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Abstract

Micro-Doppler-based target classification capabilities of the automotive radars can provide high reliability and

short latency to the future active safety automotive features. A large number of pedestrians surrounding vehicle in

practical urban scenarios mandate prioritization of their treat level. Classification between relevant pedestrians that

cross the street or are within the vehicle path and those that are on the sidewalks and move along the vehicle rout

can significantly minimize a number of vehicle-to-pedestrian accidents.

This work proposes a novel technique for a pedestrian direction of motion estimation which treats pedestrians as

complex distributed targets and utilizes their micro-Doppler (MD) radar signatures. The MD signatures are shown to

be indicative of pedestrian direction of motion, and the supervised regression is used to estimate the mapping between

the directions of motion and the corresponding MD signatures. In order to achieve higher regression performance, the

state of the art sparse dictionary learning based feature extraction algorithm was adopted from the field of computer

vision by drawing a parallel between the Doppler effect and the video temporal gradient.

The performance of the proposed approach is evaluated in a practical automotive scenario simulations, where a

walking pedestrian is observed by a multiple-input-multiple-output (MIMO) automotive radar with a 2D rectangular

array. The simulated data was generated using the statistical Boulic-Thalman human locomotion model. Accurate

direction of motion estimation was achieved by using a support vector regression (SVR) and a multilayer perceptron

(MLP) based regression algorithms. The results show that the direction estimation error is less than 10
◦ in 95% of

the tested cases, for pedestrian at the range of 100m from the radar.

Index Terms

Micro-Doppler, direction of motion, MIMO radar, colocated antennas, automotive radar, sparse learning, super-

vised regression.

I. INTRODUCTION

Autonomous driving is one of the major mega-trends in the automotive industry [1]-[5]. Improving reliability

and safety of the current vehicles by enhancing their sensing capabilities (frequently called active safety) is the

first step toward autonomous driving. Radar along with LiDAR and vision systems is one of the main automotive

sensors [6]-[8]. Although current stand-alone automotive radar performance does not meet all sensing requirements,

radars are typically included in the majority of automotive active safety systems. Currently, the object detection and
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localization are the main automotive radar tasks, while the object identification and classification are performed by

the vision and LiDAR systems. In order to decrease the latency of the object classification and to enable radar-based

systems to operate stand-alone without fusion with other sensing modalities, it is desirable to provide the automotive

radars with the target classification capabilities.

Since it is highly important to mitigate vehicle-to-pedestrian accidents, pedestrian recognition is the main clas-

sification task of automotive active safety systems. The problem of a binary classification between a vehicle and

a pedestrian using data from the automotive radar was successfully addressed in [9]-[11] using the state of the art

classification techniques like Support Vector Machine (SVM) [12].

In addition to the target classification, it is desirable to predict trajectories of the surrounding automotive targets.

The first step toward this challenging goal is an estimation of the pedestrian motion direction, which can be used

to discriminate between pedestrians that are crossing (or intend to cross) the road and those that are walking on

the sidewalk along the vehicles motion direction. This work focuses on the problem of a pedestrian direction of

motion estimation using an automotive radar.

Most of the automotive targets can be considered as extended targets. In the radar literature extended target

is defined as a target that consists of multiple moving parts and occupies multiple spatial cells [16]. A walking

pedestrian observed by the radar with a sufficient spatial resolution can be considered as an extended target. The

relative motions of the parts of the extended complex target are called the micro motions [25]. The micro motions

generate additional modulations on the radar echo which are typically denoted as the micro-Doppler (MD) effect

[23]. Recently it was demonstrated that the MD effect uniquely represents different targets and can be efficiently

used for the target classification [28] - [38]. Although MD has been widely used for automatic target recognition,

to the best of our knowledge this work is the first attempt to apply the MD signatures to a problem of complex

target direction of motion estimation.

The MD signature is determined by the radial components of the velocity vectors of the individual scatterers

that constitute the target. When the bulk (averaged over all scattering centers) velocity vector changes its direction,

the radial components of the velocity vectors of the individual scatterers also change which leads to a change in

the resulting MD signature. Thus, the observed MD depends on the direction of the bulk velocity vector which

defines the target direction of motion. This work employs a supervised learning approach to estimate the target

direction of motion from the observed MD signatures. Two regression methods were used in this work: the Support

Vector Regression (SVR) [40], [41] and the Multilayer Perceptron (MLP). In contrast to the approach in [43], which

utilities a radar with two widely separated receivers and relies on the actual estimates of the Doppler shift from an

oscillating part of the target to estimate its orientation, the proposed approach observes a complex target from a

single angle and extracts the direction of motion information from the entire MD signature. In addition, unlike the

tracking algorithm in [11] we estimate only the instantaneous direction of the target’s motion, which can be used

as an additional information for the tracking algorithm along with the range and bearing estimates.

The proposed here approach to a direction of motion estimation requires a radar with a high spatial resolution,

which is capable of separating different scattering centers of the complex extended target. The MD signatures

obtained from multiple spatial micro-cells provide information about the relative positions of the different parts of the
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target. This additional information is expected to improve the direction of motion estimation. This work considers an

automotive MIMO radar with collocated antennas that is capable of providing high azimuth and elevation resolution

[15], and transmits linear frequency modulated (LFM) waveforms to achieve high range resolution. The utilization

of the MIMO radar is motivated by its ability to achieve high angular resolution using a short sensor array, while

utilization of the LFM waveform is motivated by its practical simplicity. Notice that the proposed here approach to

direction of motion estimation is not limited to a particular selection of the radar architecture, and is suitable for

any radar configuration that is able to provide sufficient spatial resolution.

Conventionally, application of the supervised learning algorithms to multidimensional data requires a feature

extraction (dimensionality reduction) preprocessing. Although in the MD-based target recognition literature multiple

feature extraction methods have been studied [28]-[38], this work adopts a sparse-learning-based feature extraction

technique originally proposed in the field of computer vision [19]-[21]. In [19], the sparse-learning-based feature

extraction was successfully applied to a problem of video-based classification of human activities. In this work we

draw a parallel between the video temporal gradient used in [19] and the MD data, and apply the sparse learning

approach to reduce dimensionality of the MD signatures of the target.

The performance of the proposed technique is evaluated via simulations in the scenarios with a walking pedestrian

observed by an automotive MIMO radar. The MD signatures of the pedestrian are generated using the Baulic-

Thalman human locomotion model [26]. The simulation results show that the accurate direction of motion estimation

is possible with low-latency even in relatively low signal-to-noise ratio (SNR) scenarios.

The main novelties of this work are: a) utilization of the MD signatures of the complex extended targets with

multiple moving parts to target motion direction estimation; b) application of the supervised regression algorithms

to the problem of motion direction estimation; c) adaptation of the computer-vision-based feature extraction method

used for human activities classification to the radar MD-based motion direction estimation; d) numerical study of

the proposed direction of motion estimation approach in the automotive scenarios with walking pedestrian; and

e) numerical evaluation of the various MIMO radar configurations in terms of the motion direction estimation

performance.

The rest of the paper is organized as follows. Section II states a received signal model for the collocated MIMO

radar which observes extended target with multiple moving parts. Section III describes a scenario of a pedestrian

motion direction estimation and corresponding choice of the automotive radar parameters. Sparse modeling and

feature extraction methods are discussed in Section IV. Section V evaluates the performance of the proposed

direction of motion estimation approach via numerical simulations considering a scenario of a pedestrian direction

of motion estimation using an automotive radar. Finally, our conclusions are summarized in Section VI.

II. RADAR SIGNAL MODEL

In the monostatic radar scenarios the MD effect depends only on the radial velocities of the individual parts of

the target. A change in the direction of the target’s bulk velocity vector results in changes in the radial velocities

of the individual parts of the target and leads to changes in the observed MD effect. Hence, the direction of the

target’s motion relatively to the radar defines the target’s MD signature. For example, a comparison between Fig.
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1(a) and Fig. 1(b) shows that the MD signatures of a pedestrian walking along the Line-of-sight (LOS) with the

radar and perpendicular to the LOS are significantly different.

The target direction of motion with respect to the vehicle is defined as the angle, θ, between the target’s bulk

motion direction and the boresight of the radar, as shown in Fig. 1(c) and Fig. 1(d). Notice that the angle, θ,

describes the general direction of motion of the complex target rather than of its individual scatterers. This work

proposes a supervised regression method for motion direction estimation, θ, of the complex target based on its MD

signature.

(c) (d)
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Fig. 1. The MD signature as a function of the target direction of motion. Subplots (a) and (b) show the spectrograms obtained from the simulated

data for a pedestrian walking along the LOS and perpendicular to the LOS, respectively. The radar data is simulated using the Boulic-Thalman

human locomotion model [26]. Subplots (c) and (d) schematically show arbitrary extended target moving with the two different directions of

motion observed by the monostatic radar. The extended target consists of multipe scattering centers which in addition to the bulk target’s velocity

~v perform different types of micro-motions. As a result of different target directions of motion θ1 and θ2 the radar observes different MD

signatures. For example, the signatures in subplots (a) and (b) could correspond to the targets directions θ1 and θ2. In addition, for different

directions of motion the radar observes different relative positions of the scattering centers.

This section develops a radar signal model for the MD signatures of the complex target obtained by a MIMO radar

with Mt transmitting elements and Mr receiving elements antenna arrays [14]. High angular resolution provided

by the MIMO radar is required to separate groups of individual scatterers within the same extended target, and

to obtain more information about their relative locations and motions. This additional information is required to

achieve reasonable direction of motion estimation performance.

Consider an automotive MIMO radar that observes an extended complex target which consists of the Q indepen-

dent scattering centers. Fig. 1(c) and Fig. 1(d) show that the location, uq(θ), and the velocity, vq(θ), of the qth,

q = 1, . . . , Q, individual scattering center depend on the target direction of motion θ. For the clarity of presentation,

the dependence of the locations and velocities of the scattering centers on the target direction of motion is explicitly

denoted as follows: uq(θ) = uθ
q and vq(θ) = vθ

q .
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Let a(uθ
q) = [a1(u

θ
q), a2(u

θ
q), . . . , aMt

(uθ
q)]

T and b(uθ
q) = [b1(u

θ
q), b2(u

θ
q), . . . , bMr

(uθ
q)]

T be a Mt × 1 trans-

mitting and a Mr× 1 receiving array response vectors to a scattering center located at uθ
q , respectively. Let the kth,

k = 1, 2, . . . ,Mt antenna element of the transmitting array transmit a sequence of P narrowband finite-duration

pulses of the waveform sk(t) at the pulse repetition frequency (PRF) fr = 1/Tr, where Tr is a temporal duration

of the transmitted pulse. The baseband radar echo received at the lth antenna element of the receiving array due

to the transmission from the kth antenna element of the transmitting array and scattering from the Q scattering

centers is

rkl(t, θ) =

Q
∑

q=1

ηqbl(u
θ
q)ak(u

θ
q) (1)

×
P−1
∑

p=0

sk(t− pTr − τ(uθ
q))e

j2πfd(vθ
q)pTr + ekl(t)

where ηq , τ(uθ
q) and fd(v

θ
q) are a complex reflection coefficient of the qth scattering center, a round-trip time-

delay, and the Doppler-shift induced by the qth scattering center respectively, and ekl(t) is a spatio-temporal additive

complex zero-mean white circular Gaussian noise with a variance σ2δ(τ). Assuming that the scattering centers are

independent and that the corresponding complex reflection coefficient ηq, q = 1, 2, . . . , Q remain constant from

pulse-to-pulse, the coherent processing interval (CPI) can be defined as Tc = PTr [16]. The variable p in (1) is

often referred as a slow-time [17], and the Doppler shift fd(v
θ
q), which is assumed to be constant during the CPI,

is called a slow-time Doppler shift.

The following assumption on the orthogonality of transmitted waveforms simplifies the joint processing of the

received signals transmitted by the different transmitting antennas.

Orthogonal waveforms: Assuming pulses of the duration T , the waveforms transmitted by the i, j = 1, . . . ,Mt

transmitters are orthogonal if

∫

T

si(t)s
∗

j (t)dt =







∫

T |si(t)|2dt = 1, i = j

0, i 6= j
(2)

where (∗) denotes the complex conjugate operator.

Orthogonality of the transmitted waveforms provides separability of the received signals, thus creating in total

Mt×Mr independent and separable transmitter-target-receiver paths. Arranging Mt×Mr received signals modeled

as in (1) in one MtMr × 1 vector, the received signal at the time t can be modeled as

r(t, θ) =

Q
∑

q=1

ηqb(u
θ
q)⊗

(

a(uθ
q)⊙ µ(t, τ(uθ

q), fd(v
θ
q))

)

+ e(t) (3)

where µ(t, τ(uθ
q), fd(v

θ
q)) is the Mt × 1 vector with the kth element of the following form

µk(t, τ(u
θ
q), fd(v

θ
q)) =

P−1
∑

p=0

sk(t− pTr − τ(uθ
q))e

j2πpTrfd(v
θ
q)

and ⊗ and ⊙ denote the Kroneker and the Hadamard products, respectively.
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Let the target be placed on the three dimensional spatial grid of N non-overlapping cells with the cell centers

located at ũi, i = 1, 2, . . . , N and the center of the grid at every time instance t coinciding with the geometric

center of the target. Such a spatial grid can be defined by a bank of spatial filters

G = [g1,g2, . . . ,gN ] (4)

where gi = b(ũi) ⊗ (w⊙ a(ũi)µ(t, τ(ũi), 0)) is a spatial filter matched to the center of the ith spatial cell. The

range-gated and the beamformed signal at the slow-time p from the cell i can be written as follows [15]

xip(θ) =

∫ (p+1)Tr

t=pTr

gH
i (t)r(t, θ)dt (5)

=

Q
∑

q=1

γiq(θ)e
j2πfd(v

θ
q)pTr + ni(p)

where

γiq(θ) = ηqb
H(ũi)b(u

θ
q)

Mt
∑

k=1

a∗k(ũi)ak(u
θ
q)

×

∫ Tr

t=0

sk(t− τ(ũi))
∗sk(t− τ(uθ

q))dt

is an amplitude of the radar echo received from the scattering center q after range-gating and beamforming by the

spatial filter gi, and

ni(p) =

∫ (p+1)Tr

t=pTr

gH
i (t)e(t)dt

is a white zero-mean complex Gaussian process with variance σ2
n = σ2MtMr uncorrelated for different spatial cells

if the centers of the corresponding spatial cells are sufficiently separated. In the matrix form, (5) can be rewritten

as follows

xi(θ) = Hi(θ)γi(θ) + ni (6)

where xi(θ) is the P × 1 slow-time Doppler signal received from the spatial cell with the center at ũi, γi(θ) =

[γi1(θ), γi2(θ), . . . , γiQ(θ)]
T is a vector of corresponding amplitudes, ni = [n1, n2, . . . , nP ]

T is a noise vector

ni ∼ CN (0, σ2
nIP×P ), and H(θ) = [h1(θ),h2(θ), . . . ,hQ(θ)] is a P × Q matrix, with the following slow-time

temporal steering vectors in its columns

hq(θ) =
[

ej2πfd(v
θ
q)1Tr , ej2πfd(v

θ
q)2Tr , (7)

. . . , ej2πfd(v
θ
q)PTr

]T

, q = 1, . . . , Q

Notice that the slow-time radar echo in (6) received from the spatial cell i explicitly depends on the direction of

motion of the extended target, θ. For the performance evaluation, the SNR can be define as the ratio of the signal

power averaged over the spatial grid cells in (4) to the noise power

SNR(θ) =
1

N

∑N
i=1‖xi(θ)‖22

σ2
n

(8)
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III. SYSTEM PARAMETERS

This section provides the reasoning for the selection of the specific transmitter and receiver array configurations,

waveform type, and parameters of the spatial filter bank, required for sufficiently informative MD signatures obtained

from the received radar echo in (6).

Consider an automotive scenario in Fig. 2. The road is located in the xy plane such that the x axis is pointing

along the road. In the considered here simulation scenarios, the elevation of the terrain was assumed to be constant

and the target motion was assumed to be solely in a 2D range-azimuth (xy) plain. For convenience we also introduce

a spherical coordinate system, such that a point in space is defined by the vector u = [r, β, γ]T , where r, β and

γ are the range, the azimuth and the elevation, respectively. Notice that in Fig. 2, the range axis and the x axis

coincide. Fig. 2 shows a static vehicle equipped with an antenna array located at the origin ua = [0, 0, 0]T observing

a walking pedestrian. At the time instance t = 0, the pedestrian is located at lp = 100m away from the vehicle at

the coordinates up = [lp, 0, 0]
T . The pedestrian’s direction of motion, θ, is defined with respect to the x (range)

axis.

Typically a long range automotive radar needs to operate only in the narrow azimuth and elevation field-of-view

(FOV). In the simulated scenarios, the road is assumed to be Dr = 10m wide, which at the distance of lp = 100m

from the vehicle results in the maximum azimuth angle of |βmax| = tan−1 Dr

2lp
< 4◦. Similarly, the elevation angle

is limited by the height of the pedestrian. Assuming maximum height of the pedestrian to be hmax = 2m, at the

distance of lp = 100m from the radar, maximum elevation angle is approximately |γmax| = tan−1 Dr

2lp
< 1◦. The

values of the range r are also limited, since the pedestrian, who is detected lp = 100m away from the radar, cannot

significantly change its position during the observation time.

100m
10m

vehicle

pedestrian

road side

~7m

Top view

Side view

~1.75m

azimuth
angle

elevation
angle

Fig. 2. Walking pedestrian observed by the automotive radar.

The vehicle is assumed to be equipped with a 2D transmitting and receiving antenna arrays (Fig. 3), operating

at the frequency of fc = 24GHz. Both arrays are located in the zy plane and have the same phase center. Let the

receiver be an Mr = Lry × Lrz uniform rectangular array (URA) with Lry elements spaced by dry in each row,

and Lrz elements spaced by drz in each column. Similarly, let the transmitter be an Mt = Lty × Ltz URA, with

the corresponding element spacing dty and dtz . The transmitting and receiving array responses to the target located
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at uq can be defined as follows

a(u) =
[

ej2πφt1(u)ej2πφt2(u) . . . ej2πφtMt
(u)

]T

b(u) =
[

ej2πφr1(u)ej2πφr2(u) . . . ej2πφrMr (u)
]T

φtk(uq) = sinβq cos γq
dty
λ

(

ity −
Lty − 1

2

)

+ sin γq
dtz
λ

(

itz −
Ltz − 1

2

)

,

ity = 1, . . . , Lty, itz = 1, . . . , Ltz

φrl(uq) = sinβq cos γq
dry
λ

(

iry −
Lry − 1

2

)

+ sin γq
drz
λ

(

lrz −
Lrz − 1

2

)

,

iry = 1, . . . , Lry, irz = 1, . . . , Lrz

where λ is a wavelengths, and k = itzLty + ity , l = irzLry + iry.

Receiving array

Fig. 3. Walking pedestrian observed by the antenna array.

The radar spatial resolution defines dimensions of the cells in Fig. 3 and the spatial grid given in (4). Since

pedestrian’s torso, arms and legs have different motion characteristics, the ability to resolve radar echoes received

from the different body parts is important to obtain more information about pedestrian’s motion, and thus achieve

sufficient regression performance. However, such approach requires small spatial cells and hence high spatial

resolution.

The following subsections discuss the transmitting and receiving array configurations and the transmitted wave-

form parameters required to achieve sufficient azimuth, elevation, range and Doppler resolutions.

A. Azimuth and Elevation Resolution

This work considers a MIMO radar that achieves sufficiently high angular resolution [15]. The MIMO radar

with colocated antennas creates a so-called virtual aperture, which is equal to the convolution of the transmitting
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and receiving array apertures [14]. Hence, for a MIMO radar with Mt transmitting and Mr receiving elements the

resulting aperture consists of the MtMr virtual antenna elements.

Fig. 2 shows that for practical automotive scenarios the FOV between −4◦ and 4◦ in the azimuth direction

and between −1◦ and 1◦ in the elevation direction is sufficient to cover the entire FOV of interest. The grating

lobes outside the region of interest are acceptable, and therefore the antenna elements can be separated by more

than λ/2. Fig. 4(a) shows the beam pattern of the SIMO radar with Lry = 4 by Lrz = 3 rectangular receiving

antenna array and the interelement spacings dry = 36λ and drz = 32λ in the horizontal and vertical directions,

respectively. Notice the grating lobes in the FOV of interest. Suppression of the grating lobes in this SIMO radar

requires more dense receiving array. Alternatively, Fig. 4(b) shows the beam pattern of the MIMO radar with the

same receiving array as in the SIMO case, but with Lty = 4 by Ltz = 1 transmitting array with the interelement

spacings dty = 12λ. Notice, that there are no grating lobes in the FOV of interest. Thus, the MIMO radar provides

the desirable beam pattern in the FOV of interest using a smaller number of antennas compared to the SIMO

system.

The elevation and the azimuth dimensions of the spatial grid in (4) are determined by the beamwidth of the

MIMO radar. From the beam pattern in Fig. 4(b) the half power beamwidth in the azimuth and the elevation

directions is △β = 0.39◦ and △γ = 0.6◦, respectively.

The MIMO radar with transmitting array of 0.45m and 2-D receiving array of 1.35m × 0.9m was considered

here to fit into the dimensions of a conventional vehicle. Optimization of the automotive MIMO radar configuration

is a subject of our future work.
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Fig. 4. Beam patterns of: (a) SIMO radar with a single antenna transmitter and Lry = 4 by Lrz = 3 receiving array with dry = 36λ and

drz = 32λ; (b) MIMO radar with Lty = 4 by Ltz = 1 transmitting array with inter element spacings dty = 12λ, and Lry = 4 by Lrz = 3

receiving array with dry = 36λ and drz = 32λ.

B. Range and Doppler Resolution

Let the (ky , kz)th antenna element of the transmitting array transmit a sequence of LFM chirps

sk(t) = e
jπ

fB
T0
(t− 1

2
T0)

2

[h(t)− h(t− T0)] (9)

where fB is the bandwidth of the chirp, T0 is the pulse duration, and h(t) is the Heaviside step function. Bandwidth

of the transmitted LFM waveform defines the range resolution △r = c/(2fB), and therefore the range dimension
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of the spatial cells in the grid given by (4). Following FCC regulations, the bandwidth of fB = 250MHz was used

for the LFM radar at 24GHz, which results in a range resolution of △r = 0.6m.

Let the maximum velocity of the pedestrian’s body parts be vmax = 3 m/s, which at the radar carrier frequency

of fc = 24GHz generates a Doppler shift of fDmax
= 2vmaxfc/c = 480Hz. Since the MD signatures in (6) are

obtained from the slow-time data, maximum observed Doppler shift defines the pulse repetition period, which in

order to avoid aliasing was set to be Tr = 1/(2fDmax
) ≈ 1ms.

The Doppler frequency resolution △f is defined by the smallest change in the target’s velocity △v that needs to

be identified. Let △v = 0.2m/s, which results in the Doppler resolution of △f = 32Hz. Since the dwell duration

defines the Doppler resolution, the number of transmitted LFM chirps was set to be P = 32 ≥ 1/(△fTr). The

LFM chirp duration was set to be T0 = 1µs.

Each antenna element of the MIMO transmitting array transmits an orthogonal waveform. Assuming that the LFM

chirps in (9), transmitted by the different transmitting antenna elements, have the same bandwidth and duration, the

orthogonality assumption in (2) can be achieved by the time-division multiplexing or frequency division. Notice

that the proposed direction of motion estimation approach is not limited to the LFM waveforms chosen here for

the practical simplicity, and can be used with any other waveforms.

C. Spatial grid

Typically, the automotive radar first detects the moving target and then estimates its location. The estimated

location is used to center the spatial grid in (4) on the pedestrian target. According to the model in (6), the radar

echo is received from the center of each cell. Fig. 3 shows the 3-D spatial grid superimposed on the pedestrian

target. The dimensions of the grid cells are defined by the array and waveform parameters. Since we are interested

in resolving parts of the human body located in the adjacent spatial cells, the dimensions of the cells can be chosen

according to the half power beamwidths and the range resolution values. Hence, the cell size in the spherical

coordinates is selected to be △u = [△r,△β,△γ]T = [0.6, 0.39, 0.6]T , which when converted to the Cartesian

coordinates at the range of lp = 100m becomes [0.6, 0.68, 1.04]Tm. Furthermore, the pedestrian is always assumed

to be located inside the 2× 2× 2 spatial grid which results in N = 8 spatial cells. The locations of the centers of

the cells with respect to the center of the grid can be found from the following Cartesian product

△r×△β ×△γ

where △r = [−△r,△r]T , △β = [−△β,△β]T , and △γ = [−△γ,△γ]T . Notice that the spatial grid is assumed

to consist of only the relevant spatial cells i.e. the spatial cells where the target (pedestrian) is located.

IV. DIRECTION OF MOTION ESTIMATION

The model in (6) characterizes a complex extended target by a single parameter θ - the target’s motion direction.

Fig. 5 schematically shows the regression-based target direction of motion estimation approach. The key point of
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this approach is to find a parametric function F , which for a given set of radar echoes xi(θ), i = 1, 2, . . . , N ,

received from the complex target with unknown θ provides the following mapping:

θ̂ = F (β(θ); ζ)

β(θ) = T (x1(θ),x2(θ), . . . ,xN (θ))

where θ̂ is an estimate of the true direction of motion θ, ζ is a vector of regression parameters estimated using

a database of a-priori collected radar echoes received from the complex target with known directions of motion,

and T is a dimensionality reduction or feature extraction transformation applied to the raw radar data. This section

discusses the steps of the proposed regression-based target direction of motion estimation approach shown in Fig.

5.

Tx,Rx

Radar Slow-Time Data

Features extraction

Regression

Fig. 5. Regression-based target direction of motion estimation approach.

A. Data Generation

The first step of the proposed in Fig. 5 direction of motion estimation approach is collection of radar echoes

which contain the MD signatures of the target of interest. The MD radar echoes xi(θ) in (6) received from the

walking pedestrian can be synthesized using a human locomotion model. This work adopts the Boulic-Thalman

model from [26], and its implementation from [22] and [24]. The Boulic-Thalman model is based on the empirical

mathematical parametrization applied to a biomechanical experimental data in order to obtain an averaged human

walking model which does not contain any information about personalized motion features. A walking human is

represented as a stickman with 17 characteristic points, e.g. knees, elbows, thorax. The model provides 3D positions

of the segments of the body defined by these points as a function of time. In total, the motion is described by 12

trajectories, 3 translations and 14 rotations. These trajectories, translations and rotations describe one cycle of a

human body motion - a period between two successive contacts of the left heel with the floor. The cycle is defined

by a relative velocity and height of the human.

The outputs of the Boulic-Thalman model are the time-varying locations of the Q = 17 characteristic points.

These locations are used to calculate the locations uq, q = 1, . . . , Q of the Q body parts. The velocities of the

body parts are obtained as the rate of change of the corresponding locations. Each body part is assumed to be

an independent elliptical scattering center (Fig. 3) with the reflection coefficient calculated using the radar cross
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section (RCS) of the ellipsoid [27]. The radar echoes from the walking pedestrian are generated using the obtained

locations, velocities and reflection coefficients in (3). The slow-time radar echoes in (6) received from multiple

spatial cells are obtained using the spatial grid in (4).

The Boulic-Thalman model is parametrized by the walking velocity vb and the body height hb of the pedestrian.

In order to make the simulated data more realistic the following distortion factors were introduced: a) a randomly

time-varying hb was uniformly distributed between 1.6m to 2m; b) a time-varying vb due to the random acceleration

distributed normally with the zero mean and the standard deviation 0.008m/s2 (initial velocity was vb = 1m/s);

and c) the normally time-varying motion direction θ with the mean value at the true angle and the standard deviation

0.03 radians.

B. Feature Extraction

Since the estimation of the pedestrian motion signatures requires target observations over a considerably long

time-period, the dimensionality of the radar echos xi(θ) becomes large. Processing high-dimensional data is

computationally intensive and requires a large training database (curse of dimensionality problem [18]), thus the

data dimensionality reduction or the feature extraction T is typically used prior to application of the regression

algorithms.

Various feature types for the problem of MD-based target recognition were proposed in the literature during

last decade [28]-[38]. Good classification results were demonstrated using physical model-based features [38],

information theoretic features [31], speech processing motivated features (cepstrum, mel-frequency cepstrum (mfcc),

linear predictive coding (lpc)) [36], [37], and others [30]. However, selection of an optimal feature set for MD-based

target classification remains an open research question.

This work adopts the feature extraction approach proposed in [19], where the sparse dictionary learning was used

to classify human activities via video temporal gradient. The video temporal gradient captures differences between

the two consecutive video frames. In this problem, the video temporal gradient is analogous to the Doppler frequency

shift, since for the short time interval the Doppler shift is linearly proportional to the relative changes in the target’s

position.

The sparse dictionary learning-based feature extraction reduces the data dimensionality to a small number, C,

of basic target directions of motion, whose combination is used to represent all other possible directions. Thus,

the proposed direction of motion estimation process can be presented as a two-stage approach in Fig. 6. In the

first stage, the set of the C sparse dictionaries is learned from the training data. In the second stage, any radar

measurement that strongly depends on the target direction of motion is decomposed in these dictionaries. The rest

of this section describes each stage in details.

1) Stage 1: Dictionary learning: Let Λ = {(X1, θ1), (X2, θ2), . . . , (XC , θC)} be a dictionary training data set,

where an X ×N matrix Xc = [x1(θ
c),x2(θ

c), . . . ,xN (θc)] is the collection of the X × 1 slow-time radar echos

in (6) received from N spatial cells when observing the target moving at direction θc, c = 1, . . . , C. Each column

of Xc (each slow-time signal xi(θ
c) ) is split as shown in Fig. 7 into U overlapping frames of the size K , thus
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Tx,Rx

1. Sparse representation

...=
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Decomposition 

coefficients that 

correspond to the

 1st dictiionary

-//-

 2nd dictiionary

-//-

 Cth dictiionary

=

2. Decomposition in a non-class-specific dictionary

...

Tx,Rx
...

Energy signature

Regression training data

Dictionary training data

Fig. 6. Sparse dictionary learning-based feature extraction. First, a collection of slow-time radar echoes X
c received from the target moving

with direction θc, c = 1, . . . , C is reshaped with overlap into a matrix Y
c of data samples (see Fig. 7). Obtained data samples are then used to

learn a sparse dictionary D
c and the corresponding decomposition coefficients A

c. This procedure is repeated for C basic directions of motion

and the obtained dictionaries are combiend into a non-class-specifict dictionary D. Further, data from the larger set of directions of motions

θct , ct = 1, . . . , Ct is decomposed in D. The obtained decomposition coefficients A
ct
f

are used to calculate the C × 1 energy signatures βct
f

by summing the absolute values of the decomposition coefficients which corresponds to the same basic directions of motions. The obtained

energy signatures are further used to train the regression model for the direction of motion estimation.

forming the K × U data sample matrices1 Yc
i , i = 1, . . . , N . The training data for the cth dictionary contains the

radar echoes obtained from all spatial cells of interest (cells that contain the target) and has the following form

Yc
2KN×U = [R{Yc

1}; I{Y
c
1};R{Yc

2}; I{Y
c
2}; (10)

. . . , R{Yc
N}; I{Yc

N}]

1The optimal overlap percent can vary depending on a particular scenario, and can be determined using a cross-validation procedure.
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Fig. 7. Splitting slow-time radar echoes xi(θc) into U overlaping frames of the size K to form a data sample matrix Yc
i .

where R{·} and I{·} denote the real and the imaginary parts of the argument. Each column vector yc
m, ∀m =

1, . . . , U of the matrix Yc (the mth training sample for the dictionary c) consists of the radar echoes received from

the N spatial cells of interest when observing the target moving with cth basic direction, thereby adding spatial

information about the observed extended target to the training data.

The column vectors in Yc can be represented using the following linear model

yc
m = Dcαc

m + nc
m (11)

where nc
m is the 2KN × 1 additive noise vector with the limited energy, ‖nc

m‖22 < ǫ, Dc is the 2KN × J

possibly overcomplete (J > 2KN ) dictionary with J atoms, and αc
m is the J × 1 sparse vector of coefficients

indicating atoms of Dc that represent data vector yc
m. The dictionary Dc and the corresponding vectors of the

sparse coefficients αc
m, m = 1, . . . , U can be learned from the training data by solving the following optimization

problem
(

D̂c, Âc
)

= arg min
Dc,Ac

1

2
‖DcAc −Yc‖2F + ξ

U
∑

m=1

‖αc
m‖1 (12)

where ‖·‖2F is the matrix Frobenius norm, and the J × U matrix Ac = [αc
1,α

c
2, . . . ,α

c
U ] contains the sparse

decomposition coefficients of the columns of the training data matrix Yc. Minimization of the first summand in

(12) decreases the error between the original data and its representation, while minimization of the second summand

preserves the sparsity of the obtained solution. The coefficient ξ controls the trade-off between the reconstruction

error and the sparsity. The optimization problem in (12) can be numerically solved using modern convex optimization

techniques, and this work uses the SPArse Modeling Software (SPAMS) toolbox [20], [21].

MD signatures for different target’s motion directions have similarities, therefore following the approach proposed

in [19], we construct the following non-class-specific dictionary which contains characteristics of the C basic

directions

D2KN×JC = [D1,D2, . . . ,DC ] (13)

According to this approach every measurement is represented as the combination of the selected basic directions of

motion, while the corresponding decomposition coefficients are used as the features for classification or regression.

Therefore, it is desirable for the learned dictionaries to represent as many data variations as possible. Notice that,

the angles represented in the data set Λ do not have to be uniformly spaced. For example, the pedestrian motion
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directions where the MD signatures are weak (θ close to 90◦ and 270◦) could be represented using more training

data. The selection of the optimal basic directions of motions is a topic of our future research.

2) Stage 2: Signature vectors: The constructed dictionary D obtained in the Stage 1 is now used for the feature

extraction. Let Λt = {(X1
1, θ

1), . . . , (X1
Ft
, θ1), . . . , (XCt

1 , θCt), . . . , (XCt

Ft
, θCt)} be a regression training data set,

where each one of the Ft data blocks Xct
f , f = 1, . . . , Ft is an Xt×N matrix that contains slow-time radar echoes

received from the N spatial cells while observing a target moving at direction θct , ct = 1, . . . , Ct.

Time TF defines the target observation period required for the decision on the target motion direction. Let the

pulse repetition period be Tr, then the target observation time TF and the dimensionality of the regression training

data vector Xt are related as Xt = TF /Tr. In order to represent more directions of motion in the regression training

data without increasing the number of dictionaries, we assume that Λt contains the radar data from a larger number

of different directions than Λ (i.e. Λ ∈ Λt ).

Each of the N columns of Xct
f is split into Ut overlapping frames of the size K to form K ×Ut matrices Yct

fi,

i = 1, . . . , N . Similarly to (10), these matrices are combined into a 2KN × Ut sample matrix, Yct
f . The columns

of Yct
f can be represented using the dictionary D by solving the following convex optimization problem

Âct
f = argmin

A
ct
f

1

2
‖DAct

f −Yct
f ‖2F + ξ

Ut
∑

j=1

‖αct
fj‖1 (14)

where Act
f = [αct

f1,α
ct
f2, . . .α

ct
fUt

] is a JC × Ut matrix of the corresponding sparse decompositions. The JC × 1

vector αc
fj = [(αct

fj)1, . . . , (α
ct
fj)J , . . . , (α

ct
fj)JC ]

T , which is the sparse representation of the jth data sample from

Yct
f in the merged dictionary D, contains the decomposition coefficients of the ctth target’s direction in the basis

constructed from the C basic directions. The contribution of the cth basic direction to the decomposition of the data

matrix Yct
f can be obtained by the following summation of the absolute values of all decomposition coefficients

that correspond to the basic direction c over Ut data samples

(βct
f )c =

Ut
∑

j=1

cJ
∑

i=(c−1)J+1

|(αct
fj)i|

2 (15)

The vector βct
f = [(βct

f )1, (β
ct
f )2, . . . , (β

ct
f )C ]

T can be considered as the energy signature of the data samples

Yct
f , where each entry of the βct

f represents the energy contributed by the corresponding basic direction of motion.

Using the signature vectors as features reduces the dimensionality of the data from Xt to the number of basic

directions C. In addition, the signature vectors capture information about relations between different directions

of motion. Notice that the summation in (15) over relatively small number of samples Ut in Yct
f is expected

to provide significantly higher robustness of the energy signature. Using the signature vectors extracted from Ft

training data blocks for each of the Ct different directions, the following regression training data set can be

constructed: Γt = {(B1, θ1), (B2, θ2), . . . , (BCt , θCt)}, where Bct = [βct
1 ,βct

2 , . . . ,βct
Ft
], ct = 1, . . . , Ct. Notice

that the described here sparse-learning-based feature extraction from the radar MD data and the proposed usage of

the energy signatures are in general applicable to a variety of multispectral data-based classification problems, such

as target’s motion direction estimation, pedestrian activities classification, and ground moving target recognition.
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C. Regression

The regression training data set Γt can be used to estimate the mapping F(β(θ); ζ) between the feature vectors

βct
j and the corresponding direction of motion θct . The mapping function F(β(θ); ζ) is called a regression model.

The feature vector β(θ), extracted from the radar echoes X(θ) that are not represented in the training database, can

be used to predict the unknown direction θ. There are multiple methods that can be used for the regression model

learning, and this work uses the two common method: SVR [40], [41] and MLP-based regression [42].

The performance of the chosen regression model can be evaluated using the testing data set Γs =
{

(B1, θ1), (B2, θ2),

. . . , (BCs , θCs)
}

, where Bcs is a C×Fs matrix which contains Fs feature vectors that correspond to the direction

angle θcs , cs = 1, . . . , Cs. Note that Γs contains feature vectors from the directions that are not represented in

the training data set Γt. In this work the mean squared error (MSE) between the true directions and the directions

predicted by the regression algorithm is used as the quantitative performance metric

MSEcs =
1

Fs

Fs
∑

j=1

[

θcs −F(βcs
j )

]2
(16)

where Fs is the number of available testing radar echoes received from the target moving in direction θcs , and the

mapping function F is obtained by the SVR or MLP algorithm.

V. SIMULATION RESULTS

This section evaluates performance of the proposed direction of motion estimation approach using MD signatures

of a walking pedestrian generated from the Boulic-Thalman model in the scenario described in Section III. First,

the regression error of the proposed direction of motion estimation approach is analyzed as a function of the

SNR and the observation time TF . Then the direction of motion estimation performance is compared for different

radar configurations which result in different number of spatial cells. Finally, in order to provide more insight

about the obtained results, the probability of a target direction of motion estimation error being less than a given

value is evaluated. The slow-time radar data (6) have been obtained using the set of spatial filters in (4), and the

corresponding feature vectors were estimated using the sparse modeling approach discussed in Section IV-B.

The scenarios with C = 12 basic directions of motion, Ct = 20 regression training, and Cs = 36 regression

testing directions were simulated. Fig. 8 summarizes the selected directions of the pedestrian motion. Notice, the

MD signature of the walking pedestrian becomes weaker as the direction of motion approaches the endfire region

around 90◦ or 270◦. Fig. 8 shows that the basic directions chosen for the dictionary training, and the regression

training directions have a nonuniform spacing. Selection of more dense samples of direction of motion in the endfire

region provides more training data and therefore compensates for weaker MD signatures. In addition, in order to

keep the feature space dimensionality low, the number of dictionary training angles was selected to be C < Ct. In

total Ttot = 60 seconds of the radar slow time data were generated for each direction of motion in the dictionary,

and for the regression algorithm training and testing. The parameters of the SVR and the MLP regression were

estimated using a 2-fold cross-validation. Table I summarizes the simulation parameters.
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Fig. 8. Schematic representation of the dictionary training, regression training and regression testing angles.

A. Regression Error

This subsection presents simulation results in a scenario with the MIMO radar configuration with Lty = 4 by

Ltz = 1 transmitting and Lry = 4 by Lrz = 3 receiving arrays discussed in Section III-A, and orthogonal LFM

waveforms with parameters discussed in Section III-B.

The regression performance was evaluated using a regression error criterion, defined as a square root of the MSE

in (16) as εcs = [MSEcs ]1/2. The regression error averaged over Fs = 60 trials for SNR = 15dB and TF = 1sec

is shown in Fig. 9 as a function of the direction of motion. Fig. 9 shows that both the SVR and the MLP have

larger errors at the angles that are not represented in the training sets, and that the error increases at the angles

close to 90◦ and 270◦. These directions correspond to the scenarios where pedestrian walks perpendicular to the

radar boresight and as the result produces a weaker MD signature. This limitation can be resolved by using larger

number of training angles in the expense of increased size of the data sets, feature dimensionality and as the result

the computation complexity and latency. Fig. 9 shows that the SVR outperforms the MLP with the regression error

less than 5◦ for a majority of tested motion directions. Notice that the regression error is extremely low in the

scenarios with pedestrian moving directly towards or away from the radar. Such an accurate estimation performance

is important for automotive active safety features, such as collision avoidance systems.

Fig. 10(a) shows the averaged (over directions) regression error ε = (1/Cs)
∑Cs

cs
εcs , of the SVR and the MLP

as a function of SNR. The target observation time was selected to be TF = 1sec for all simulated SNR values.
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TABLE I

LIST OF THE SIMULATION PARAMETERS.

Parameter Description Value

C Number of basic dictionary

training angles/Feature dimen-

sionality

12

Ct Number of regression training

angles

20

Cs Number of regression testing

angles

36

N Number of spatial cells 8

Ttot Length of the available radar

slow-time database in seconds

60

X Length of the dictionary train-

ing data for one orientation in

samples

60000

K Frame size 32

U Number of columns in Yc 2⌊X/K⌋ − 1, for

50% overlap between

frames

k Number of columns in the dic-

tionaries D
c

750

ξ Regularization coefficient 0.13

Ft Number of data blocks avail-

able for regression training

Ttot/TF

Xt Regression training data block

size (number of transmitted

pulses in TF seconds)

TF /Tr

Ut Number of columns in Y
ct
f

2⌊Xt/K⌋ − 1, for

50% overlap between

frames

Fs Number of data blocks avail-

able for regression testing

Ft

The minimum separation between the two adjacent training angles was 15◦. The error bars indicate the standard

deviation of the error. Fig. 10(a) shows that both methods demonstrate a good performance for the SNR higher than

10dB, and that the SVR slightly outperforms the MLP, providing error less than 5◦ with the standard deviation less

than 2◦. Notice that the simulation results in Fig. 10 were obtained using the MLP network with fixed weights,

and their optimization is expected to improve MLP performance.

Fig. 10(b) shows the estimation error as the function of the target observation time TF for the fixed SNR of

15dB. Notice that the average regression error is lowest when the target observation time is higher than TF = 1sec.

High regression errors for TF < 1 occur since the target observation time interval is too short to obtain sufficient

information about the target direction of motion.
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Fig. 9. The regression error εcs as a function of the target direction of motion θcs for the SVR and the MLP methods. SNR = 15dB, TF = 1sec.

The results for each SNR are averaged over Fs = 60 trials.
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Fig. 10. The average regression error ε for the SVR and the MLP methods for a MIMO radar with the rectangular antenna array (8 spatial

cells): (a) as a function of the SNR, TF = 1sec; (b) as a function of the target observation time TF , SNR = 15dB. The results for each SNR

and TF are averaged over all testing directions and Ttot/TF trials.

The rest of the section presents the simulation results for the SVR regression method only, since it outperforms

the MLP in all tested scenarios.
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Fig. 11. Different spatial grids and corresponding radar configurations.

B. Radar Configuration Comparison

This subsection investigates the influence of the radar configuration and the corresponding spatial grid on the

motion direction estimation. The following five radar configurations that result in different spatial grids shown in

Fig. 11 (the spatial grids shown in Fig. 11 consist only of the relevant cells, i.e. the cells which contain the target)

are compared:

1) The radar with a single-element antenna that transmits a continuous wave (CW): such radar has no spatial

resolution.

2) The radar with a single-element antenna which transmits the LFM waveform with parameters discussed in

Section III-B. Such radar configuration provides the range resolution i.e. the spatial grid consists of the two

cells that are placed along the range dimension as shown in Fig. 11(b).

3) A MIMO radar with a 4× 1 transmitting array discussed in Section III-A, and with a 4× 1 horizontal array

of receiving elements. The beam pattern of such MIMO radar is equal to the horizontal cut through the zero

elevation line of the 2D beam pattern shown in Fig. 4(b). Such configuration provides the azimuth and the

range resolution, but has no elevation resolution. The spatial grid consists of the four cells located in the

horizontal plane (Fig. 11(c)).

4) A MIMO radar with a 4× 1 transmitting array discussed in Section III-A, and with a 1× 3 vertical receiving

array. The beam pattern of this MIMO radar is equal to the vertical cut through the zero azimuth line of the

2D beam pattern shown in Fig. 4(b). Such a MIMO radar configuration provides the elevation and the range

resolution, but has no azimuth resolution. The corresponding spatial grid consists of the four cells located in

the vertical plane (Fig. 11(d)).

5) A MIMO radar with a 4× 1 transmitting and a 4× 3 receiving arrays discussed in Section V-A. The spatial

grid consists of the 8 spatial cells (Fig. 11(e)).

The pedestrian direction of motion estimation performance for the considered radar configurations 1-5 and SVR
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regression method is summarized in Fig. 12. Notice that the configuration 3 with a horizontal receiving array and

configuration 4 with a vertical receiving array have equal number of spatial cells, however the horizontal receiving

array provides a significantly smaller regression error than the vertical receiving array. Therefore, the configuration

in Fig. 11(c) with the spatial cells located in the horizontal plane is more beneficial for the problem of direction

of motion estimation than the configuration in Fig. 11(d) with the spatial cells located in the vertical plane. This

effect can be explained by the fact that the pedestrian’s body parts perform mostly horizontal motions, and their

relative locations can be resolved in the horizontal plane.

This preliminary analysis demonstrates a possibility to improve the pedestrian direction of motion estimation by

proper selection of MIMO radar architecture, and the optimal MIMO radar architecture is the subject of our future

research.
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Fig. 12. The average regression error ε for the SVR method and different radar configurations: (a) show the regression error as the function

of the SNR, and TF = 1sec; (b) show the regression error as the function of the target observation time TF , and SNR=15dB.

C. Probability of Error

Fig. 12 shows that the MIMO radar with a rectangular receiving array and with a horizontal receiving array

have comparable performance. This subsection further investigates the influence of the elevation resolution on the

pedestrian direction of motion estimation performance via evaluation of the probabilities of the average regression

error being less than 5◦, 10◦, 15◦ and 20◦ (a percent of the test frames which have direction estimation error smaller

than a given value) for both MIMO radar configurations.

The averaged probabilities of the regression error for the MIMO radar with the horizontal receiving array and

the MIMO radar with the rectangular receiving array are show in Fig. 13(a) and Fig. 13(c), and Fig. 13(b) and

Fig. 13(d). respectively. Fig. 13(a) and Fig. 13(b) show that for the SNR=15dB and TF = 1sec, the probability

of the regression error being less than 10◦ is 0.95 for both MIMO radar configurations. Therefore, for the SNR

above 15dB the elevation resolution does not provide significant improvement in motion direction estimation, and

good direction estimation results can be obtained with the horizontal antenna array only. However, in the low-SNR
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(TF = 1s) for a radar configuration with the 4 horizontal spatial cells and no elevation resolution; (b) as a function of the SNR (TF = 1s) for

a radar configuration with the 8 spatial cells and the elevation resolution; (c) as a function of TF (SNR=15db) for a radar configuration with

the 4 horizontal spatial cells and no elevation resolution; (d) as a function of TF (SNR=15db) for a radar configuration with the 8 spatial cells

and the elevation resolution. The results are obtained using the SVR method.

scenarios, the MIMO radar with the 2D receiving array has a better performance at the expense of 3 times larger

number of receiving antenna elements.

The performance of the proposed supervised learning-based approach is heavily dependent on the quantity and

quality of the available training data. In the presented simulation results we assumed that 60 seconds of the radar

slow time data are available for each training and testing direction. A smaller training data set would result in a

degraded performance and larger estimation errors. Furthermore, the considered in this paper radar signal model

does not take into account a number of real world effects such as reflections from the road surface, surrounding

buildings, vegetation, other vehicles and pedestrians, as well as the influence of the weather conditions, such as

rain and snow, on the radar signal propagation. These phenomena will significantly affect the quality of the training

data in a practical automotive radar system. Hence, a sufficient amount of training data needs to be collected in

various scenarios and weather conditions such that different propagation and reflection effects are well represented

in the training data set. In addition, the training data set needs to include a diverse population of pedestrians which

have different heights and walk with different velocities in order to guarantee high generalization capabilities of

the trained regression model.
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VI. CONCLUSIONS

This work proposed a regression-based method for pedestrian direction of motion estimation using its MD

signatures obtained by the automotive MIMO radar. Performance of the SVR and the MLP regression methods

was evaluated via simulations as a function of the SNR, observation time and MIMO radar configuration. It was

shown that a good direction of motion estimation performance (with error less than 5◦) can be achieved using the

SVR-based method in majority of tested directions of motion. It was also shown that the estimation performance

improves for motion directions toward the radar, and degrades for motion angles perpendicular to the radar boresight.

Considering various MIMO radar configurations it was shown that the direction of motion estimation performance

improves with increasing the number of horizontal array elements (higher azimuth resolution). Finally it was shown

that for the low-SNR scenarios vertical resolution also improves the direction of motion estimation performance.
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