1

Smoothed Analysis of Algorithms and
Heuristics: Progress and Open Questions

Daniel A. Spielman

Applied Mathematics and Computer Science, Yale University
New Heaven, Connecticut, USA
e-mail: spielman@cs.yale.edu

Shang-Hua Teng

Computer Science, Boston University
and Akamai Technologies Inc
Boston, Massachusetts, USA

e-mail: steng@cs.bu.edu

Abstract

In this paper, we survey some recent progress in the smoothed analysis of
algorithms and heuristics in mathematical programming, combinatorial
optimization, computational geometry, and scientific computing. Our
focus will be more on problems and results rather than on proofs. We
discuss several perturbation models used in smoothed analysis for both
continuous and discrete inputs. Perhaps more importantly, we present
a collection of emerging open questions as food for thought in this field.

1.1 Prelinminaries

The quality of an algorithm is often measured by its time complexity
(Aho, Hopcroft & Ullman (1983) and Cormen, Leiserson, Rivest & Stein
(2001)). There are other performance parameters that might be impor-
tant as well, such as the amount of space used in computation, the num-
ber of bits needed to achieve a given precision (Wilkinson (1961)), the
number of cache misses in a system with a memory hierarchy (Aggarwal
et al. (1987), Frigo et al. (1999), and Sen et al. (2002)), the error prob-
ability of a decision algorithm (Spielman & Teng (2003a)), the number
of random bits needed in a randomized algorithm (Motwani & Ragha-
van (1995)), the number of calls to a particular “oracle” program, and
the number of iterations of an iterative algorithm (Wright (1997), Ye
(1997), Nesterov & Nemirovskii (1994), and Golub & Van Loan (1989)).
The quality of an approximation algorithm could be its approximation
ratio (Vazirani (2001)) and the quality of an online algorithm could be

1

2 Daniel A. Spielman and Shang-Hua Teng

its competitive ratio (Sleator & Tarjan (1985) and Borodin & El-Yaniv
(1998)).

Once we fix a quality parameter (), there might still be more than one
way to measure an algorithm A. If our universe of inputs happens to
have only one instance x then the most natural measure is the instance-
based complexity, given by Q(A,x). In such a case, if we have a few
algorithms Ay, ..., A in our repertoire, we can easily decide which one
is better. If our universe of inputs has two instances x and y, then
the instance-based measure of an algorithm A defines a two dimensional
vector (Q(A4,x),Q(A,y)). For two algorithms A; and A,, if Q(41,%x) <
Q(A2,x) but Q(A1,y) > Q(As,y), then strictly speaking, they are not
comparable.

The universe D of inputs is much more complex, both in theory and in
practice. The instance-based measure defines a high-dimensional vector
when D is finite. Otherwise, it can be viewed as a function from D to
R. How should one measure the quality of an algorithm? How should
one compare two algorithms?

Traditionally, one partitions an input domain D into a collection of
subdomains {D;,...,D,,...} according to the input size. The set D,
represents all instances in D whose input size is n. Given an algorithm A,
for each D,,, one comes up with a scalar tg 4(n) that “summarizes” the
performance of A over D,,, as given by the restriction @, (A4) of Q(A4,-)
to D,. Then tg a(n) is a function of n. With the help of big-O or
big-© notations, one often characterizes the behavior of A by evaluating
tg,a(n) asymptomatically.

The definition of input sizes could be a source of discussion, for ex-
ample,

e in optimization, scientific computing, and computational geometry,
the input size could be the number of real scalars in the input;

e in number-theoretical algorithms, it could be the total number of bits
in the input;

e in comparison-based sorting, it could the number of elements, while in
some other sorting algorithms, it could be the total number of letters
in the input;

e in the knapsack problem, it could be the total magnitude (or the size
of the unary representation) of the input.

Whatever the definition of the input size is, we need to find a way
to measure and to summarize the performance of an algorithm over an
input subdomain D,,.

Smoothed Analysis of Algorithms and Heuristics 3

The most commonly used measure is the worst-case measure. It is
given by

WQn(4)] = max Q(4,%).

When the worst-case measure of an algorithm A is small}, we have
an absolute guarantee on the performance of algorithm A no matter
which input it is given. Algorithms with good worst-case performance
have been developed for a great number of problems including some
seemingly difficult ones such as primality testing (Solovay & Strassen
(1977), Miller (1975), Adleman & Huang (1987), and Agrawal, Kayal
& Saxena (2004)) and convex programming (Nesterov & Nemirovskii
(1994)). These algorithms have time complexity upper-bounded by a
(low-degree) polynomial function in n.

However, with an even greater number of problems, ranging from
network design to industrial optimizations, we have been less lucky. Sci-
entists and engineers often use heuristic algorithms for these problems.
Most of these algorithms, after years of improvements, work well in prac-
tice. But, their worst-case complexities might be still be very poor. For
example, they could be exponential in their input sizes. For theorists
who are also concerned about the practical performance of algorithms,
it has long been observed that the worst-case instances of such an algo-
rithm might not be “typical” and might never occur in practice. Thus,
worst-case analysis can pessimistically suggest that the performance of
the algorithm is poor. Trying to rigorously understand and model the
practical performance of heuristic algorithms has been a major chal-
lenge in Theoretical Computer Science} (cf. the report of Condon et al.
(1999)).

Average-case analysis was introduced to overcome this difficulty. In
it, one first determines a distribution of inputs and then measures the
expected performance of an algorithm assuming inputs are drawn from
this distribution. If we suppose that S is a distribution over D,,, the
t For example, the number of comparisons needed by the merge-sort algorithm to

sort any sequence of n elements is bounded above by n logn.

1 The theory-practice gap is not limited to heuristics with exponential complexities.
Many polynomial time algorithms, such as the interior-point method for linear
programming (Karmarkar (1984)) and the conjugate gradient method for linear
systems (Hestenes & Stiefel (1952)), are often much faster than their worst-case
bounds. In addition, various heuristics are used to speed up the practical perfor-
mance of codes that are based on worst-case polynomial time algorithms. These

heuristics might in fact worsen the worst-case performance, or make the worst-case
complexity hard to analyze.

4 Daniel A. Spielman and Shang-Hua Teng

average-case measure according to S is

AVGS [Qn(A)] = ExesDn [Q(A7 X)])

where we use x €s D,, to denote that x is randomly chosen from D,
according to distribution S.

Ideally, one should use a mathematically analyzable distribution that
is also the same as or close to the “practical distribution.” But finding
such a distribution and analyzing it could be a difficult or even im-
possible task. As most average-case analyses are conducted on simpler
distributions than what might occur in practice, the inputs encountered
in applications may bear little resemblance to the random inputs that
dominate the analysis. For example, a randomly chosen graph with av-
erage degree around six is rarely similar to a finite-element graph in two
dimensions, even though the latter also has average degree around six.
Random objects such as random graphs or random matrices might have
some special properties with all but exponentially low probability, and
these special properties might dominate the average-case analysis.

Smoothed analysis (Spielman & Teng (2004)) is a recently developed
framework for analyzing algorithms and heuristics. It is partially mo-
tivated by the observation that input parameters in practice are often
subject to a small degree of random noise: In industrial optimization and
market predictions, the input parameters could be obtained by physical
measurements, and measurements usually have some random uncertain-
ties of low magnitudes. In computer aided design, the input parameters
could be the output of another computer program, e.g., a geometric mod-
eling program, that might have numerical imprecision due to rounding
and approximation errors. Even in applications where inputs are dis-
crete, there might be randomness in the formation of inputs. For exam-
ple, the network structure of the Internet may very well be governed by
some “blueprints” of the government and industrial giants, but it is still
“perturbed” by the involvements of smaller Internet service providers.
Thus it may be neither completely random nor arbitrary.

In smoothed analysis, we assume that an input to an algorithm is
subject to a slight random perturbation. The smoothed measure of an
algorithm on an input instance is its expected performance over the
perturbations of that instance. We define the smoothed complezity of an
algorithm as the maximum smoothed measure over its inputs.

In this paper, we survey the progress made in smoothed analysis in
recent years. We discuss several perturbation models considered for both

Smoothed Analysis of Algorithms and Heuristics 5

continuous and discrete problems. We then present some open questions
in this field.

1.2 Basic Perturbation Models and Polynomial Smoothed
Complexity

To conduct smoothed analysis, we need a perturbation model that can
capture the randomness and imprecision in the formation of inputs. To
be concrete in the discussion below, we first consider the case when our
sub-universe is D,, = R", as often considered in optimization, scientific
computing, and computational geometry. For these continuous inputs,
for example, the family of Gaussian distributions (cf. Feller (1968, 1970))
provide a perturbation model for noise.

Recall that a univariate Gaussian distribution with mean 0 and stan-
dard deviation ¢ has density

1 .2 2
e ® /20_
V2ro
A Gaussian random vector of variance o2 centered at the origin in R
is a vector where each entry is a Gaussian random variable of standard
deviation o and mean 0. It has density

]. ” 2 2
—— S P2
de .

(Varo)

Definition 1.1 (Gaussian Perturbations) Let X € R". A o-Gaussian
perturbation of X is a random vector x = X + g, where g is a Gaussian
random vector of variance o?.

Definition 1.2 (Smoothed Complexity with Gaussian Pertur-
bations) Suppose Q,, : D, = R* — Rt is a quality function. Then the
smoothed complexity of Q,, under o-Gaussian perturbations is given as
max Eg [Qn (x + [|X]|, 8)],
XER™

where g is a Gaussian random vector of variance o>.

Each instance X of a computational problem has a neighborhood
which, intuitively, contains the set of instances that are close to and
similar to X. A perturbation model defines a distribution over the neigh-
borhood of X. The closer x is to X, the higher x and X might be correlated
due to the randomness in the formation of input instances. In Gaussian

6 Daniel A. Spielman and Shang-Hua Teng

perturbations, the closeness and similarity among inputs are measured
by their Euclidean distance. As the density function decreases expo-
nentially in distance, the variance parameter o defines the magnitude of
perturbations and also captures the radius of the most likely neighbor-
hood of an instance. The smoothed complexity is measured in terms of
the input length n as well as o, the magnitude of the perturbations. As
o increases continuously starting from 0, the smoothed complexity inter-
polates between the worst-case and average-case complexities (Spielman
& Teng (2004)).

Of course, not all computational problems deal with continuous in-
puts. A commonly used communication model with a noisy channel
assumes inputs are subject to Boolean perturbations of probability o:

Definition 1.3 (Boolean Perturbations) Let X = (Z1,...,%,) €
{0,1}" or {—1,1}" A o-Boolean perturbation of X is a random string
x = (21,...,%,) € {0,1}" or {—1,1}", where x; = Z; with probability
1-o0.

In Boolean perturbations, the closeness and similarity of instances are
measured by their Hamming distances. Again, the parameter o defines
the magnitude of perturbations as well as the radius of the most likely
neighborhood of an instance.

In scheduling, packing, and sorting, the inputs are often integers of
certain magnitudes. Banderier, Beier, and Mehlhorn (2003) propose to
use the partial bit randomization model:

Definition 1.4 (Partial Bit Randomization) Let Z be an integer
and k be a positive integer indicating the magnitude of the perturbation.
A k-partial bit randomization of Z is an integer z obtained from Z by
replacing its k least significant bits by a random number in [0 : 2F~1]
according to some distribution over [0 : 2F~1].

In comparison-based sorting and online problems, each input consists
of a sequence of elements. Banderier, Beier, and Mehlhorn (2003) intro-
duce the following partial permutation model:

Definition 1.5 (Partial Permutation Perturbations) Let § be a
sequence of n elements. Let 0 < o < 1 be the magnitude of perturba-
tions. A o-partial permutation of 8 is a random sequence s obtained
from § by first building a subset S by independently selecting each index
number from {1,2,...,n} with probability o, and then randomly permut-

Smoothed Analysis of Algorithms and Heuristics 7

ing elements of § in position S while retaining the positions of all other
elements.

The perturbation model that most naturally captures the imprecision
in the formation of inputs can vary from application to application. For
instance, it might be more suitable to use uniform random perturbations
within a properly-centered ball to analyze some computational geometry
algorithms.

Definition 1.6 (Uniform Ball Perturbations) Let X € R*. A uni-
form ball perturbation of radius o of X is a random vector x chosen
uniformly from the ball of radius o centered at X.

For any of the basic perturbation models we have discussed, there
might be some refinements and variants worthy of considerations.

For example, Eppsteint proposed the following refinement of the par-
tial permutation model: Let § be a sequence of n elements that have a
total ordering. Let ||s|| denote the number of elements of the input that
must be moved to make the input sorted or reverse-sorted. To obtain a
perturbed element, one randomly chooses a set S of (o - [|s]|) elements,
and randomly permutes them. In this model, one does not perturb the
already-sorted input or the reverse-sorted input at all, and the pertur-
bations of other inputs depend on their distance to these inputs. This
definition is inspired by the definition of smoothed analysis for problems
that take inputs from R™: we do not perturb the zero vector, and perturb
other vectors in proportion to their norm. For sorting, one may view
the already-sorted input as a zero, and distance-to-sorted as a norm.

In analyzing scientific computing algorithms that take advantage of
the sparsity in the problem instances, one may find relative Gaussian
perturbations or zero-preserving Gaussian perturbations better models
of imprecision:

Definition 1.7 (Relative Gaussian Perturbations) Let X be o vec-
tor (Z1,...,%,) € R*. A relative o-Gaussian perturbation of X is a
random vector x = (z1,...,%,) where x; = T;(1 + g;), where g; is a
Gaussian random variable with standard deviation o.

Definition 1.8 (Zero-Preserving Gaussian Perturbations) For
any X = (Z1,...,ZT,) € R?, a zero-preserving o-Gaussian perturbation
of X is a vector x = (Z1,...,Tn) where x; = T; + (1 — IsZero (Z;)) gi,

t Personal Communication

8 Daniel A. Spielman and Shang-Hua Teng

where g; is a Gaussian random variable with standard deviation o and
IsZero (z) =1 if £ =0, and IsZero (z) = 0, otherwise.

When time complexity is the main concern, the central questions in
smoothed analysis naturally are:

Does an algorithm have polynomial smoothed complexity? Is a decision or
search/optimization problem in smoothed polynomial time?

In addition to the notion of input size, one needs a model of perturba-
tions and a notion of magnitudes of perturbations to define polynomial
smoothed complexity. Given a model and notion of magnitudes of per-
turbations, there might still be several possible definitions of polynomial
smoothed complexity.

Spielman and Teng (2004) define polynomial smoothed complexity as:

Definition 1.9 (Polynomial Smoothed Complexity) Given a prob-
lem P with input domain D = U, D,, where D,, represents all instances
whose input size is n. Let R = U, Ry, be a family of perturbations
where R, , defines for each X € D,, a perturbation distribution of X with
magnitude o. Let A be an algorithm for solving P and Ta(x) be the
time complezity for solving an instance x € D. Then algorithm A has
polynomial smoothed complezity if there exist constants ng, o9, ¢, k1 and
ko such that for allm > ng and 0 < o < 0y,

max (Ex<—R",t,()_() [TA(X)]) <c: 07k2 ' nkla (11)

%EDn
where X Ry, ,(X) means x is chosen according to distribution R, ,(X).

The problem P is in smoothed polynomial time with perturbation model
R if it has an algorithm with polynomial smoothed complexity.

For example, Spielman and Teng show that the simplex method with
the shadow-vertex pivoting rule (Gass & Saaty (1955)) has polynomial
smoothed complexity under Gaussian perturbations. We can relax or
strengthen the dependency on ¢ in the definition of the polynomial
smoothed complexity.

Definition 1.10 (Polynomial Smoothed Complexity: II) Let P,

A, D, D,, R, R, , be the same as in Definition 1.9. Then algorithm A

has polynomial smoothed complexity if there exist constants ng, og, ¢, k,

and a function g : Rt — RY such that for all n > ng and 0 < o < oy,
max (Exc g, .z [Ta(x)]) <c-g(o) - nk.

%€D,

Smoothed Analysis of Algorithms and Heuristics 9

In particularly, when g(o) is a poly-logarithmic function of 1/o, we say
the algorithm has polynomial smoothed complexity with poly-logarithmic
dependency on 1/c.

By Markov’s inequality (cf. Alon & Spencer (1992) and Feller (1968)),

if an algorithm A has smoothed complexity T'(n,), then

}Ielilgl Prc g, ., (x) [Ta(x) < 6 'T(n,0)] >1-4. (1.2)
In other words, if A has polynomial smoothed complexity, then for any X,
with high probability, say with (1—4), A can solve a random perturbation
of X in time polynomial in n, 1/0, and 1/4.

However, the probabilistic upper bound given in (1.2) does not usually
imply that the smoothed complexity of A is O(T'(n,)). In fact Eqn (1.2)
may not even imply that

max (Exe g, . (%) [Ta(x)]) is finite.

Eqn (1.2) suggests a relaxed extension of polynomial smoothed com-

plexity.

Definition 1.11 (Probably Polynomial Smoothed Complexity)
Let P, A, D, Dy, R, R, be the same as in Definition 1.9. Then
algorithm A has probably polynomial smoothed complexity if there exist
constants ng, 09, ¢, k1, ka, ks, such that for alln > ng and 0 < o < oy,
max (Precp, .x) [Ta(x) >c-o " .57 % .nks]) <6 (1.3)
xeDyp ’
Equivalently, there exist constants ng, oo, ¢, and «, such that for all
n>ng and 0 <o < oy,
Inax (Bxcr, %) [(Ta(x)?]) <c-o'-n (1.4)
The relaxation of polynomial smoothed complexity given in Eqn (1.3)
is introduced by Blum and Dunagan (2002) in their analysis of the
perceptron algorithm. They show that the perceptron algorithm has
probably polynomial smoothed complexity, in spite of the fact that its
smoothed complexity according to Definition 1.9 is unbounded. Beier
and Vocking (2004), in their study of the binary optimization problem,
introduce the alternative form given in Eqn (1.4).

10 Daniel A. Spielman and Shang-Hua Teng

1.3 Progress in Smoothed Analysis

We cluster the materials in this section into four subsections.

Linear Programming.
Combinatorial Optimization.
Scientific Computing.

Discrete and Geometric Structures.

Although these topics appear to be diverse, the approaches developed
for conducting smoothed analysis in these areas are quite similar. In
fact, most approaches consist of two basic steps:

e Geometric/Combinatorial Conditions of Nice Instances: Es-
tablish a set of analyzable geometric or combinatorial conditions under
which the algorithm performs well on an instance.

e Probabilistic Analysis: Prove that for every input, these geomet-
ric/combinatorial conditions hold with high probability over its per-
turbations.

The challenge in the first step is to establish manageable conditions.
The instance-based complexity itself provides the most accurate char-
acterization of nice and bad input instances of an algorithm, but this
characterization is hardly useful in analysis. What we often look for
are conditions that are accurate enough for predicting the performance
and simple enough for probabilistic analysis. For example, the num-
ber of iterations of the Conjugate Gradient Method (CG) (Hestenes &
Stiefel (1952)) for solving a symmetric positive definite linear system

Ax = b can be bounded above by O <\/IS(A)) (Golub & Van Loan

(1989)), where k(A) is the condition number of A — the ratio of the
largest eigenvalue of A to the smallest eigenvalue of A. Thus, if A is
from a distribution where x(A) is small with high probability, then we
can use x(A) as our condition of nice inputs, even though there might
exist A with very large k(A) and b for which the CG converges rapidly.
But if A is from a distribution where the condition numbers are mostly
very large, and the CG has been observed and believed to perform well,
then we need to find some other conditions for its good performance.
To establish a lower bound on the worst-case complexity of an algo-
rithm we rely a lot on our intuition of the properties for bad instances.
In contrast, to prove a smoothed upper bound, we need to work with
our imagination to find properties of nice instances. However, these
two studies are not completely unrelated, and if all of our worst-case

Smoothed Analysis of Algorithms and Heuristics 11

instances are unstable in a perturbation model, then there might be
reasons to believe that the smoothed measure is good.

1.3.1 Linear Programming

In a linear program, one is asked to optimize a linear objective function
subject to a set of linear constraints. Mathematically, according to one
standard form of linear programming, one is solving

max clx subject to Ax <b,

where A is an m X n matrix, b is an m-dimensional vector, and ¢ is an
n-dimensional vector.

If the constraints are feasible, then they define a convex polyhedron
{x : Ax < b}. This polyhedron could be unbounded in the direction of
¢ in which case the optimal value of the linear program is infinite. Oth-
erwise, the optimal value is finite and the solution point x that achieves
this optimal value must be a vertex of the polyhedron {x: Ax < b}.
Note that a vertex is determined by a subset of equations from Ax = b.

Linear programming is perhaps the most fundamental optimization
problem (Dantzig (1991)). Several methods for solving linear programs
have been developed since its introduction (Dantzig (1951), Khachiyan
(1979), and Karmarkar (1984)). The most commonly used approaches
for solving a linear program are the simplex method (Dantzig (1951))
and the interior-point method (Karmarkar (1984)).

We start our discussion with results in the smoothed analysis of the
simplex method. We then continue with three other methods for solving
linear programs: the perceptron method, its variant with scaling, and
the interior-point method.

Smoothed Analysis of the Simplex Method

The simplex method provides a family of linear programming algorithms.
Most of them are two-phase algorithms: In Phase I, they determine
whether a given linear program is infeasible and, if the program is fea-
sible, they also compute an initial vertex vo of the feasible region and
enter Phase II, where they iterate: in the i** iteration, they find a neigh-
boring vertex v; of v;_; with better objective value, or terminate with
an extreme ray from v;_; on which the objective function is unbounded
above, or terminate with an optimal solution v;_;. Some two-phase

12 Daniel A. Spielman and Shang-Hua Teng

simplex methods can determine whether a feasible linear program is
unbounded in the objective direction in Phase I.

Spielman and Teng (2004) consider the smoothed complexity of the
simplex method under Gaussian perturbations: For any A,b,e¢, the
perturbations of the linear program defined by (A, b,) is

max c¢lx subject to Ax <b,

where A, b, and c, respectively, are obtained from A, b, ¢ by a Gaussian
perturbations of variance

(HA’B’EHFU)Z’

where ||(A, b, ¢)|| is the square root of the sum of squares of the entries
in A b, and c.

In this smoothed setting, with probability 1, every vertex of the feasi-
ble region is determined by exactly n equations. Two vertices v and u of
the feasible region are neighbors if their associated sets of equations dif-
fer by only one equation. So with probability 1, apart from the extreme
vertices from which there is a feasible ray, each vertex of a perturbed
linear program has n neighbors.

Spielman and Teng prove the following theorem.

Theorem 1.1 (Smoothed Complexity of the Simplex Method)
There exists a two-phase simplex algorithm with polynomial smoothed
complezity under Gaussian perturbations.

Let A be a o-Gaussian perturbation of an m x n matrix A with
||A|| 7 < 1 and 1 be the m-vector all of whose entries are equal to 1.
Then the polyhedron {x : Ax < 1} is always feasible with 0 as a feasible
point. For any two n-vectors ¢ and t the projection of the polyhedron
{x: Ax < 1} on the two-dimensional plane spanned by c and t is called
the shadow of the polyhedron onto the plane spanned by ¢ and t. We
denote this shadow by Shadowy ¢ (A), and its size, the number of its
vertices, by |Shadow; ¢ (A)|. Theorem 1.1 is built upon the smoothed
analysis of |Shadowy . (A)|.

Theorem 1.2 (Smoothed Shadow Size) For any m x n matriz A
with ||A||F <1, let A be a o-Gaussian perturbation of A. For any two
n-dimensional vectors ¢ and t

mn3
Ea [|Shadow.c (A)]] = O (mm(a 1 /\/W)G) '

Smoothed Analysis of Algorithms and Heuristics 13

This probabilistic geometric theorem provides a smoothed upper bound
on the Phase IT complexity of the simplex method algorithm with the
shadow-vertex pivot rule (Gass & Saaty (1955)). Theorem 1.1 was estab-
lished by a reduction of Phase I computation to Phase II computation
in n + 1 dimensions.

Recently, Deshpande and Spielman (2005) improve Theorem 1.2 with
a greatly simplified proof.

Theorem 1.3 (Deshpande-Spielman) For any m x n matriz A with
||A||F < 1, let A be a o-Gaussian perturbation of A. For any two
n-dimensional vectors ¢ and t

m3n1.5
Ea [|[Shadow . (A)[]] = O (min(g, 1/@)3) '

Perceptron Algorithms

The perceptron algorithm (Agmon (1954) and Rosenblatt (1962)) is an
iterative algorithm for finding a feasible solution to linear programs in
the form

Ax >0, x#0. (1.5)

It is commonly used in Machine Learning (Minsky & Papert (1988)) for
finding a linear separator of two sets of points R = {p1,...,Pm,} and
B ={dm;+1,---,qm, } in R". If R and B are separable by a hyperplane
through 0 with normal vector x, then

plx > 0for eachi € {1:m;}, and
qlx < 0for each i € {my +1:my +my}.

Letting a; = p; for i € {1: my} and a; = —q; for {m1 +1: m; + ms},
the problem becomes the linear program given in (1.5).

The perceptron algorithm starts with an initial unit vector xg. During
the k" iteration, if there exists a row a) of A with a]x;_; < 0 then
it sets x; = Xp—1 + a;/ ||ajl|,- The complexity question is: how many
iterations does the perceptron algorithm take when given a feasible linear
program of form (1.5)7 The following theorem of Block (1962) and
Novikoff (1962) gives an upper bound in term of a geometric quantity.

14 Daniel A. Spielman and Shang-Hua Teng

Theorem 1.4 (Block-Novikoff) For a linear program of form (1.5),
let

al
p(A) = max min (—’x) .
xillxll,=1,Ax>0 i\ [|agl,
The perceptron algorithm terminates in O(1/p*(A)) iterations.

The parameter p(A) is known as the wiggle room of the perceptron
problem. By establishing a probabilistic lower bound on the wiggle
room, Blum and Dunagan (2002) obtain the following result.

Theorem 1.5 (Blum-Dunagan) For any A € R™*" with HAHF <1,

let A be a o-Gaussian perturbation of A for o < \/1/2n. Then, for any
&, with probability at least 1 — 6, in

0 nm?log?(m/é)
0262
iterations, the perceptron algorithm finds a feasible solution or correctly
concludes that the linear program defined by A is infeasible.

Blum and Dunagan’s result does not imply that the smoothed com-
plexity of the perceptron algorithm is polynomial in m, n, and 1/0. It
only states that with high probability, the perceptron algorithm with a
polynomial number of iterations would correctly solve a perturbed linear
program. See Definition 1.11. But this discrepancy in the definitions
of polynomial smoothed complexities in the results of the perceptron
method (Theorem 1.5) and the simplex method (Theorem 1.1) might
provide some insights on why the simplex method usually performs bet-
ter in practice than the perceptron algorithm.

Recently, Dunagan and Vempala (2004) improve the performance of
a randomized version of the perceptron algorithm by applying periodic
rescalings. They show that, with high probability, their algorithm finds
a feasible solution to feasible linear programs of form (1.5) in time
O(mn*lognlog(1/p(A))). Tt is not hard to combine the analysis of
Blum-Dunagan with the the result of Dunagan-Vempala to prove the
following result.

Theorem 1.6 (Smoothed complexity perceptron algorithms with
rescaling) For any A € R™*" with HAHF <1, let A be a o-Gaussian
perturbation of A, for o < \/1/2n. Then, for any &, with probability at

Smoothed Analysis of Algorithms and Heuristics 15

0 s (22))

time, the Dunagan-Vempala perceptron algorithm finds a feasible solu-
tion or correctly concludes that the linear program defined by A is infea-
sible.

least 1 — 9, in random

Condition Number of Linear Programs and the Smoothed
Complexity of Interior-Point Methods

The parameter p(A) aforementioned is a special case of the condition
number of a linear program introduced by Renegar (1994), (1995a). Con-
sider the following four common canonical forms of linear programs and
their dual forms:

max ¢'x st. Ax<b

min bly st. ATy =¢, y>o0, 1)

max c¢/x st. Ax<b, x>0

min b’y st. ATy >¢, y >0, (2)
max ¢/x st. Ax=b, x>0
min bly st. ATy >¢, (3)

findx#0 st. Ax<0
findy #0 st. ATy=0, y>0. (4)

A key concept in defining the condition number is the set of ill-posed
linear programs. A linear program is ill-posed if the program can be
made both feasible and infeasible by arbitrarily small changes to its
data.

In his pioneering work (Renegar (1994), (1995a), (1995b)), Renegar
defines the condition number of a linear program as the scale-invariant
reciprocal of the distance of that program to “ill-posedness”. Any linear
program may be expressed in each of the first three canonical forms.
However, transformations among formulations do not in general preserve
their condition numbers (Renegar (1995a)). Therefore, the condition
number is defined for each normal form.

16 Daniel A. Spielman and Shang-Hua Teng

Let F' be the property that a linear program is feasible. For each
(A,b,c) and i € {1,2,3}, let PLP;(A,b,c) and DLP;(A,b,c) be the
primal and dual linear programs, respectively, in normal form () defined
by data (A, b,c). Let

pi(A,b,c) =sup{d : |AA, Ab, Ac||, < § implies
F (PLP;(A,b,c)) = F (PLP;(A + AA,b + Ab,c + Ac)) &
F (DLP;(A,b,¢)) = F (DLP;(A + AA,b + Ab,c + Ac)) }.

The condition number of the linear program defined by data (A,b,c)
in normal form (7) is

1A, b, cllz
(A, b,c) = L2 0E
C(? 7c) pi(A,b,C)

We can similarly define the distance ps(A) to ill-posedness and the con-
dition number C4(A) of a linear program in normal form (4).
Dunagan, Spielman and Teng (2002) prove the following theorem:

Theorem 1.7 (Smoothed condition number) For any (A,b,¢) with
||A,B,EHF <lando <1, let A, b and c be o-Gaussian perturbations
of A, b and ¢, respectively. Then,

Ea b.e [log Ci(A, b, c)] = O(log(mn/0)).

For any linear program of form (i), ¢ € {1, 2, 3}, specified by (A, b,c)
and parameter € < 1, there is an interior-point algorithm that determines
whether the program is infeasible or unbounded or finds a feasible so-
lution x with duality gap €||A,b,c||p in O(N®log(N - C;(A,b,c)/e))
operations (Renegar (1994), (1995a), (1995b), Vera (1996), Freund &
Vera (1999)). where N = max(m,n). Let T;((A,b,c),€) be the time
complexity of these interior-point algorithms. For a linear program of
form (4) given by A, there is an algorithm that finds a feasible solution
x or determines that the program is infeasible in O(N?log(N - C4(A)))
operations (Cucker & Pefa (2001) and Freund & Vera (1999)). Let
T;((A,b,c), €) be the time complexity of these interior-point algorithms.
We have,

Theorem 1.8 (Smoothed Complexity of IPM: Approximation)
For any 0 < 1, for any A € R™*" b € R™ and ¢ € R such that
|A,b,&||, <1, let (A,b,c) be a o-Gaussian perturbation of (A,b,c).

Smoothed Analysis of Algorithms and Heuristics 17

Then,
E(a b0 [Ti((A,b,¢),)] = O (max(m,n)* log (=)).

When an exact solution of a linear program is desired, one can find an
optimal solution in two steps: First, apply the interior-point method to
find a feasible point that is close enough to optimal solution. Then run a
termination algorithm that “jumps” from the close-to-optimal solution
to the optimal solution. For a feasible program defined by (A,b,c),
there is a precision quantity §(A,b,¢) such that for all € < §(A,b,c),
one could jump from any e-accurate solution to an exact solution. Spiel-
man and Teng (2003b) show that under o-Gaussian perturbations, the
smoothed value of max(1,log(1/6(A,b,c))) is O(lognm/o). Putting
everything together, we obtain the following theorem.

Theorem 1.9 (Smoothed Complexity of IPM: Exact Solution)
For any A € R™ ", b € R™ and € € R" such that |A,b,c||, <1
and o <1, let (A,b,c) be a o-Gaussian perturbation of (A,b,c). One
can apply the interior-point algorithm with periodic applications of a
termination procedure to exactly solve a linear program in normal form
1, 2, or 8 in an expected

mn

0 (max(m, n)3log (7))

arithmetic operations.

Smoothed Complexity of Linear Programming in Low
Dimensions

A linear program is often referred to as a low-dimensional linear program
if m > n. Clarkson (1995) introduces a remarkable reduction algorithm
and proves the following lemma.

Lemma 1.1 (Clarkson’s Reduction) For any linear program with m
constraints in n variables, with random sampling, one can reduce the
problem of solving this program to the problems of solving O(n?logm)
programs with 9n? constraints in n variables.

One can solve a low-dimensional linear program in two steps:

1. Apply Clarkson’s reduction to the input program.
2. Use an interior-point algorithm to solve these smaller linear programs.

18 Daniel A. Spielman and Shang-Hua Teng

We can use Theorem 1.9 to prove the following theorem.

Theorem 1.10 (Smoothed complexity of low-dimensional linear
programming) There is a linear programming algorithm with smoothed
complezity

O (n*m + n®logmlog(mn/o)) .

So far, this is the best smoothed bound for low-dimensional linear
programming. In contrast, the best worst-case upper bound for low-
dimensional linear programming is obtained by the combination of Clark-
son’s reduction with the randomized simplex algorithm of Kalai (1992)
and Matousék, Sharir, and Welzl (1992). The complexity of this combi-
nation is

O(\/n/logn—i-log log m)

n2m+n

1.3.2 Combinatorial Optimization

In combinatorial optimization, the solutions are discrete. However, not
all input parameters of combinatorial optimization problems are nec-
essarily discrete. For example, in optimization problems defined on
weighted graphs such as the Traveling Salesman Problem, the Mini-
mum Steiner Tree Problem, and the Multi-Commodity Flow Problem,
the weights could be continuous while the graph structure remains dis-
crete (Papadimitriou & Steiglitz (1982)). In integer linear programming
(Schrijver (1986)), all input parameters can be continuous, though the
solutions must be integer vectors. For these problems, we can still con-
sider the effects of Gaussian perturbations. In this subsection, we discuss
results on the smoothed analysis of the binary optimization problem, in-
teger programming, and some problems in online optimization.

Binary Optimization Problems

Beier and Vocking (2004) consider the following Binary Optimization
Problem:

max cfx subject to Ax <b and x € {0,1}"

Several classical discrete optimization problems can be expressed as
binary optimization problems. One example is the 0/1-Knapsack Prob-
lem: Given a set of n items {(wi,v1),..., (Wn,vn)} where item ¢ has
weight w; > 0 and value v; > 0, and a knapsack of capacity c¢, find a

Smoothed Analysis of Algorithms and Heuristics 19

subset S C {1,...,n} with), gw; < ¢ that maximizes), gv;. By
setting ¢; =1if i € S and z; = 0if i € S, one can express the knapsack
problem as a binary optimization problem:

mava,-a:i, subject to szm, <cand z; € {0,1} Vie {l,..,n}.

K3 2
Another example is the Constrained Shortest Path Problem (Ziegelmann
(2001)): Given a graph G = (V, E) where each edge e € E has distance
d. > 0 and latency l. > 0, a source vertex s, a destination vertex ¢,
and a latency tolerance parameter L, find a path P from s to t with
> ecple < L that minimizes) . p de.

Let P be the set of all simple paths from s to ¢t. In any feasible
solution, there must be a path in P with all of its edges chosen. Let C
be all subsets of the edges whose removal disconnects s from ¢. By the
duality relation between cuts and paths, in any feasible solution and for
any cut C' € C, at least one of its edges is chosen. For each e € E, let z,
be a binary variable with z. = 1 if e is chosen. One can then reformulate
the constrained shortest path problem as:

max —3) .pdez. subject to Z lexze < L
ecE
» ze>1 forallCeC and

ecC
z. € {0,1} for all e € E.

In their smoothed analysis of the binary optimization problem, Beier
and Vocking distinguish two types of expressions: deterministic expres-
sions and stochastic expressions. Unlike the stochastic constraints, the
deterministic constraints are not subject to perturbations. For instance,
in the smoothed analysis of the Constrained Shortest Path Problem, one
could assume the distances and latencies are subject to some perturba-
tions while the set of combinatorial structure of the graph is not subject
to any perturbation, making the constraints) ., z. > 1forall C €C
deterministic.

One way to capture the deterministic constraints in the binary opti-
mization problem is the following reformulation:

min c’x subjectto Ax<bandxe Sn{0,1}", (1.6)

where S is the intersection of the feasible sets of the deterministic linear
constraints. Then, in smoothed analysis, one assumes entries of (A, b)

20 Daniel A. Spielman and Shang-Hua Teng

are always subject to perturbations and only needs to consider the possi-
bility of whether the objective function is also subject to perturbations.

Beier and Vocking (2004) also introduce a quite general way to ex-
tend Gaussian perturbations: Let f be a piece-wise continuous univari-
ate density function of a probability distribution (i.e., f(x) > 0 and
Jg f(x)dx = 1), with finite mean [, || f(2)dz and sup, f(z) = 1. For
o <1, let f, be a scaling of f such that f,(z) = f(z/0)/o. It is easy
to check that the mean of f, satisfies

[leltot@rs = ([1ol stz

[fewyis= [sajo)jote = [sy =1

For any Z, an f-perturbation with magnitude ¢ < 1 is a random
variable £ = T + r, where r is randomly chosen according to a density
fo. To perturb a vector, one independently perturbs each of its entries.
For example, the o-Gaussian perturbation is an f-perturbation with
magnitude o when f(z) = e */2/y/2r. By setting f to be 1/2in [~1,1]
and 0 outside [—1,1], one obtains a family of uniform perturbations
within a box of side-length 20 centered at a vector. By setting f to be 1
in [0, 1] and 0 outside [0, 1], one obtains a family of uniform perturbations
with a box of side-length o in the positive quadrant of a vector.

Before stating the main result of Beier and Vocking, let us first review
a few concepts from complexity theory (Papadimitriou (1994) and Sipser
(1996)). Let RP denote the class of decision problems solvable by a ran-
domized polynomial time algorithm such that for every “yes”-instance,
the algorithm accepts with probability at least 1/2, and for every “no”-
instance, the algorithm always rejects. Let coRP be the complement of
RP. Let ZPP be the intersection of RP and coRP. In other words, ZPP is
the class of decision problems solvable by a randomized algorithm that
always returns the correct answer, and whose expected running time (on
every input) is polynomial.

For a binary optimization problem II, let I, be the “unary” repre-
sentation of II — in II,,, all parameters in the stochastic expressions are
assumed to be integers in unary representation.

and

Theorem 1.11 (Beier and V6cking’s Characterization) For every
density function f with finite mean and sup, f(z) < 1, in the perturba-
tion model defined by f-perturbations, a binary optimization problem II

Smoothed Analysis of Algorithms and Heuristics 21

is in smoothed polynomial time probabilistically (see (1.4)) if and only if
IT, € ZPP.T Moreover, a binary optimization problem II is in smoothed
polynomial time as in (1.1), if I1,, can be solved in linear time.

For instance, because the unary version of the 0/1-knapsack problem
can be solved in linear time using dynamic programming, as a corollary
of Theorem 1.11, the 0/1-knapsack problem is in smoothed polynomial
time. Like the 0/1-knapsack problem, the Constrained Shortest Path
Problem is NP-complete while its unary version is in P. Thus, the Con-
strained Shortest Path Problem is in smoothed polynomial time prob-
abilistically. One can similarly prove the Constrained Minimum Span-
ning Tree Problem (Ravi & Goemans (1996)), the Constrained Mini-
mum Weighted Matching Problem, and several other instances of pack-
ing problems are in smoothed polynomial time in the sense of Definition
1.11.

In contrast, even though 0/1-integer programming with a fixed num-
ber of constraints is in smoothed polynomial time, general 0/1-integer
program is not (unless NP = RP).

In the proof of Theorem 1.11, Beier and Vocking examine the distri-
bution of three quantities of a binary optimization problem II:

e Winner Gap: IfII is feasible and has more than one feasible solution,
then the winner gap is the difference between the objective value of
the optimal solution and the objective value of the second best feasible
solution.

e Loser Gap: Let IT(II) C {0,1}" be the set of infeasible binary vec-
tors with better objective values than the optimal solution. Suppose
the feasible region is given by al x < b;, for i € [1,m]. The loser gap
is then equal to

: T
min max(a; X — b;
x€IFH(M) i (2 i),
that is, the minimum amount of violation of binary vectors in It (II).

e Feasibility Gap: Suppose x* is the optimal solution. Then the

feasibility gap is equal to
min (b; —al x*),
i a] x < b; is stochastic

t Usually by saying II has a pseudo-polynomial time algorithm, one means II, € P.
So II,, € ZPP means that II are solvable by a randomized pseudo-polynomial time
algorithm. We say a problem II is strongly NP-hard, if I, is NP-hard. For example,

0/1-integer programming with fixed number of constraints is in pseudo-polynomial
time, while general 0/1-integer programming is strongly NP-hard.

22 Daniel A. Spielman and Shang-Hua Teng

that is, the minimum slack of the optimal solution with respect to
stochastic constraints.

Note that these three quantities are closely related with the concept
of the condition numbers studied in the smoothed analysis of the per-
ceptron algorithm and the interior-point algorithms. Beier and Vécking
prove that the reciprocal of each of these quantities is polynomial with
high probability. Consequently, if the binary optimization problem has
k stochastic equations and n variables, then with high probability the
winner is uniquely determined when revealing O(log(nk/o)) bits of each
stochastic coefficient. So, if II,, is in ZPP, then the ZPP algorithm would
solve almost all perturbed instances.

Integer Programming

Roglin and Vocking (2005) extend the result of Beier and Voécking to
integer linear programming. They consider programs of the form

max c’x subject to Ax <b and x € D", (1.7

where A is an m X n real matrix, b € R™, and D C Z.

Theorem 1.12 (Réglin and Voécking) For any constant ¢, let II be a
class of integer linear programs of form (1.7) with |D| = O(n¢). Then,
IT is in smoothed polynomial time in the probabilistic sense if and only
if II,, € ZPP.

Smoothed Competitive Ratio of Online Scheduling

In online computing (Sleator & Tarjan (1985)) an input is given as a
sequence of events X = 1 oz 0...0x; 0.... For all ¢, an online
algorithm A must generate a response r; based on {zi,...,z;} only.
Let ra(x) =riorgo0...0r;0... be its response sequence. There is a
positive-valued cost function COST (r) for each response r.

Let OPT (x) be the cost of the best response, possibly generated by
an optimal offline algorithm that has access of all events in x. Sleator
and Tarjan (1985) define the worst-case competitive ratio of an online
algorithm to be

{ COST (ra(x)) }
SUpy —————— .
x OPT (x)

Becchetti, Leonardi, Marchetti-Spaccamela, Schéfer, and Vredeveld

Smoothed Analysis of Algorithms and Heuristics 23

(2003) apply smoothed analysis to evaluate the performance of online
algorithms. For a perturbation model D, they define the smoothed
competitive-ratio as

s1)1_‘p {Ex €pD(x) [%W] } ‘

They then apply this measure to the following online scheduling prob-
lem. The input is a collection of jobs {j1,...,jn}. Each job j; has a
release time R; and processing time T;. An online scheduler only knows
the existence of j; at its release time R;. Its processing time T; is not
known until the job is completed. In the system, one is allowed to inter-
rupt a running job and resume it later on the system. The system could
have only one machine or m parallel machines. The scheduler decides
when and which uncompleted job should be executed at an available
machine, as well as when and which running job to interrupt. Each
machine can only process at most one job at any time. Suppose the
completion time of job j; is C;. The flow time of j; is then F; = C; — R;.
The objective of the scheduler is to minimize the total flow time

ZE=Z(Ci—Ri).

Since the Multi-Level Feedback algorithm (MLF) is one of the commonly
used processor-scheduling algorithms in operating systems such as Unix
and Windows NT, Becchetti et al. (2003) choose to analyze its smoothed
competitive ratio.

MLF maintains a set of queues (), - .., ... and uses @; to book-keep
jobs that have recently processed for 2~! time units. At each stage,
the scheduler processes the job at the front of the lowest non-empty
queue. This algorithm is non-clairvoyant as it makes decisions without
full knowledge of the running time of each job.

Although MLF performs well in practice, its worst-case competitive
ratio is rather poor. In fact no deterministic non-clairvoyant preemptive
scheduling algorithm has good competitive ratio due to a lower bound of
Q(2%) on the competitive ratio of any such scheduling algorithm when
processing times of jobs are chosen from [1,2%], as shown by Motwani,
Phillips, and Torng (1993).

In their smoothed analysis, Becchetti et al. use the partial bit per-
turbation model introduced by Banderier, Beier, and Mehlhorn (2003)
with magnitude parameter k < K. See Definition 1.4. Becchetti et al.’s
results hold for any well-conditioned distribution over [0,2%1] whose

24 Daniel A. Spielman and Shang-Hua Teng

density function f satisfies that f is symmetric around its mean u(f) €
[0,2%~1] and f is non-decreasing in [1, u(f)]. Let o denote the standard
deviation of f.

Theorem 1.13 (Smoothed Performance of MLF) For any K, k,
and o, under a partial k-bit perturbation model with o well-conditioned

distribution of standard deviation o, the smoothed competitive ratio of
MLF is O (2%kg=22K—k 4 22k5=3),

For example, Theorem 1.13 implies that the smoothed competitive
ratio of MLF is O(25~*) for the uniform partial k-bit randomization as
the standard deviation of this distribution is ©(2¥).

Metrical Task Systems

The metrical task systems introduced by Borodin, Linial, and Saks (1992)
provide a general framework for modeling many online problems includ-
ing various scheduling and paging problems. A metrical task system is
defined by a weighted, connected and undirected graph G = (V, E,d),
where, for each e € E, d(e) > 0 specifies the length of edge e. For
simplicity, one can assume V = {1,...,n}. Naturally, via shortest paths,
d also defines the distance d(u,v) between any two vertices u and v in
the graph. A task can then be represented by an n-dimensional vector
T = (1(1),...,7(n)), where 7(i) specifies the service cost of perform-
ing 7 at vertex ¢. In an online metrical task system, a server is ini-
tially positioned at a starting vertex vg, and needs to service a sequence
(T1,...,Ti,...) of tasks. Upon receiving 7;, an online algorithm must de-
cide which vertex v; to service 7;. So the cost to service 7; depends on
v;—1 and is equal d(v;,v;—1) + 7:(v;). The objective of the optimization
problem is to minimize the total service cost >, (d(vs,vi—1) + 75(vs)) .
The deterministic online algorithm with the best possible worst-case
competitive ratio is the Work Function Algorithm (WFA) developed by
Borodin, Linial, and Saks. The idea of this algorithm is very simple.
Let w;(v) be the minimum offline cost to process (71, ..., 7;) with start-
ing position vy and ending position v. The vector w; = (..., w;(v),...)
is called the work function. One can compute w; incrementally by dy-
namic programming. The optimal off-line cost to process (71,...,7;) is
then min, w;(v). WFA simply chooses s; to be the vertex that realizes
min, (w; (v) + d(s;—1,v)). Borodin et al. proved that the worst-case

Smoothed Analysis of Algorithms and Heuristics 25

competitive ratio of WFA is 2n — 1, and also proved that 2n — 1 is the
best possible competitive ratio for any deterministic online algorithm.

Schifer and Sivadasan (2004) consider the smoothed competitive ra-
tio assuming that the service cost of each task is subject to a random
perturbation with mean 0 and standard deviation ¢. If the perturbation
makes a cost negative, then the cost would be reassigned to 0.

Theorem 1.14 (Schifer and Sivadasan) There ezist constants ¢y
and co such that for all (...,7;,...) with 7; < 1, the smoothed competi-
tive ratio of WFA is bounded above by the smaller of the following two
quantities:
DIAMETE min
c - (R (G) ()\ +logA>), and
o

)\min

Cs - (\/n)\max ()\min +10gA)> ,
Amin g

where Amin = minec g d(e), Apax = max.cg d(e), DIAMETER (G) is
the diameter, max, , d(u,v), of G, and A is the mazimum vertex degree
of G.

Furthermore, if the service cost vector of each task contains at most
k non-zero entries, then the smoothed competitive ratio of WFA is

0 (k- Amax (Amin + log A)) .
)\min o

1.3.3 Scientific Computing

Scientific computing is another area where input parameters are often
continuous. In addition, due to round-off errors in scientific comput-
ing, inputs to numerical algorithms are subject to random perturba-
tions (Wilkinson (1963)). We now discuss results of smoothed analysis
in solving linear systems and in parallel mesh generation.

Growth Factor and Bit-Complexity of Gaussian Elimination

Solving linear systems is the most fundamental problem in computa-
tional science and numerical linear algebra (Strang (1980), Golub &
Van Loan (1989), Demmel (1997)). The most common method used to
find a solution to a system Ax = b is the classical Gaussian elimina-
tion. The method first uses elimination to reduce an n variables and n

26 Daniel A. Spielman and Shang-Hua Teng

equations system to a smaller n — 1 by n — 1 system and then recur-
sively solves the smaller system. In the elimination, it chooses one of
the equations and one of the variables, and uses the chosen equation to
eliminate the variable from other equations. The choice of the equation
and the variable is determined by a pivoting rule.

The simplest pivoting rule is to use the i*" equation to eliminate the
i*" variable. This process, often referred as Gaussian elimination without

pivoting, factors the coefficient matrix A into
A =10,

where L is a lower triangular matrix and U is an upper triangular matrix.

The pivoting rule most used in practice is partial pivoting. In the it*
step, it chooses the equation in which the i* variable has the largest
coefficient in absolute value, and uses that equation to eliminate the
it" variable. Gaussian elimination with partial pivoting defines a row-
permutation matrix P and factors PA into

PA =LU.

Because of the partial pivoting, all entries in L have absolute value at
most 1.

Another quite natural pivoting rule is the complete pivoting rule. In
the it step, it chooses the equation containing the the largest coefficient
(in absolute value) from the entire system uses it to eliminate the variable
that has that coefficient. Gaussian elimination with complete pivoting
produces a row permutation matrix P (for the choices of equations) and
a column permutation matrix Q (for the choices of variables) and factors
PAQ into

PAQ = LU.

In his seminal work, Wilkinson (1961) considers the number of bits
needed to obtain a solution of a given accuracy. He proves that it suffices
to carry out Gaussian elimination with

b+ log, (5nx(A) ||Ll [[Ull / | Alloe +3)

bits of accuracy to obtain a solution that is accurate to b bits. In the
formula, k(A) = [|Al, |A ||, is the condition number of A where
[|All, = maxy [|Ax|[, /[|%||,, and [|A[| is the maximum absolute row
sum. The reciprocal of ||A*1|| is also known as the smallest singular
value of A.

The quantity ||L|| ||U|| /I|All, is called the growth factor of the

2

Smoothed Analysis of Algorithms and Heuristics 27

elimination. It depends on the pivoting rule. We will use pgewp(A),
pcepp(A), and pagrcp(A) to respectively denote the growth factors of
Gaussian elimination without pivoting, with partial pivoting, and with
complete pivoting.

For some nonsingular matrix A, pgewp(A) could be unbounded as
the pivoting coefficient could be zero or arbitrarily close to zero.

Wilkinson constructs a family of matrices, W,, = L, + C,,, where
L, is an n x n lower triangular matrix with diagonal entries equal
to 1 and off-diagonal entries equal to —1, and C,, is a matrix with
Cp[n,n] = 0, Culi,j] = 0 for j < n, and Cyli,n] = 1 for ¢ < n. For
W, paepp(W5) = Q(27). On the positive side, Wilkinson also proves
that for any non-singular matrix A, pgpcp(A) = nOUgn),

Wilkinson’s counterexample shows that in the worst-case one must
use at least Q(n) bits to accurately solve every linear system using the
partial pivoting rule. However, in practice one usually obtains accurate
answers using much less precisionf. In fact, it is rare to find an imple-
mentation of Gaussian elimination that uses more than double preci-
sion, and high-precision solvers are rarely used or needed (Trefethen &
Schreiber (1990) and Trefethen & Bau (1997)). For example, LAPACK
uses 64 bits (Anderson et al. (1999)).

Sankar, Spielman, and Teng (2005) conduct smoothed analysis of
growth factors for Gaussian eliminations without pivoting and with par-
tial pivoting. They prove the following results.

Theorem 1.15 (Gaussian Elimination without Pivoting) Forn >
et, let A be an n-by-n matriz for which HA”2 <1, and let A be a o-
Gaussian perturbation of A, for 0 < 1/2. Then,

1 1
E [log pcewp(A)] < 3log, n + 2.51og, (—) + 3 log, log, n 4+ 1.81.
o

Theorem 1.16 (Gaussian Elimination with Partial Pivoting) For
any n-by-n matriz A such that ||15‘||2 <1, let A be a o-Gaussian per-
turbation of A. Then, for x > 1

12logn
Pr lpGEPP(A) > z2! (M>] < g7 losm,

ag

t Wright (1993) gives a collection of natural problems for which Gaussian elimination
with partial pivoting is unstable.

28 Daniel A. Spielman and Shang-Hua Teng

Condition Number of Matrices

A key step in the smoothed analysis of the growth factor is to obtain a
smoothed bound on the condition number of a square matrix. The con-
dition number k(A) = ||A]|, ||A_1||2 measures how much the solution
to a system Ax = b changes as one makes slight changes to A and b.
A consequence is that if one solves the linear system using fewer than
log(k(A)) bits of precision, one is likely to obtain a result far from a
solution (Golub & Van Loan (1989), Trefethen & Bau (1997), Demmel
(1997)).

Sankar, Spielman, and Teng (2005) establish the following smoothed
bound on the condition number:

Theorem 1.17 (Smoothed Analysis of Condition number) Let A
be an n X n matriz satisfying ||A||2 < /n, and let A be a o-Gaussian
perturbation of A, with o < 1. Then,

14.1n (1 + \/W)
Prik(A) > z] < poon .

As bounds on the norm of a random matrix are standard, to prove
Theorem 1.17, one only needs to focus on the norm of the inverse. Notice
that 1/ ||A*1||2 = miny ||Ax||, / [|x||, is the smallest singular value of
A. Sankar, Spielman, and Teng prove the following theorem:

Theorem 1.18 (Smallest singular value) Let A be an arbitrary
square matriz in R™*™, and let A be a o-Gaussian perturbation of A.
Then

Pra [|A7"], > o] < 2.35Y"

Wschebor (2004) improves the smoothed bound on the condition num-
ber.

Theorem 1.19 (Wschebor) Let A be an n x n matriz and let A be a
o-Gaussian perturbation of A for o < 1. Then,

, 1/2
4|Al7 1 +1
L vr (s AL o)

Pr [k(A) > o] <

813

4/27n o*n

When ||AH2 < 4/, his result implies

Smoothed Analysis of Algorithms and Heuristics 29

o

Pr[k(A) > 2] < O ("log"> .

Zero-Preserving Perturbations and Symmetric Linear
Systems

Many matrices that occur in practice are both symmetric and sparse.
Moreover, numerical algorithms take advantage of any assumed sparse-
ness. Thus, it is natural to study the smoothed complexity of algorithms
under perturbations that respect symmetry and non-zero structure. See
Definition 1.8 for zero-preserving perturbations. One can express a sym-
metric matrix A as T + D + TT, where T is a lower-triangular matrix
with zeros on the diagonal and D is a diagonal matrix. By making a
zero-preserving perturbation to T, we preserve the symmetry and the
zero-structure of the matrix.

Sankar, Spielman, Teng (2005) extend their results on condition num-
ber and growth factor to symmetric matrices with zero-preserving and
symmetry-preserving perturbations.

Theorem 1.20 (Condition number and growth factor of sym-
metric matrices) Let A = T+D+T7 be an arbitrary n-by-n symmet-
ric matriz satisfying ||15;||2 < y/n. Leto® <1, let T be a zero-preserving
o-Gaussian perturbation of T, let Gp be a diagonal matriz of Gaussian
random variables of standard deviation o and mean O that are indepen-
dent of T and let D = D + Gp. Then, for A = T+ D + T7 and
T > 2,

Pr[s(A) > 2] < O ("2‘2@) .

In addition,

E [log pgewp(A)] = O (log (n)) .

g

Well-Shaped Mesh Generation: Parallel Delaunay Refinement

Mesh generation is a key problem in scientific computing (Edelsbrunner
(2001) and Teng & Wong (2000)). In mesh generation, one is given a
geometric domain, specified by its boundary. The goal is to produce a
triangulation of the domain, wherein all triangles are well-shaped. One

30 Daniel A. Spielman and Shang-Hua Teng

standard definition of well-shapedness is that the ratio of the circum-
radius to the shortest side of each triangle is bounded by a prespecified
constant, such as 2 (Miller et al. (1995)). One would also like to minimize
the number of triangles in the mesh.

A special family of input domains is the periodic point set: If P is
a finite set of points in the half-open unit box [0,1)¢ and Z? is the
d-dimensional integer grid, then S = P + Z% is a periodic point set
(Edelsbrunner (2001)). The periodic set S contains all points p + v,
where p € P and v is an integer vector. Periodic point sets are often
used to study some basgic issues in well-shaped mesh generation and to
simplify the presentation of several mesh generation algorithms (Cheng
et al. (2000) and Edelsbrunner et al. (2000)).

The Delaunay triangulation of a periodic point set is also periodic. In
general, this triangulation might not be well-shaped. A practical and
popular technique to generate a well-shaped mesh is to iteratively apply
Delaunay refinementt: Choose a triangle that is not well-shaped, add its
circumcenter to the domain, and recompute the Delaunay triangulation.
This process will be repeated until there are no more poorly-shaped
elements.

The standard Delaunay refinement algorithms are inherently sequen-
tial. Spielman, Teng, and Ungdr (2002) define a parallel rulef for adding
more points for refinement. They prove that if the minimum pair-wise
distance of the input point set is s, then the use of the parallel rule takes
O(log®(1/s)) parallel time. In the smoothed setting where input points
are subject to small perturbations, their result implies:

Theorem 1.21 (Parallel Delaunay Refinements) For any point set

P C R?, let P be a o-Gaussian perturbation of P. Then there is a paral-

lel Delaunay refinement algorithm that, in O(log®(1/0)) time, produces

a well-shaped mesh for P+72. Moreover, the number of elements in this

mesh is within o constant factor of the optimal solution. The number of

processors needed is equal to the size of the resulting mesh.

t Chew (1989) and Ruppert (1993) pioneer this approach in two dimensions and
Shewchuk (1998) extends it to three dimensions. Li and Teng (2001), Cheng and
Dey (2002) resolve a major difficulty of Shewchuk’s extension to ensure that all
tetrahedra are well-shaped.

i By relaxing the refinement rule that the circumcenters of poorly shaped triangles

must be added, then in Spielman, Teng, and Ungor (2004), they show another
approach with (log(1/s)) parallel time.

Smoothed Analysis of Algorithms and Heuristics 31

1.3.4} Discrete and Geometric Structures

The notion of perturbations and neighborhoods is far less straightfor-
ward for discrete structures than for continuous structures. Perhaps,
the simplest model for perturbing a graph G = (V, E) is to insert every
non-edge (i, j) € E into the graph with some probability o and to delete
every edge (i,7) € E from the graph with some probability o. We de-
note this distribution on graphs by P(G, o) and call the resulting graph
G = (V, E) a o-perturbation of G.

Unfortunately, such perturbations can considerably change the prop-
erties of a graph. For example, the above perturbation model can not be
used if we would like to study the performance of a bisection algorithm
for planar graphs, because almost all perturbed graphs are non-planar.

We now discuss some modifications of this model, which have been
proposed in an attempt to make the analysis more meaningful.

e Property-Preserving Perturbations (Spielman & Teng (2003a)):
Given a property P and a basic model of perturbation, a P-preserving
perturbation of an object X is a perturbation of X according to the ba-
sic perturbation model but subject to the condition P(X) = P(X). In
the case when G is a graph and the basic model is the o-perturbation

of G, the probability of a graph G with P(G) = P(G) is

Prgep(G.0) |G and (P(G) = P(G))]
Prg. (G.0) [P(G) = P(G)]

In the property preserving perturbation model for graphs, P can
be any graph property such as planarity or can be a combination of
several properties such as being planar and having a bisection of size
at most B.

e The Semi-Random Model (Blum & Spencer (1995)): Blum and
Spencer’s semi-random graph model combines Santha and Vazirani’s
(1986) semi-random source with the random graph model that has a
“planted solution” (Boppana (1987)). Since this is best described by
an example, let us consider the k-Coloring Problem.

An adversary plants a solution by partitioning the set V' of n vertices
into k subsets V1,..., V. Let

F = {(u,v)|u and v are in different subsets}

be the set of potential inter-subset edges. A graph is then constructed
by the following semi-random process that perturbs the decisions of
the adversary: Initially let H = F. Then while H is not empty,

32

Daniel A. Spielman and Shang-Hua Teng

(i) the adversary chooses an edge e from H, and decides whether
it would like to include the edge in the graph.

(ii) The semi-random process then reverses the decision with prob-

ability o.

(iii) The edge e is then removed from H.

We will refer such a graph as a semi-random k-colorable graph. In this
model, one can also require that each V; has size n/k or ©(n/k). Such
a graph is called a balanced semi-random k-colorable graph.

All semi-random k-colorable graphs have the same planted coloring;:
II(v) = i for all v € V;, because both the adversary and the semi-
random process preserve this solution by only considering edges from
F.

As with the smoothed model, one can work with the semi-random
model, by varying o from 0 to 1/2, to interpolate between worst-case
and average-case complexity for k-coloring. In fact, the semi-random
model is related to the following perturbation model that partially
preserves a particular solution:

Let G = (V, E) be a k-colorable graph. Let IT : V — {1,....k} be a
k-coloring of G and let V; = {v | II(v) = i}. The model then returns a
graph G = (V, E) that is a o-perturbation of G subject to II also being
a valid k-coloring of G. In other words, the perturbation is subject to

E C F = {(u,v)|u and v are in different subsets} .

This perturbation model is equivalent to the semi-random model in
which the adversary is oblivious. An oblivious adversary simply chooses
a set £ C F, and sends the decisions that only include edges in E
(and hence exclude edges in F'— E) through the semi-random process.
Thus, if a k-coloring algorithm can successfully color semi-random k-
colorable graphs (with high probability), it must also be able to color
graphs generated by the perturbation model that partially preserves
a particular solution.
Solution-Preserving Perturbations: The semi-random model only
generates graphs that have the planted solution and hence only assigns
non-zero probabilities to graphs that have the planted solution. In this
model, the decision problem, such as whether a graph is k-colorable, is
trivial. The search problem, in which one is asked to find the planted
solution, is the subject of the study.

An alternative model is to apply perturbations that preserve a
planted solution. Continuing to use the graph coloring problem as

Smoothed Analysis of Algorithms and Heuristics 33

our example, let IT : V' — {1,...k} be a k-coloring assignment. For a
graph G = (V, E), if it is k-colored by II, then G is a o-perturbation of
G subject to G having II as a solution; otherwise G is a o-perturbation
of G subject to G not having II as a solution.

Monotone Adversary Semi-Random Model (Blum & Spencer
(1995), Feige & Kilian (1998) and Feige & Krauthgamer (2002)):
Blum and Spencer define another generation process of semi-random
graphs of k-colorable graphs: First, partition the set of n vertices into
k subsets Vi,..., V) each having n/k vertices. Second, choose a set
FE; of edges by selecting each edge in

F = {(u,v)|u and v are in different subsets}

independently with probability . Then, the adversary chooses an-
other set E» from F and returns G = (V, Ey U E»).

The monotone adversary semi-random model can be applied to a
graph problem P with a particular “planted” solution S. It is a two
step model. In the first step, it generates a “random” graph G =
(V,E) with S as a solution according to some distribution. In the
second step, the adversary can only modify G in a limited way — the
modification has to respect the planted solution S.

For example, the following is the semi-random model for graph bi-
section analyzed by Feige and Kilian (1998): Let 0 < ¢ < p < 1, let
V1 be a subset of V of size n/2 and let Va2 = V — V;. The random
process builds a graph G = (V, E) by selecting each edge in V; x V5
with independent probability ¢ and each edge in (Vi x V1)U (Va x Va)
with probability p. The adversary is then given the chance to add a
subset of edges from (V; x V1) U (V2 x V) to the graph and remove a
subset of edges of V4 x V5 from the graph.

Results in the Semi-Random Model

We now summarize some results in the monotone adversary semi-random
model.

Theorem 1.22 (Semi-Random Coloring: Blum-Spencer) For any
€e>0andp > nﬁ“, there is a polynomial-time algorithm to k-
color a balanced semi-random k-colorable graph with probability 1— o(1).
When k = 3, the condition on p is p > n~1/3te,

Feige and Kilian (1998) improve the above result and show:

34 Daniel A. Spielman and Shang-Hua Teng

Theorem 1.23 (Semi-random Coloring: Feige and Kilian) For
any constant k, € > 0 and p > ((1 + €)klnn)/n, there is a polynomial-
time algorithm to k-color a balanced semi-random k-colorable graph with
high probability. But if p < (1 — €)In/n, every random polynomial
time algorithm will fail with high probability to k-color a balanced semi-
random k-colorable graph, unless NP C BPP.

Feige and Kilian (1998) also extend their semi-random analysis to
the maximum independent set and Graph Bisection Problem. For the
independent set problem, they develop a new two-phase algorithm. The
algorithm first uses semidefinite programming as a tool to compute a
constant number of nearly independent sets. It then uses a matching
based optimization technique to purify the output of Phase I to extract
the embedded maximum independent set.

Theorem 1.24 (Semi-Random Maximum Independent Set) For
any a > 0, € > 0, and p = (1 + €)lnn/an, there is a randomized
polynomial time algorithm that finds the embedded independent set of
size an in a semirandom graph with high probability.

For graph bisection, Feige and Kilian consider the monotone adver-
sary semirandom model and analyze the performance of a semidefinite-
programming-based bisection algorithm.

Theorem 1.25 (Semi-Random Bisection) There exists a constant
¢ such that for any 1 > p > q satisfying p — q > cy/plogn/n, with
high probability, Feige-Kilian’s algorithm finds the embedded bisection in
a semi-random graph in polynomial time.

Feige and Krauthgamer (2002) examine the Bandwidth Problem:.
One is given a undirected graph G = (V, E) of n vertices and is asked
to find a linear ordering 7 from V onto {1,...,n} to minimize the band-
width: max {|7(u) — 7(v)| : (u,v) € E}.

In the semi-random model, using parameters B and p, a graph is gen-
erated by choosing a linear ordering w of V' and selecting each pair (u, v)
satisfying |m(u) — w(v)| < B with probability p. Then the monotone
adversary may add a set of pairs (w, z) satisfying |7(w) — 7(2)| < B.

Theorem 1.26 (Bandwidth Problem) There ezists a constant ¢ such
that for any €, B, and p satisfying In” n < Bn/Inn and p > clnn/B,
with high probability, Feige and Krauthgamer’s algorithm, in polynomial

Smoothed Analysis of Algorithms and Heuristics 35

time, returns a linear ordering of vertices with bandwidth (1 + €)B for
semirandom graphs.

Results in the Property-Preserving Model

Spielman and Teng (2003a) prove that under property-preserving per-
turbations, several property-testing algorithms become sublinear-time
decision algorithms with low smoothed error probability.

In a decision problem of a property P over an instance domain D, one
is given an instance z € D,, and is asked to decide whether P(z) is true
or false. In graph theory, some graph properties such as Bipartite, the
property of being bipartite, have a polynomial-time decision procedure.
Other properties such as p-Clique, the property of having a clique of size
pn and p-Bisection, the property of having a bisection of at most pn?
edges, have no polynomial-time decision procedure unless NP = RP.

Rubinfeld and Sudan (1996) introduce property testing, a relaxation
of the standard decision problem. The objective of property testing is
to efficiently distinguish those instances that have a property from those
that are “far” from having the property. An algorithm A is said to be a
property tester for the property P with parameter € > 0 if

(i) for all z with property P, then Pr[A(z,€) = 1] > 2/3; and
(i) for all = of distance at least € from every instance that has prop-
erty P, Pr[A(z,¢e) = 1] <1/3,

under some appropriate measure of distance on inputs. It follows from
this definition that a property testing algorithm A satisfies

Pr[A(X,e) # P(X)] < 1/3

for all instances that have property P and for all instances that are at
least e distance from those with property P. For graphs, one possible
measure of the distance between two graphs Gy = (V,E;) and Gy =
(V, E5) on n vertices is the fraction of edges on which G; and G, differ:

EuE\EnE ()

A typical property-testing algorithm will use a randomized process
to choose a small number of facets of z to examine, and then make
its decision. For example, a property tester for a graph property may
query whether or not certain edges exist in the graph. The quality of
a property-testing algorithm is measured by its query complexity (the
number of queries to the input) and its time complexity.

36 Daniel A. Spielman and Shang-Hua Teng

Under this relaxation, many properties can be tested by sub-linear
algorithms that examine random portions of their input. For example,
Goldreich, Goldwasser, and Ron (1998) prove the following theorem.

Theorem 1.27 (Goldreich-Goldwasser-Ron) The properties p-Clique
and p-Bisection have property-testing algorithms with query complezity
polynomial in 1/€ and time complezity 20(1/63), and the property Bipar-
tite has a property testing algorithm with query and time complexities
polynomial in 1/e.

Let P be a graph property. Let Pp(X,0) be the distribution of P-
preserving o-perturbations of X. Spielman and Teng (2003a) use the
following lemma, to relate the smoothed error probability of using a test-
ing algorithm for P as a decision procedure with the probability that a
P-preserving perturbed instance is far from one having property P.

Lemma 1.2 (Testing for Decision: Smoothed Error Probability)
Let P be a property and P(X,0) be a family of distributions satisfying
for all X without property P,

Pry p(x,,) [X is e-close to P|P(X) = P(X)] < A(e, 0,n).
Then for every P-testing algorithm A and every input X,

Pry px,0) [AX) # P(X)|P(X) = P(X)] <1/3+ A(e,0,n).

Spielman and Teng (2003a) show that for any graph G and for P €
{Bipartite, p-Clique, p-Bisection}, then G not satisfying P implies that
(for any € for the first property, and € < o(1/4 — 2p) for the last two
properties),

Prg. pp(G,0)|G is € close to a graph with property P] < 2-9(n%)
Clearly, if G satisfies P then G also satisfies P. Therefore,

Theorem 1.28 (Testing for Decision: Smoothed Perspective)
There exists an algorithm A that takes as input a graph G, examines
poly(1/o) edges of G and runs in time O(1/€*) when P is Bipartite,

and in 20/<") time when P is p-Clique or p-Bisection such that for
every G, if G is a P-property preserving o-perturbation of G, then

Pr [A(G) # P(G)] < 1/3 + o(1).

Smoothed Analysis of Algorithms and Heuristics 37

Applying the techniques developed by Feige and Kilian (1998) Spiel-
man and Teng (2003a) demonstrate a testing algorithm with faster
smoothed complexity for p-Clique.

Theorem 1.29 (Fast Clique Tester) Let p and o < 1/2 be constants.
For any graph G, let G be a p-Clique preserving o-perturbation of G.
Then, there exists an algorithm A that examines the induced subgraph

of G on a randomly chosen set of p% log (1%) vertices and runs in time

polynomial in L to achieve
po

Pr [A(G) # p-Clique(G)] < 1/4+ o(1).

Comparison of Perturbation Models

Suppose we have two models M; and M> for measuring a performance
quality @ of an algorithm A. Then, M is said to be more adversarialf
than My if M1(Q,A,0) > M>(Q,A,0). For example, the worst-case
measure is more adversarial than the smoothed measure and than an
average measure. If M; is more adversarial than My, then any upper
bound for model M; is also an upper bound for M,. Conversely, any
lower bound for M5 is an lower bound for M;.

As noted in Blum & Spencer (1995) and Feige & Kilian (1998), the
monotone adversary semi-random model is at least as adversarial as the
semi-random model. In turn, the semi-random model is more adversarial
than the semi-random model with an oblivious adversary.

However, results for the semi-random model may not always extend
to the property-preserving perturbation model, even though these two
are seemingly related. This is partially due to the fact that the semi-
random model only produces “positive” instances which share a com-
mon, planted solution. For example, for the k-coloring problem, the
semi-random model only generates graphs that are k-colorable and all
graphs from this distribution share a common, planted k coloring. Thus,
this model does not assign probabilities to graphs without this planted
solution. As some of these “unassigned” graphs are still k-colorable,
results in the semi-random model may not provide any performance in-
formation on them. If we want to extend a result from the semi-random

1t One might extend our standard complexity notions such as O, o, ©, and ©
for models of measures. For example, we could say M; = O(M3) if there ex-
ist constants mg, og, and C; < C2 such that for all n > ng and ¢ < oy,

C1M2(Q, A, 0) < M1(Q,A,0) < CaM2(Q, A, 0) when input size is n.

38 Daniel A. Spielman and Shang-Hua Teng

model to the smoothed model with property-preserving perturbations,
we need to understand the contribution of these instances. For some
graph problems, such as the bisection problem, it remains open whether
results in the semi-random model still hold in the property-preserving
perturbation model. In fact, it is not even clear whether the results
would extend to the more closely related solution-preserving perturba-
tion model.

Finding a proper perturbation model for modeling practical discrete
algorithms can be a challenging task. For certain graph problems such
as coloring and bisection, the semi-random model defines a family of dis-
tributions using a random process that can be efficiently implemented.
In contrast, the conditional density of an instance in the property-
preserving distribution might be hard to compute in polynomial time.
As argued in Spielman & Teng (2003a), the “practical” distributions may
not have efficient descriptions. So the requirement that a perturbation
model be efficiently implementable might not be reasonable or neces-
sary. Of course, if one would like to conduct some experimental studies
of these models, it would be helpful if one had an efficient procedure for
the perturbation.

For certain graph properties such as planarity, it is relatively hard to
define a semi-random model to study them. For more complex studies,
such as those on the performance of a planar bisection algorithm, one
might need to be more creative to define a suitable semi-random model.
Being able to model these studies might be the strength of the property-
preserving perturbation framework.

Number of Left-to-Right Maxima and Height of Binary
Search Trees

For a sequence a = (ay, ..., a,), an element a; is a left-to-right mazimum
of a if a; > aj, for all j < i. When a = (1, 2,...,n), the number of left-
to-right maxima is n. Manthey and Reischuk (2005) prove the following
bounds that improve an early result of Banderier, Beier, and Mehlhorn
(2003).

Theorem 1.30 (Manthey-Reischuk) For any sequence a, let a be
an o-partial permutation of a. Let ¢(a) be the number of left-to-right
maxima of a. Then for all0 < o <1,

0.4(1 —o)y/n/o <E[¢(a)] <3.6(1 —o)y/n/o.

Smoothed Analysis of Algorithms and Heuristics 39

The most commonly used data structure for storing a set whose ele-
ments have a total ordering is the binary search tree. Perhaps the sim-
plest way to form a binary search tree for a sequence a = (aq,...,a,) is
to insert elements of a one by one into an initially empty binary search
tree. For i = 2 to n, we insert a; into the binary search tree T;_; of
{a1,...,a;—1} to produce tree T;. An important parameter of this data
structure is the height of the tree. Let T'(a) denote the binary search
tree so constructed. If a is sorted, either in increasing or decreasing
order, then the height of T'(a) is n. Manthey and Reischuk (2005) prove
the following result.

Theorem 1.31 (Manthey-Reischuk) For any sequence a, let a be an
o-partial permutation of a. Let h(a) be the height of the binary search
tree T'(a). Then for all0 < o < 1,

0.8(1 —0)y/nj/o <E[h(a)] <6.7(1 —0)\/n/o.

Number of Extreme Points in d Dimensions

Recall that the vertices of the convex hull of a set P of points in R¢
are points in P that cannot be expressed as a convex combination of
other points in P. These points are also called the extreme points of P.
Let v(P) be the number of extreme points of P. A well known result
(Bentley et al. (1978)) in geometry states: If P is a set of n points chosen
uniformly at random from the unit d-cube, then the expected value of
v(P) is O(log?~ ' n).

Damerow and Sohler (2004) consider the following version of the
smoothed value of v(P) and prove the following theorem.

Theorem 1.32 (Damerow-Sohler) For any set P = {py,...,pn} of n
points from the unit d-cube, let ry,...,r,, be n vectors chosen uniformly
at random from the cube [—e,€]?. Let P = {py +11,...,Pn + Ty} be an
perturbation of P. Then

E[u(P)] = 0 ((nlczgn)l—l/(dﬂ)) ‘

Motion Complexity

Kinetic data structures have become subjects of active research in com-
putational geometry since their introduction by Basch, Guibas, and

40 Daniel A. Spielman and Shang-Hua Teng

Hershberger (1997). The aim of these dynamic data structures is to
efficiently maintain combinatorial and geometric information of contin-
uously moving objects. The motion of objects is typically specified by
some algebraic function. The complexity of the kinetic data structures
depends on the initial positions of objects as well as the functions that
govern their motion.

As a first step to study the smoothed complexity of kinetic data struc-
tures, Damerow, Meyer auf der Heide, Récke, Scheideler, and Sohler
(2003) consider the following problem: Given a set P = {p1,...,Pn}
of n points in R? and a set V = {vq,...,v,} of initial velocity vectors,
the position of the it" object at time t is p;(t) = p; + tv;. The motion
complexity for maintaining the orthogonal bounding box is defined to
be the number of combinatorial changes of the 2d sides of the bounding
box.

In the worst case, this motion complexity is Q(dn). When v; and p;
are chosen uniformly at random from the unit cube [—1,1]%, the average
complexity is O(dlogn). Damerow et al. prove the following result.

Theorem 1.33 (Smoothed Motion Complexity) For any positive
integer d, let P = {p1,-..,Pn} C [-1,1]? and V = {¥,...,¥,} C
[-1,1)%. Let P = {p1,...,Pn} and V = {v1,...,v,} be o-Gaussian
perturbations of P and V, respectively. Then the expected motion com-
plezity for maintaining the orthogonal bounding box of (P, V') is O(d(1+
1/0)log"® n) and Q(dy/Togn).

Properties of Perturbed Graphs and Formula

Each perturbation model in the smoothed analysis of graph algorithms
can be used to define a distribution of random graphs. For example, let
H = (V,E) be an undirected graph over vertices V = {1,...,n}. For
any o < 1, the o-perturbations of H can be viewed as a distribution
of random graphs. Let us refer it as Gp,,. Similarly, for any graph
property P, the P-preserving o-perturbations of a graph H is also a
distribution of random graphs, denoted by G'p,n,s-

For any m and H = (V, E), Bohman, Frieze and Martin (2003) define
a distribution GH,n, of random graphs (V, E U R) where R is a set of
m edges chosen uniformly at random from the complement of E, i.e.,
chosen from E = {(i,j) ¢ E} .

Krivelevich, Sudakov, and Tetali (2005) prove a sharp threshold for
the appearance of a fixed subgraph. For a fixed graph T' with nr ver-

Smoothed Analysis of Algorithms and Heuristics 41

tices and er edges, let m(T') = max {er:/nr:|I” C T,nr > 0}. For any
positive integer r, let

m,(I') = min max m(T'(V;))
r-way partition (V1,...,V;) of V(T') Vi[>0

Theorem 1.34 (Emerging of a Subgraph) Let r and o be constants
such that r > 2 and a € (ﬂ ﬂ] Let T be a graph of no more than

r—1’ r
n wvertices. Then, for every graph H over {1,...,n} of average degree
an, where m = w(n?=1/m @), GH,m almost surely contains a copy of
. Moreover, there exists a graph H' of average degree an such that if
m = o(n2_1/mr(r)), then Gu'.m almost surely does not contain a copy

of T. Here f = w(g) is equivalent to g = o(f).

Krievlevich, Sudakov, and Tetalli also consider the problem of adding
m randomly chosen disjunctions of k literals to a satisfiable instance, F,
of a k-SAT formula on n variables. They obtain the following result.

Theorem 1.35 (Transition From Happy to Unhappy) For some
c¢> 0 and e < 1/k, let F be a satisfiable k-SAT formula on n variables
with at least cn~¢ clauses. Then almost surely the conjunction of F
with a randomly chosen k-SAT formula of m = w(n*) clauses is not
satisfiable. Moreover, there exists a satisfiable k-SAT formula F' of
Q(n*~¢) clauses such that the conjunction of F with a randomly chosen
k-SAT formula of m = o(n*¢) clauses is satisfiable with high probability.

Several other discrete properties have been studied in the smoothed
setting: for example, Flaxman and Frieze (2004) consider the diameter
of perturbed digraphs and Sudakov and Vondrak (2005) examine the
2-colorability of dense hypergraphs.

Very recently, Arthur and Vassilvitskii (2005) analyze the smoothed
iteration complexity of the k-means method (Lloyd (1982)) for cluster-
ing: Given a set P of n points in R?, the k-means method first chooses an
arbitrary set of k centers and uses the Voronoi diagram of these centers
to partition P into k clusters. Then the center-of-mass of each of these
clusters becomes a new center, and the k-means method re-clusters the
points and repeats this process until it stabilizes. They show that in
the worst-case, the k-means method requires 22(V™ iterations to con-
verge. In contrast, they prove that the k-means method has probably
polynomial smoothed complexity.

42 Daniel A. Spielman and Shang-Hua Teng
1.4 Open Problems

In this section, we discuss some emerging open questions in smoothed
analysis. For some problems and algorithms, we will present concrete
conjectures, whereas for others, we will discuss possible directions for
research.

P1: The Simplex Method and its Pivoting Rules

During a Phase II iteration of a simplex algorithm, a vertex v;_; may
have several neighboring vertices with better objective values. The algo-
rithm needs to decide which of them should be chosen as the next vertex
v;. Simplex algorithms differ by their pivoting rules which guide this
decision when there are multiple choices. Several pivoting rules have
been proposed in the literature (Dantzig (1991) and Chvatal (1983)).
They include

e Greedy: Choose the vertex that maximizes the improvement of the
objective value, ¢ (v; — v;_1).
o Steepest-Edge: Choose the vertex v; whose edge (v;_1,v;) forms the
smallest angle with ¢, that is, v; maximizes
CT(V,' — V,;l)
[[vi = vi_1]l2 ’
e Random: Choose randomly from the neighboring vertices with better
objective values according to some distribution.

There are other rules such as the shadow-vertex rule (Gass & Saaty
(1955)), Bland’s rule (1977) and the self-dual simplex rule (Dantzig
(1991) and Lemke (1965)).

The steepest-edge rule (Forrest & Goldfarb (1992)) is among the most
commonly used in practice. But most existing pivoting rules have been
shown to have exponential worst-case complexity (Klee & Minty (1972),
Goldfarb & Sit (1979), Goldfarb (1983), Jeroslow (1973), Murty (1980),
Amenta & Ziegler (1999)).

A natural open question is whether our results such as Theorem 1.1
on the smoothed complexity of the shadow-vertex rule can be extended
to other pivoting rules.

Conjecture 1 (Smoothed Simplex Conjecture) The smoothed com-
plexity of the simplex algorithms with greedy, steepest-descent, and ran-
dom pivoting rules are polynomial under Gaussian perturbations.

Smoothed Analysis of Algorithms and Heuristics 43

The key step for proving Conjecture 1 is the Phase IT complexity, since
Phase I computation can often be reduced to a Phase IT computation
in which we already know that the constraints are feasible and have
an initial vertex of the feasible region. Like the shadow-vertex simplex
algorithm, these simplex algorithms iteratively produce a path of vertices
of the feasible region that monotonically improves the objective value.
We refer to such a path as a c-monotonic path of the feasible polyhedron,
recalling that c is the objective direction.

There is a geometric reason, as pointed out in Spielman & Teng
(2004), that the shadow-vertex simplex algorithm is the first simplex
algorithm considered in both the average-case (Borgwardt (1980)) and
smoothed analyses: The length of the c-monotonic path constructed by
the shadow-vertex algorithm can be bounded above by the size of the
shadow. Moreover, the shadow depends only on the initial vertex and
the objective direction. So in the probabilistic analysis, we do not need
to explicitly consider the iterative steps taken by the simplex algorithm.

The key to analyze the smoothed complexity of simplex algorithms
with, say, the steepest-edge pivoting rule is to search for a simpler geo-
metric parameter that upper bounds the length of its c-monotonic path.
We could start with linear programs of form

max cl'x subject to Ax < 1.

One approach is to relate the length of the steepest-edge c-monotonic
path with the size of the shadow analyzed in Theorem 1.1.

Conjecture 2 (Shadow and Steepest-Edge Path: I) For anymxn
matriz A and an n-vector ¢ such that HA,EHF <1, let A and c be
o-Gaussian perturbations of A and T, respectively. For an m-vector
z, let v be the vertex of the polyhedron {x: Ax < 1} that mazimizes
zTv and let P be the steepest-edge c-monotonic path of the polyhedron
{x: Ax < 1} starting from v. Then, there exists a constant a > 1
and an zo(m,n,1/c) polynomial in m,n, and 1/o, such that for all z >
zo(m,n,1/0)

Pr[|P| > z] < a-Pr[|Shadow, . (A)| > z].

Conjecture 3 (Shadow and Steepest-Edge Path: II) Let A, c,
z, P be the same as defined in Conjecture 2. Then, there exists an

44 Daniel A. Spielman and Shang-Hua Teng

h(m,n,1/c) polynomial in m,n, and 1/o and constants k1 and ks

Pr[|P| > h(m,n,1/c) - |Shadow, . (A)[] = ﬁ

One can try to prove similar conjectures for the greedy c-monotonic
path.

One might, of course, consider more direct approaches to solve the
challenge posted by iterative methods. The main difficulty in conducting
probabilistic analyses for iterative methods is not unique to the simplex
method. In the study of the growth factor of Gaussian elimination with
partial pivoting and interior-point methods for linear and convex pro-
gramming, we have been facing a similar challenge: How do we resolve
the dependency of the structures before and after an iterative step? In
each iterative step, the algorithm explores some fraction of data which is
initially either random or subject to some random perturbations. How-
ever, this exploration of the algorithm in determining an iterative step
spoils the “randomness” in the same fraction of the data. We can be
lucky with some iterative algorithms, such as the shadow-vertex sim-
plex algorithm and Gaussian elimination without pivoting. For each of
these, we have found a “flat” upper bound parameter to support an
iteration-free analysis of the iterative algorithm. Developing a system-
atic framework for probabilistic analysis of general iterative methods is
a challenging and rewarding research direction.

One simplex algorithm that comes with a flat geometric characteriza-
tion is Lemke’s self-dual parametric simplex algorithm (Dantzig (1991)
and Lemke (1965)). Polynomial expected bound was established for a
lexicographic variant of the self-dual model for solving a random linear
program whose matrices are drawn from a spherically-symmetric distri-
bution (Adler, Karp, & Shamir (1987), Adler & Megiddo (1985), and
Todd (1986)).

Conjecture 4 (Lemke’s Self-Dual Parametric Simplex Algo-
rithm) Lemke’s self-dual parametric simplex algorithm has polynomial
smoothed complexity under Gaussian perturbations.

Another line of research in the smoothed analysis of the simplex al-
gorithm is to extend the result from Gaussian perturbations to other
perturbations. Recall the family of distributions introduced by Beier
and Vocking (2004): Let f be a piece-wise continuous univariate density
function with finite mean [, |2| f(z)dz and sup, f(z) = 1. For o < 1,
let f, be a scaling of f such that f,(z) = f(z/o)/o. For any Z, an

Smoothed Analysis of Algorithms and Heuristics 45

f-perturbation with magnitude ¢ < 1 is a random variable z = Z + r,
where 7 is randomly chosen according to density f,.

Conjecture 5 (Perturbations and Simplex Methods) For any
piece-wise continuous univariate density function f with finite mean and
sup, f(z) =1, there exists a o¢ such that for any 0 < o < oq the sim-
plex algorithm with the shadow-vertex pivoting rule has smoothed time
complezity polynomial inm, n, and 1/o under f-perturbations with mag-
nitude o.

P2: Smoothed Hirsch Conjecture

The Hirsch conjecture states that for any convex polytope of m facets in
n dimensions, the diameter of the graph induced by the 1-skeleton of the
polytope is bounded above by (m —n). In other words, any two vertices
on the polytope are connected by a path of length at most (m —n). The
best bound on the diameter of the polyhedron known today is given by
Kalai and Kleitman (1992). Their bound is m!'°62"*!. In the smoothed
setting, we would like to prove the following conjecture.

Conjecture 6 (Smoothed Hirsch Conjecture) For any mXxn matriz
A and any m-vector b € R™ such that ||AHF <1 and HBH2 <1,
let A and b be o-Gaussian perturbations of A and b, respectively. If
Ax < b is feasible, then the expected diameter of the polyhedron defined

by Ax < b is polynomial in m, n, and 1/o.

A special case of the Smoothed Hirsch Conjecture closely related with
Theorem 1.2 is:

Conjecture 7 (Smoothed Hirsch Conjecture: Special Case) For
any m x n matriz A such that ||A| . < 1, let A be a o-Gaussian per-
turbation of A. Then the expected diameter of the polyhedron defined by
Ax <1 is polynomial in m, n, and 1/o.

Note that Conjecture 7 does not directly follow from Theorem 1.2,
although the latter states that on the polyhedron {x | Ax < 1}, for
any two n-vectors ¢ and z, the expected length of the shortest path
connecting the vertex optimized by ¢ and the vertex optimized by z is
polynomial in m, n and 1/o. There could be an exponential number of
pairs of vertices on the polyhedron. Without using additional geometric

46 Daniel A. Spielman and Shang-Hua Teng

properties, the probability bound in Theorem 1.2 may not be strong
enough.

P3: Number of Iterations of IPM and Parallel Linear
Programming Algorithms

Several interior-point methods take O(y/n - L) number of iterations to
solve a linear program. Some experiments suggest that the number of
iterations could be as low as O (log2 (mn)) when long-step interior-point
methods are used. Although progress has been made in recent years
concerning the convergence of these methods, it remains open whether,
in the worst-case, these long-step methods are better than the more
prudent short-step methods (Wright (1997) and Ye (1997)). If practi-
cal observations are any indication (Todd (1991)), then the following
conjecture could be true.

Conjecture 8 (IPM: Optimistic Convergence) Under Gaussian
perturbations, there is an interior-point algorithm with smoothed iter-
ation complexity O (log2 (mn/a)) for solving linear programming with
input dimensions m X n.

The best worst-case iteration lower bound is Q(n'/3) due to Todd
(1994) and Todd and Ye (1996). However, the programs for which these
lower bounds hold are very ill-conditioned. Dunagan, Spielman, and
Teng (2002) observe that small perturbations could improve the condi-
tion numbers of the resulting linear program. Thus, the lower bound of
Todd-Ye does not hold in the smoothed model.

There has not yet been a lower bound of Q(n¢) for well-conditioned lin-
ear programs. We would like to know whether such a lower bound holds
for well-conditioned programs, or whether there are interior-point algo-
rithms that take fewer iterations when their input is well-conditioned.
Perhaps one could start with the following weaker version of Conjecture
8:

Conjecture 9 (IPM: First step?) There is an interior-point algo-
rithm with smoothed iteration complezity O (n® log?(mn/ o)) for solving
linear programs, for some € < 1/2.

A closely related theoretical question is the smoothed parallel com-
plexity of linear programming. In the worst-case, linear programming
is complete for P under log-space reductions (Dobkin, Lipton & Reiss

Smoothed Analysis of Algorithms and Heuristics 47

(1979)). In other words, it is unlikely that one can solve linear pro-
grams in poly-logarithmic time using a polynomial number of proces-
sors. Solving linear programming approximately is also complete for P
(Serna (1991) and Megiddo (1992)).

If Conjecture 8 is true, then linear programming has a smoothed NC
algorithm — one can solve a linear program in poly-logarithmic (in m,
n, and 1/0)) time using a polynomial number of processors. One might
relax the poly-logarithmic dependency on 1/0 and conjecture that:

Conjecture 10 (Parallel Linear Programming) There ezists a lin-
ear programming algorithm with smoothed parallel complezity, under o-
Gaussian perturbations, O (a"“ log"? (mn)) for some constants k1 and
ko.

Luby and Nisan (1993) consider the parallel complexity of a special
family of linear programs

max c¢l’x subject to Ax < b,

where all input entries in A, b and c are positive. They give a parallel
algorithm that, for any € > 0, finds a (1 + €)-approximate solution in
time polynomial in 1/e and log(mn) using O(mn) processors. Although
positive linear programming is also complete for P under log-space re-
ductions (Trevisan & Xhafa (1998)) the following conjecture may still
be true.

Conjecture 11 (Positive Linear Programming) There exists a pos-
itive linear programming algorithm with smoothed parallel complexity
o) (a"“ log'” (mn)) for some constant k1 and ko.

The conjecture above may follow from the results of Spielman & Teng
(2003b), Dunagan, Spielman, & Teng (2002) and Luby & Nisan (1993).
It might be more challenging, however, to prove the following stronger
conjecture:

Conjecture 12 (Positive Linear Programming: Stronger Ver-
sion) There is a positive linear programming algorithm with smoothed
parallel complezity O (log®(mn/a)) for some constant c.

We would like to conclude this subsection with what might be a simple
question. Vaidya (1987) proves that any linear program (A, b,c) of m
constraints and n variables can be solved in O((n+m)n?+(n+m)>n)L)

48 Daniel A. Spielman and Shang-Hua Teng

time. Is it true that the L in Vaidya’s bound can be replaced by
log C(A,b,c)? Recall that C(A,b,c) is the condition number of the
linear program defined by (A, b, c). If true, we can apply the smoothed
analysis of Dunagan, Spielman and Teng (2002) to show Vaidya’s linear
programming algorithm runs in O((n +m)n? + (n+m)*5n)log(mn/c))
smoothed time. Combining with Clarkson’s reduction (1995), this would
reduce the smoothed complexity for linear programming in low dimen-
sions to

O (n’m + n®logmlog(mn/0)).

P4: Convex and Conic Programming

Can we extend Theorem 1.7 and Theorem 1.8 from linear programming
to conic convex programming (Cucker & Pefa (2001) and Freund & Vera
(2000)) and to general convex programming (Nesterov & Nemirovskii
(1994))? For conic convex programming, one can first consider the fol-
lowing form

min ¢fx subject to Ax —b € C; and x € Co

where C; C R™ and Cs C R” are closed convex cones.
The dual of this program is

max bly subject to ¢ — ATy € C} and y € C},
where for ¢ € {1,2}, C} is the dual cone of C;:
C;={u:u’v>0foranyveC,.}

Note that in this form the primal and dual programs have the same
format. As the concept of the distance to ill-posedness can be easily
extended from linear programs to conic programs, Renegar’s condition
number for linear programs naturally extends to conic programs. Sim-
ilarly, it has been shown (Freund & Vera (200) and Nesterov & Ne-
mirovskii (1994)) that the complexity of the interior-point method for
conic programming depends logarithmically on the condition number of
the input program.

For a convex body K in R?, let 0K be its boundary. For any € > 0,
let

0(K,e) = {x: ' € 9K, ||x — X'||, < €}

The proof of Theorem 1.7 uses the following key probabilistic bound
of Ball (1993) in convex geometry.

Smoothed Analysis of Algorithms and Heuristics 49

Theorem 1.36 (Ball (1993)) Let p be the density function of a n-
dimensional Gaussian random vector with center 0 and variance o2.

Then for any convex body K in R™,

/ n< 4nt/*,
8K

The smoothed analysis of Dunagan, Spielman and Teng (2002) applied
the following corollary of Theorem 1.36 to estimate the probability that
a perturbed linear program is poorly conditioned.

Corollary 1.1 (Darting the boundary of a convex set) For a
vector X € R”, let x be a o-Gaussian perturbation of X. Then for any
convez body K in R™,

Ant/te

Prxx € 0(K,e) \ K] < (outside boundary),

4 1/4
Pro.[x € 9(K,e) NK] < noc

(inside boundary).

Proving the following conjecture would allow us to extend Theorem
1.7 and Theorem 1.8 to conic convex programming.

Conjecture 13 (Linear Transformation of Convex Cones) For
any convexr cone K in R™, let A be a o-Gaussian perturbation of an
m x n matriz A with |Al|, < 1. Then, there ezist constants o, mo,
ng, ¢, k1, ko, and ks such that for any conver cone C with angle O,
n>mng, m>mg, and 0 <o < oy

€\ ks
Pr[(A-K)NC=0 & (A-K)Nd(C,e) £ 0] < c- mbnk? (;) , and

Pr[(A-K)NC #0 & (A-K)NC) C9(C,e-0)] < c-mbnk (E)ks.

g

Note that when K is a single vector, (A-K) is a Gaussian perturbation
of the vector (A -K). Thus, in this case, Conjecture 13 is a special case
of Corollary 1.1 and hence is true.

Conjecture 14 (Smoothed condition number of conic program-
ming) For any (A,b,&) and 0 < 1, let A, b and c be o-Gaussian
perturbations of A, b and &. Then, for any closed convex cones C; and
C,, the expectation of the the logarithm of the condition of the conic
program defined by A, b, c together with C1 and Cy is O(log(mn/o)).

50 Daniel A. Spielman and Shang-Hua Teng

An important family of conic convex programming problems is semi-
definite programming (SDP). The standard primal form of a semi-definite
program is (Todd (2001))

max CeX subject to A; e X =1b;, i=1,...,mand X > 0

where C, A;, and X are symmetric matrices and X is required to be
positive semi-definite. Because the set of positive semi-definite matrices
forms a convex cone, a semi-definite program is a conic convex program.
One can define the condition number of a semi-definition program for
(C,{A;},b). We conjecture that the expectation of the the logarithm of
this condition number is O(log(mn /o)) under Gaussian perturbations.

Even though every convex optimization problem can be transformed
into an equivalent instance of conic programming, the transformation,
like those among normal forms of linear programming, may not preserve
the condition number of the programs. Freund and Ordénez (2005)
explicitly consider the condition number of convex programming in the
following non-conic form:

min ¢f'x subject to Ax —b e Cand x e K

where C C R™ is a convex cone while K could be any closed convex set
(including a cone).

It would be interesting to understand the smoothed behavior of the
condition number of convex programs in this form.

P5: Two-Person Games and Multi-Person Games

A two-person game or bimatrix game (Nash (1951) and Lemke (1965))
is specified by two m x n matrices A and B, where the m rows represent
the pure strategies for the first player, and the n columns represent the
pure strategies for the second player. In other words, if the first player
chooses strategy ¢ and the second player chooses strategy j, then the
payoffs to the first and the second players are a;; and b;;, respectively.

Nash’s theorem (1951) on non-cooperative games when specialized to
two-person games states that there exists a profile of possibly mixed
strategies so that neither player can gain by changing his/her (mixed)
strategy, while the other player stays put. Such a profile of strategies is
called a Nash equilibrium.

Mathematically, a mixed strategy for the first player can be expressed
by a column probability vector x € R™, that is, a vector with non-
negative entries that sum to 1, while a mixed strategy for the second

Smoothed Analysis of Algorithms and Heuristics 51

player is a probability vector y € R*. A Nash equilibrium is then a
pair of probability vectors (x,y) such that for all probabilities vectors
x' € R™ and y' € R,

xTAy > (x')TAy and xTBy > x'By'.

The complexity of finding a Nash equilibrium of a two-person game
remains open and is considered to be a major open question in theoretical
computer science. Recently, Savani and von Stengel (2004) show that the
classical Lemke-Howson algorithm (1964) needs an exponential number
of steps in the worst case.

In smoothed analysis with Gaussian perturbations, we assume the
payoff matrices A and B are subject to small Gaussian perturbations.
The most optimistic conjecture is:

Conjecture 15 (Smoothed 2-Nash Conjecture) The problem of
finding a Nash equilibrium of a two-person game, 2-Nash, is in smoothed
polynomial time under Gaussian perturbations.

As the first step of this research, one could examine the worst-case
instances of Savani-von Stengel in the smoothed model. We would like
to understand whether such worst-case instances are stable when subject
to perturbations. If one can build a stable instance with poor complexity
for Lemke-Howson’s algorithm, then its smoothed complexity would be
poor.

Open Question 1 (Smoothed Complexity of Lemke-Howson)
Does Lemke-Howson’s algorithm for 2-Nash have polynomial smoothed
complexity under Gaussian perturbations?

One could consider other algorithms in order to prove the Smoothed
2-Nash Conjecture. An encouraging recent development is the work of
Barany, Vempala, and Vetta (2005) who show that when entries of A
and B are Gaussian variables with mean 0, then 2-Nash has polynomial
average-case complexity. So far, their technique does not quite apply to
the smoothed model.

As a more general research direction, one can ask similar questions
about other games, such as the combinatorially defined graphical games
(Kearns, Littman & Singh (2001)), general multi-player finite games
(Nash (1951)), or stochastic games (Jurdzinski (2005)).

The 4-person game, 4-Nash, was recently shown to be PPAD-complete

52 Daniel A. Spielman and Shang-Hua Teng

by Daskalakis, Goldberg, and Papadimitriou (2005). This result implies
that 4-Nash is as hard as the computation of Brouwer fixed points.

Open Question 2 (Game Theory and Algorithms) What is the
smoothed complexity of the computation of Nash equilibria? What is the
impact of perturbations to mechanism design?

In particular,

Open Question 3 (Smoothed Complexity of 4-Nash) Is 4-Nash,
or 3-Nash, in smoothed polynomial time under Gaussian perturbations?

P6: Gaussian Elimination and Condition Numbers

Several very basic questions on the stability and growth factors of Gaus-
sian elimination remain open. In the worst-case, there are matrices for
which Gaussian elimination with partial pivoting has a larger growth
factor than Gaussian elimination without pivoting. Similarly, there are
matrices for which Gaussian elimination with complete pivoting has a
larger growth factor than Gaussian elimination with partial pivoting.
Experimentally, partial pivoting has been shown to be much more sta-
ble than no pivoting but less stable than complete pivoting.

The most important open problem in the smoothed analysis of Gaus-
sian elimination is to improve the bound of Theorem 1.16. Experimental
work seems to suggest that it is exponentially unlikely that Gaussian
elimination with partial pivoting has a superpolynomial growth factor.

Conjecture 16 (Exponential Stability of GEPP) For any n x n
matriz A such that |A|, < 1, let A be a o-Gaussian perturbation of A..
Then, there exists constants ¢; and co such that

Pra [pGEPP(A) >z (E)m] <277,

g

There are several other matrix factorization methods that also enjoy
practical success. One example is the Bruhat’s decomposition that fac-
tors A as A = VIIU where II is a permutation matrix, V and U are
upper triangular matrices, and IT? VII is a lower triangular matrix (van
den Driessche,Odeh & Olesky (1998)). Another example is the superLU
algorithm developed by Li and Demmel (Li (2005)). It first permutes a
matrix A in order to move large elements to the diagonal. A maximum

Smoothed Analysis of Algorithms and Heuristics 53

weighted matching algorithm is used for this step to produce a permu-
tation matrix P. The algorithm then symmetrically permutes PA into
Q(PA)QT to improve the sparsity for elimination. Then Q(PA)Q7 is
factored into LU using Gaussian elimination with no pivoting but with
one modification: if during the elimination the current pivoting diagonal
entry is smaller than €||A|| ., for some €, then it is replaced by /e ||Al|,
before the elimination step proceeds. To solve a linear system Ax = b,
one can use this factorization to obtain an approximate solution by solv-
ing the two triangular systems, one defined by U and one defined by L.
Finally the algorithm may apply a few iterations to improve its solution.

Open Question 4 (Stability of Linear Solvers) What is the smoothed
performance of these practically-used factorization algorithms and linear
solvers under Gaussian perturbations or under zero-preserving Gaussian
perturbations?

An alternative approach to improve the stability of LU factorization
is to use randomization. For example, in the it" step of elimination,
instead of choosing the equation with the largest i*" coefficient (in abso-
lute value) as in partial pivoting, one can select the next equation from a
random distribution that depends on the magnitudes the i coefficients
of the equation. Intuitively, the larger the magnitude of its i** coeffi-
cient, the higher is the chance that the equation is chosen. For example,
suppose the it? coefficients are agf;”,...,aﬁfg”. For each p > 0, the
p-normal partial pivoting chooses the equation with coefficient ag;l) for
k > 1 with probability

; P
(")

() + ot ()

Open Question 5 (Gaussian elimination with p-normal partial
pivoting) What is the expected growth factor of Gaussian elimination
with p-normal partial pivoting?

Is there a p such that the expected growth factor of Gaussian elimina-
tion with p-normal partial pivoting is polynomial in n?

Under Gaussian perturbations, what is the smoothed growth factor of
Gaussian elimination with p-normal partial pivoting?

Does Gaussian elimination with p-normal partial pivoting have expo-
nential stability as defined in Conjecture 167

54 Daniel A. Spielman and Shang-Hua Teng

There are several questions still open dealing with the condition num-
bers and the smallest singular value of a square matrix.

Conjecture 17 (Condition Number) Let A be an n x n matriz
satisfying ||1_X||2 < +/n, and let A be a o-Gaussian perturbation of A for
o < 1. Then,
n
>z < — .
qum_@_o(w)
Conjecture 18 (Smallest Singular Value) Let A be an arbitrary

square matriz in R**" and let A be a o-Gaussian perturbation of A.
Then

n

Pr A7l >z] < £

A [” Hz =] = o

In the average case where G is a Gaussian matrix with each of its

entries an independent univariate Gaussian variable with mean 0 and
standard deviation o, Edelman (1988) proves

vn

Pre [[|G7], 2 2] < =~

One possible way to prove Conjecture 18 would be to show that the
Gaussian matrix considered by Edelman, is in fact, the worst-case dis-
tribution, as stated in the next conjecture.

Conjecture 19 (Gaussian Matrices and Gaussian Perturbations)
R™ ™ and let A be a o-Gaussian

2 as above.

Let A be an arbitrary square matriz in
perturbation of A. Let G be a Gaussian matriz of variance o
Then for all x > 1

Pra [|A7Y|, > 2] < Prg [[|GT"|, > 2]
Finally, we have a conjecture on the smallest singular value of a

Boolean perturbation of binary matrices.

Conjecture 20 (Smallest Singular Value of Binary Matrices)
Let A be an arbitrary square matriz in {—1,4+1}""", and let A be a
o-Boolean perturbation of A. Then there exists a constant o < 1 such

that
Ja

-1 _n n
Pra [”A H2 >z] < o t+a.

Smoothed Analysis of Algorithms and Heuristics 55

P7: Algebraic Eigenvalue Problems

Steve Vavasist suggests studying the smoothed complexity of the clas-
sical QR iteration algorithm for solving algebraic eigenvalue problems.
The eigenvalue problem is to find all eigenvalue-eigenvector pairs of a
given n x n matrix A, where the entries of A could be either complex
or real. A scalar A\ and an n-dimensional vector x form an eigenvalue-
eigenvector pair of A if Ax = Ax. Note that the eigenvalue A and the
entries of its eigenvector x could be complex. The famous Schur decom-
position theorem states:

Theorem 1.37 (Schur Decomposition) If A is an n X n complex
matriz, then there exists a unitary matrix Q such that

Q7AQ =T,

where T is an upper triangular matriz with all the eigenvalues of A
appearing on its diagonal.

In addition, if A is a real matriz, then there exists an orthogonal
matriz Q € R**™ such that

Rl,l R1,2 . Rl,k
QTAQ _ 0 R2’2 cen R2,k

. . . ’
0 0 ...Rpy
where R; ; is either a scalar or a 2 x 2 matriz. When R;; is a scalar,
it is an eigenvalue of A and when R;; is a 2 x 2 matriz, it has complex

conjugate eigenvalues.

The QR iteration algorithm was first developed by Francis (1961). Its
basic form is very simple. Initially, let Ag = A. Iteratively, in the kt"
step, the algorithm first computes an QR-decomposition of A; ;:

Ar_1 = Qr1Ry1,

where Q—_1 is a unitary matrix and Ry_; is an upper triangular matrix.
It then defines
A =Ry 1Qk_1.
It is well known that in the complex case when |A1| > |A2| > ... >

|An|, the QR iteration algorithm converges and produces the Schur de-
composition. In the real case, under some mild condition, the QR itera-

t Personal Communication.

56 Daniel A. Spielman and Shang-Hua Teng

tion algorithm converges to produce a real Schur decomposition (Wilkin-
son (1988) and Golub & Van Loan (1989)). Thus one can use the QR
iteration algorithm to approximate all eigenvalues of A to an arbitrary
precision.

Open Question 6 (Smoothed Complexity of QR iterations: Steve
Vavasis) What is the smoothed complezity of the QR iteration algo-
rithm?

The convergence of the QR iteration algorithm depends on the the
minimum gaps among eigenvalues of the input matrix. For example, in
the complex case when |A1| > |A2| > ... > |\,|, the lower off-diagonal
(i,5)-entry of Ay, (i > j) is O((Ai/A;)*) (Wilkinson (1988) and Golub
& Van Loan (1989)).

Thus, understanding the eigenvalue gaps in the smoothed setting
could hold the key to establishing the smoothed rate of convergence
of the QR iteration algorithm.

Conjecture 21 (Minimum Complex Eigenvalue Gaps) Let A be
an n X n compler matriz with ||A||F < 1. Let A be a o-Gaussian
perturbation of A. Let \y,...,\, be the eigenvalues of A and assume
[A1] > |A2] > ... > |An|. Then, there exist positive constants c, ki, ka,
ks such that, for all z > 1,

Aic1 — A

i—1

Pr |min
i>1

1
< —] <c-nkr.ogThe . gThs
T

One can similarly make a conjecture for real matrices.

Conjecture 22 (Minimum Real Eigenvalue Gaps) Let A € R™*"
with ||A||F < 1. Let A be a o-Gaussian perturbation of A. Then, there
exist positive constants c, ki, ko, k3 such that, for all x > 1,

A= N
Ai

Pr l min < enkr.g=ke.g=ks

1
< —
non-conjugate eigenvalues A;, A; Tz

For a symmetric matrix A, all of its eigenvalues are real and QR
iterations preserve the symmetry as

A;=Ri1Qi-1 =QL Qi 1Ri_1Qio1 = Q71 A;_1Qis.

If the eigenvalues of A are \q,...,A,, then the QR iteration algorithm
converges to diag (A1, ..., \,), the diagonal matrix whose diagonal en-
tries are A1,..., Ap.

Smoothed Analysis of Algorithms and Heuristics 57

Proving the following conjecture could be useful to establish a smoothed
rate of convergence of the QR iteration algorithm under zero-preserving
Gaussian perturbations.

Conjecture 23 (Minimum Symmetric Eigenvalue Gaps) Let A
be an n x n real and symmetric matriz with ||A||F < 1. Let A =
A+odiag(g1,---,9n) be a o-Gaussian perturbation of the diagonal of A.
Let A1, ..., An be the eigenvalues of A such that |A1| > [A2] > ... > |[An].
Then, there exist positive constants ¢, k1, k=, ks such that, for all x > 1,

Aic1 — A

%

Pr [min

2

1
< _:| < c_nkl '$_k2 'U_ks-
x

A closely related conjecture is about the singular value gaps.

Conjecture 24 (Minimum Singular Value Gaps) Let A be an m X
n real matriz with ||A||F < 1and m < n. Let A be a o-Gaussian
perturbation of A. Let sq,...,S, be the singular value of A such that
§1 > 82 > ... > Sm. Then, there exist positive constants c, ki, k2, ks
such that, for all x > 1,

Pr [mjn (Ll — Si) < 1] <c-nfr.gTh . ghs,
i S; T

In practice, one usually does not apply the QR iteration algorithm
directly to an input matrix A. The QR computation of each iteration
could take O(n?) time, which might be too expensive. In fact, most prac-
tical implementations first use an orthogonal similarity transformation
to reduce the matrix A to an upper-Hessenberg form (Wilkinson (1988)
and Golub & Van Loan (1989)) Ag = QI AQo. A matrix H = (hi;)
is upper Hessenberg if h; ; = 0 for ¢ > j + 1. This step is important
because the QR factorization of an upper Hessenberg matrix can be
computed in O(n?) time, instead of O(n?®). The standard approach uses
Givens rotations at each step to perform QR factorization of an upper
Hessenberg matrix. A nice property of the Givens process for QR factor-
ization is that the resulting QR iteration algorithm preserves the upper
Hessenberg form.

In general, the practical QR iteration algorithms go beyond just apply-
ing an initial Hessenberg reduction. What makes them more successful
in practice is the collection of shifting strategies that are used to im-
prove the rate of convergence (Wilkinson (1988) and Golub & Van Loan
(1989)). Each shifted iteration consists of the following steps.

58 Daniel A. Spielman and Shang-Hua Teng

1. Determine a scalar p;_1;
2. Compute A; 1 —p;i 11 =Q; 1R; 1;
3. Let Al = Ri*lQi*l + /JiflI-

In practice, QR iteration algorithms may perform double shifts during
each iteration.

Open Question 7 (Smoothed Complexity of Practical QR Iter-
ation Algorithms)

o What is the smoothed complezity of these practical QR iteration
algorithms?

o Is the smoothed rate of convergence of any practical QR iteration
algorithm better than that of the classical QR iteration algorithm?

o What is the impact of Hessenberg reduction on the smoothed rate
of convergence of QR iteration Algorithms?

o What are the smoothed rates of convergence of the classical or
practical symmetric QR iteration algorithms under symmetry-
preserving Gaussian perturbations and under symmetry-preserving
and zero-preserving Gaussian perturbations?

P8: Property-Preserving Perturbations

For some discrete problems, as we have discussed in Section 1.3.4, re-
sults from the semi-random model might not always extend to the corre-
sponding property-preserving perturbations. Perhaps the most appeal-
ing problem is the Bisection Problem.

Open Question 8 (Bisection) Is the p-Bisection Problem, under p-
Bisection preserving perturbations, in smoothed polynomial time (in the
probabilistic sense), for some constant 0 < p < 1%

A closely related problem is whether a p-Bisection property testing
algorithm exists that runs in time polynomial in 1/e¢ and 1/¢ in the
smoothed model under p-Bisection-preserving o-perturbations. Another
related problem is whether the p-Bisection Problem is in smoothed poly-
nomial time (in the probabilistic sense) under the solution-preserving
perturbations.

The property-preserving model is not limited to discrete settings. It
can be applied to the continuous setting as well. For example, one can
study the smoothed complexity of a linear programming algorithm under
feasibility-preserving Gaussian perturbations.

Smoothed Analysis of Algorithms and Heuristics 59

Open Question 9 (Feasibility and Linear Programming) Is the
simplexr method with the shadow-vertex pivoting rule still in smoothed
polynomial time under feasibility-preserving Gaussian perturbations?

Is the smoothed value of the logarithm of the condition number of linear
programs still poly-logarithmic in m, n, and 1/o as stated in Theorem
1.7, under feasibility-preserving Gaussian perturbations?

As the purpose of smoothed analysis is to shed light on the practical
performance of an algorithm, it is more desirable to use a perturbation
model that better fits the input instances. See the Final Remarks at
the end of this paper for more discussion. Thus, if all or most practical
instances to an algorithm share some common structures, such as being
symmetric or being planar, then to have a meaningful theory, we may
have to consider perturbations that preserve these structures. For exam-
ple, the fact that many scientific computing algorithms use the sparsity
of the input to achieve good performance encourages us to define the
zero-preserving or magnitude-preserving perturbations such as relative
Gaussian perturbations. So far, however, the smoothed complexities
of various problems and algorithms under these perturbations remains
wide open.

Open Question 10 (Structure-Preserving Perturbations) What
is the impact of structure-preserving perturbations, such as magnitude-
preserving and zero-preserving perturbations, on the smoothed complex-
ity of an algorithm?

P9: Smoothed Complexity and Approximation Algorithms

Open Question 11 (Smoothed Complexity and Hardness of Ap-
proximation) Is there any connection between the smoothed complexity
of an optimization problem and the hardness of its approrimation? Un-
der what conditions does “hard to approximate” imply “high smoothed
complexity” and vice versa?

As smoothed time complexity measures the performance of an algo-
rithm A on an input z by the expected performance of A over a “neigh-
borhood” distribution of z, intuitively, if this complexity is low, then
one could first perturb an instance and solve the optimization problem
over the perturbed instance. The resulting algorithm then has low ran-
domized complexity.

60 Daniel A. Spielman and Shang-Hua Teng

How good this randomized algorithm can be as an approximation
algorithm may depend on the perturbation model, the property of the
objective function and the structure of the solution space.

Suppose A is an algorithm for solving a minimization problem with
an objective function f over an input domain D = U,D,. Suppose
further, there is a family of neighborhoods N, (z) C Uy —g(n) Dy for
every T € D,, such that for all x € N,(Z), |f(A(z)) — f(A(Z))| < h(o)
where h : R — RT is a monotonically increasing function.

If there is a family of perturbations R = U, o Ry », Where, for each z €
D,, R, , defines a perturbation distribution over N, (Z) such that the
smoothed complexity of A under this perturbation model is T'(n, o), then
A can be used as a family of randomized approximation algorithms of
expected complexity T'(n, o) that comes within k(o) of the optimal value
for minimizing f in instance z, provided R can be efficiently sampled.

For example, consider a two-person game given by two m x n matrices
A = (a;;) and B = (b;;). Suppose A = (a;;) and B = (b;;) are o-
uniform-cube perturbations of A and B, respectively, where a; ; (and b; ;)
is an independent random variable chosen uniformly from the interval
[@i; —0,@;; +0] (and [b; ; — 0,b; ; +0]). Then, for every pair of mixed
strategies x and y, [x7 Ay —x”Ay| < 20. and |x"By — x"By| < 20.

Now suppose (x,y) is a Nash equilibrium for (A, B). Then, for any
(x',y"), we have

(x)T'Ay —xTAy < ((x")TAy — xTAy) + 40 < 4o,

as well as x' By’ — x'By < 4o. Thus, (x,y) is a (40)-Nash equilibrium
for (A, B): a profile of mixed strategies such that no player can gain more
than an amount 4o by changing his/her strategy unilaterally. Similarly,
if (x,y) is an e-Nash equilibrium for (A,B), then (x,y) is an (e + 40)-
Nash equilibrium for (A, B). Therefore,

Proposition 1.1 (Smoothed 2-Nash and Approximated 2-Nash)
If 2-Nash can be solved in smoothed time polynomial in m, n, and g(1/0)
under o-uniform-cube perturbations, then an e-Nash equilibrium of two-
person games can found in randomized time polynomial in m, n, and

g(1/e).

However, for a constrained optimization problem, the optimal solution
of a perturbed instance x may not be feasible for the original instance
Z. Although running A on the perturbed instance z provides a good
approximation of the optimal value for the original instance Z, one still

Smoothed Analysis of Algorithms and Heuristics 61

needs an efficient procedure to “round” the solution for z to a feasible
solution for Z in order to approximately solve the optimization problem.
For some problems, such as linear programming, the optimal solution
for x might be quite “far” away from the optimal solution for Z, al-
though their objective values are be close. This discrepancy might pose
algorithmic challenges to approximations.

Another interesting direction of research is to examine the worst-case
instances appearing in the literature to determine whether they are sta-
ble under perturbations. If all the known worst-case instances of a prob-
lem or an algorithm are not stable under some perturbations, then one
could ask whether its smoothed complexity under these perturbations is
low, or if there are other bad instances that are stable.

P10: Other Algorithms and Practical Algorithms

There are many other successful practical heuristics that we cannot dis-
cuss here in great detail. For example, Berthold Vocking suggests, as
interesting and relevant research directions, considering the smoothed
complexity of heuristics like branch-and-bound or cutting-plane meth-
ods on structurally simple optimization problems like packing problems
with a constant number of constraints.

Other very popular methods include the multilevel algorithms (Brandt
(1988) and Teng (1998)), differential evolution (Price, Storn & Lampinen
(2005)), and various local search and global optimization heuristics. We
would like to understand the smoothed complexity of these methods.
For example, the following conjecture is at the center of our research (in
this area).

Conjecture 25 (Multilevel Bisection Conjecture) There is a mul-
tilevel bisection algorithm with smoothed polynomial time complexity that
finds a (c-p)-bisection (for some constant c) under p-bisection-preserving
perturbations as well as in the semi-random model.

Conjecture 26 (Multilevel Sparsest-Cut Conjecture) There is a
multilevel partitioning algorithm with smoothed polynomial time com-
plexity that finds a partition with sparsity c - p under p-sparsest-cut-
preserving perturbations as well as in the semi-random model.

62 Daniel A. Spielman and Shang-Hua Teng

Final Remarks

Developing rigorous mathematical theory that can model the observed
performance of practical algorithms and heuristics has become an in-
creasingly important task in Theoretical Computer Science. Unlike four
decades ago, when theorists were introducing asymptotic complexity
but practitioners could only solve linear systems with less than 500 vari-
ables, we now have computers that are capable of solving very large-scale
problems. Moreover, as heuristic algorithms become ubiquitous in ap-
plications, we have increasing opportunities to obtain data, especially
on large-scale problems, from these remarkable heuristics.

One of the main objectives of smoothed analysis is to encourage the
development of theories for the practical behaviors of algorithms. We
are especially interested in modeling those algorithms whose practical
performance is much better than their worst-case complexity measures.

A key step is to build analyzable models that are able to capture some
essential aspects of the algorithms and, of equal importance, the inherent
properties of practical instances. So necessarily, any such model should
be more instance-oriented than our traditional worst-case and average
analyses, and should consider the formation process of input instances.

However, modeling observed data and practical instances is a chal-
lenging task. Practical inputs are often complex and there may be mul-
tiple parameters that govern the process of their formation. Most of
the current work in smoothed analysis focuses on the randomness in the
formation of inputs and approximates the likelihood of any particular
instance by its similarity or distance to a “hidden blueprint” of a “tar-
geted” instance of the input-formation process. As the targeted instance
might not be known to the algorithm, in the same spirit of worst-case
analysis, we used the maximum over all possible targeted instances in
the definition of the smoothed complexity.

This approach to characterize the randomness in the formation of in-
put instances promises to be a good first step to model or to approximate
the distribution of practical instances. One must understand the possi-
ble limitations of any particular perturbation model, however, and not
overstate the practical implication of any particular analysis.

One way to improve the similarity-or-distance based perturbation
models is to develop an analysis framework that takes into account the
formation of input instances. For example, if the input instances to an
algorithm A come from the output of another algorithm B, then algo-
rithm B, together with a model of B’s input instances, is the description

Smoothed Analysis of Algorithms and Heuristics 63

of A’s inputs. To be concrete, consider finite-element calculations in sci-
entific computing. The input to its linear solver A are stiffness matrices
which are produced by a finite-element mesh generation algorithm B.
The meshing algorithm B, which could be a randomized algorithm, re-
ceives a geometric domain €2 and a partial differential equation F' as an
input instances to construct a stiffness matrix. So the distribution of the
stiffness matrices to algorithm A is determined by the distribution D of
the geometric domains 2 and the set F' of partial differential equations,
as well as the mesh generation algorithm B. One can define the measure
of the performance of A as

Eo,r)cp [Excpo,r) [Q(A4,X)]].

If, for example, is a design of an advanced rocket from a set R of
“blueprints” and F is from a set F of PDEs for physical parameters such
as pressure, speed, and temperature for the rocket, and Q is generated by
a perturbation model P of the blueprints, then one may further measure
the performance of A by the smoothed value of the quantity above:

E 5 |E A, X)]| .-
FEI;%XER Q<_'p(Q)[X+B(Q,F) [Q())]]

There might be many different frameworks for modeling the formation
process of the input instances. For example, one could use a Markov pro-
cess, a branch tree with probabilistic nodes and binary branching nodes
or some innovative diagrams or flowcharts. The better we can model
our input data, the more accurately we can model the performance of
an algorithm. But to be rigorous mathematically, we may have to come
up with a conjecture that matches the practical observations, and find
a way to prove the conjecture.

Another objective of smoothed analysis is to provide insights and mo-
tivations to design new algorithms, especially those with good smoothed
complexity. For example, our analysis of the smoothed growth factor
suggests a new and more stable solver for linear systems: Suppose we
are given a linear system Ax = b. We first use the standard elimination-
based algorithm — or software — to solve Ax = b. Suppose x* is the solu-
tion computed. If [|[b — Ax*|| is small enough, then we simply return x*.
Otherwise, we can determine a parameter ¢ and generate a new linear
system (A +¢eG)y = b, where G is a Gaussian matrix with independent
entries with mean 0 and variance 1. So instead of using the solution of
Ax = b, we solve a perturbed linear system (A + ¢G)y = b. It follows
from the condition number analysis that if € is (significantly) smaller

64 Daniel A. Spielman and Shang-Hua Teng

than k(A), then the solution to the perturbed linear system is a good
approximation to the original one. One can use practical experience or
binary search to set e.

The new algorithm has the property that its success depends only
on the machine precision and the condition number of A, while the
original algorithm may fail due to large growth factors. For example,
the following is a segment of matlab code that first solves a linear system
whose matrix is the 70 x 70 Wilkinson matrix, using the Matlab linear
solver, then solves it with our new algorithm.

>> %, Using the Matlab Solver

>>n = 70; A = 2xeye(n)-tril(ones(n)); A(:,n)=1;
>> b = randn(70,1);

>> x = A\b;

>> norm(A*x-b)

>> 2.762797463910437e+004

>> Y, FAILED because of large growth factor
>> JUsing the new solver

>> Ap = A + randn(n)/1079;

>> y = Ap\b;

>> norm(Ap*y-b)

>> 6.343500222435404e-015

>> norm(A*y-b)

>> 4.434147778553908e-008

Because the Matlab linear solver uses Gaussian elimination with par-
tial pivoting, it fails to solve the linear system because of the large growth
factor. But our perturbation-based algorithm finds a good solution.

We conclude this paper with the open question that initially led us to
smoothed analysis.

Open Question 12 (Linear Programming in Strongly Random
Polynomial Time?) Can the techniques from the smoothed analysis of
the simplex and interior-point methods be used to develop a randomized
strongly polynomial-time algorithm for linear programming?

1.5 Acknowledgments

We thank Berthold Vécking for his suggestions of research direction
in smoothed analysis, Steve Vavasis for his suggestion of performing

Smoothed Analysis of Algorithms and Heuristics 65

smoothed analysis on the QR iteration algorithm, Ben Hescott for men-
tioning the paper by Daskalakis, Goldberg, and Papadimitriou, and Jinyi
Cai for bringing the Bruhat’s decomposition to our attention. We thank
Kyle Burke and Ben Hescott for their helpful comments and discussions
on this writing. Finally, we would like to express our appreciation of
all the valuable feedbacks that we received after presenting our work on
smoothed analysis at various universities, institutions, and conferences.

Daniel Spielman is partially supported by the NSF grant CCR-0324914
and Shang-Hua Teng is partially supported by the NSF grants CCR-
0311430 and ITR CCR-0325630.

References

L. Adleman and M.-D. Huang (1987). Recognizing primes in random polyno-
mial time. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pages 462—469.

I. Adler, R. M. Karp, and R. Shamir (1987). A simplex variant solving an m xd
linear program in O(min(m?, d*)) expected number of steps. Journal of
Complezity, 3:372-387.

I. Adler and N. Megiddo (1985). A simplex algorithm whose average num-
ber of steps is bounded between two quadratic functions of the smaller
dimension. J. ACM, 32(4):871-895, October.

A. Aggarwal, B. Alpern, A. Chandra, and M. Snir (1987). A model for hierar-
chical memory. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, pages 305-314.

S. Agmon (1954). The relaxation method for linear inequalities. Canadian
Journal of Mathematics, 6:382-392.

M. Agrawal, N. Kayal and N. Saxena (2004). Primes is in P. In Annals of
Mathematics 160(2), pages 781-793.

A. V. Aho, J E. Hopcroft, and J. Ullman (1983). Data Structures and Algo-
rithms. Addison-Wesley Longman.

N. Alon and J. H. Spencer (1992). The Probabilistic Method. John Wiley and
Sons.

N. Amenta and G. Ziegler (1999). Deformed products and maximal shadows
of polytopes. In B. Chazelle, J.E. Goodman, and R. Pollack, editors,
Advances in Discrete and Computational Geometry, number 223 in Con-
temporary Mathematics, pages 57-90. Amer. Math. Soc.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen (1999). LAPACK Users’ Guide, Third Edition. SIAM,
Philadelphia.

D. Arthur and S. Vassilvitskii (2005) On the Worst Case Complexity of the
k-means Method. http://dbpubs.stanford.edu:8090/pub/2005-34.

K. Ball (1993). The reverse isoperimetric problem for gaussian measure. Dis-
crete and Computational Geometry, 10(4):411-420.

C. Banderier, R. Beier, and K. Mehlhorn (2003). Smoothed analysis of three
combinatorial problems. In Proceedings of the Twenty-eighth Interna-

66 Daniel A. Spielman and Shang-Hua Teng

tional Symposium on Mathematical Foundations of Computer Science,
volume 2747, pages 198-207.

I. Barany, S. Vempala, and A. Vetta (2005). Nash equilibria in random games.
In Proceedings of Forty-sizth Annual IEEE Symposium on Foundations of
Computer Science.

J. Basch, L. J. Guibas, and J. Hershberger (1997). Data structures for mobile
data. In Proceedings of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 747-756.

L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, G. Schafer, and T. Vre-
develd (2003). Average case and smoothed competitive analysis of the
multi-level feedback algorithm. In Proceedings of the Forty-fourth Annual
IEEE Symposium on Foundations of Computer Science, page 462.

R. Beier and B. Vocking (2004). Typical properties of winners and losers in
discrete optimization. In Proceedings of the Thirty-sizth Annual ACM
Symposium on Theory of Computing, pages 343—-352.

J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson (1978). On
the average number of maxima in a set of vectors and applications. J.
ACM, 25(4):536-543.

R. G. Bland (1977). New finite pivoting rules. Mathematics of Operations

Research, 2:103 — 107.

. D. Block (1962). The perceptron: A model for brain functioning. Reviews
of Modern Physics, 34:123-135.

A. Blum and J. Dunagan (2002). Smoothed analysis of the perceptron algo-
rithm for linear programming. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 905-914.

. Blum and J. Spencer (1995). Coloring random and semi-random k-colorable
graphs. J. Algorithms, 19(2):204-234.

. Bohman, A. Frieze, and R. Martin (2003). How many random edges make
a dense graph hamiltonian? Random Struct. Algorithms, 22(1):33-42.
R. B. Boppana (1987). Eigenvalues and graph bisection: An average-case
analysis. In Proceedings of the Forty-seventh Annual IEEE Symposium

on Foundations of Computer Science, pages 280-285.

K. H. Borgwardt (1980). The Simpler Method: a probabilistic analysis.
Springer-Verlag.

A. Borodin and R. El-Yaniv (1998). Online computation and competitive anal-

A

A

jas

>

=

ysis. Cambridge University Press, New York, NY, USA.

. Borodin, N. Linial, and M. E. Saks (1992). An optimal on-line algorithm
for metrical task system. J. ACM, 39(4):745-763.

. Brandt (1988). Multilevel computations: Review and recent develop-
ments. In Multigrid Methods: Theory, Applications, and Supercomputing,
Marcel-Dekker, S. F. McCormick, editor, 541-555.

S.-W. Cheng and T. K. Dey (2002). Quality meshing with weighted delaunay
refinement. In Proceedings of the Thirteenth Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 137-146.

S. W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng
(2000). Sliver exudation. J. ACM, 47:883 — 904.

L.P. Chew (1989). Guaranteed-quality triangular meshes. Technical Report
TR-89-983, Cornell University, Ithaca.

V. Chvatal (1983). Linear Programming. A Series of Books in the Mathemat-
ical Sciences. Freeman.

K. L. Clarkson (1995). Las Vegas algorithms for linear and integer program-

Smoothed Analysis of Algorithms and Heuristics 67

ming when the dimension is small. J. ACM, 42(2):488-499.

A. Condon, H. Edelsbrunner, E. A. Emerson, L. Fortnow, S. Haber, R. Karp,
D. Leivant, R. Lipton, , N. Lynch, I. Parberry, C. Papadimitriou, M. Ra-
bin, A. Rosenberg, J. S. Royer, J. Savage, A. L. Selman, C. Smith, E. Tar-
dos, and J. S. Vitter (1999). Challenges for theory of computing. In
Report of an NSF-Sponsored Workshop on Research in Theoretical Com-
puter Science.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction
to Algorithms. McGraw-Hill Higher Education.

F. Cucker and J. Pefia (2001). A primal-dual algorithm for solving polyhedral
conic systems with a finite-precision machine. SIAM J. on Optimization,
12(2):522-554.

V. Damerow, F. M. auf der Heide, H. Récke, C. Scheideler, and C. Sohler
(2003). Smoothed motion complexity. In Proceedings of the Eleventh
Annual European Symposium on Algorithms, pages 161-171.

V. Damerow and C. Sohler (2004). Extreme points under random noise. In
European Symposium on Algorithms, pages 264-274.

G. B. Dantzig (1951). Maximization of linear function of variables subject
to linear inequalities. In T. C. Koopmans, editor, Activity Analysis of
Production and Allocation, pages 339-347.

G. B. Dantzig (1991). Linear Programming and Eztensions. Springer.

C. Daskalakis, C. H. Papadimitriou, P. W. Goldberg (2005). The complexity of
computing a nash equilibrium. Electronic Colloquium on Computational
Complezity, TR05-115.

J. Demmel (1997). Applied Numerical Linear Algebra. STAM.

A. Deshpande and D. A. Spielman (2005). Improved smoothed analysis of
the shadow vertex simplex method. In Proceedings of Forty-sizth Annual
IEEE Symposium on Foundations of Computer Science.

D. Dobkin, R. J. Lipton and S. Reiss (1979). Linear programming is log—space
hard for P. Information Processing Letters, 8:96-97.

J. Dunagan, D. A. Spielman, and S.-H. Teng (2002). Smoothed analysis
of renegar’s condition number for linear programming. available at
http://math.mit.edu/~spielman/SmoothedAnalysis, submitted to
Mathematical Programming.

J. Dunagan and S. Vempala (2004). A simple polynomial-time rescaling al-
gorithm for solving linear programs. In Proceedings of the Thirty-sizth
Annual ACM Symposium on Theory of Computing, pages 315-320.

A. Edelman (1988). Eigenvalues and condition numbers of random matrices.
SIAM J. Matriz Anal. Appl., 9(4):543-560.

H. Edelsbrunner (2001). Geometry and topology for mesh generation. Cam-
bridge University Press.

H. Edelsbrunner, X.-Y. Li, G. L. Miller, A. Stathopoulos, D. Talmor, S.-H.
Teng, A. Ungor, and N. Walkington (2000). Smoothing and cleaning up
slivers. In Proceedings of the Thirty-second Annual ACM Symposium on
Theory of Computing, pages 273-277.

U. Feige and J. Kilian (1998). Heuristics for finding large independent sets,
with applications to coloring semi-random graphs. In Proceedings of the
Thirty-ninth Annual Symposium on Foundations of Computer Science,
page 674.

U. Feige and R. Krauthgamer (2002). A polylogarithmic approximation of the
minimum bisection. SIAM J. on Computing, 31:1090-1118.

68 Daniel A. Spielman and Shang-Hua Teng

W. Feller (1968,1970). An Introduction to Probability Theory and Its Applica-
tions, volume 1,2. Wiley, New York.

A. Flaxman and A. M. Frieze (2004). The diameter of randomly perturbed
digraphs and some applications.. In APPROX-RANDOM, pages 345-356.

J. J. Forrest, D. Goldfarb, D. (1992) Steepest-edge simplex algorithms for
linear programming. Mathematical Programming 57, 341-374.

J. G. F. Francis (1961). The gr transformation a unitary analogue to the Ir
transformation: Part 1. The Computer Journal, 4(3):256 — 271.

R. M. Freund and F. Ordénez (2005). On an extension of condition number
theory to non-conic convex optimization. Math of OR, 30(1).

R. Freund and J. Vera (1999). On the complexity of computing estimates of
condition measures of a conic linear system. Operations Research Cen-
ter Working Paper, MIT, 1999, submitted to Mathematics of Operations
Research.

R. Freund and J. Vera (2000). Condition-based complexity of convex opti-
mization in conic linear form via the ellipsoid algorithm. SIAM J. on
Optimization, 10(1):155-176.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran (1999). Cache-
oblivious algorithms. In Proceedings of the Fortieth Annual Symposium
on Foundations of Computer Science, page 285.

S. Gass and Th. Saaty (1955). The computational algorithm for the parametric
objective function. Naval Research Logistics Quarterly, 2:39-45.

D. Goldfarb (1983). Worst case complexity of the shadow vertex simplex
algorithm. Technical report, Columbia University.

D. Goldfarb and W. T. Sit (1979). Worst case behaviour of the steepest edge
simplex method. Discrete Applied Math, 1:277-285.

O. Goldreich, S. Goldwasser, and D. Ron (1998). Property testing and its
connection to learning and approximation. J. ACM, 45(4):653-750, July.

G. H. Golub and C. F. Van Loan (1989). Matriz Computations. second edition.

M. Hestenes and E. Stiefel (1952). Methods of conjugate gradients for solv-
ing linear systems. the Journal of Research of the National Bureau of
Standards.

R. G. Jeroslow (1973). The simplex algorithm with the pivot rule of maximiz-
ing improvement criterion. Discrete Math., 4:367-377.

M. Jurdzinski (2005). Stochastic games: A tutorial. http://www.games.rwth-
aachen.de/Events/Bordeaux/t_mju.pdf.

G. Kalai (1992). A subexponential randomized simplex algorithm (extended
abstract). In Proceedings of the Twenty-fourth Annual ACM Symposium
on Theory of Computing, pages 475-482.

G. Kalai and D. J. Kleitman (1992). A quasi-polynomial bound for the diam-
eter of graphs of polyhedra. Bulletin Amer. Math. Soc., 26:315-316.

N. K. Karmarkar (1984). A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4:373-395.

M. J. Kearns, M. L. Littman, and S. P. Singh (2001). Graphical models for
game theory. In UAI ’01: Proceedings of the Seventeenth Conference in
Uncertainty in Artificial Intelligence, pages 253—260.

L. G. Khachiyan (1979). A polynomial algorithm in linear programming.
Doklady Akademia Nauk SSSR, pages 1093—-1096.

V. Klee and G. J. Minty (1972). How good is the simplex algorithm ? In
Shisha, O., editor, Inequalities — III, pages 159-175. Academic Press.

M. Krivelevich, B. Sudakov, and P. Tetali (2005). On

Smoothed Analysis of Algorithms and Heuristics 69

smoothed analysis in dense graphs and formulas.
http://www.math.princeton.edu/~bsudakov/smoothed-analysis.pdf.

C. E. Lemke (1965). Bimatrix equilibrium points and mathematical program-
ming. Management Science, 11:681-689.

C. E. Lemke and JR. J. T. Howson (1964). Equilibrium points of bimatrix
games. J. Soc. Indust. Appl. Math., 12:413-423.

X.-Y. Li and S.-H. Teng (2001). Generate sliver free three dimensional meshes.
In Proceedings of the Twelfth ACM-SIAM Symp. on Discrete Algorithms,
pages 28-37.

X. S. Li (2005). An overview of superLU: Algorithms, implementation, and
user interface. ACM Trans. Math. Softw., 31(3):302-325.

S. Lloyd (1982) Least squares quantization in PCM IEEE Transactions on
Information Theory, 28 (2) pages 129 —136.

M. Luby and N. Nisan (1993). A parallel approximation algorithm for positive
linear programming. In Proceedings of the Twenty-fifth Annual ACM
Symposium on Theory of Computing, pages 448-457.

B. Manthey and R. Reischuk (2005). Smoothed analysis of the height of binary
search tress. Electronic Colloguium on Computational Complezity, TR05-
063.

J. Matous8k, M. Sharir, and E. Welzl (1992). A subexponential bound for
linear programming. In Proceedings of the Eighth Annual Symposium on
Computational Geometry, pages 1-8.

N. Megiddo (1986). Improved asymptotic analysis of the average number of
steps performed by the self-dual simplex algorithm. Mathematical Pro-
gramming, 35(2):140-172.

N. Megiddo (1992). A note on approximate linear programming. Inf. Process.
Lett., 42(1):53, 1992.

Gary L. Miller (1975). Riemann’s hypothesis and tests for primality. In Pro-
ceedings of Seventh Annual ACM Symposium on Theory of Computing,
pages 234-239.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington (1995). A Delaunay
based numerical method for three dimensions: generation, formulation,
and partition. pages 683-692.

M. L. Minsky and S. A. Papert (1988). Perceptrons: erpanded edition. MIT
Press.

R. Motwani, S. Phillips, and E. Torng (1993). Non-clairvoyant scheduling,.
In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 422-431.

R. Motwani and P. Raghavan (1995). Randomized algorithms.

K. G. Murty (1980). Computational complexity of parametric linear program-
ming. Math. Programming, 19:213-219.

J. Nash. Noncooperative games (1951). Annals of Mathematics, 54:289-295.

Y. Nesterov and A. Nemirovskii (1994). Interior Point Polynomial Methods
in Conver Programming: Theory and Applications. Society for Industrial
and Applied Mathematics, Philadelphia.

A. B. Novikoff (1962). On convergence proofs on perceptrons. In Symposium
on the Mathematical Theory of Automata, 12, pages 615-622.

P. van den Driessche and O. H. Odeh and D. D. Olesky (1998). Bruhat
decomposition and numerical stability. STAM J. on Matriz Analysis and
Applications, 19(1):89-98.

C. H. Papadimitriou (1994). Computational Complezity. Addison-Wesley.

70 Daniel A. Spielman and Shang-Hua Teng

C. H. Papadimitriou and K. Steiglitz (1982). Combinatorial optimization:
algorithms and complezity. Prentice-Hall.

K. Price, R. Storn, and J. Lampinen (2005). Differential Evolution - A Prac-
tical Approach to Global Optimization. Springer.

R. Ravi and M. X. Goemans (1996). The constrained minimum spanning tree
problem (extended abstract). In Proceedings of the Fifth Scandinavian
Workshop on Algorithm Theory, pages 66—75. Springer-Verlag.

J. Renegar (1994). Some perturbation theory for linear programming. Math.
Programming, 65(1, Ser. A):73-91.

J. Renegar (1995a). Incorporating condition measures into the complexity
theory of linear programming. SIAM J. Optim., 5(3):506-524.

J. Renegar (1995b). Linear programming, complexity theory and elementary
functional analysis. Math. Programming, 70(3, Ser. A):279-351.

H. Roglin, B. Vicking (2005). Smoothed analysis of integer programming.
In Michael Junger and Volker Kaibel, editors, Proceedings of the of the
Eleventh International Conference on Integer Programming and Combi-
natorial Optimization, volume 3509 of Lecture Notes in Computer Sci-
ence, Springer, pages 276 — 290.

F. Rosenblatt (1962). Principles of neurodynamics; perceptrons and the theory
of brain mechanisms. Spartan Books.

R. Rubinfeld and M. Sudan (1996). Robust characterizations of polynomials
with applications to program testing. SIAM J. on Computing, 25(2):252—
271, April.

J. Ruppert(1993). A new and simple algorithm for quality 2-dimensional
mesh generation. In Proceedings of the Fourth ACM-SIAM Symp. on
Disc. Algorithms, pages 83-92.

A. Sankar, D. A. Spielman, and S.-H Teng (2005). Smoothed analysis of the
condition numbers and growth factors of matrices. SIAM J. on Matriz
Analysis and Applications, to appear.

M. Santha and U. V Vazirani (1986). Generating quasi-random sequences
from semi-random sources. J. Comput. Syst. Sci., 33(1):75-87.

R. Savani and B. von Stengel (2004). Exponentially many steps for finding
a nash equilibrium in a bimatrix game. In Proceedings of the Forty-fifth
Annual IEEE Symposium on Foundations of Computer Science, pages
258-267.

F. Schéfer and N. Sivadasan (2004). Topology matters: Smoothed competi-
tiveness of metrical task systems. In Proceedings of the Twenty-first An-
nual Symposium on Theoretical Aspects of Computer Science, (Montpel-
lier, France, March 25-27, 2004), volume 2996 of LNCS, pages 489-500.
Springer-Verlag.

A. Schrijver (1986). Theory of Linear and Integer Programming. Wiley, 1986.

S. Sen, S. Chatterjee, and N. Dumir (2002). Towards a theory of cache-efficient
algorithms. J. ACM, 49(6):828-858.

M. Serna (1991). Approximating linear programming is log-space complete
for p. Inf. Process. Lett., 37(4):233-236.

J. R. Shewchuk (1998). Tetrahedral mesh generation by Delaunay refinement.
In Proceedings of the Fourteenth Annual ACM Symposium on Computa-
tional Geometry, pages 86-95.

M. Sipser (1996). Introduction to the Theory of Computation. International
Thomson Publishing.

D. D. Sleator and R. E. Tarjan (1985). Amortized efficiency of list update and

Smoothed Analysis of Algorithms and Heuristics 71

paging rules. Commun. ACM, 28(2):202-208.

S. Smale (1982). The problem of the average speed of the simplex method.
In Proceedings of the Eleventh International Symposium on Mathematical
Programming, pages 530-539, August.

S. Smale (1983). On the average number of steps in the simplex method of
linear programming. Mathematical Programmsing, 27:241-262.

R. Solovay and V. Strassen (1977). A fast Monte-Carlo test for primality.
6(1):84-85, March.

D. A. Spielman and S.-H. Teng (2003a). Smoothed analysis (motivation and
discrete models. In Algorithms and Data Structures, 8th International
Workshop, pages 256-270.

D. A. Spielman and S.-H. Teng (2003b). Smoothed analysis of termination
of linear programming algorithms. Mathematical Programming, Series B,
97:375-404.

D. A. Spielman and S.-H. Teng (2004). Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385—
463.

D. A. Spielman, S.-H. Teng, and A. Ungér (2002). Parallel Delaunay re-
finement: Algorithms and analyses. In Proceedings of the Eleventh In-
ternational Meshing Roundtable, International Journal of Computational
Geometry & Applications (to appear), pages 205-217.

D. A. Spielman, S.-H. Teng, and A. Ungér (2004). Time complexity of practical
parallel steiner point insertion algorithms. In Proceedings of the Sizteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pages 267-268.

G. Strang (1980). Linear Algebra and its Application, 2nd. Ed. Academic
Press.

B. Sudakov and J. Vondrak (2005). How many ran-
dom edges make a dense hypergraph non-2-colorable?.
http://www.math.princeton.edu/~bsudakov/smoothed-analysis-
hyper.pdf.

S.-H. Teng and C. W. Wong (2000). Unstructured mesh generation: Theory,
practice, and perspectives. Int. J. Computational Geometry & Applica-
tions, 10(3):227.

S.-H. Teng (1998). Coarsening, sampling, and smoothing: Elements of the
multilevel method. In R. S. Schreiber M. Heath, A Ranade, editor, Algo-
rithms for Parallel Processing, volume 105, pages 247 — 276. volume 105
of IMA Volumes in Mathematics and its Applications, Springer.

M. J. Todd (1986). Polynomial expected behavior of a pivoting algorithm for
linear complementarity and linear programming problems. Mathematical
Programming, 35:173-192.

M. J. Todd (1991). Probabilistic models for linear programming. Mathematics
of Operations Research, 16(4):671-693.

M. J. Todd and Y. Ye (1996). A lower bound on the number of iterations of
long-step and polynomial interior-point methods for linear programming.
Annals of Operations Research, 62:233-252.

M. Todd (2001). Semidefinite optimization. Acta Numerica, 10:515-560.

M. J. Todd (1994). A lower bound on the number of iterations of primal-
dual interior-point methods for linear programming. In G. A. Watson
and D. F. Griffiths, editors, Numerical Analysis 1993, pages 237 — 259.
Longman Press, Harlow.

72 Daniel A. Spielman and Shang-Hua Teng

L. N. Trefethen and D. Bau (1997). Numerical Linear Algebra. SIAM, Philadel-
phia, PA.

L. N. Trefethen and R. S. Schreiber (1990). Average-case stability of Gaussian
elimination. SIAM J. on Matriz Analysis and Applications, 11(3):335—
360.

L. Trevisan and F. Xhafa (1998). The parallel complexity of positive linear
programming. Parallel Processing Letters, 8(4):527-533.

P. M. Vaidya (1987 An al@orlthm for linear programming which requires
O(((m + n)n®> + (m + n)'°n)L) arithmetic operations. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, pages
29-38.

V. V. Vazirani (2001). Approzimation algorithms. Springer-Verlag.

J. Vera (1996). Ill-posedness and the complexity of deciding existence of so-
lutions to linear programs. SIAM J. on Optimization, 6(3).

J. H. Wilkinson (1961). Error analysis of direct methods of matrix inversion.
J. ACM., 8:261-330.

J. H. Wilkinson (1963). Rounding Errors in Algebraic Processes.

J. H. Wilkinson (1988). The algebraic eigenvalue problem. Oxford University
Press.

S. J. Wright (1993). A collection of problems for which gaussian elimination
with partial pivoting is unstable. SIAM J. Sci. Comput., 14(1):231-238.

S. J. Wright (1997). Primal-dual interior-point methods. Society for Industrial
and Applied Mathematics, Philadelphia.

M. Wschebor (2004). Smoothed analysis of x(a). J. of Complexity, 20(1):97—
107, February.

Y. Ye (1997). Interior point algorithms: theory and analysis. John Wiley &
Sons.

M. Ziegelmann (2001). Constrained Shortest Paths and Related Problems.
PhD thesis, Universitit des Saarlandes, July.

