The pool
p′ ε-approximates the pool p if |Uk − U ′k| ≤ ε for all k ≥ 1.

For the following claims we assume the utility function u is concave and real-valued.

Claim 3. For any pool p and ε > 0, there exists d such that the finite window pool p(d) ε-
approximates p.

Proof. If in some state σ the pool p has utility U (σ) =
∑

i≥0E[u(Xσ
i)]δi then in the same state p(d)

has utility U
′(σ)
d =

∑d−1
i=0 E[u(Xσ

i)]δi. The random variable Xσ
i is the reward the share submitted in

state σ receives from the ith succeeding share, so E[Xσ
i] ∈ [0, B]. Furthermore, since u is concave

E[u(Xσ
i)] ≤ u(E[Xσ

i]) by Jensen’s inequality and u is continuous and bounded on [0, B] by some
value β. We can therefore apply the same argument used in Claim 11 to show that for any ε there

exists d such that |U (σ) − U ′(σ)d | = |∑∞i=dE[u(Xσ
i)]δi| ≤∑∞i=d βδi < ε.

Claim 4. In finite-window pools the limit of means of expected reward is bounded by pB, i.e.
limn→∞(1/n)

∑n
t=1R

t ≤ pB.

Proof. Consider any pool with some finite window d. A share in this pool can receive rewards only
the d shares that immediately succeed it. Therefore, all rewards allocated to the first n shares
in the pool come from the first n + d − 1 shares. Each share contributes at most B to this total
reward, and only if it is a valid block. In expectation only a p fraction of these blocks will be blocks.
Therefore, the expected total reward received by the first n shares is at most p(n+ d− 1)B.

This implies limn→∞(1/n)
∑n

t=1R
t ≤ limn→∞(1/n)p(n+ d− 1)B = pB.

Claim 5. Any pool in which the limit of means of expected reward is bounded by some value B
there exists a subsequence of shares in which the expected reward of every share is bounded by B.

Proof. Suppose towards contradiction that this claim is false. Then there exists a k such that for
all k′ ≥ k the reward of the k′th share is greater than B. This implies limn→∞(1/n)

∑n
t=0R

t ≥
limn→∞(1/n)

∑n
i=k+1R

t > limn→∞(1/n)(n − k + 1)B = B, which contradicts the hypothesis that
the limit of means of expected reward is bounded by B.

13

Claim 6. In any finite-window pool there exists a subsequence {tk} of shares such that the expected
reward vectors ~rtk converge to a vector ~r∗ such that |~r∗|1 ≤ pB.

Proof. Consider a pool of finite window d. By Claim 4 and Claim 5 we can find a subsequence
{ti} of shares whose expected rewards are all bounded by pB. Thus the sequence of reward vectors
{~rti} all lie in the closed ball {x : |x|1 ≤ pB} ⊆ [0, pB]d+1. This space is compact, hence by the
Bolzano-Weierstrass theorem {~rti} has a convergent subsequence in this space.

Claim 7. The steady-state utility of any steady-state finite-window pool is bounded by the utility of
some fixed-rule pool.

Proof. Consider any steady-state pool of finite window d. Let ~r∗ ∈ Rd be the limit point of the
convergent subsequence {tk} of expected reward vectors in the pool guaranteed by Claim 6. Define
the fixed-rule pool with allocation rule Xi = r∗i /p for 0 ≤ i ≤ d− 1 and Xi = 0 elsewhere. This is
a valid allocation rule because

∑
Xi = (1/p)|~r∗|1 ≤ B. We will now show that the utility of this

fixed pool, Ufixed is an upper bound on the steady-state utility U∗ of the finite-window pool.
The utility of the shares in any infinite subsequence of a steady-state pool must converge to the

pool’s steady-state utility (infinite subsequences of any convergent sequence in R converge to the
same limit). Thus we have both limk→∞ U

tk = U∗ and limk→∞ ~r
tk = ~r∗. For any ε we can choose

K sufficiently large so that both |U tK − U∗| < ε and |rtKi − r∗i | < ε for all i.
Let Yi denote the reward that the tK

th share receives from the (tK + i)th share conditioned on
the event that this share is a block. By Jensen’s inequality we can bound U tK as

U tK =
d−1∑
i=0

p · E[u(Yi)] · δi ≤
d−1∑
i=0

p · u(E[Yi]) · δi =
d−1∑
i=0

p · u(rtKi /p)

≤
d−1∑
i=0

p u((r∗i + ε)/p)

Since Ufixed =
∑d−1

i=0 p u(r∗i /p)δ
i we have:

Ufixed − U∗ ≥ Ufixed − U tK − ε ≥
(
d−1∑
i=0

p(u(r∗i /p)− u((r∗i + ε)/p))δi

)
− ε

Since u is continuous, limε→0 |u((r∗i + ε)/p) − u(r∗i /p)| = 0. Therefore, for any ε′ > 0 we can
show that U∗ ≤ Ufixed + ε′, hence Ufixed ≤ U∗.

From Claim 3, for any steady-state pool p and for any ε there exists a finite-window pool p′

that ε-approximates p. By Claim 7 the steady-state utility of p′ is bounded by the utility Ufixed of a
fixed-rule pool. Therefore, the steady-state utility U∗ of p satisfies U∗ ≤ Ufixed + ε. This concludes
the proof of Lemma 3.1.

3.3 Optimal pool for power utility

3.3.1 Proof of Theorem 3.3

The main challenge in this proof is that the optimization problem is over R∞≥0 rather than Rn≥0.
Constrained convex optimization over infinite dimensional spaces is in general nontrivial. First let
us define the following notation:

14

Notation. Define f(y) =
∑

i≥0 u(yi)δ
i and g(y) =

∑
i≥0 yi for y ∈ R∞≥0 and n ∈ N, where u is the

concave utility function in question. For n ≥ 1 define the “truncated” sums fn(y) =
∑n

i=1 u(yi)δ
i

and gn(y) =
∑n

i=1 yi. The functions fn(y) and gn(y) are well defined over both R∞≥0 and Rn≥0.

Our approach is to solve for a maximizer x∗n of each fn(y) subject to g(y) ≤ B and ∀i yi ≥ 0
(Claim 8). To obtain some x∗n, it suffices to solve for a maximizer of fn(y) defined instead over
y ∈ Rn≥0 with the constraint gn(y), and then extend this maximizer to a point in R∞ that is
identical to this maximizer in the first n components and 0 in every other component (Claim 9).
The solutions x∗n are obtained via the method of Lagrange multipliers. We then show that this
sequence of maximizers converges in R∞2, i.e. {x∗n} → x∗, and the limit point x∗ is a maximizer of
f(y) subject to g(y) ≤ B over R∞ (Claim 10, Claim 11).

Claim 8. When u(x) = xα, the maximizer of fn(y) subject to gn(y) ≤ B over Rn≥0 is yi =

B 1−δ1/1−α
1−δn/1−α δ

i/1−α.

Proof. fn(y) is increasing in yi for every i. Thus, if there exists a global maximum then it is
achieved on gn(y) = B. The Lagrangian for this optimization is L(y, λ) = fn(y) + λ(B − gn(y)).
There exists a solution y∗ to the constrained optimization problem if and only if there exists λ∗

such that L(y∗, λ∗) is a global maximum of the Lagrangian. First, we prove that a solution
exists by examining the principal minors of the Hessian of the Lagrangian. A solution exists if for
all k ≥ 2, the determinant of the kth principal minor of the Hessian of L(y, λ) has sign (−1)k+1.
Second, we derive a unique stationary point of the Lagrangian. A global maximum (y∗, λ∗)
must be a stationary point of the Lagrangian, i.e. ∇yL(y∗, λ∗) = 0. Since the stationary point we
derive is unique it must be the global maximum of the Lagrangian, and hence a solution to the
constrained optimization.

Existence of a solution. The Hessian of L(y, λ) is:
0 ∂gn

∂x1
· · · ∂gn

∂xn

∂gn
∂x1

. . .
... ∂2L

∂xi∂xj

∂gn
∂xn

. . .

 =


0 1 · · · 1
1 −`1,1
...

. . .

1 −`n,n


For any i 6= j we have ∂L

∂yi∂yj
= 0 and for any i we have ∂2L

∂y2i
= δi ∂

2u(yi)
∂y2i

< 0 by the strict

concavity of u(yi). Additionally, ∂gn
∂xi

= 1 for all i. Consider the kth principal minor M (k). The

Leibniz formula for the determinant of M (k) is det(M (k)) =
∑

σ∈Sk sgn(σ)
∏k
i=1mi,σi . Consider

any nonzero term of this sum. It cannot include in its product m1,1 and so must contain m1,i = 1
and mj,1 = 1 for some i, j 6= 1. The k − 2 remaining elements of the product must be from the
nonzero (negative valued) diagonal entries. However, it also cannot include the elements mj,j and
mi,i because it includes m1,i and mj,1. If i 6= j this leaves only k − 3 diagonal elements, hence

2Convergence in R∞ can be defined with respect to the standard Euclidean norm restricted to points in R∞ that
have finite norm. All the points in the sequence of maximizers lie in this subspace because they have a finite number
of nonzero components. The limit point of this sequence satisfies the optimization constraint (i.e. has a bounded L1
norm) and thus also lies in this subspace.

15

necessarily i = j and the product includes all the k − 2 diagonal elements except mi,i. The term
corresponds to an odd permutation σ that contains k − 2 fixed points and a single inversion (1, i),
so sgn(σ) = −1. All nonzero terms thus have sign −(−1)k−2 = (−1)k−1 = (−1)k+1. Therefore
det(M (k)) has sign (−1)k+1.

Unique stationary point. We proceed to show that the Lagrangian L(y, λ) = fn(y) + λ(B −
gn(y)) has a unique stationary point when u(x) = xα. We will first do this for u(x) = xα. Setting
∇yL(y, λ) = 0, this yields the system of equations αyα−1i δi − λ = 0 for all i, and solving for yi:

yi =
(α
λ
δi
)1/1−α

Applying the constraint
∑

i=1n yi = B we get:

n∑
i=0

(
α

λ
δi)1/1−α =

(α
λ

)1/1−α n∑
i=0

δi/1−α =
(α
λ

)1/1−α 1− δn/1−α
1− δ1/1−α = B

Solving for α/λ and plugging into yi:

α/λ =

(
B

1− δ1/1−α
1− δn/1−α

)1−α

, yi = B
1− δ1/1−α
1− δn/1−α δ

i/1−α

Claim 9. Let x∗ ∈ Rn be a global maximizer of fn(x) subject to gn(x) ≤ B over Rn≥0. Define
x̄∗ ∈ R∞≥0 so that x̄∗i = x∗i for all 0 ≤ i ≤ n and x̄∗i = 0 for all i > n. Then x̄∗ is a global maximizer
of fn(x) subject to g(x) ≤ B over R∞≥0.

Proof. Consider any x ∈ R∞≥0 such that g(x) ≤ B. Let x′ ∈ Rn be identical to x in the first n
components so that fn(x) = fn(x′). The constraint g(x) ≤ B implies that gn(x′) ≤ B since x does
not have any negative components. Hence fn(x) = fn(x′) ≤ fn(x∗) = fn(x̄∗).

Claim 10. Let {fn} be a sequence of continuous real-valued functions on a metric space X and
fn → f uniformly on a subset E = {x : g(x) = B}. If {x∗n} is a sequence such that each f(x∗n) is
the global maximum of fn on E and x∗n → x∗, then f(x∗) is a global maximum of f on E.

Proof. By uniform convergence, for any ε there exists nε such that ∀y∀n≥nε |fn(y) − f | < ε. Fur-
thermore, the limit of a uniformly convergent sequence of functions is continuous, hence f is con-
tinuous. Together with convergence of x∗n → x∗ this implies that for any ε there exists n′ε such that
∀n≥n′ε |f(x∗n)− f(x∗)| < ε. Let N = max(nε, n

′
ε).

Consider any x 6= x∗ such that g(x) = B. It holds that f(x) ≤ fN (x) + ε ≤ fN (x∗N) + ε ≤
f(x∗N) + 3ε ≤ f(x∗) + 4ε. Since ε is arbitrary, it follows that f(x) ≤ f(x∗). We conclude that f(x∗)
is the global maximum of f on E.

Claim 11. For any concave u, the functions fn(y) =
∑n

i=1 u(yi)δ
i converge uniformly to f(y) =∑∞

i=1 u(yi)δ
i on the set E = {y : 0 ≤ yi ≤ B}.

16

Proof. Since u is concave it is continuous on [0, B] and therefore bounded on [0, B] by compactness.
Let β be the bound for u on [0, B]. For any y ∈ E it holds that yi ∈ [0, B], hence u(yi) ≤ β. At any
point y, we thus have the bound |∑i≥0 u(yi)δ

i−∑n
i=1 u(yi)δ

i| = |∑i≥n u(yi)δ
i| ≤ u(B)

∑
i≥n δ

i =

u(B) δn

1−δ . For any ε there exists Nε such that δn < (1−δ)
u(B) ε for all n ≥ Nε. Hence, |fn(y)− f(y)| < ε

for all n ≥ Nε and all y ∈ E.

Claim 12. For any concave u : R → R, the function fn(x) =
∑n

i=1 u(xi)δ
i is continuous on R∞

for any n ∈ N.

Proof. Define the function u(i) : R∞ → R as u(i)(x) = u(xi). For any x, x′ ∈ R∞ where |x− x′| < δ
it must hold that |xi − x′i| < δ for all i. Thus, since u is continuous for any ε there exists δ such
that |x− x′| < δ implies |u(i)(x)− u(i)(x′)| = |u(xi)− u(x′i)| < ε for all i.

The function fn(x) =
∑n

i=1 u
(i)(x) is a finite sum of continuous functions, hence it is continuous.

Claim 11 and Claim 12 together show that fn → f uniformly on the set of points in R∞≥0 that
satisfy the constraint g. We will now show that the sequence of maximizers of fn derived in Claim 8
converge to a point x∗, and thus by Claim 10 f(x∗) is the global maximum of f on R∞≥0 subject to
g.

For power utility u(x) = xα:

x∗i = lim
n→∞

B
1− δ1/1−α
1− δn/1−α δ

i/1−α = B(1− δ1/1−α)δi/1−α

4 Future Work

4.1 Incentive compatibility

The question of incentive compatibility in mining pools has been addressed to some degree in
several other works [Ros11,LBS+15,SBBR16], but in general remains largely open. An important
question relevant to our work is whether the optimal pool we derive is incentive compatible in an
environment of competing pools.

While current research suggests that achieving incentive compatibility in a system of competing
pools is extremely difficult, one can even ask the simpler question of whether pools are incentive
compatible with respect to solo-mining deviations. We sketch here one possible approach. Given
our assumption of small miners, we could analyze the mining pool game using the multiselves
approach, where each player is viewed as a collection of independent selves and acts as a new agent
in every move of the game. A pool p is truthful if the strategy profile in which every player mines
in the pool in every state of the game is a subgame perfect Nash equilibrium (SPE) of any game
where p ∈ P. We can define payoffs to participating miners in terms of our utility model for pool
shares. We could show in this framework that the proportional pay pool is not an SPE by the
standard technique of backwards induction. Roughly, if there exists some (apocalyptic) state over
random coin tosses for which the utility of pool mining drops below the utility of solo mining, then
miners in any state that immediately precedes a likely apocalypse would preemptively drop out of
the pool; this logic can be recursively traced back to the first miner in the pool.

17

Furthermore, it is worth mentioning that in this simple pool vs solo mining repeated game, the
geometric optimal pool we derived in this work would be an SPE strategy. Note that the share
utility in a geometric pool is monotonically decreasing in its convergence to steady-state. Since
solo mining is a valid steady-state pool and is considered in the optimization, by definition the
optimal steady-state utility will be greater than the solo mining utility. Thus, in every step of the
iterated game the utility of participation in the steady-state optimal geometric pool is greater than
the utility of solo mining, so there will be no deviations from this strategy.

4.2 Pools with investment strategies

Thus far we have restricted our attention to pure pools that immediately allocate all earned rewards.
Suppose that we allowed pools to maintain a budget and allocate rewards to future shares. For
example, consider a Pay-Per-Next-N-Shares (PPNNS) pool, the reverse of a PPLNS, where a
block reward B is distributed equally over the N shares following a block. At the time a share is
submitted to the pool, it receives a risk-free payment from previous shares that depends on the
outcomes of the previous shares. The expected utility of a share is the a priori expected utility
of this risk-free payment. With respect to optimizing steady-state utility, pools should only pay
future shares since the utility of backward payments to previous shares are time-discounted. In
fact, as N → ∞, the steady-state utility in a PPLNS pool approaches the utility u(pB), which
is optimal for balanced pools. This is because the probability a share far in the future obtains its
expected reward converges to 1.

However, as N → ∞, the time for the pool to reach steady-state also grows to infinity. Early
miners earn close to nothing. Although we have not yet introduced a formal model of incentive
compatibility, it is intuitive that this pool would never start without some outside investment to
kickstart the pool. Absent an external financier, we could imagine introducing a minimal backward
payment so that the expected utility of mining any share for the pool even in times when the pool
has not accumulated any rewards is at least better than solo mining. The remainder of the rewards
will be allocated to future shares via forward payments. Yet, even in this hybrid forward/backward
payments pool, there is no optimal strategy. We can always spread future payments thinner to
increase the steady-state utility. Thus, while our model for maximizing utility was appropriate
for pure pooling strategies, clearly it must be amended in order to deal with pools that make
investments.

References

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,
and Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 104–121, 2015.

[Eya15] Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 89–103, 2015.

[EZ89] Larry G. Epstein and Stanley E. Zin. Substitution, risk aversion, and the temporal
behavior of consumption and asset returns: A theoretical framework. Econometrica, 57
(4) (July 1):937–969., 1989.

18

[FL02] Shane Frederick and George Lowenstein. Time discounting and time preference: A
critical review. Journal of Economic Literature, Vol. XL (June 2002):351–401., 2002.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Eurocrypt, 2015.

[JLG+14] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and Tyler Moore.
Game-theoretic analysis of ddos attacks against bitcoin mining pools. In Financial
Cryptography and Data Security - FC 2014 Workshops, BITCOIN and WAHC 2014,
Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages 72–86, 2014.

[KP78] David M. Kreps and Evan L. Porteus. Temporal resolution of uncertainty and dynamic
choice theory. Econometrica, 46 (1) (Jan):185–200., 1978.

[LBS+15] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S.
Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis. In Pro-
ceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, pages 919–927, 2015.

[LJG15] Aron Laszka, Benjamin Johnson, and Jens Grossklags. When bitcoin mining pools run
dry - A game-theoretic analysis of the long-term impact of attacks between mining
pools. In Financial Cryptography and Data Security - FC 2015 International Work-
shops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30, 2015,
Revised Selected Papers, pages 63–77, 2015.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

[PSS16] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. 2016.

[Ros11] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. CoRR,
abs/1112.4980, 2011.

[Sam37] Paul Samuelson. A note on measurement of utility. Review of Economic Studies, 4:155–
61., 1937.

[SBBR16] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive com-
patibility of bitcoin mining pool reward functions. In Financial Cryptography and Data
Security - FC 2016 Workshops, BITCOIN, 2016.

A Pay-Per-Last-N-Shares

In a PPLNS pool with parameter N , the block reward is allocated evenly over the last N shares
submitted to the pool including the valid block share, each share receiving reward B/N .3 When
N = 1, this strategy is equivalent to solo mining. Intuitively, as N increases the variance of an
individual share’s reward decreases while its maturity time increases.

3In practice, various techniques are used to adjust the value of N to compensate for changes in the block difficulty,
but to the best of our knowledge there is no consideration for choosing the optimal N given α and δ.

19

Steady-state utility. We examine the steady-state utility of a share in a PPLNS pool:

N∑
i=1

pBα

(
1

N

)α
δi = pBα

(
1

N

)α 1− δN
1− δ (2)

0 10 20 30 40 50 60 70 80 90 100
N

0.8

1

1.2

1.4

1.6

1.8

2

2.2

U
til
ity

PPLNS Steady-State Share Utility as Function of N

Figure 3: The PPLNS utility from Equation 2 as a function of N for fixed δ = 0.99.

Theorem A.1. Given risk-aversity parameter α < 1 and discount parameter δ < 1, the steady-state
optimal PPLNS pool sets the value of N :

N =
1

log δ
(W−1(−e−αα) + α)

where W−1 is the lower branch of the product log (Lambert W) function, i.e. real valued solutions
y to yey = xex for y ≤ −1 and x ∈ (−1, 0). When α = 1, the optimal PPLNS sets N = 1, which
is equivalent to solo mining.

Proof. The optimal value of N maximizes the function f(N) = (1/N)α(1 − δN). We start by
examining the first derivative f ′(N):

df(N)

dN
=

1

1− δ (−αN−α−1(1− δN)−N−αδN log δ)

=
1

(1− δ)Nα+1
(−α(1− δN)−NδN log δ)

On the interval (0,∞), we see that f ′ is positive near N = 0 since:

lim
N→0

1

(1− δ)Nα+1
(−α(1− δN)−NδN log δ)

= lim
N→0

−δN log δ

(1− δ)Nα
= lim

N→0

log δ−1

(1− δ)Nα
= +∞

20

Additionally, we see that f ′ is both decreasing and approaching 0 as N →∞:

lim
N→∞

1

(1− δ)Nα+1
(−α(1− δN)−NδN log δ) = lim

N→∞

−α
(1− δ)Nα+1

= 0

Therefore, f achieves at least one local maximum in the interval (0,∞). Since 1
(1−δ)Nα+1 6= 0,

the points where f ′ = 0 must satisfy:

NδN log δ = −α(1− δN)⇔ N =
α

log δ
(1− δ−N)⇔ δ−N +

log δ

α
N − 1 = 0

Define y = log δN−α, so y is a linear function of N and takes values in (−∞,−α). Substituting
N = 1

log δ (y + α) into the above relation gives:

δ
− 1

log δ
(y+α)

+
log δ

α

1

log δ
(y + α)− 1 = 0

⇔ e−(y+α) +
y + α

α
− 1 = 0⇔ e−(y+α) = − y

α
⇔ yey = −αe−α

Since −αe−α ∈ [−1/e, 0] we can write y = W (−αe−α) where W is the multivalued inverse function
of x 7→ xex defined on [−1/e,∞). W is injective on [0,∞), W (−1/e) = −1, and W and has exactly
two values at every point in (−1/e, 0), the principal value where W ≥ −1 and the lower branch
value where W < −1. The lower branch of W is denoted W−1. The principal value of W (−αe−α)
is −α. Thus, the unique solution to y in the interval (−∞,−α) is W−1(−αe−α), and we obtain the
unique solution for N :

N =
1

log δ
(W−1(−αe−α) + α)

Since this value of N is the unique zero of f ′ in (0,∞) it must be a global maximum on this
interval.

The preceding analysis was only valid for α < 1. When α = 1, the quantity (1/N)α(1− δN) is
strictly decreasing on (1,∞), hence the maximum is at N = 1.

Dependency of N on block difficulty. In current practice, some PPLNS pools choose N
to depend on the block difficulty, setting N ≈ 1/p. The optimal N predicted by our model is
independent of p, the difficulty parameter. This might seem strange, because p determines the
variance, and with higher variance it seems that N should be larger.

The independence from p is due to the DEU’s time separability assumption (in this case that
utility of sequential shares that an individual miner contributes are separable). This modeling
assumption implies that the improvement in utility that miners get from splitting rewards over
multiple shares is independent of the individual variance of each share. This assumption is invalid
if the time between shares is small or p is close to 1, but for small miners it is reasonable to assume
that p is very small and the time between shares is fairly large. So, in our model, the value of N
is determined only by the values of α (risk aversity, which encourages increasing N) and δ (time
discounting, which encourages lowering N).

21

B Definitions

Definition (Social welfare). The social welfare of a pool is the pool’s steady-state utility if it
exists, and 0 otherwise.

Definition (Fixed-rule pool). A fixed-rule pool is a pool that has a fixed allocation rule such that
whenever a block reward is earned the pool distributes a fixed fraction Xi of the reward to the ith
pool share preceding the block share, where i ≥ 0.

Definition (Allocation rule). An allocation rule is a function A(t, ht) = {X(t,ht)
i }0≤i≤t where

X
(σ)
i is a random variable denoting the value allocated to the contributor of the pool’s ith share

when the pool wins a block reward B in state σ = (t, ht).

Definition (Pool share utility). Given discount parameter δ and utility function u, the discounted
expected utility of a pool share is:

U =
∑
i≥0

E[u(Xi)]δ
i

Definition (Steady-state fairness). A pool strategy is steady-state fair if the sequence {Uk}
converges in R, where Uk denotes the expected utility of the kth pool share. The limit point of
limk→∞ Uk is the steady-state utility of the pool.

Definition (Steady-state optimality). A pool strategy p is steady-state optimal for a class C of
steady-state fair pool strategies if and only if p ∈ arg maxx∈C limk→∞E[U(x)k].

Definition (Finite-window pool). A pool has finite window n if its allocation rule A(t, ht) =

{X(t,ht)
i }0≤i≤t satisfies X

(t,ht)
i = 0 for all i ≤ t− n. A finite-window pool has a finite window n

for some n ∈ N.

Definition (ε-approximation pool). Let p and p′ be two pools with kth share utility Uk and U ′k
respectively. The pool p′ ε-approximates the pool p if |Uk − U ′k| ≤ ε for all k ≥ 1.

22

	1 Introduction
	1.1 Overview of Bitcoin
	1.2 Our Results

	2 The Utility Model
	2.1 Mining Pools
	2.2 Risk-Aversity and Time-Discounting
	2.3 Player Utility
	2.4 Pool Optimality

	3 The Optimal Pool
	3.1 Fixed-rule pools
	3.1.1 Proof of Theorem 3.2

	3.2 Steady-state pools to fixed-rule pools
	3.2.1 Proof of Lemma 3.1

	3.3 Optimal pool for power utility
	3.3.1 Proof of Theorem 3.3

	4 Future Work
	4.1 Incentive compatibility
	4.2 Pools with investment strategies

	A Pay-Per-Last-N-Shares
	B Definitions

