SONIC IMAGERY: A VIEW OF MUSIC VIA MATHEMATICAL COMPUTER
SCIENCE AND SIGNAL PROCESSING
by
SHANNON STEINMETZ
Bachelor of Science, MSU, 1999

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Integrated Sciences

Integrated Sciences

2016

This thesis for the Master of Integrated Sciences degree by
Shannon Steinmetz
has been approved for the
Integrated Sciences Program

by

Ellen Gethner, Chair
Gita Alaghaband

Varis Carey

April 18, 2016

i

Steinmetz, Shannon (MIS, Integrated Sciences)

Sonic Imagery: A View of Music via Mathematical Computer Science and Signal
Processing

Thesis directed by Associate Professor Ellen Gethner

ABSTRACT

For centuries humans have strived to visualize. From cave paintings to modern
artworks, we are beings of beauty and expression. A condition known as Synesthesia
provides some with the ability to see sound as it occurs. We propose a mathematical
computer science and software foundation capable of transforming a sound a priori
into a visual representation. We explore and exploit techniques in signal processing,
Fourier analysis, group theory and music theory and attach this work to a psychologi-
cal foundation for coloring and visuals. We propose a new theorem for tone detection,
a parallelized FF'T and provide an algorithm for chord detection. We provide an ex-
tensible software architecture and implementation and compile the results of a small

survey.

The form and content of this abstract are approved. I recommend its publication.

Approved: Ellen Gethner

111

DEDICATION

This work is dedicated to my loving family Diane, Kerlin, Brandie, Lathan, Olive
and Wesley Steinmetz, Harry Lordeno, Syrina, KJ, Javier and my little buddies Paco
and Rambo who sat hours on end being ignored while I tapped away at my computer
and scribbled on my white board. I would also like to dedicate this work to my great
friends Charly Randall and Brian Parker who gave me confidence, inspiration and
ideas throughout my life as well as Mike liams, without whom, I’d never have been

given the opportunities that lead me down this path.

v

ACKNOWLEDGMENT

I would like to thank the University of Colorado and all the wonderful folks that
provided us opportunities to share and grow our research. This work could not have
been possible without great mentors. I would like to thank Dr. Ellen Gethner for
her ideas, inspiration and for being the single greatest contributor to my academic
experience. I would like to thank Dr. Martin Huber who showed me patience and
understanding during tough times and offered me this incredible opportunity. With-
out these wonderful scholars I literally would not have made it. I would also like to
thank Jason Fisk for encouraging me to grow and Jim Muller, Dr. Bob Lindeman,
Doc Stoner, Scott Cambell, Dr. Blane Johnson and Jeff Caulder for being role models

and mentors for so many years.

TABLE OF CONTENTS

Tables

Figures

Chapter

1. Introductiono

2. Inmspiration e

2.1 Previous Work
2.1.1 A Little Music Please?

2.2 Signal Basics L.
2.3 Synesthesia
2.3.1 A Colored Hearing Theorem . .

3. Proof of Concept
3.1 Discovery and Approach
3.1.1 A Time Domain Experiment .
3.1.2 Initial Results
3.1.3 Approach
3.1.4 Animation Time Budget

4. Research and Development

4.1 Fourier Analysis and Frequency Detection

4.1.1 Understanding the DFT
4.1.2 A Parallelized Fourier Transform
4.1.3 A Synthetic Test
4.2 Tone Detection and Characterization
4.2.1 A Detector Predicate
4.2.2 Musical Note Characterization
4.2.3 Rigorous Characterization Analy

4.3 Chord Detection and Characterization

SIS

1X

0 N A~ W W

4.3.1 A Chord Detection Algorithm 54
4.4 Melody Analysis 59
4.4.1 A Generalized Parameterized Visualizer 61

4.4.2 Mmmmmm, The Musical Melody Mathematical Modularity

Movement Manager 63

5. Resultso 69

5.1 Experimentation 69

5.2 Survey Results 71

5.3 Conclusions and Future Work 73

5.3.1 Tangential Applications, 74

5.3.2 The Lawnmower Filter 74

5.3.3 An Instrument Fingerprint 75

534 Conclusions o 7

References 78
Appendix

A. Source Code 82

A.0.5 Musical Detect Class 83

A.0.6 Musical Note Class 85

A.0.7 Music Utility Class 87

A.0.8 Chord Class 95

A.0.9 Chord Detection Class 97

A.0.10 Sound Processing Bus Class 100

A.0.11 Media Utilities Class 108

A.0.12 PCM Info Class 113

A.0.13 Melody Analysis 116

A.0.14 Fourier Transform Class 119

A.0.15 Synthesizer Class 122

vii

A.0.16 Complex Number Class 125

A.0.17 Vortex Visual oL o 130
A.0.18 Visualizer Interface oL 134
A.0.19 Visualizer Space 135
A.0.20 Survey Results 137

viil

TABLES

Table

2.1 Music Intervals [25,43]
2.2 (Synesthesia) Note Color Association
2.3 (Synesthesia Tone Color Mapping)
3.1 Time Domain Initial Parameterizations
3.2 Animation Time Budget0
4.1 Fundamental Frequencies [7,38]
4.2 DFT vs FFT Performance
4.3 FFT Performance Extracting the Full Spectrum of Tones
4.4 FFT Versus DFT Accuracy
4.5 Initial Note Guessing Results
4.6 Final Note Guessing Results
4.7 Accuracy of Random Signals
4.8 Detection & Characterization Results (Initial Metrics)
4.9 Detection & Characterization Results (Undetected)
4.10 Detection & Characterization Corrected Results (Final Metrics)

4.11 Chord Detector Basic Test
4.12 Visual Space Axioms

5.1 Questions and Answers

12
12
19
24

1X

FIGURES

Figure
2.1 The Five Features of Music 6
2.2 (PCM) Time Series Graph . . . o o . o oo 8
2.3 Hue, Saturation, Brightness Color Scale [23] 13
2.4 Tigger Stripes, 16 to 31 (Hz) (No Noise) 15
2.5 Tigger Stripes, 16 to 22.05 (Khz) (No Noise) 15
2.6 Tigger Stripes, 16 to 22.05 (Khz), No Noise (left), 50% Noise (right) . . 15
3.1 Example Set of Parameterized Geometric Figures 20
3.2 Symphony - Sound DOgs . .+« o e 20
3.3 Symphony (Beethoven 12’th Symphony,Beethoven Violin Sonata,Schubert’s Moment
MUSICAL) .+« o e e 21
3.4 Techno Electronica - (Termite Serenity,Nao Tokui,She nebula, Termite Neurology) . . 21
3.5 Various Composers - (Debussay Clair de Lune,Mozart Eine Kleine,Mozart Sonata,Chopin
Etude) e 21
3.6 Research approach 0oL 23
4.1 Cosine Function x =cos(t) 28
4.2 x=2cos(2mt) + 3cos(2mt) =5cos(2mt)o 28
4.3 Random Waveform of More Than One Frequency wote: Not an accurate graph . . 29
4.4 Dividing Frequencies, a+bi € C 29
4.5 Geometry of Complex Frequency, C' = Constant Amplitude/Radius, k =
Frequency, n = Real valued coefficient. 30
4.6 Synthesized Signal at 27.5-28 {0 <k <11} 35
4.7 Comparison of Standard DFT to Parallelized FFT 36
4.8 Hanning Window 37
4.9 Synthesized Signal {2049,8000,16000,22031} (Hz) Over 1 Second 39
4.10 Synthesized Tones @ 44.1Khz, {A,C,G#} Over 5 Seconds 46

4.11 Comparison of Real vs Discrete Tigger Theorem (Note vs T'(a))
4.12 Accuracy Plot (Note vs Harmonic vs Percent Accuracy (0 - 100%)) . . .
4.13 Synthesized Random Sounds @ 44.1Khz
4.14 Detection & Characterization Results (Run vs % Accuracy)
4.15 Detection & Characterization Results Corrected (Run vs % Accuracy)

4.16 Use Case (New Note),
4.17 Use Case (Match)

(
(
4.18 Use Case (Refresh) o
4.19 Use Case (Residual) oo
4.20 Use Case (Expiration)
421 Use Case (Kill) o
4.22 D4y Group Exampleo
423 Diy Pitch Class
4.24 Visual Space Example oL
5.1 Beethoven Minuet in G oL
5.2 Techno Electronica (She Nebula)
5.3 Survey Results by User (Music Genre vs Grade %)
5.4 Survey Results, Average Grade by Genre
5.5 Survey Results, Top and Bottom 5 Scores

5.6 Fingerprint Technique

1. Introduction

For centuries humans have strived to visualize. From cave paintings to modern
artworks, we are beings of beauty and expression. Within the very nature of our
language is the underlying desire to express what we feel in terms of pictographic
imagery. The English language is ladled with terms such as ”let me see,” or "see what
I mean,” and rarely do we give the underlying meaning of terms a second thought.
When given new information in the classroom we often desire a picture of the concept
to solidify understanding. When we hear the words “c squared equals a squared plus
b squared” they portray little intuition but when shown a right triangle something
clicks. There is often a chasm between representation and intuition constantly being
filled by new technology and ideas. It is within this chasm we begin our climb.

Our thesis is inspired by the idea of Synesthesia, which is defined as the cross
modality of senses [37,47] and we aim to devise a mathematical computer science
capable of transforming the physical shape of a sound into an intuitive representa-
tion, agnostic of culture or background. For example, imagine a musician with an
instrument connected to his or her computer and as the musician plays s/he sees
amazing patterns, shapes and colors “congruent” to the harmony in real-time that
represents the actual “mood” of the melody. Similarly, one may select a song from
an mp3, mp4, or .wav file and play the music into an application capable of rendering
sonorities! as they emerge. Our research leverages Fourier Analysis, Signal Processing
Detection/Characterization, Computer Graphics/Animation, Group Theory, Musical
Geometry, Music Theory and Psychology. This task is daunting, it requires not only
a profound understanding of a number of advanced scientific disciplines but the abil-
ity to integrate several research areas into a cohesive model involving theoretical,

subjective and experimental methodologies.

LA term in music theory to describe a collection of pitches.

In order to provide a rigorous thesis and still be able to maintain a level of creativ-
ity we address three major fronts: a) the construction of a mathematical model and
computer algorithms b) the substantiation and derivation of a philosophy involving
the human perception of music ¢) the aesthetics of computer generated Art. Building
from the works of Dmitri Tymoczko [42,43], Cytowic and Wood [36,37], Stephen W.
Smith [38], James Cooly and John Tukey [17], Bello, De Poli, Oppenheim [6,22, 30],
Michal Levy [24] and Gethner, Steinmetz & Verbeke [9] to name a few. Our thesis
takes one small step toward the derivation of a model (mathematics, algorithms, soft-
ware and artistic creativity) capable of transforming the physical “shape” of a sound

into imagery divorced from cultural subjectivity.

2. Inspiration
2.1 Previous Work

Since the dawn of the electronic era, mathematicians, physicists, computer scien-
tists and electrical engineers have been attacking the seemingly unsolvable problem
of blindly characterizing a time series !. Whether we are parsing a doppler RADAR
system, human speech or music we leverage much of the same mathematics and
techniques. Our endeavour hinges on the ability to extract notes from a time series
of raw energy impulses. In the 1970’s MIT’s Alan Opppenheim pioneered some of
first techniques in speech transcription and signals analysis. In 1977 the University
of Michigan’s Martin Piszczalski and Bernard Galler implemented one of the first
computer algorithms to transcribe monophonic tones. Later many experts such as
Juan Pablo Bello and Giovanni De Poli added various methodologies to improve tran-
scription of monophonic and polyphonic instruments, high frequency detection, peak
detection, isolation and so on. The field of polyphonic music transcription serves as
a guide to deriving a mathematical model and methodology. A tremendous amount
of work has been done in the area of automatic transcription but sadly, there is
no magic equation and the various approaches come down to their individual trade
offs [6,18,21,22,28-30, 34, 38].

Unfortunately, (or fortunately depending on how you look at it) we must switch
focus rapidly in our research because we draw from so many disciplines at once. We
turn our attention now to the inspiration of musician and author Michal Levy [24]
who suffers herself from a condition known as Synesthesia. In her beautiful, procedu-
rally generated animations one can see choreographed imagery that mirrors the tempo
and flow of a song. Michal Levy constructed several animations to include the title
“Giant Steps” designed to intuitively externalize her condition. Another famous con-

tributor to music visuals is the composer and computer scientist Stephen Malinowsk:

LA series of energy impulses extracted from an analog signal (covered in Section 2.2).

who in the 1980’s constructed a simplistic but effective visualizer which leverages en-
coded MIDI information to create injective animations. Strangely enough Malinowski
was inspired by his experiments with animated graphical scores in 1974 after taking
(LSD) and listening to Bach [26]. This is not only interesting but substantial because

according to Psychological research (LSD) may induce synesthesia [36].

2.1.1 A Little Music Please?

It is well known that music is underpinned by a geometric structure [1,42,43].
For our research it is important to digest a small amount of music theory, especially
when it comes to jargon. Engineers and scientists are known for the compulsion to
name everything and musicians, as it turns out, are no different. One of the most
commonly used terms is the term interval. An interval is nothing more than the
distance between any two notes and should be no stranger to mathematicians as its
meaning is consistent in music theory. However, musicians created confusing labels
for each of the non-negative integers up to and including 12. A scientist could go
insane trying to mnemonically associate the labels since the numeric value in the
label has little to do with the actual interval. Table 2.1 describes the intervals and
their names. Notice that seventh is actually a step of 10 or 11, and sixth is a step of
8 or 9. Wow!

Anyway, we must be aware of this nomenclature as it is vital to understanding
much of the psychological research and music theory research regarding tonality.
We turn now to the fundamental inspiration for our thesis, the work of the great
music theorist and mathematician Dimitri Tymzcko. To be fair to Dr. Tymzcko,
in his own words he states "I am not a mathematician, [43]” however his work in
music geometry contradicts such a claim. Tymoczko’s work is the glue that holds
our suspicions in place. In the book ”A Geometry of Music”, Tymzcko describes
a scientific model for the behavior of music. His claims, many substantiated and

some not, strongly suggests an objective characterization of melody and harmony,
4

Table 2.1: Music Intervals [25,43]

Step Name
0 unison
1 minor second
2 major second
3 minor third
4 major third

5 prefect fourth

6 diminished fifth
7 perfect fifth
8 minor sixth

9 major sixth
10 minor seventh
11 major seventh
12 octave

which boils down to five fundamental features: Conjunct Melodic Motion, Acoustic
Consonance, Harmonic Consistency, Limited Macroharmony and Centricity. Each
of these terms is sophisticated and difficult to understand without a background
in music theory. We will attempt to define these terms intuitively while hopefully
doing justice to Tymzcko’s work. Conjunct Melodic Motion means that some
harmony does not differ in its interval between notes by too large of an amount.
This is substantiated by the fact that changes in frequency, which are too small,
are undetectable and changes in frequency, which are too large are offensive [43].
Acoustic Consonance is the term used to describe that consonant harmonies are
preferred to dissonant harmonies and usually appear at “stable” points in the song.
Harmonic Consistency is perhaps the most important to us as this suggest a
sequence of tones whose geometric structure is similar within some frame of a sound.
Limited Macroharmony can be thought of as the external distance of a passage
of music before a noticeable transition occurs. Centricity should be comfortable

to most mathematicians and engineers as it describes an inertial reference frame or

5

centroid to the sequence of music. Applying the law of large numbers to music theory,
one can almost envision centricity as the expected value of the music. Figure 2.1
provides one interpretation of the five features, excluding consonance. Each frame
represents a macroharmony and within each frame are two chords (represented by
red dots). Notice that the second chord in both frames are a linear combination of

the first (scaled equally).

Macroharmony Macroharmony

Harmenic Consistency Harmanic Consistency

Meladic Maotion

Melodic Motion

— 0@ ®
®

Centricity

. . Centricity .

Figure 2.1: The Five Features of Music

We will leverage the ideas of Tymoczko in Section 4.4 where we attempt to garner
a sense of behavior from a sequence of characterized tones in a time series. For now
we continue onward by discussing the different models for music characterization. It
is important to note that transcription is the primary source of our mathematical
model but we are not attempting to transcribe music here. To bound the scope of
this thesis we will be less concerned with the specific instrument, timbre or music
notation than we are with the raw tones and chords present in any given second of
a time series. Expanding upon both time fidelity and instrument identification may
be part of future work. There are several models that are used when attacking the
problem of music transcription, of them the most popular have been a) Bottom Up
where the data flow goes from raw time to characterized notes b) Top Down where one
begins with a posteriori knowledge of the underlying signal ¢) Connectionst, which

acts like a human brain (or neural network) divided into cells each a primitive unit

that processes in parallel and attempts to detect links d) Blackboard Systems, which
is a very popular and sophisticated system that allows for a scheduled opportunistic
environment that has forward-esque flow of logic with a feedback mechanism based
upon new information [22] [21]. It is the Bottom Up approach we chose to leverage,
largely due to the fact that we intend to process raw sound a priori, which is to say,
independent of a posteriori knowledge. It is at this time we transition our discussion
toward an area of study dedicated to the brain and perception; we speak of course of

Psychology and though it is a small portion of our thesis, it is of major influence.

2.2 Signal Basics

Our research depends upon the behavior of a sound wave. Sound waves travel
through the atmosphere and generally range from 25Hz to 25Khz [6,38] or in other
words 25 cycles per second to 25 thousand cycles per second. As we age the range
of human hearing decreases because our ear fibers become brittle over time and can
no longer sense changes at such a high rate [38]. The human ear perceives sound by
the changes in pressure generated by the frequency on both the up and down cycle
of the wave [38,42]. The speed at which that pressure changes (e.g., the frequency)
is the way in which a brain interprets information as sound. The faster the change
(higher frequency) the higher the pitch and vice versa. The relationship so described
provides a conduit to decomposing the raw information into its basic parts and in
turn algorithmically interpreting and processing information about sound. Most users
generally listen to music in the form of a Compact Disc, MP3 Player, or from a televi-
sion or other stereo source; all of these systems use an encoding scheme called PCM.
PCM stands for Pulse Code Modulation and is the preferred means of transmitting
and storing digital sound information electronically [2,39]. Figure 2.2 illustrates a
simple time domain signal.

If one observes the red line as a measurement of how intense a sound is recorded

over a period of time (going from left to right on our graph) then one can gain a good
7

£ PO -

|
[T = TS IS A L S P

Figure 2.2: (PCM) Time Series Graph

idea of how a sound wave is received. In Figure 2.2 the small blue dots are discrete
points identified along the curve, in this case a 3 Hz analog wave. These Sample
points are where a microprocessor system, such as an analog to digital converter,
would measure the sound wave height and store it for use. The number of times sound
is sampled determines how accurately the digital copy represents the real sound. The
Shannon-Nyquist Theorem [38] states that to accurately represent a signal in digital
form one must sample at least two times the maximum frequency. A common sample
rate found in mp3 files is 44.1Khz. Since normal human hearing tends to run between
20Hz and 20Khz [38] this makes for a good sample rate because by the Nyquist rule we
have 1/2 - 44100 ~ 22K hz being the maximum audible frequency. Such an encoding
provides us with a well defined discretization of an analog sound wave. We now have

enough information to break down the original sound.

2.3 Synesthesia

The psychological condition known as synesthesia involves what is known as a
cross modality of senses [36], where the so-called Synesthete experiences a (usually)
involuntary overlap between some combination of hearing, sight and taste. For ex-

ample one may quite literally taste color, smell sound or more importantly see sound.

We do not offer a rigorous study in Psychology, moreover we intend to leverage ele-
ments of research, particularity in the visualization of sound, as a road map toward
what may be a more scientific approach to visualizing music. Some compelling re-
sults lend credence to our thesis that there exists a universal interpretation of sound.
The core of our conjecture is the idea that one can see the physical “shape” of mu-
sic and experience visuals in a culturally neutral fashion. The research, as it turns
out, seems to support such an idea. The work of Cytowic and Wood in the 1970’s
suggests a relationship between synesthetes and so-called normals (those without
synesthesia) [36,37]. Their research demonstrates a likely connection between synes-
thetes and normals, which suggests that colors are intuitively associated with certain
sounds. Zellner et al. suggests that a version called weak synesthesia is experienced
by most people as opposed to strong synesthesia only experienced by Synesthetes [16].
In addition to color, Synesthetes typically visualize a shape, which is referred to as a
photism [37]. The term photism is used often in the psychological circles and refers
to the geometries and color seen by synesthetes when hearing a particular frequency
or melody. A photism is defined as “a hallucinated patch of light” [3]. Amongst the
research of synesthetes, a photism is used to describe the stimuli when presented with

a tone, chord or complex melody.

A note about the author

The concept of photism can be difficult to explain. When I was young
I used to experience a stunningly choreographed array of color and shapes
whenever I would hear any of my favorite music. Most commonly I would
experience a vortex of spinning gradients that changed in brightness and
hue synchronized to the tempo. Sometimes these vortices would change ho-
momorphically into other polytopes. The experience was involuntary and
intense for several years but began to slowly fade as I aged. I had not been
convinced I had experienced Synesthesia until I read the works of Carol
Bergfeld Mills et al. [5] where the exact conditions I experienced were re-
ported by others. At the start of our research I could not help but feel
unsurprised when learning which colors would commonly be chosen to rep-
resent various frequencies. I was equally unsurprised when presented with
evidence of which shapes were most commonly selected. Now, I understand
why. Although, I no longer possess an involuntary response, I do often pur-

posefully visualize similar photisms when hearing a pleasing macroharmony.

| 'm

As it turns out the idea of visualizing sound is not new, in the 1930’s Otto Ort-
mann mapped out several charts attempting to define ranges and tones and their
corresponding color leveraging the work of Erasmus Darwin (1790) and Isaac Newton
(1704) who both predicted the existence of a pitch color scale [32,36]. We focus much
of our research on the association of tone and frequency that we focus much of our
research. Colored hearing as it is called, is believed to be the most common [36] and
most often presents when played some tone that lasts for more than 3 seconds [5].
Throughout much of the published works on colored hearing there is a common theme,

that is to say, without prior knowledge a substantial portion of synesthetes experi-

10

ence a common scale of color ranging from 26% to 82% concurrence and photisms
whose size and scale s as high as 98% concurrence between synesthetes [5,8,16, 31].
Conveniently, the generalized experience in color and frequency can be heuristically
mapped to a simple algorithm. From the works of Konstantina Orlandatou [31] we
have the ranges of 0 - 50Hz as mostly black, 50 - 700Hz as mostly white, and 700Hz
to 3Khz is mostly yellow. Orlandatou also notes that there is a clear association be-
tween pure tone and singular coloring and vice versa. We see from Lawrence Marks
that there is a quantifiable relationship between amplitude and dimension of a pho-
tism [27]. It has also been observed that noise is generally achromatic ? [5,31]. We
also see in multiple studies [16,31] that pure tones are often seen as yellow and red
whereas a sawtooth tone is seen as green or brown. This can be associated with
the harmonic steps in a melody. Finally, we see that there is a mood associated with
some coloring, which may present a challenge if not for the work of Dimitri Tymoczko
(Section 2.1) wherein the overall behavior of a macroharmony can be decoded with
the use of some music geometry. It is from these works of Psychology and Synesthe-
sia that we derive the following tables, which will act as our algorithm guide going
forward. The contents of Tables 2.2 and 2.3 have been constructed by consolidating
the works of [5,8,16,19,27,31,32,36,37]. These mappings represent direct psycholog-
ical experiments with our own interpolations and statistical averaging of Synesthete

responses.

2Being without color or black/white.

11

Table 2.2: (Synesthesia) Note Color Association

Base Frequency Map N (a)

Note | RGB Color
C/C# blue
D/D# red

E yellow

F/F# brown
G/G# green
A/A# green

B black

Table 2.3: (Synesthesia Tone Color Mapping)

Additive Frequency Map F(a) Pattern Map P(a)

Frequency Range | Note | Color

0 - 50 (Hz) All | black

50 - 700 (Hz) All white Frequency Pattern | Color Effect

700 - 22 (KHz) | All | yellow

Harmonic Stair Step green

2.3.1 A Colored Hearing Theorem
We will now derive a few theorems allowing us to extract a numeric color value

from a frequency.

Theorem 1 (The Roswell Theorem). There exists a proportionate mapping such that

an increase in noise takes any color toward the gray color scale.

Proof: Recall the linear interpolation equation (1—t)P;+tP, with P;, P, vectors
in R™. The value of ¢ ranges from 0 to 1 being a percentage of the total distance
between vectors P, and P;. Let P; be an R? vector of the form (r, g, b) where the

values r, g, b range from 0 to 255 and P, = (128,128,128) (the gray color). Let o

lo]

then we have a
maz(|o])

represent the total noise level of a signal. If we compute ¢ =
ratio of 0 to 1 over the range of the noise. If we substitute ¢ back into the interpolation
equation (1 —¢)P; +t(128,128,128) we have a linear interpolation, which transitions

any color toward gray as noise increases.]

Figure 2.3: Hue, Saturation, Brightness Color Scale [23]

13

Theorem 2 (The Stripes Theorem). Define the binary operators & and o to be addi-
tive color® and color intensity operations, respectively. Any musical frequency a can

be mapped to a color consistent with “Colored Hearing” using the equation

(ryg,b) = (1 —1t)[H(a)o (N(a)o F(a))] + (128,128, 128)

where

-~ mazx(|o])

and o is the noise level.

Proof: Let H(a) be a mapping of the fundamental frequency to an HSV* color
from Table 2.2 and F'(a) be a mapping from any frequency range to an HSV color

(h,s,v) in Table 2.3. When we mix colors with

(h,s,v)o (4, t,w) = (h+7)/2 (mod360), (s+1t)/2 (mod1+¢€),(v+w)/2 (mod1+¢))
(2.2)
according to the surface of the cone in Figure 2.3, then scale the result of (2.2)

according to harmonic k = H(a) such that
ko (h,s,v) = (h,(1—k)/max(k), k/max(k)). (2.3)

The result of 2.3 is a color combination of the observed note-color and general
frequency-color matching that is brighter for higher frequencies and darker for lower.
Assuming that o maps to an RGB?® value, we plug the result of (2.3) into Theorem 1
and the output is a color that simulates a Synesthetes Colored Hearing response. m

Figures 2.4,2.5 and 2.6 illustrate color samples using the “Stripes Theorem“,
which were generated over the frequency range 16 to 22.05 (Khz). In Figure 2.6 we

see a darkened version of the blended colors over the ranges of 16 to 31 (Hz). We

4HSV or HSB is a hue, saturation, brightness color scale where 0 < saturation, brightness < 1
and 0 < hue < 360 [15].

SRGB is a red, green, blue color scale used commonly in computer graphics where 0 < r, ¢, b < 255
[35].

14

Figure 2.4: Tigger Stripes, 16 to 31 (Hz) (No Noise)

Figure 2.5: Tigger Stripes, 16 to 22.05 (Khz) (No Noise)

Figure 2.6: Tigger Stripes, 16 to 22.05 (Khz), No Noise (left), 50% Noise (right)

then generate colors for ~ 22 (Khz) shown in Figure 2.5 where we notice a clear
transition from darker to lighter tones, which is consistent with our proof. Finally, in
Figure 2.6 we add 50% noise to the frequency spectrum (right side), which causes a

clear transition toward the gray scale consistent with Theorem 1.

15

3. Proof of Concept
3.1 Discovery and Approach

It requires so many technical elements to solve the problem of visualizing sound,
so much so that the question of how to begin poses a significant challenge. We must
contend with the logistics of parsing and interpreting PCM, reading from various
devices, the means with which we can display graphical information and all of the
structures and utilities necessary to calculate and render. As with any journey, we
must take a first step and what better step to take than a simple end-to-end proto-
type that can read a sound file and generate some sort of mapped graphical imagery
using only the time domain information. This prototype, or proof of concept if you
will, allows us to learn a few things about our data. We construct a sound processing
framework in the Microsoft Windows environment using C# .Net. This language was
chosen primarily for it’s high performance capability and flexible syntax which allows
us to leverage operator overloading to more easily handle mathematical structures.
We are also able to utilize the raw struct syntax that provides on stack memory allo-
cation as opposed to dynamic memory that provides significant performance decrease
when dealing with random access. The SoundBus Framework, as we call it, is a pro-
cessing framework that utilizes an animation plug-in system where each animation
plug-in acts as an interface that can receive both sound data messages and requests to
render their current content. This allows us to experiment with different algorithms
without losing any previous work. We employ the Microsoft XNA as a graphics ap-
plication program interface API that allows us to speak to the graphics processing
unit (GPU). The NAudio sound processing package that acts an API connecting our
system to the sound input device, frees us from having to implement a device driver
or decompression algorithm. Our implementation is capable of seamlessly processing
raw pulse data from a raw MP3, .wav file, or direct microphone input. At first, we

intended on providing a one-to-one mapping of impulse to graphical element. There

16

are several challenges when dealing with an attempt to synchronize the visualization
of sound and imagery. At 44K impulses per second, a 100Hz refresh and drawing one
image per frame the backlog grows arithmetically as 3(t) = (44100)¢ + (—10000)t.
Even if we increase to 100 images per frame after 10 seconds we have a backlog of
B(10) = 341000 images to be drawn. As a consequence we can never keep up with
the sound that is playing in real-time without creating tremendous clutter on screen
or simply rendering an image the user never actually sees. Thus, we abandon the
one-to-one rasterization! but not the one-to-one calculation. Our framework provides
a stream of sound information to an interface designed to process individual samples
at a time. Simultaneously there exists another interface mechanism that is called
on a 30FPS interval to refresh the computer display. In order to keep the different
streams synchronized we employ a timer system that calculates the current temporal
backlog and flushes data to the graphics calculation. The processing implementation
system then chews off individual data blocks and continuously incorporates the data
into a set of running parameters for our geometric figures. At any given time, the
interface is asked to render itself in its current state. The end result is that we receive
a fluid animation that generally mirrors the pace of the sound and neither gets too

far behind, nor too far ahead if reading from a sound file.

3.1.1 A Time Domain Experiment

The images shown in the upcoming results section are created using the following
approach: we primarily take advantage of statistical characteristics of a sound wave in
the time domain. The implementation receives the PCM over time and parameterizes
a set of simple dihedral geometric figures whose edges are drawn in stages over time
based upon initial parameters. We begin with the set X = {x |z € Z, —2% < 2 < 2¥}
that describes the amplitude data. To minimize clutter we limit the total number

of animations on screen at any time to n € Z*. In our time sampling we deal with

LA term in computer graphics that describes converting memory elements to screen pixels [35].

17

hundreds of thousands of samples in just a few seconds. We must limit the elements
generated so as to not overburden the graphics system and our CPU. Experimentally,
we chose a hard limit of 200 items which we shall adjust later as needed. Let S =
{sk|0 < k < n} represent our parameterized animation elements such that s, =
(0,@25,04,15, r,m,v) with 0 < 0 < a < ¢ < 2zm with 0, ¢ being the starting and
ending angle, o the current angle of rotation, P € 73 the centroid, and r, m are the
radius and color respectively (the color here is the integer form of a bitwise combined
RGB value). Finally, v represents the step that determines the number of vertices
in the geometric figure. We then define a set of mappings f, : X — S that map
time parameters to an animation element, f; : S — R3, that maps an animation
element to the display (a 2 x 2 x 2 bounded region in R?) and f,, : R — Z* where
fo(x) = —1 + |z/ max(x)| - 2, that normalizes data to screen bounds. Table 3.1
contains the initialization parameters that maps elements in X to elements in S.

As a new amplitude is received, an initial state that represents the signal at that
time is constructed by way of the parameters defined in Table 3.1. As mentioned in
Section 3.1 there are two key stages consisting of a paint interval and time step.
When a paint interval occurs the elements in S are rendered as a curve extrapolated
from the set of rotations R = {i|i € Z*",ig = 0,ix1 = ixr + (¢ — 0)/60,i < a}. The
shape is then mapped to the display with a simple linear transformation fy(sy,) =
(rcos(i) + P(Sk)g, 7 sin(i) + P(sk)y, P(sk).); this essentially connects the vertices of
some partially, or fully formed regular polygon on screen over time. Depending on
the current rotational perspective we also paint a disc at the centroid of a geometric
figure whose size is determined by r — (o — 6)/r¢ where r, ¢ # 0 and that produces
a visual singularity type effect. Simultaneously, at each time step we increment the
current angle a of each element s, by @ = a + v. An animation reaches its life’s
end when a > ¢ at which time it is purged. The size, color and vertex count of an

animation element is a direct representation of the shape of the pulse waveform at

18

Table 3.1: Time Domain Initial Parameterizations

Parameter | Value Description

x Current amplitude
Th_1 Previous amplitude
o Signal to Noise Ratio
g Gain

0 |z /255 * 27| Starting angle

o) 0 + |zk_1/255 * 27| | Ending angle

« 0 Current angle

r x/(max(zy) * 2) Radius

v (¢ —0)/30 Rotational velocity

Color Red fn(x) (mod 255) RGB Red Value
ColorGreen | x—1 (mod255) RGB Green Value
ColorBlue | o %255 (mod 255) RGB Blue Value

P, fa(rand() +2g — 1) | Centroid X
P, fn(rand() +2g — 1) | Centroid Y
P, fn(rand() +4g — 1) | Centroid Z

the time it is created. As an additional visual element we also set a gradient tone for
the background based upon the current signal strength where Background RGB =
(0,0, fu((E[X]k — E[X]k-1)/E[X]k)) (mod 128) with E[X] being the expected value.
Note that our display rotates the entire view matrix about the y-axis (assuming
y points north) very slowly in a counterclockwise direction. The rotation angle is
associated with an average of a subset consisting of recent amplitudes in ratio to the

maximum.

19

Figure 3.1: Example Set of Parameterized Geometric Figures

3.1.2 Imitial Results
Our application was run against a handful of music files which, in this case came
from symphony music downloaded from the internet. To use the application one

simply selects the input source, in this case an MP3 file, and then presses play.

Figure 3.2: Symphony - Sound Dogs

20

Figure 3.3: Symphony (Beethoven 12’th Symphony,Beethoven Violin Sonata,Schubert’s Moment
Musical)

Figure 3.4: Techno Electronica - (Termite Serenity,Nao Tokui,She nebula, Termite Neurology)

Figure 3.5: Various Composers - (Debussay Clair de Lune,Mozart Eine Kleine,Mozart
Sonata,Chopin Etude)

21

Figures 3.2,3.3,3.4 and 3.5 illustrate screen captures taken from our application
while playing the specified music. If one observes the images, particularly Schubert’s
Sonata from Figure 3.3 one can see the formation of a conic structure composed of
successive geometric figures. We conjecture we are seeing the physical shape of the
waveform over some duration. This behavior manifests itself throughout most songs.
Though mathematically we have shown that our visualizations are in fact a direct
result of the shape and behavior of the raw time series it is very difficult to qualify
that we are seeing any behavior that mirrors the underlying tonality or melody. The
imagery is captivating and interspersed with brief moments of melodic mimicry and
synchronization but it is not a sufficient demonstration of our thesis. We did however
accomplish the initial goal of constructing a software framework for moving forward.
Portions of the processing source code can be found in appendices A.0.10, A.0.11 and

A.0.12.

3.1.3 Approach

It is time to leverage our research and continue trying to extract what makes the
music behave the way it does. Thus, we may attempt to incorporate such behavior
into our visuals. In order to do this, we devise a plan for our overall model illustrated
as a road map in Figure 3.6. The plan in Figure 3.6 allows us to handle each stage
of the transformation with the level of rigor we deem necessary or possible within
the scope of this thesis. We offer a modular approach to the processing pipeline
insofar as we break our algorithm into several parts. Each stage yields a clear output
that acts as input to the next stage. We do this with the knowledge that we can
both improve each stage independently and add tuning and parameter adjustment
for known shortcomings. We do not abandon a cohesive mathematical model across
modules, nor do we assume that inputs/outputs are mutually exclusive. We merely
strive to break apart the challenges and allow independent research and improvement.

The idea being, when one component of the algorithm pipeline improves, others do
22

| Sound Wave Input r —\| Digital Pulse Information |

|
L= Frequendes

| > Tone 1
e -

| Melody AnalvssEngine [| Groovic Dieglay

Figure 3.6: Research approach

as well. Garbage in, garbage out and vice versa, so to speak. The real beauty is that
we can find partial solutions to an algorithm and still move on to the next algorithm.
This is very important because there are no perfect solutions with detection and
characterization, discussed in Sections 4.1 and 4.2.
3.1.4 Animation Time Budget

As noted earlier, we must be able to process data in realtime and this must be
done quickly enough so as to not to lag too far behind the music. We propose an initial
time budget consisting of 1.5 seconds from time sample to visualization. The time
budget acts as a guide on how to tune performance and accuracy of an algorithm. For
example, we may sacrifice accuracy in a calculation that takes minutes and is done
rarely but is very slow. The concept of the time budget is not new; the Microsoft
XNA graphics environment provides a game clock where paths in the code can make
choices to skip actions on the current cycle, or double up if lots of time is available.
Our time budget, shown in Table 3.2, is a guesstimate based upon experimentation
from Section 3.1 and research regarding the Fourier transform. The time budget is a
soft requirement that allows us to think of the entire processing pipeline as a cohesive
function so we do not lose sight of where we are in time. It is easy to drift off when
focusing on one area and forget that it is a small aggregate of a larger calculation.

23

Ultimately, we expect to see large deviations from our initial guess but we must begin

somewhere.
Table 3.2: Animation Time Budget
Step Allotted Time (milliseconds)
Frequency Detection 600
Note Characterization 100
Chord Characterization 200
Geometry Analysis 100
Melody Analysis 100
Graphics Processing/Rendering 200
Total 1.3 Seconds

24

4. Research and Development
4.1 Fourier Analysis and Frequency Detection

To detect, isolate and characterize the contents of a music signal we must be
able extract the tones from a time series. This implies that we require frequency
information from the time data. The basis for this assumption is from a simple concept
proposed by Bello [22] that implies we must be able to determine two major properties
of any time distribution. First, we identify the significant frequencies within the
sample distribution, specifically those associated with musical tones. Second, we
identify the event time of each frequency. Bello proposes three key values pitch,
onset, and duration which, we will utilize implicitly later on. For the time being,
we constrain our analysis to a one second interval and use the Discrete Time Fourier
Transform (DTFT) [6,38] to extract frequency information from a time series. We
choose our time interval to be one second which, is based upon Synesthesia research
stating that sub-second intervals of tone are unlikely to invoke a response and longer
intervals do not change the response [33]. This also decreases our mathematical
complexity and implementation complexity. The model for extracting tones that

includes all frequencies of the form
fola) =a-(2)" where a e R", neZ* (4.1)

is every value of n that produces a harmonic of the fundamental frequency a. A list
of all the fundamental frequencies is shown in Table 4.1. We refer to the fundamental
for a particular note as fp but we must introduce a few new forms of notation. The
following is more computer science than mathematical and is how we will reference a
“named note” as a function fo("A") = 27.5, f1('A#') = 58.28 and so on. We will also
use the more common notation for a harmonic frequency commonly found in music

texts which is < Note >< Harmonic >, (eg: A4 which implies 27.5 - 24) 1.

YAy = f4('A’) is the fourth harmonic of the set of frequencies fi,("A’) = {440 - (2)*/12| — 48 <
k <39} [22] [38].

25

Table 4.1: Fundamental Frequencies |7, 38]

Note | Frequency (Hz) | Wavelength
Co 16.35 2109.89
C 17.32 1991.47
Dy 18.35 1879.69
D+ 19.45 1774.20
Ey 20.60 1674.62
Ey 21.83 1580.63
F#q 23.12 1491.91
Go 24.50 1408.18
G+ 25.96 1329.14
Ao 27.50 1254.55
A# 29.14 1184.13
By 30.87 1117.67

26

Definition 1 (Music Fundamental Set). Let F' be the set of fundamental frequencies

where F' = {fo('C"), fo(CH#'), ..., fo((B')} as shown in Table 4.1.

Definition 2 (Musical Harmonic Set). Let M be the set of all musical harmonic

frequencies where M = {fo('C") - 2%, fo((CH#') - 2%, ..., fo('B") - 2* VEk > 0}.

Using our definitions? and knowing the specific ranges we are targeting, we can
design our analysis in such a way as to extract a specific subset of the time domain.
We will be dealing with unmodulated data (ie: there is no carrier wave or shift

keying) and assume a maximum sample rate of 44,100 Hz [2] [38].

4.1.1 Understanding the DFT

Mathematically speaking, what is a wave? To answer this we must first examine
the cosine function. Back in Figure 2.2 we saw a 3 (Hz) wave. If we inspect the
cosine function over some period of time ¢ you have the mapping f : R — R where
x = f(t) = acos(t) with {z] — 1 < x < 1} and the peak and trough of the function
are a maximum and minimum of a, illustrated in Figure 4.1 with @ = 1. Remember
the cosine function rises and falls symmetrically over the abscissa and peak to peak
measurements are congruent. Now examine Figure 4.2, which illustrates a very simple
example of how a series of cosine values being added can produce a new waveform.

Suppose that instead of f(t) = cos(t) you had t = 2kmn or f(n) = cos(2kmn)
where k is some constant (the frequency) and n is some real number that iterates
over all possible values of the function for that desired frequency. For the purposes
of Figure 4.2, k would be equal to unity thus yielding x = cos(2-1- 7). Interestingly
enough we have added three waves together, each wave being a single cycle/frequency
of amplitudes 2,3,5 respectively. In general 2,3 and 5 could be measurements of

voltage, power or some other ratio of change between two values such as Decibels

2To assist the reader we try to maintain consistency and definition mnemonic. Notice that F is
the fundamental frequency set and M is all musical frequencies. Whenever possible, we stick with
consistent variable names for frequency, iterants, sets, etc...

27

Figure 4.1: Cosine Function x = cos(t)

Po-Po-

Figure 4.2: x = 2cos(2nt) + 3 cos(2nt) = 5 cos(2nt)

where a = 101og1o(z/0x) [38]. For the moment we ignore intensity and assume our
power levels are at unit. Figure 4.3 is a pictographic representation of a random
wave. Note that this wave is not accurate in terms of its structure but for intuition
only. This image depicts how two waves of different frequencies are able to be added
together to form a new wave just as in the previous example. Using Figure 4.2 as a
starting point one might see that we can reverse engineer the presence of any original
wave within another. How do we do this? By dividing out each frequency we perceive
to be present in the original time series as illustrated in Figure 4.4.

Thus, take the set X = {cos(2mn) + cos(4mn), 0 < n < oco}. How would we
determine if a sinusoid of frequency 2 (Hz) lives within this wave? Essentially, we

would want to ask the wave at every point how much the function f(n) = cos(2-2mn)

28

o e

Figure 4.3: Random Waveform of More Than One Frequency wote: Not an accurate graph

@:p a ¥ [0

Figure 4.4: Dividing Frequencies, a + b1 € C

matches in what amounts to a cross correlation between the time series and the
complex function. Remember, the complex function iterates over all possible values
of a wave at a particular frequency so comparing it to the original time series X at
the same intervals results in a correlation response. However, we do not subtract, we
divide by our search wave at each interval and sum the results. This generates what
is in effect a correlation value whose magnitude is a measure of the presence of our
desired frequency. For example if we were looking for 2 (Hz) signals in the original
wave we could perform the following

Presenceap,) = (4.2)

> oz
cos(2 - 2mn)

alln

Recall Euler’s formula e = cos(x) + i sin(z) where 4 is the imaginary unit. Take
note that if we were to divide by the cosine only we’d have our original Equation 4.2.
However Figure 4.5 depicts the complex plane and the behavior of the Eulier’s foru-
mula. The function Z = Re~ "™ traces a curve in the complex plane, which results

in a perfect circle about the origin of radius R. Within the complex plane itself, it is

29

not apparent how k affects the wave thus we extend along a 4th axis with k = fot. We
then use an orthogonal projection onto some affine plane parallel with the imaginary
axis. Omne can see that the image under the projection is the 2D sinusoidal wave-
form similar to Equation 4.2, the difference being that now we have encoded phase

information into the result of our division.

Imaginary Axis
inary 4D Shadow

Z = CE"i (2kmn)

// Real Axis I

Complex Plane

/

Figure 4.5: Geometry of Complex Frequency, C' = Constant Amplitude/Radius, k
= Frequency, n = Real valued coefficient.

From this model it follows naturally to substitute complex division for our real

division, and the resulting mapping is known as the Discrete Fourier Transform or

(DFT). Then

Xp=) Xy 5" (4.3)

where X} is a set of complex numbers whose magnitudes signify the presence of a
frequency k in the original signal. Additional references for the various flavors of the

DFT and FFT can be found in [4,6,11,17,38,40,41].

30

4.1.2 A Parallelized Fourier Transform

The Fast Fourier Transform is predicated on a number theoretic approach to
factorizing the DFT into smaller pieces. In general this allows us to improve the
computational complexity by extracting factors from an inner summand and per-
forming those multiplications a single time thus reducing our flops from O(N?) to
2Nlogy N [17]. Although there are several libraries that have full implementations of
the FFT we attempt to derive our own mathematical model here. In part, allowing us
to explore the behavior of the computation, but also we assume we may need to fine
tune the computation addressing specifics of our detection algorithm. To maximize
performance on modern hardware we take advantage of this idea on two fronts: a)
by removing factors from the inner summand and b) creating a computation that
can be parallelized. When dealing with the Fourier transform it is common to define
a constant Wy = e '~ which, allows us to deal with a compact form of the DFT
as Xj, = Zg;ol X, Wrk. Taking ideas from the work by James Cooley and John
Tukey [17] and others [4,10,41] we derive a simpler version of the Fast Fourier Trans-

form (FFT) in Theorem 3.

Theorem 3 (A Parallelizable Fast Fourier Transform).

No—1
fo = fla, N1, Na, k) = Z Xaron, Wi
=0 (4.4)

Ni—1

— 1

Proof: Let N, Ny, N, € Z. We obtain Ny, N, by factoring N such that N =
N - N,. Using the n, nth roots of unity Wi¥ let n = a + b N, with integers a, b.

By the division algorithm, we have mappings in a = {0,1,2,...., Ny — 1} and b =
31

{0,1,2,..., Ny —1}. The key is to notice that a is cyclic in Ny and b is cyclic in Ny [17].
This is essentially the same as a two dimensional expansion of the single dimensioned
value n. Observe, when we break apart the DFT using our two dimensional index

scheme we have
_ Ni—1 No—1 (a+bN2)k
Xk' = b=0 Za:o Xa+bN2WN .

If we apply some basic algebra and factor we end up with

WATHNDE _ ek p7oNek which ultimately yeilds

N Ni—1 No—1 ak bNaok
Xk = 240 Za:O Xavon, W Wy

Notice, the only changes in the inner summand are a and k£ which, means we can
extract a function

No—1

fo=fla,Ni,No k) = Y Xowon, WF (4.5)
a=0

If we plug our function back in, and normalize the result by the total sample count
1/N we get

| Mt
Xr = fo- Wi (4.6)

b=0
|

Our derived FFT is approximately 7N?2+ 7N, with this factorization and is com-

putationally more complex than the standard DFT. If we let ¢~*(27/Nz122)

approximate
6 flops, assuming Euler’s Equation ¢ = cos(z) + i sin(x) [48]. The original DFT
ranges over N elements and N frequencies that implies (6 + 1) N - N = 7N?. Observe
that Equation 4.5 is approximately 6+ 1 flops ranging over Ny and 6+ 1 flops ranging

over the outer summand N; which yields N;(N27) + 7Ny from the outer summand.

Given N search frequencies we have N(Ny(7Ny)) + 7Ny ~ 7TN? + 7N, total flops.
32

Although the increase in flops seems to be a computational loss we have an an overall
gain as we have extracted a memory contiguous inner summand with no external
dependencies. This calculation allows us to provide equal sized contiguous blocks
of RAM to independent threads (providing we factor evenly). Contiguous blocks of
independent data per thread minimizes cache contention and decreases overall over-
head associated with locking and context switching [20]. Algorithm 1 approaches the
parallelization of Equation 4.6 by creating a process/thread to execute Ny multipli-
cations and additions each and returning the partial summand that we then add to

a synchronized accumulation variable.

33

Algorithm 1 (Parallel Fourier Transform).

Shared searchRf < {Search Frequencies}, X < {PCM}, ¢ < 0
Private N < Length(X), {N;,N2} < Factor(N)

For i <— 0 To Length(searchRf)
c+ 0
k < searchRf[i]
For a «+ 0To N; —1
Parallel
Private t < 0
Consume c into t

.2maNgk

Producec <t + fyxe '™~

End Parallel
Next
Barrier
X[|k]] < e¢x1/N

Next

%

4.1.3 A Synthetic Test

Before we empirically analyze the performance, we will verify our parallelized
fourier model will correctly extract a frequency distribution. First, we construct a
signal synthesizer utility that generates an artificial signal at the desired frequency

values F' = {f1, fa, -+, fr}. Then, using Equation 4.1 and Equation 4.7 we can
34

interlace those frequencies into a time series. Given a € R, k,n € Z

2rFy xn
X, = Z a * cos(+) (4.7)

all k
where a is the amplitude, n is current sample and N is the sample rate. Figure 4.6
shows our target signal, fabricated with only a single fundamental fy(’A’) and 12
harmonics. The source code for the Fourier transform and Synthesizer can be found

in Appendix A.0.15 and A.0.14.

(Time Domain) fl =275

00—

Figure 4.6: Synthesized Signal at 27.5- 2% {0 < k < 11}

We compare our new Fourier model in Equation 4.6 with the standard DF'T using
the signal in Figure 4.6 to determine if the results are equivalent. Figure 4.7 shows

amplitude measurements for each known frequency are the same between the DFT
35

and the new model. Confident that our algorithms are producing the same peaks
we now contrast their overall performance. We executed each algorithm 5 times and

averaged their speed using a high precision software timer. The results are shown in

Table 4.2.

DFT

FFT

Figure 4.7: Comparison of Standard DFT to Parallelized FFT

Table 4.2: DFT vs FFT Performance

Algorithm Time (ms)

Parallelized FFT 72.2

Standard DFT 192.4

Table 4.2 was computed with fo("A’) and 12 Harmonics on an Intel 3.5Ghz i7 with
16GB SDRAM on Windows 7 Professional 64bit. We compute the overall performance

with Speedup = % [20], which yields 192.4/72.2 ~ 2.66 thus our algorithm is ~ 166%
36

faster than the standard DFT. This will be helpful when trying to extract a large
number of frequencies in a timely fashion.

Before further analysis, we must include another calculation in our Fourier model
in order to deal with issues that arise during the sub-sampling of a time distribution.
We apply a technique known as windowing, which minimizes the effect called spectral
leakage [6,22,30]. The leakage is in response to the transform being applied to a time
series in partial chunks, in our case 1 second intervals. When we sample a portion
of a time series it has been observed that high frequency aliasing may appear at the
seams of the sample space [6,30]. To compensate, the window function allows us
to partially repair this leakage by smoothing the transition. This technique takes
many possible forms and we have chosen the Hanning or Hann window. Figure 4.8
illustrates the graph of a Hanning window, which is essentially the haversine function.
Although there are many different types of windowing functions this one is known
to be effective in musical transcription [6,30]. Equation 4.8 shows the calculation
adjusted for our factorization and when we incorporate w(a,b) into Equation 4.5 we

have Equation 4.9.

=}
T

Figure 4.8: Hanning Window

37

w(a,b) =

DN | —

(1o (2000 s

No—1
1 2m(a + bIN: “
foa = Z (5 (1 — cos <(N——12)))> Xoron, Wi

a=0

(4.9)

Ni—1
X 3 LW
b=0

It follows that we must determine if our algorithm will be effective against the full
spectrum of tones fo('C") - 2% through fo('B’) - 2. We include the Hanning window
in all the following calculations. In order to verify accuracy and performance we
ran Equation 4.9 against a set of synthetic signals, which included a minimum of 12
harmonic steps for every frequency up to and including the Nyquest. The results are
shown in Table 4.3.

We are approaching a key threshold in our frequency detection performance.
Recall from Section 3.1.4 that our time budget allows for 500 ms transform time.
Instead of jumping to a very complicated musical score, we will continue to incre-
mentally “complexify” our signal and evaluate our analysis as we go. You can see
another signal pattern (Figure 4.9) and the resultant FFT values for the specified
frequencies in Table 4.4.

An interesting result is that the DF'T and FFT now differ slightly in their real and
imaginary components. Initially we assumed this was caused by numerical precision
issues in our algorithm but as it turns out we were correct in our assumption. In
Section 4.2 we discovered certain frequency ranges were not being detected properly
and this was due to the fact that we had mixed the frequency search variable type
between integer and floating point causing the e computation to return
rounded results. After correcting the problem the output is exact between the DFT

and our parallelized transform.

38

Table 4.3: FFT Performance Extracting the Full Spectrum of Tones

Sample Rate | Num Freq’s | Ave Time (ms)
8000 96 156.2
16000 108 219.2
22050 120 422.6
32000 120 452
37800 132 569.2
44056 132 624
44100 132 640.4
47250 132 696
48000 132 698.2
50000 132 719.8
50400 132 724.4
88200 144 1334

Figure 4.9: Synthesized Signal {2049,8000,16000,22031} (Hz) Over 1 Second

4.2 Tone Detection and Characterization

Table 4.4: FFT Versus DFT Accuracy

Rf (Hz) | DFT 2-norm | FFT 2-norm
2049 2.500003 2.488039
8000 2.499994 2.488039
16000 2.499994 2.488036
22031 2.49998 2.488338

With our raw frequency detection technique in place we must determine an ef-
ficient and accurate way of characterizing the musical signal in terms of its musical
notes (eg: A, A#, C, etc.). We do not expect to find a perfect technique, especially
when it comes to complex scores, noise and/or percussion instruments generating
anti-tonal sound. We also have to contend with discrete samples of a continuous
wave. It is understood that we will encounter frequency aliasing, frequency loss and
detection ambiguity [6,22,29,30,34,38|. The following detection algorithm began by
borrowing a technique proposed by Jehan [18] which leverages a scaled, homogeneous,
mean squared error of the spectral graph. During our experimentation we we able to

simplify the response detection for our purposes of only extracting dominant tones.

4.2.1 A Detector Predicate

Provided with an amplitude in relation to a particular frequency we must be able
to estimate the musical note, however there is an additional challenge. Recall the
DFT requires us to impose the mathematical floor of real values, thus accommodating
situations where a frequency such as 27.5 (Hz) exists in the original signal but our
analysis produces a peak at 27 (Hz) or potentially 26 through 28 (Hz) or some similar
combination. This could be troublesome going forward however all our frequencies
differ by at least .5 (Hz), which means we can truncate each frequency to the nearest
integer without too much trouble. Given a complex valued frequency distribution X

and a € C we can detect a frequency peak using Equation 4.10.
40

id

2O (X

(4.10)

True S(a) >t
D(a) =

False S(a) <t

The strength of a signal is defined by the expected value of the distribution as
opposed to noise, which is defined to be the standard deviation [38]. This concept
is generally used to detect a signal within the noise floor [6,38]. We approach it
somewhat differently here because our methodology is to only go after frequencies that
we want. We do not transform the entire space of frequencies from 1 to 1/2 - Nyquist
thus our impulse response is constrained to the domain of the &~ 144 frequencies we
care about. We then match the impulse response of the known frequencies against
the maximum impulse of known frequencies; we then trigger a boolean response of
True whenever a frequency exceeds the average signal strength by some tolerance

0 <t <1, which can be tuned later.

4.2.2 Musical Note Characterization

We require another tool in our toolbox for determining which note is played after
a successful detection. After some experimentation we observe that Equation 4.1
“bounces” the fundamental frequency over a step function toward its harmonic. From

this observation we construct the following theorem.

41

Theorem 4 (The “Tigger” Theorem). FEvery element in M can be mapped to a

distinct integer of the form

T(f) = |100 - <§ngﬁ?ﬂ-—»1)J (4.11)

Proof: Given the equation

f

b= Shegm-

(4.12)

Since QUOQJ;(M = 2,316 for some integer c it implies k& + ¢ = |log2(f)], which implies
(4.12) maps any frequency to its fundamental divided by another ¢ factors of 2.
If we compute the values for each fundamental frequency we get T = {1.021875,
1.0825, 1.146875, 1.215625, 1.2875, 1.364375, 1.445, 1.53125, 1.6225, 1.71875, 1.82125,
1.929375}, ordering the set ascending by the corresponding fundamental. When we
subtract 1 from each element we get {.021875, .0825, .146875, .215625, .2875, .364375,
445, .53125,.6225, .71875, .82125, .929375}. When we multiply by 100 and take the
mathematical floor we have the set Q = {2, 8, 14, 21, 28, 36, 44, 53, 62, 71, 82, 92}.
By inspection every element in @ is unique therefore (4.12) maps every element in

M to a distinct integer.]

Definition 3 (Tigger Harmonic Set). Given the Tigger Theorem mapping T : M —

Z, define T to be the set of all Tigger Harmonic values such that T = {T(m), m € M}.

Now that we have a detection and characterization technique we devise an algo-
rithm, which allows us to process any audio input stream and guess the notes within
that stream. We construct our algorithm as follows, Equation 4.6 extracts a portion
of a frequency distribution of a musical time series, Equation 4.10 allows us to detect
the presence of a frequency and Theorem 4 allows us to map that detected frequency

to a musical note. The entire approach is defined in Algorithm 2 and Listing 4.1 and

42

4.2 shows the main structures and methods used by the algorithm.

Algorithm 2 (Note Characterizer).

Notes < ()

Private N <+ Length(SearchRf), i < 0

X « FFT(X, SearchRf)
For k <— 0 To N-1
If D(X[k]) Then
DetectedNotes[i] + T(k)
11+ 1
End If
Next

Return DetectedNotes

Private X « { Sample Inputs }, SearchRf < { fi, fa, ... }, Detected-

43

Listing 4.1: Characterization Structures

// Immutable structure that holds info about

// a fundamental tone.

struct MusicalNote {

// Note enumeration value

public

// The
public

// The

public

}
// Mutable

eMusicNote myNote;
fundamental Rf for this mnote
float myRf;

tigger mapped value.

float myTiggerRf;

structure that holds information

// about an observable tone.

struct MusicalDetect {

// The

public

// The
public

// The

public

// The
public

// The

public

// The

public

}

Starting second the note was seen.
long myTimeOn;

observed frequency

float myRf;

observed amplitude

float myAmp;

note detected.

MusicalNote myNote;

duration the tone was played in milliseconds
float myDuration;

harmonic of the fundamental in myNote.

int myHarmonic;

44

Listing 4.2: Characterization Methods

// Determines the fundamental note from any frequency.
// f := The frequency for which to guess the note.

MusicalNote Characterize (float f);

// Determines which notes exist within the given time

// series starting from offset.

// X := Set of time series samples (PCM)
// sampleRate := The samples per second in X
// offset := Where in X to begin guessing.

MusicalDetect [] GuessNotes(Z2[] X, int sampleRate, int offset);

It is wise at this point to experiment with the algorithm and determine its ef-
fectiveness. Figure 4.10 depicts the time plot of a more complicated (albeit slightly
unrealistic) signal generated with the synthesizer. The signal is composed of three
tones A, C, G# at values of (27.5,1000,2),(17.32, 5000,1), (25.96,7000,2) frequency,
power and time (seconds) respectively. We execute Algorithm 2 on this signal and

demonstrate the results in Table 4.5.

Table 4.5: Initial Note Guessing Results

Time | Found | Expected Amp

0 A A 248.0868
1 A A 248.0868
2 C C 1242.433
3 G G# 1736.93

W
)

G# | 1741.317

45

“'
RLRL A

fo—

-som

\

Figure 4.10: Synthesized Tones @ 44.1Khz, {A,C,G#} Over 5 Seconds

The results of our detection and characterization are promising, however there
are obviously not exact. Recall that the FFT must work with discrete frequency
values thus providing a challenge to the accuracy of the Tigger Theorem. Figure 4.11
illustrates a comparison of the rational valued harmonics versus the discrete harmonics
in the 44,100 Nyquist range. The vertical axis is the image under the Tigger mapping

and the horizontal axis is the frequency (denoted by the corresponding musical note).

100

S0 i

80
70
60 "’_,

Real

50
a0 F e Discrete
30 ‘

ol
o b —

CCCCsCsDDDsDsE EF FFsFsG G GsGs A A AsAsB B

Figure 4.11: Comparison of Real vs Discrete Tigger Theorem (Note vs T'(a))

46

The results are surprisingly similar, however we notice clear deviations that are
most prominent at the fundamentals. We shall attempt to remedy this error by adding
a new characterization step. We require a new set of integer values directly mapped

to the fundamental frequencies and another set directly mapped to the harmonics.

Definition 4 (Fundamental Integer Set). Define Fy to be the set of integers bijective
to I such that Fr = {|F]}.

Definition 5 (Harmonic Integer Set). Define M| to be the set of integers bijective to
M such that My = {|M]}.

Theorem 5 (The Discrete “Tigger” Theorem).

Any fundamental frequency can be mapped to a unique integer.

Proof: We compute by exhaustion the set F; = {16,17,18,19,20,21,23,24,25,27,29,30}.
By observation all elements of F; are unique.]
Theorems 4 and 5 allow us to derive a slightly more accurate approach in the
numerical environment. Given any music frequency value a € M; we attempt our
characterization by determining if the frequency is an element of F; and using the
corresponding note if a match is found. If no match is found in the fundamentals
we compute the “Tigger Harmonic” and search for a match in the “Tigger Harmonic
Set” T so as to minimize |T'(a) — Tx|. We execute this new technique on the same
signal and display the results in Table 4.6. The results are perfectly accurate for our
very simple signal. The source code for the note detection/characterization can be

found in Appendix A.0.7 in the function GuessNotes().

47

Table 4.6: Final Note Guessing Results

Time | Found | Expected Amp
0 A A 248.0868
1 A A 248.0868
2 C C 1242.433
3 G# G# 1736.93
4 G# G# 1741.317

4.2.3 Rigorous Characterization Analysis

We have successfully fine tuned our model to perfectly detect the sequence
A, C,G# so we proceed to perform more rigorous analysis. We start by synthe-
sizing a sound that appends every harmonic for every note into a time series and
execute Algorithm 2 on the time series. Figure 4.12 clearly illustrates the results.

The algorithm appears to break down in the upper harmonics, which has been
observed by bello [22] and others. A high frequency detection method is supplied
by Bello, which could possibly be applied at a later date. For the time being, the
11'th and 12’th harmonics remain ~ 45% accurate while the rest of the spectrum
is 100% accurate. As a final test we synthesize signals, which consist of random
tones at random harmonics for random intervals, creating a more complex sound
of approximately 5 - 14 seconds. Figure 4.13 illustrates one example of the random
sound used in this analysis. We keep track of the ground truth information and use it

to measure the expected output against the guessing algorithm. At first we generate

only a few signals and run them through the detector. The output can be seen in

Table 4.7.

48

Table 4.7: Accuracy of Random Signals

Time | Found | Expected Amp
0 G G 983.947 Time Found Expected Amp
1 G G 983.947 0 F F 2219.488
2 F# F# | 2487.615 1 C C 2048.204
3 A# A# 963.4857 2 C+# C+# 2557.707
4 G+# G+# 2223.319 3 G B 10.61324
5 G# G# 2223.319 4 A A 2507.143
6 F F 1707.491 5) A A 2507.143
7 D D 1086.08 6 C C 1920.38
8 G G 1142.743 7 G G 2351.047
9 G G 2419.794 8 G G 2351.047
10 D D 2255.06 9 Undetected F# 5470.793
11 B B 2432.167 10 Undetected F# 5470.793
12 B B 2432.167
Time | Found | Expected Amp
Time | Found | Expected Amp

0 A# A# 1157.51
0 F F 1927.708

1 T4 F# | 972.2834
1 F F 1927.708

2 D+# D+# 564.4082
2 E E 1222.492

3 A# A# 513.2103
3 E E 1222.492

4 C# C+# 1556.932

49

Figure 4.12: Accuracy Plot (Note vs Harmonic vs Percent Accuracy (0 - 100%))

Figure 4.13: Synthesized Random Sounds @ 44.1Khz

As expected, the guesses are fairly accurate but we we need more information to
determine how accurate, so we proceed to automate a very rigorous test over hundreds
of random signals. We tally the results into three areas, Figure 4.14 shows the success
as a percentage of accuracy over time, Table 4.8 demonstrates the overall performance
and Table 4.9 shows us the tones and ranges that were undetected.

The execution time is well below what was expected since ~ 8 seconds of time

only takes =~ 1.6 seconds to guess the tones. This leaves us a substantial amount of
50

Table 4.8: Detection & Characterization Results (Initial Metrics)

Total Runs | Ave Sample Time | Ave Guess Time

Overall Accuracy

200

8.435 (s) 1675.49 (ms)

86.60344%

Table 4.9: Detection & Characterization Results (Undetected)

Undetected Note | Times Frequency Amplitude
C 17 | 35471.36 - 35471.36 (Hz) | 2557.409 - 9612.205
C 41 28160 - 56320 (Hz) 1008.208 - 10325.92
C 17 | 26583.04 - 53166.08 (Hz) | 1367.82 - 10405.38
C) 22353.92 - 44707.84 (Hz) | 1348.063 - 10926.15
C 21 23674.88 - 47349.76 (Hz) | 1836.552 - 10948.71
C 30 31610.88 - 63221.76 (Hz) | 1796.666 - 10658.98
C 10 33484.8 - 33484.8 (Hz) | 1145.468 - 7371.489
C 29 25088 - 50176 (Hz) 1211.848 - 10403.89
C 24 29839.36 - 59678.72 (Hz) | 1711.161 - 10979.81
C 9 37580.8 - 37580.8 (Hz) | 3221.58 - 10981.38
C 10 42188.8 - 42188.8 (Hz) | 1913.405 - 10745.18
C 8 39833.6 - 39833.6 (Hz) 1283.639 - 10054.6

o1

120

B‘] -5

20 HH|
0

Figure 4.14: Detection & Characterization Results (Run vs % Accuracy)

processing slack for melody analysis. However, the accuracy of &~ 86% is fairly good
but does not seem to follow with our 100% accuracy in Table 4.5. After careful obser-
vation of Table 4.9 we discover a phenomenon. Notice that all undetected instances
of C are above the Nyquist frequency of 22.050 (Khz). Recall we are sampling at 44.1
(Khz), which means that 22.050 (Khz) is the maximum detectable frequency. As it
turns out our tone generator has a very simple but significant defect. At octaves above
12 it creates frequencies above the Nyquist range. We correct the issue by limiting
the synthesized frequencies to the Nyquist range and re-run our analysis. The results
are excellent. Table 4.10 and Figure 4.15 shows that we are now at 100% accuracy
running = 500% times faster than real time. As previously stated, no algorithm will
be perfect, thus we expect to see a margin of error when processing real music, but

for the time being we are confident enough to move forward.

52

Table 4.10: Detection & Characterization Corrected Results (Final Metrics)

Total Runs | Ave Sample Time | Ave Guess Time | Overall Accuracy
8.855 (s) 1814.64 (ms) 100%

o R
N MR R D
- MMM R
- I
- A M
. R
. IR
- R

AR R

AR A
Lo T T I I e I | — o~

— - — = d - -
— M~ Mo W M~ 0m 2 A ™Mo i w o~ 3m
N A A - -

Figure 4.15: Detection & Characterization Results Corrected (Run vs % Accuracy)

4.3 Chord Detection and Characterization

A musical chord can be difficult to clearly define, especially when we diverge from
western music and include the idea of inharmonic or dissonant tones. Informally, a
chord is a set of notes played at the same time but to limit confusion and enhance
scientific rigor we adopt Tymoczko’s algebraic definition of a musical object that is
“an ordered sequence of pitches [44]” whose elements are vertices of an element in the
Dy, group®. To precisely detect and characterize a chord is very difficult. Our tone
characterization provides us with a set of musical notes but we must determine the

starting time and duration of groups of notes which form a chord. This is especially

3The dihedral group on 12 vertices. Discussed in detail in Section 4.4.

53

tricky when dealing with sub-band* onset of multiple tones combined with low latency.
Remember from Section 2.1 that a synesthetic response is triggered by a tone being
played for at least 3 seconds. We wish to elicit this same response in normals and
we conjecture that a preferred response in normals is more likely when mirroring the
stimuli of synesthetes. The reason being that all humans share common neurological
components in auditory and visual cognition and most people experience some kind
of synesthesia [16,37,38]. Nevertheless, at this point one would prefer a sub-second
knowledge of tone onset to aid in chord identification. For example, suppose we had a
two second interval and our characterization algorithm produces the notes {A,C,G#}
and {A,D,E}. We don’t know at what times within the second any of the tones started
only they exist somewhere within the second. Nothing prohibits an A’ note from
playing for 25% of the first second and 50% of the next second and our detection
would not specify which portion of the second it began or ended. We shall add a high
fidelity time model to our list of future work and press onward with our 1 second

fidelity.

4.3.1 A Chord Detection Algorithm

In order to identify a chord we employ a straightforward technique but first we
must discuss some terminology. The term residual as used in this section, will refer
to any unison tone not immediately paired with an existing chord. We use the term
minimum duration to represent the minimum time (milliseconds) a note is played.
Figure(s) 4.16, 4.18, 4.21, 4.19, and 4.17 show the Use Cases® for our algorithm. It
should be noted that our algorithm is agnostic to time fidelity so future work will
employ the same algorithm even if we adjust sub-band frequency extraction. We

break our cases into New Notes, Match, Refresh Chord, Residuals, Chord Fxpiration

4We use this term in this context to refer to space in the sampling less than the current Nyquist
sample rate.

°In Software Engineering a Use Case defines the concept of operation of an “actor” and the
interaction with a particular interface, machine or domain.

54

Use Case (New Notes:)
o Assumption: None.

1 A set of new notes are characterized.

2 If no Match: is found Residuals:.

3 If Match: is found Refresh Chord:.

3 Increment step time to the maximum of all notes-onset time.

4 Run Chord Expiration:.

Figure 4.16: Use Case (New Note)

and Chord Kill. Each case is a sequential portion of the grander algorithm with
New Note being the entry point and Match being a utility for comparison of notes.
We use the class structure in Listing 4.3 to manage the chord construction. We call
this class the ChordDetector and it acts as a state machine that behaves accord-
ing to the algorithms described by Use Cases 4.16, 4.18, 4.21, 4.19, and 4.17. The
chord detector class accepts one to many tones in the form of a MusicalDetect array
(Listing 4.1). ChordDetector makes no assumptions about the incoming tones and
attempts to merge items by time and duration into appropriate chords or unison
tones. The source code for the chord detector can be found in Appendix A.0.9, and

A.0.8.

5}

Use Case (Match:)

o Assumption: Let n be any existing note and m be the incoming note, 7T'(---) is

the time onset and D(:--) is the last known duration of a note.

1 If fo('n') == fo('m) and if fr('n’) == fr('m’) for some k and if T(n) <

T(m) < T(n)+ D(n) we have a match.

2 Otherwise no match.

Figure 4.17: Use Case (Match)

Use Case (Refresh Chord:)
o Assumption Matching note found.

1 If a matching note is found in an existing chord and increment duration by

minimum duration.

2 Else if a note with the same onset time is found add note to chord.

Figure 4.18: Use Case (Refresh)

26

Use Case (Residuals:)
o Assumption: No matches to the note.

1 Start a new chord.

2 Add note to chord.

Figure 4.19: Use Case (Residual)

Use Case (Chord Expiration:)

e Assumption: Let n be any existing note and 7'(-- -) is the time onset and D(---)
is the last known duration of a note. Step Time is a counter that holds each

interval of minimum duration that has passed.

1 If T(n) + D(n) < (Step Time) for any note, remove that note.

2 If all notes expired Kill Chord..

Figure 4.20: Use Case (Expiration)

Use Case (Kill Chord:)
o Assumption: All notes expired in chord.

1 Remove the chord from the dictionary.

Figure 4.21: Use Case (Kill)

57

Listing 4.3: Chord Detector Class

// A chord structure that holds notes played at the same time
class Chord {
// List of notes in this chord.
List <MusicalDetect> myNotes;
}
// Manages a set of chords detected in real time.
class ChordDetector {
// The current time step in units of myMinDuration.
// incremented on each call to New Notes.
private long myTimeStep = 0;
// The list of currently held chords
private Chord myChord;
// Add new notes to be detected and added to a chord
// or create new chords.
public void NewNotes(MusicalDetect [] newNotes);
// Request all currently held chord structures.
public Chord GetChord ();

}

Fortunately, it is easier to verify this algorithm because the data space is smaller
and the algorithm is in fact deterministic. Table 4.11 demonstrates the input series of
notes manually constructed to try to fool our algorithm. Notice that from time 1 to
time 2 our algorithm is not fooled and properly removes tones A2 and G#3. It also
compresses B4 into the same note and properly disposes of C2 from time 2 to time

3. If we experience issues later in our implementation we will revisit a more rigorous

o8

Table 4.11: Chord Detector Basic Test

Time 0 1 2 3 4

Notes | C2A2G#3 | C2A2G#3 | C2B4B4| B4 AdG#4 | Bl Ad G#4

Expected | {C2,A2,G#3} | {C2,A2,G#3} | {C2, B4} | {B4,A4,G#4} | {B4,A4,G#4}

Output | {C2,A2,G#3} | {C2,A2,G#3} | {C2, B4} | {B4,A4,G#4} | {B4,A4,G#4}

test of the chord characterizer.

4.4 Melody Analysis

In this section we explore the analysis of the music as a cohesive set of chord
progressions wherein a chord may consist of a single note. We treat each chord as
a geometric musical object so before we begin the melody analysis using the five
features of music in Section 2.1. Our melody mapping is based upon the notion that
music has some kind of center; musical objects that move in small increments and
are consonant are more pleasing and that similarly of chord structures are expected
to appear often.

We must quickly mention the algebraic groups, specifically the dihedral group.
The dihedral group is the group of symmetries of a reqular polygon in n vertices [12].
To bound the scope of our thesis we do not offer a rigorous education in group theory
but we do offer a simple intuitive explanation of the dihedral group. Suppose you
have a planar graph with four vertices. You embed the vertices in the 2D cartesian
plane such that all vertices are symmetric and equidistant from (0,0). If we arbitrarily
label each vertex as in Figure 4.22 we have the dihedral four group often referred to as
Dy. The first image of Figure 4.22 shows position 0, which we deem the identity. The
second image is a clockwise rotation about the origin of 90 degrees. If we continue
to superimpose the vertices in every permutation and label each configuration, those

labels combined with a binary operation form the group. It is called an algebraic

29

r0 rl F:'Z/\
Figure 4.22: D, Group Example Figure 4.23: D, Pitch Class

“group” because it can be shown to possess closure®, associativity, inverse and identity
of the binary operation and its elements [13]. In the case of the symmetric group we
use the o operator to denote the binary operation. For example rOorl =r1 =1r1lor0,
giving us the identity in r0. Similarly, r1 o 71 =72 and r1 o 71> =71 o r1~! = 70.
Because we return to the identity element r13 is the inverse of r1. This can be thought
of as taking the value of 90 deg +(90 deg)® = 0 (mod 360). One final way to envision a
group inverse and identity is using the familiar real numbers. Notice that the inverse
of the value 2 is 2- 3 = 227! = 1 whereas the identity of 2is 2-1 =1-2 = 2.
The algebraic dihedral group simply uses a new fancy label for familiar concepts such
as inverses and identities. It is within these group structures that we determine the
behavior of the music.

We analyze the melody according to the Pitch class, a term in music theory
referring to the Djy group with musical notes shown in Figure 4.23 [45] (throughout
this section we will interchange the terms pitch class and Diy). Using the five tenets
of music we construct a pattern analysis designed to capture the flow of the melody.

Our Chord Detector can extract enough information to assign a value of the D15 group

6Closure of a group implies that the binary operation on two elements results in another element
within the same group.

60

to each note of a chord, which forms a subgroup of the group. There are many changes
to a subgraph that can occur but two key changes are known as distance preserving
functions transposition and inversion. Transposition and inversion are analogous to
the geometric operations of translation and reflection [46]. The smaller the translation
value the harder it is to detect the change [46] and vice versa. Inversion, according to
Tymoczko, has a similarity property wherein inversely related chords sound similar.

We will use these ideas to help guide our mappings.

4.4.1 A Generalized Parameterized Visualizer

Much like our proof of concept in Section 3.1 we want to produce similar output
on screen but using more rigorous musical information. Remember from Table 3.1
that the initial implementation is directly linked to the time series. In order to facili-
tate the use of the five features of tonality we must break the time series association,
refactor our code and generate a robust and re-useable animation widget. Construct-
ing various animation components can be very time consuming and complicated. In
future work we intend to experiment with a myriad of visual behaviors but for our
current scope we will re-use the current work. This means we want to be able to plug
in a new animation without having to re-wire visual calculations or depend on visuals
tied closely to the type of data. We created a class structure and interface designed
to help us de-couple the renderings from the analysis logic. To that end, we define a

new space.

61

Definition 6 (Value Space). A value space is a vector in Q™ whose elements are
values ranging from 0 to 1, ordered by the importance of the value from lowest to

highest.

Definition 7 (Color Space). A color space is a set of integer RGB wvalues ordered

from lowest to highest importance.

Definition 8 (Focal Space). A focal space is vector in Q™ whose elements are values
from 0 to 1, suggesting a reference point or centroid of activity somewhere within the

value space.

Definitions 6,7, and 8 allow us to discuss some geometry with very specific values,
without having to know specifically what that geometry will be. When we combine
all these spaces together we have our visual space, which can be used to parameterize

the drawing or animation engine.

Definition 9 (Visual Space). A visual space is an object that contains a value space,

focal space and color-space along with

Spectacle - A value from 0 to 1, with 1 being
more “fancy” and 0 being dull.
Mazimum elements - A wvalue that specifies a hard limit on

the number of generated elements.

We create a new interface called [Visualizer meant to be implemented by an
animation engine that draws things on screen. We need a way to tell the visualizer
how to draw according to our music, so we provide a class structure called VisualSpace

that conforms to our definitions. The visual space provides intuitive information that

62

Table 4.12: Visual Space Axioms

Axiom Description
a All values are considered to be homogeneous to one another and all data going forward.
b Whenever possible values should range from 0 to 1.
c Unless not supplied, all supplied colors are to be used and derived colors are to be

gradients of supplied colors.

a “knowledgable” algorithm can compute ahead of time and offer the animator. The
visual space decouples the animation implementation from engineering units or the
type of data. There is an implicit agreement between the visual space and animation
engine, which includes the tenets of Table 4.12.

As we progress we may add more parameters to the visual space but for now we
move on to the melody and how we intend to extract useable values that can be fed
the visual space. We attempt to describe the heuristics without getting too far into
the source code, but the full melody analysis source can be found in Appendix A.0.13.
The source code for the IVisualizer and our initial animation engine (derived from

the time domain animation) can be found in the Appendix A.0.19, A.0.17 and A.0.18.

4.4.2 Mmmmmm, The Musical Melody Mathematical Modularity
Movement Manager

If you are not chuckling you may not be ready to digest this approach. The
technique we propose requires us to leverage everything we’ve considered up to this
point. We approach transformation of melody using Tymoczko’s five properties as a
guide and exploit transposition and inversion to help create reasonable values. From
Section 4.4.1 we need to parameterize the visual space in a way that makes sense.
Unfortunately we must bombard the reader with several more definitions and theo-

rems; however each definition is a critical component in calculating the visual space.

63

Theorem 6 (Angry Tigger Theorem). Given a chord C with N tones each having

frequency a, we can approximate a value of consonance ranging from 0 to 1

N-1N-1

1
v=sm 2. D lai—ajl
j=0 i=0
' (4.13)
1 ife <z>e6
X =
2z=a stherwise

2e0—e€1

with 1 being “most” consonant.

Proof: It has been observed that two notes being played, which are very close
together in frequency but not exact causes a dissonant tone [38,43]. Given the fre-
quencies of a chord {as, as, -+ ,an} we compute the sum of |a; — a;| for all 4,5 < N.
We then take the average by multiplying N2—1_N subtracting NV in the denominator to
exclude items compared with themselves (which are necessarily zero) and assign this
value to x. Let ¢; be the difference in frequency between the A and A# notes, and
€2 be the difference between the A and B notes. Let) = 5 and P, = €; such that
x = (1—1t)Py,+tP,. Note: we divide €5 by 2 to ensure we have a value that is very

close, but not exactly equal. If x is less than €; or x is greater than e; we deem it

consonant and return 1, otherwise we have a linear interpolation between P, and P,

. —e1/2 _ . .
as a function of ¢ thus x = (1 —)G +te; = ¢t = 27611//2 = 222’;7?1, which yields ¢ as a
function of z. Since t is a value from 0 to 1 where 0 is equal to § and 1 is equal to

€2, we have a measure of consonance from 0 to 1. [

64

Definition 10 (Magnitude of a Chord). Given chord C' = {ci,cs, -+ ,cn} where n is
a named note, the magnitude of a chord is defined to be the average frequency scaled
by the average harmonic value
| NN
p= mZZfo(Ck)'H(Cj) (4.14)
j=1 k=1
Definition 11 (Centricity of a Chord). The centricity of a chord C = {c1,ca,- -+ ,cn}
where ¢ is a named note, is defined as the origin about which a chord is centered with
regards to both the harmonic value and fundamental frequency.

The Harmonic Centricity

N
O = %]; H(cy) (4.15)
The Fundamental Centricity
|
Or =+ ; folcr) (4.16)

Definition 11 describes centricity with respect to a single chord. We must also
maintain the overall centricity of melody across all chords as they progress with re-
spect to both harmonic value and pitch. We will refer to these values as ©y and
Op. We have the ability to measure things about a chord, but we need the ability
to analyze change, this means additive change in regards to octave and pitch class.
Technically speaking, the computer system does not support group operations of D1
since they are non-numeric/symbolic. To solve this we assign a unique integer value
to each vertex as shown in Figure 4.23. This yields the (Z;5, +) group, which is iso-
morphic to the cyclic subgroup < 1 >= {rg, 71,72, -+, 711}, which is all the rotations

of (Di2,+). We leverage the fact that any finite cyclic group of order n is isomorphic

65

to (Zn,+) [14], thus we can deal with translations of our notes as positive integers

modulo 12.

Definition 12 (Change of a Chord). The change of a chord is a value from 0 to
1 where 1 means a large change in tonal structure. Let C,D be two chords whose
elements are from Zyy sorted in ascending order. Given m = max(|C|, |D|) where |- |
is the order of the set, we define X = {C,04,--+ ,0x, D,0y,---,0;} where k < |C|—m
and | < |D| —m, as the joined notes of C' and D whose order is divisible by 2 with
zero fill respectively. Let Y = {|X; — Xyym|} with 0 < t < m be the differences
between respective notes of C' and D, which works because we have zero filled for
uneven chords. If o is the standard deviation and E the expected value, we compute

the change of a chord as

(4.17)
EY)#0

Definition 13 (Spectacle of a Chord). Given successive chords C' and D, whose tones

are mapped to Zis the spectacle of a chord is a measure from 0 to 1 where

1 C.—D
Sk+—‘ k — Dil

Although mathematically straightforward, Definition 12 can be tricky to envi-
sion. We are taking the differences between notes in two chords to determine to what
extent they have changed uniformly. If the differences between the notes of any two
chords are uniform (ie: a transposition) we have a value of 1 and something less than
1 otherwise. When we combine everything we’ve discussed so far we can begin to see
the formation of the view space of a chord. Based upon the previous definitions and

theorems, we propose computations allowing us to transform a series of chords and
66

subsequently their behaviors, into the visual space. We call this “Tigger’s Roar”.

Definition 14 (Tigger’s Roar). Given a series of chords processed in time order the

view space of a chord is defined to be

Values:
(v1,v2,v3) = (u, p+ A, O0pr)
Focus:
(c1,c2,¢3) = (0,0,A)
Colors:
(RGB1,RGBy,- - ,RGBy) = The Stripes Theorem
Spectacle:
Definition 13
Elements:

E =30+ (1 — x) %50 + Spectacle = 50

The notation in Definition 14 may be confusing. It is assumed all calculations
are done with respect to the appropriate centricity and the most recent chord in
the sequence. Definition 14 is really an amalgamation of our work combining the
properties of music, Synesthetes response, Fourier analysis, note and chord detection
and changes to melody over time. It is our final calculation and there is not much
at this point that can proven mathematically.Figure 4.24 illustrates the visual space
computed using Definition 14 against 100 seconds of symphony music. It appears we
have, at least in part, achieved our goal of a view space that represents the changes
of the melody. As desired the primary focus and primary value demonstrate a strong
correlation, which means we have captured harmonic consistency. It would also seem
we have addressed centricity in the focus space because the secondary and tertiary

foci are stable and consistent, which follows the theory of conjunct melodic motion.

67

1.2

T e S—
08 —Valuel

—Value 2
S Elue 3
08 | l,
m— Focusl
m— Forus
o4 - i m— FOCUs3
N \W \ B
0.2_ L] L
e -
O rmrrrrrrrTrrrrrr T T T T T

14 71013161922252831343740434649525558616467 70737679828588919497

Figure 4.24: Visual Space Example

It is encouraging to see that the third element of the value space spikes only a few
times. Recall that this is the chord magnitude scaled by a dissonance factor so we
would not expect to see this value grow often. Unfortunately, it is impossible to truly

deduce how the animation engine will behave from this graph.

68

5. Results
5.1 Experimentation

At this point we can only speculate as to how well our data will reflect the music.
We must press onward and integrate the view space algorithm into our original time
domain engine and visually examine the results. Figures 5.1 and 5.2 illustrate output
using the melody-parameterized view space from Section 4.4. We will leave a more
rigorous study and discussion in the various animation techniques for future work;
for the time being one can see our current implementation in Appendix A.0.17. The
imagery is stunning and we observe consistent connections between tone change and
coloring as well as a coarse association between the geometry and melody. Unfor-
tunately, it is impossible to capture the behavior of a fluid animation sequence in a

document.

Figure 5.1: Beethoven Minuet Figure 5.2: Techno Electronica
in G (She Nebula)

Our thesis addresses the construction of a processing framework capable of detect-
ing frequencies, characterizing tones and generating a parameterized geometry from
the music. At this point we have only scratched the surface in terms of the ability to

visualize melody but our prototype demonstrates interesting behavior. For the time
69

being we would like feedback on our progress so we devise a survey and supply it to
a small number of individuals. We created an application and framework that plays
several songs to a listener. Each song is followed by a questionnaire whose results are
tallied and emailed to us upon completion. The questions are based upon a weighted
system where we define either positive or negative results from the response. The
areas of discovery are as follows; a) neutralize any bias toward the music genre b)
neutralize a bias toward the aesthetics ¢) heavily weight “positive” associations of

“mood” and synchronization. To that end we devised the questions and answers in

Table 5.1.
Table 5.1: Questions and Answers
Importance Question
2 Do you like this type of music? Weight Answer
3 Were the visuals aesthetically pleasing? 1 Unsure
8 How much do you feel the visuals matched the “genre” of the song? 5 Strongly Agree
8 Were the visuals in sync with the music? 4 Agree
10 Do you feel the visuals captured the “mood” of the music? 3 Disagree
10 Did you see and hear enough to answer questions? 2 Strongly Disagree
5 Did the visuals keep your attention?

To calculate the score per module, where each module is associated to one song,
we let @ = {q1, q2, ..., qx} be the importance of each question based on Table 5.1, A =
{ai,as, -+ ,a} be the answers to each question. We compute the best possible answer
based upon the following; the subject strongly dislikes the music type; strongly dislikes
the visuals; strongly believes the visuals matched the type of music; strongly found
the visuals to be synchronized with the music; strongly believes the visuals captured
the mood; strongly feels they saw enough to make a decision and was strongly focused

on the experiment, which yields

Definition 15 (Best Score). B = {2,2,5,5,5,5,5}

70

This implies that the worst possible answer to be based upon; the subject strongly
likes the music type; strongly likes the visuals; strongly believes the visuals did not
match the type of music; strongly believes visuals to be out of synch; strongly believes
the visuals did not capture the mood; strongly believes they did not see enough to

make a decision and strongly believes they were distracted, which yields
Definition 16 (Worst Score). W = {5,5,2,2,2,2,2}

Equation 5.1 calculates the score by creating a weighted sum of the best answer

corresponding to the points for that answer.

Let an inverse score be
5 — Q;
q;
5)

S; =

Let a direct score be

a;
li=—4 :
54 (5.1)

Then we compute

SCOI‘G(S) = 51 +82+t3 +t4—|—t5 +t6+t7

score(S)
de = ———~
srace score(B)

Since the best possible grade is score(B) = 45 we divide the users score from
Equation 5.1 by 45 and get a “grade” for a song. The source code for processing the

survey results can be found in A.0.20. In future work this foundation allows us to

continue our research as the implementation grows more sophisticated.

5.2 Survey Results

The survey consisted of 11 people ranging from age 9 to 75 with both male and
female participants. Figure 5.3 shows that Techno Electronica and Symphony music
scored the highest. This is not at all surprising being that both were commonly used

during development. The averages in Figure 5.4 seem low, but are much better than
71

POLKA |

POLKA |
SYMPHONY |

POLKA |
SYMPHONY |

POLKA |
SYMPHONY |

POLKA
SYMPHONY |

POLKA
SYMPHOMY

POLKA |
SYMPHONY

POLKA |
SYMPHONY |

POLKA |
SYMPHONY |

POLKA |
SYMPHONY |

POLKA |
SYMPHONY |

SYMPHONY |
TECHNO |
COUNTRY |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO
COUNTRY
MIDDLEEASTERN
TECHNO
COUNTRY
MIDDLEEASTERN
TECHNO
COUNTRY |
MIDDLEEASTERN |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO |
COUNTRY |
MIDDLEEASTERN |
TECHNO |

COUNTRY |
MIDDLEEASTERN |

MIDDLEEASTERN

Figure 5.3: Survey Results by User (Music Genre vs Grade %)

BWCOUNTRY

B MIDDLEEASTERN
W POLEA
O5YMPHONY
OTECHNO

Figure 5.4: Survey Results, Average Grade by Genre

we had expected. When we compare the scores in Figure 5.4 with Figure 5.5 the
dramatic shift within the same genre underlines the challenge we face with regard
to subjectivity. It would be premature to draw any solid conclusions from this ex-
periment, however we can state that we have a quantifiable measure of success and

clearer understanding of external perception.

72

B 5YMPHONY

ETECHNO

W SYMPHONY

m POLKA

ETECHNO

H MIDDLEEASTERN

B COUNTRY
POLKA
SYMPHOMNY
TECHNO

Figure 5.5: Survey Results, Top and Bottom 5 Scores

5.3 Conclusions and Future Work

As we have mentioned, time fidelity poses a real challenge in our ability to accu-
rately model sound. Not only do we intend to evaluate our detection accuracy with
realistic data, we intend to increase the time fidelity and extract sub-second peaks
to improve characterization. Because we have observed that the Fourier transform is
sensitive to the sample size, we must research adjusting all calculations. It follows
that we will need a more effective detection; we may possibly use the technique pro-
posed by Jehan [18]. We would also like to consolidate the entire model (end-to-end)
in a nicely compacted algebraic factorization; the idea is to find a closed-form com-
putation, which gets us closer to being able to prove an isomorphism. The issue of
melody is very complex and still unclear how important it will be in our effort, but
we shall continue to research this. We intend to continue focusing on the geometry of

music and on mathematical representations of melody. Although we have captured a

73

good amount thus far, we want to continue researching what it means to be mathe-
matically uplifting or depressing in terms of a pitch class operation. We also intend
to expand upon our initial work with transposition and inversion and unlock a more
sophisticated relationship within the musical chord progressions. Most importantly,
now that we have a solid framework to expand upon, we plan on experimenting with
many forms of geometry and animation to include fractals, fluid dynamics and other

visuals that may be more conducive to intuitive representation.

5.3.1 Tangential Applications

There are many directions we can take this research and many of them are prac-
tical. Ome of the most uplifting, is the ability to allow a hearing impaired person
to “see” what their environment sounds like. Not only for entertainment purposes
but for safety and comprehension. Suppose that a deaf person has a dog and that
person has never heard the animals voice. Our research may allow them to associate
unique patterns of imagery with the mood or “timbre” of the animal allowing them
to discern anger, happiness, concern or what have you. This may also be extended to
include common sounds around the household. Imagine that a microwave “ding” goes
off, or the oven timer or the washer/dryer. More importantly, imagine that someone
breaks open the front door or a window or is yelling for help. A large panel on various
walls of the house, or even a hand held device could alert the user to the sounds of
the environment. With the proper mathematics the images would be consistent and

therefore distinctly identifiable. You could say it’s like braille for the eyes!

5.3.2 The Lawnmower Filter

During our analysis we identified a few mathematical techniques, which warrant
further research and may prove useful going forward. The first technique involves
instant filtering of unwanted frequency information using the matrix expansion of

an exponential series. Recall the well known series e* = 1 + x + ”g—? oo, cos(x) =

74

z3

v+ -+ . Recall Euler’s Equation e = cos(x)+1 sin(z).

1—a?+2 ... and sin(z) = 2 —
If we replace z with a matrix A and insert it into the exponential series we have
er=T+A+ g—? ---. Using Euler’s Equation we have e'* = cos(A) + i sin(A) and
we can solve for the cosine and sine using the series expansion and some convergence
technique. Now suppose that A is a diagonal matrix whose elements A;; are of
the form {—27ky, —27ky,---}. If we substitute the matrix form of the exponential
function and multiply the exponent with the imaginary unit we have a simultaneous
Fourier transform that checks for multiple frequencies at once Y = Zg;ol X, - eAm,
The risk here is that our response to multiple frequencies is bound together and likely
to be inaccurate with respect to the current sample. Lets reverse our thinking from

detection to filtering. We have the n’th roots of unity but not necessarily a valid

coefficient. If we select some magnitude p such that

N—-1
X=X —p- e, (5.2)
n=0

we may just be able to “delete” unwanted noise or other frequencies from the signal

enough to see some desired pattern.

5.3.3 An Instrument Fingerprint

One topic we have not yet breached in our research is the ability to identify spe-
cific instruments. It is unclear how much this will affect our overall goal but some of
the Synesthesia research demonstrates specific colors and shapes chosen based upon
musical instrument [32]. We propose one possible technique to identify the signature,
or fingerprint if you will, of an instrument. Our approach is quite simple, we anchor
a value at the first point in the function where the slope is positive. We draw a curve
(line) to each successive point from the anchor making little triangles and compute
the angle off the x-axis for each triangle. We do this until the slope goes negative.
If we add the results together for some portion of the entire wave, we have a value

for each positively monotonic segment of the function. Figure 5.6 illustrates a crude
75

depiction of the geometry. The hope is that each instrument can theoretically be
modeled by some function f(z) whose derivative identifies a unique signature to that

instrument.

Figure 5.6: Fingerprint Technique

One possible solution might be to integrate over each segment of positive slope

0 f(z)<0
and add all the angles together. Let v(x) = then the function
1 f'(x)>0
v(z)=0
L1 (=)
= tan™ '~)dr | 5.3
=3 (L (5.
v(z)#0

Equation 5.3 provides a continuous model of this approach that aggregates the front
side slope of some series of impulses over a desired region of the wave. We simply
derive a discrete version of this function, combine it with Equation 5.2 to reduce noise
and voila! a unique value that describes the instrument. If we take the expected value
over several samples and create a range of tolerance we have a min/max bounds for

detecting the instrument.

76

5.3.4 Conclusions

Although we made significant progress, our research is far from over. We have
learned a number of things about the nature of processing sound and the challenges of
precision and timeliness. We successfully melded the neurological response of colored
hearing with the computer systems ability to generate imagery. We demonstrated
a mathematical mapping from sound to pictograph and successfully implemented a
flexible framework capable of processing any sound in real time. We have demon-
strated a substantial improvement in capturing the melody in the frequency domain
versus the time domain. We have proposed and implemented a unique technique for
musical frequency detection and note characterization. We have exposed our imple-
mentation to human subjects and seen encouraging results. All in all, our progress
opens the door to a larger world and lays the foundation for more possibilities in

extending human sensory perception.

7

1]

[10]

[11]

[12]

REFERENCES

Thomas M. Fiore Alissa S. Crans and Ramon Satyendra. Musical actions of
dihedral groups. The Mathematical Association of America, June - July, 2009.

MIDI Manufacturers Association. History of midi. http:/www.midi.org/
aboutmidi/tut_history.php, 2015.

Jan Dirk Blom. A Dictionary of Hallucinations, page 73. Springer Sci-
ence+Business Media, 2010.

C. Sidney Burrus. Index mappings for multidimensional formulation of the DFT
and convolution. IEEFE Transactions on Acoustics, Speech, and Signal Process-
ing, ASSP-25(3):239-241, 1977.

Glenda K Larcombe Carol Bergfeld Mills, Edith Howell Boteler. Seeing things
in my head: A synesthete’s images for music and notes. Perception, volume 32,
pages 1359 — 1376, 2003.

Aldo Piccialli Giovanni De Poli Curtis Roads, Stephen Travis Pope. Musical
Signal Processing. Swets & Zeitlinger B.V, Lisse, Netherlands, 1997.

Michigan Tech Department of Physics. Musical signal frequencies. http://www.
phy.mtu.edu/~suits/notefreqs.html, 2015.

Zohar Eitan and Inbar Rothschild. How music touches: Musical parameters and
listeners audio-tactile metaphorical mappings. Psychology of Music 39(4), pages
449-467, 2010.

Shannon Steinmetz Ellen Gethner and Joseph Verbeke. A view of music. In
Douglas McKenna Kelly Delp, Craig S. Kaplan and Reza Sarhangi, editors, Pro-
ceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, pages
289294, Phoenix, Arizona, 2015. Tessellations Publishing. Available online at
http://archive.bridgesmathart.org/2015/bridges2015-289.html.

Jai Sam Kim Nicola Veneziani Giovanni Aloisio, G.C Fox. A concurrent imple-
mentation of the prime factor algorithm on hypercube. IEEFE Transactions on
Signal Processing, 39(1), 1991.

[.J. Good. The interaction algorithm and practical fourier analysis. Journal of
the Royal Statistical Society. Series B, 20(2):361-372, 1958.

Thomas W. Hungerford. Abstract Algebra An Introduction, page 176. Brooks/-
Cole, 2014.

78

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Thomas W. Hungerford. Abstract Algebra An Introduction, pages 169-179.
Brooks/Cole, 2014.

Thomas W. Hungerford. Abstract algebra an introduction. page 219. Brooks/-
Cole, 2014.

Johannes Itten. The art of color. page 34. Wiley & Sons INC, 1973.

Debra A. Zellner J. Michael Barbiere, Ana Vidal. = The color of mu-
sic:correspondence through emotion. Empirical Studies Of The Arts, Vol. 25(2),
pages 193-208, 2007.

John W. Tukey James W. Cooley. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):397-301, Apr. 1965.

Tristan Jehan. Musical signal parameter estimation. Master’s thesis, IFSIC,
Université de Rennes, France, and Center for New Music and Audio Technologies
(CNMAT), University of California, Berkeley, USA, 1997.

George H. Joblove and Donald Greenberg. Color spaces for computer graphics.
SIGGRAPH 5’th Annual, pages 20-25, 1978.

Harry F. Jordan and Gita Alaghband. Fundamentals of parallel processing. page
160. Pearson Education, 2003.

Giuliano Monti Juan Pablo Bello and Mark Sandler. An implementation of

automatic transcription of monophonic music with a blackboard system. [ris
Signals ans Systems Conference (ISSC 2000), 2000.

Giuliano Monti Juan Pablo Bello and Mark Sandler. Techniques for automatic
music transcription. 2000.

Guillaume Leparmentier. Manipulating colors in .net. http://www.
codeproject.com/Articles/19045/Manipulating-colors-in-NET-Part,
2016.

Michal Levy. Giant steps. http://www.michalevy.com/giant-steps/index.
html, 2015.

David Lewin. Generalized musical intervals and transformations. pages 9-11.
Oxford University Press, 1 edition, 2011.

Stephen Malinowski. The music animation machine. http://www.
kunstderfuge.com/theory/malinowski.htm, 2016.

Lawrence E. Marks. On associations of light and sound, the mediationof bright-
ness, pitch and loudness. The American Journal of Psychology, Vol. 87, No 1/2,
pages 173-188, Nov 2016.

79

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Paul Masri and Andrew Bateman. Improved modeling of attack transients in
music analysis-resynthesis. pages 100-103, 1996.

James A. Moorer. On the transcription of musical sound. Computer Music
Journal, 1(4):32-38, 1977.

Alan V. Oppenheim. Speech spectographs using the fast fourier transform. /EEFE
Spectrum, 7(8):57-62, Aug 1970.

Konstantina Orlandatou. Sound characteristics which affect attributes of the
synaesthetic visual experience. Musicae Scientiae, Vol. 19(4), page 389401, 2015.

Otto Ortmann. Theories of synesthesia in the light of a case of color-hearing.
Human Biology, 5(2):155-211, May 1933.

Otto Ortmann. Theroies of synesthesia in the light of a case of color-hearing.
Human Biology, 5(2):176, May 1933.

Martin Piszczalski and Bernard A. Galler. Automatic music transcription. Com-
puter Music Journal, 1(4):24-31, Nov. 1977.

Cornel Pokorny. Computer Graphics An Object-Oriented Approach To The Art
And Science. Franklin, Beedel and Associates Incorporated, 1 edition, 1994.

Frank B. Wood Richard E. Cytowic. Synesthesia i. a review of major theories
and thier brain basis. pages 36-49, 1982.

Frank B. Wood Richard E. Cytowic. Synesthesia ii. psychophysical relations in
the synesthesia of geometrically shaped taste and colored hearing. Ninth Annual
Meeting of the International Neuropsychological Society, Brain and Cognition,
pages 3649, 1982.

Stephen W. Smith. The Scientists and Engineer’s Guide to Digital Signal Pro-
cessing. California Technical Publishing, 1997.

Praveen Sripada. Mp3 decoder in theory and practice. Master’s thesis, Blekinge
Institude of Technology, March 2006.

Clive Temperton. Implementation of a self-sorting in-place prime factor FFT
algorithm. Journal of Computational Physics, 58(4):283-299, 1985.

Clive Temperton. A generalized prime factor FFT algorithm for n = 2P3%5".
SIAM, 13(3):676-686, May 1992.

Dimitri Tymoczko. The geometry of muscial chords. Science, 313(0036-8075):72,
July 2006.

Dimitri Tymoczko. A Geometry of Music. Oxford University Press, 1 edition,
2011.

80

[44] Dimitri Tymoczko. A geometry of music. pages 35-36. Oxford University Press,
1 edition, 2011.

[45] Dimitri Tymoczko. A geometry of music. pages 28-32. Oxford University Press,
1 edition, 2011.

[46] Dimitri Tymoczko. A geometry of music. pages 33-34. Oxford University Press,
1 edition, 2011.

[47] C. van Campen. The Hidden Sense: Synesthesia in Art and Science. Leonardo
(Series) (Cambridge, Mass.). MIT Press, 2008.

[48] Dennis G. Zill and Patrick D. Shanahan. A First Cource in Complex Analysis
with Applications, page 35. Jones and Bartlett, 2009.

81

APPENDIX A. Source Code

The entire application framework involves several thousand lines of source code
including everything from U/T components to logging utilities. We offer a subset of

the specific classes and algorithms most pertinent to our thesis.

82

A.0.5 Musical Detect Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

namespace Toolkit.Media.DSP {

/// <summary>

/// Provides a musical detection class that defines the
/// detection of some musical note and all its details.
/// </summary>

public struct MusicalDetect {

public static readonly MusicalDetect Empty = new MusicalDetect (MusicalNote.Empty,0f,0f,0) ;

#region Private

private long myTimeOn;
private long myDuration;
private float myRf;
private float myAmp;
private MusicalNote myNote;
private int myHarmonic;
#endregion

/// <summary>

/// Create the detection of a note.

/// </summary>

/// <param name="note”>The note found</param>

/// <param mname="rf”>The frequency it was found</param>

/// <param name="amp”>The intensity </param>

/// <param mname="timeOn”>The first epoch since start of play it was detected in milliseconds </

param>
public MusicalDetect (MusicalNote note, float rf, float amp, long timeOn) {
myNote = note;
myRf = rf;
myAmp = amp;
myTimeOn = timeOn;
myHarmonic = (int)Math. Ceiling (Math.Log(rf/note.Fundamental ,2));
myDuration = 0;

}

/// <summary>

/// Create the detection of a note.

/// </summary>

/// <param name="note”>The note found</param>

/// <param mname="rf’>The frequency it was found</param>

/// <param name="amp”>The intensity </param>

/// <param mname="timeOn”>The first epoch since start of play it was detected in milliseconds </
param>

/// <param name="duration”>The duration this note lasts in milliseconds.</param>

public MusicalDetect (MusicalNote note, float rf, float amp, long timeOn, long duration)
this (note, rf ,amp, timeOn) {

myDuration = duration;

¥
#region Properties

/// <summary>

/// Get the first observed time of this detection from epoch since

/// stream start in milliseconds.

/// </summary>

public long TimeOn { get { return myTimeOn; } set { myTimeOn = value; } }

/// <summary>

/// Get the duration of this note in milliseconds.

/// </summary>

public long Duration { get { return myDuration; } set { myDuration = value; } }

/// <summary>

/// Get the original sampled rf value.
/// </summary>

public float Rf { get { return myRf; } }

/// <summary>
/// Get the impulse value.

83

/// </summary>
public float Amp { get { return myAmp; } }

/// <summary>
/// Get the note this matches.

/// </summary>
public MusicalNote Note { get { return myNote; }}

/// <summary>
/// Get/Set the optional harmonic if known.

/// </summary>
public int Harmonic { get { return myHarmonic; } set { myHarmonic = value; }}

#endregion

/// <summary>
/// Is this a mon detect.
/// </summary>
public bool IsEmpty {
get { return myNote.IsUnknown && myTimeOn ==0 && myRf == 0 && myAmp == 0; }

}
#region Object Overrides

public override bool Equals(object obj) {

MusicalDetect det = (MusicalDetect)obj;
return myTimeOn == det.myTimeOn &&
myRf == det.myRf &&
myAmp == det.myAmp &&
myNote. Equals (det . myNote) ;
¥
public override int GetHashCode() {
return ToString () .GetHashCode () ;
}
public override string ToString() {
return ” (” 4+ myNote.Note + ”” 4 Harmonic + ”:” 4+ Rf + ”).” 4+ ”_.On:” 4+ myTimeOn + 7 ,_Amp:” +
myAmp ;
}
#endregion

}

84

A.0.6 Musical Note Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

namespace Toolkit.Media.DSP {

/// <summary>

/// Immutable structure that holds

/// </summary>
public struct MusicalNote {

#region Properties

information about a musical

note .

public static readonly MusicalNote Empty = new MusicalNote (eMusicNote.Unknown,0,0) ;

private eMusicNote myNote;
private float myRf;

private float myTiggerHarmonic;
#endregion

public MusicalNote (MusicalNote
.myRf) {}

/// <summary>
/// Create the musical note.

/// </summary>

/// <param mname="inNote”>The note
/// <param name="inTiggerRf”>The
/// <param name="inFundamental”> The

inOther)

enumeration</param>
tigger mapping</param>

this (inOther.myNote, inOther.

corresponding fundamental frequency</param>

/// <param name="inRf”’>The measured frequency (harmonic)</param>

public MusicalNote (eMusicNote inNote, float inTiggerRf, float inRf) {
myNote = inNote;
myRf = inRf;
myTiggerHarmonic = inTiggerRf;
#region Properties
/// <summary>
/// Get the raw note mname
/// </summary>
public eMusicNote Note { get { return myNote; } 3}
/// <summary>
/// Get the fundamental frequency for this note.
/// </summary>
public float Fundamental { get { return myRf; }}
/// <summary>
/// Get the calculated Tigger Rf
/// </summary>
public float TiggerHarmonic { get { return myTiggerHarmonic; } }
#endregion
#region Utility and Transforms
/// <summary>
/// Generate step harmonics above this tone.
/// </summary>
public MusicalDetect Harmonic(int step) {
float newRf = (float) (myRf*Math.Pow(2.0,(float)step));
MusicalDetect md = new MusicalDetect (this ,newRf,1,0);
md. Harmonic = step;
return md;
}
#endregion
#region Object Overrides
public bool IsUnknown { get { return myNote == eMusicNote.Unknown && myRf == 0;
public override string ToString() {
return ” (7 4+ myNote + ”_:” 4+ myRf + ”:” + myTiggerHarmonic + ”7)”;

}

b}

myTiggerHarmonic,inOther

85

public override bool Equals(object obj) {
MusicalNote mn = (MusicalNote)obj;

return myNote == mn.myNote &&

myRf == mn.myRf &&

myTiggerHarmonic == mn. myTiggerHarmonic;
}

public override int GetHashCode() {
return ToString () .GetHashCode ()

}

3

#endregion

}

86

A.0.7 Music Utility Class

using System;

using
using
using

using
using
using
using
using
using
using

System . Collections . Generic;
System . Ling;
System . Text;

System . Drawing ;
Core.Drawing;
Core.Mathematics;
Core.Mathematics. Algebra;
Core.Mathematics. Stats ;
Core.Mathematics. Analysis;
System . Diagnostics;

namespace Toolkit.Media.DSP {

/// <summary>
/// Provides a table of fundimental frequencies for musical

/// tomes.

/77

/// </summary>
public class Music {
private static readonly Random ourRandom = new Random() ;

#region Performance Testing Constants

public static bool UseWeakDetect = false;

/// <summary>

/// Always has the runtime (ms) of the most recent call to
/// Guess.

/// </summary>

public static long GuessTime = 0;

#endregion

#region Private Constants

/// <summary>

/// Map of wunique integers to musical notes.

/// </summary>

private static readonly Dictionary<int, MusicalNote> ourTiggerMap;
/// <summary>

/// Map of integer fundamental frequencies to the note.

/// </summary>

private static readonly Dictionary<int , MusicalNote> ourIntegerFund;

/// <summary>
Base color walue to a ti er walue .
99

/// </summary>
private static readonly Dictionary<int,int> ourTiggerColorMap;

/// <summary>

/// Consonance delta. (Difference between C/C#)
/// </summary>

private static readonly float DISONANCE.1 = 100f;
private static readonly float DISONANCE.2 = 150f;

#endregion

#region Private Static Util

/// <summary>
/// Create the full harmonic set for the given sample rate.

/// </summary>
private static float [] CreateHarmonic(int sampleRate) {

// Create all fundamental and harmonics
List<float> rfs = new List<float >();
int max = (int)Math. Ceiling (Math.Log((sampleRate /2.0f/Music.Min) ,2.0f));

// For each Rf generate each harmonic.
for (int r=0;r<Music.Notes.Length;r4++4) {
for (int k=0;k<max;k++) {
float rf = (float)(Music.Notes[r].Fundamental*xMath.Pow(2.0f ,k));

if (rf < (sampleRate/2.0f))

87

rfs .Add((float) (Music.Notes[r]. Fundamental*Math.Pow (2.0f ,k)));

¥
}
return rfs.ToArray();
}
#endregion

#region Static Constructor
static Music() {
ourTiggerMap new Dictionary<int , MusicalNote >();
for (int i=0;i<Notes.Length;i++) ourTiggerMap.Add(TiggerHarmonic(Notes[i].
i])s

Fundamental) ,Notes [

// Create fundamentals

Fundamentals = new float [Notes.Length];

for (int i=0;i<Notes.Length;i++) Fundamentals[i] = Notes[i].Fundamental;
// Create harmonics.

Harmonics = new Dictionary<int , float[] > ();

for (int i=0;i<KnownSampleRates.Rates.Length;i++) {
float [] vals = CreateHarmonic ((int)KnownSampleRates.Rates[i]) ;
Harmonics.Add((int) KnownSampleRates. Rates[i], vals);
}

// Create integer fundamentals.

ourlntegerFund = new Dictionary<int , MusicalNote >();
for (int i=0;i<Notes.Length;i++)
ourlntegerFund .Add((int)Notes[1i]

.Fundamental , Notes [i]) ;

// Create tigger color map
ourTiggerColorMap = new Dictionary<int,int>();
ourTiggerColorMap .Add(TiggerHarmonic (C0) ,Color.Blue.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (Cs0) ,Color.Blue.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (D0) ,Color.Red.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (Ds0) ,Color .Red.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (E0) ,Color. Yellow.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (F0) ,Color.Brown.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (Fs0) ,Color.Brown.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (G0) ,Color . Green.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (Gs0) ,Color.Green.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (A0) ,Color.Green.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (AsO) ,Color.Green.ToArgb());
ourTiggerColorMap .Add(TiggerHarmonic (B0) ,Color.Black.ToArgb());
#endregion

#region Public Constants

/// <summary>

/// Mazimum Fundimental Rf in the table.

/// </summary>

public const float Max = BO;

/// <summary>

/// Minimum Fundimental Rf in the table.

/// </summary>

public const float Min = CO0;

public static readonly MusicalNote COn = new MusicalNote(eMusicNote.C, Music. TiggerHarmonic (CO)
, CO0);

public static readonly MusicalNote CsOn = new MusicalNote (eMusicNote.Cs, Music. TiggerHarmonic (
Cs0) ,Cs0) ;

public static readonly MusicalNote DOn = new MusicalNote(eMusicNote.D, Music. TiggerHarmonic (DO)
,D0) 5

public static readonly MusicalNote DsOn = new MusicalNote (eMusicNote.Ds, Music. TiggerHarmonic (
Ds0) ,Ds0) ;

public static readonly MusicalNote EOn = new MusicalNote(eMusicNote.E, Music. TiggerHarmonic (EO0)
,EO0) 5

public static readonly MusicalNote FOn = new MusicalNote (eMusicNote.F, Music. TiggerHarmonic (F0)
,FO) 5

public static readonly MusicalNote FsOn = new MusicalNote (eMusicNote.Fs, Music. TiggerHarmonic (
Fs0) ,Fs0);

public static readonly MusicalNote GOn = new MusicalNote (eMusicNote.G, Music. TiggerHarmonic (GO)
,GO) 5

public static readonly MusicalNote GsOn = new MusicalNote (eMusicNote.Gs, Music. TiggerHarmonic (
Gs0) ,Gs0) ;

public static readonly MusicalNote AOn = new MusicalNote (eMusicNote.A, Music. TiggerHarmonic (AQ)
,A0) ;

public static readonly MusicalNote AsOn = new MusicalNote (eMusicNote.As, Music. TiggerHarmonic (
As0) ,As0);

88

public static readonly MusicalNote BOn = new MusicalNote (eMusicNote.B, Music. TiggerHarmonic (BO)

,B0) ;

/// <summary>
/// List of all Rf’s for musical tones starting with
/// C—> B.
/// </summary>
public static readonly MusicalNote [] Notes = {
COn,
CsOn ,
DOn,
DsOn,
EOn,
FOn,
FsOn ,
GOn,
GsOn ,
AOn,
AsOn,
BOn,

/// <summary>

/// Has the list of fundimental frequenices in order
/// from C to B.

/// </summary>

public static readonly float[] Fundamentals;

/// <summary>

/// A map that contains a mapping from the sample rate to float arrays each of which are
/// set of fundamentals and 11 harmonics in order.

/17

/// Key := The sample rate.

/// Value := The frequencies.

/// </summary>

public static readonly Dictionary<int, float[]> Harmonics;

#endregion
#region Characterization Methods

/// <summary>
/// Ezecute the Tigger harmonic theorem which maps a frequency to a unique integer.
/// </summary>
public static int TiggerHarmonic(float f) {
return (int) (100.0f=*(f/Math.Pow(2,Math.Floor (Math.Log(f,2))) — 1.0f));

}

/// <summary>
/// Use the Tigger harmonc to determine what note corresponds to the given frequency.
/// </summary>
/// <param name="inF’></param>
/// <returns></returns>
public static MusicalNote Characterize(float f) {
int th = TiggerHarmonic(f);
if (ourTiggerMap.ContainsKey (th)) return ourTiggerMap [th];

if (! UseWeakDetect) {
if (ourIntegerFund . ContainsKey ((int)f))
return ourlntegerFund [(int)f];
}

3

float sm = float.MaxValue;
int sml = —1;

for (int i=0;i<Notes.Length;i++) {
float t = Math.Abs(Notes|[i]. TiggerHarmonic — th);
if(t < sm) {
sm = t;
sml = i;
¥
}

return Notes[sml];

}

/// <summary>

/// Determine the presence of which notes exzist in the given input stream of
/// samples until end of stream is reached.

/// </summary>

/// <param mname="X">The sequence of sample values.</param>

/// <param name="offset”>The starting offset to execute in X</param>

/// <param name="sampleRate”>The sample rate</param>

the

89

/// <param name="stats”>The

public static MusicalDetect []
// Add the

if (! Harmonics.

sample

rate

if we don’t

ContainsKey (sampleRate))

current running
GuessNotes (22 []
already

statistics

X, int offset ,

know about it.

List <MusicalDetect> notes = new List<MusicalDetect >();
float N = sampleRate;

float [] fregs =
int i = offset;
float max = 0;

while (i < X.Length) {
FourierTransform .RfFFT (X, sampleRate , i, freqs ,eWindowType.Hanning) ;

Harmonics [sampleRate];

// Compute maz{X} and noise

max = 0;
for (int

float
if (aa > max)
max = aa;
}
// Find all values
for (int

float

whose peak to
k=0;k<sampleRate; k++) {
float m = X[i + k].B.Magnitude;
d = m/max;

m=0;m<sampleRate ;mt++) {
aa = X[i+m].B.Magnitude;

signal 1is

large enough.

if(d > SoundParameters . RF.DETECT_FULL.AMP) {
MusicalDetect det = new MusicalDetect (Characterize (k) ,k,m,(long) ((((double)i) /((double
)sampleRate))*x1000.0d)) ;

added for now.

// Staticall

det.Duration

Y

1000;

notes.Add(det) ;

}
}

i += sampleRate;

}

return notes.ToArray () ;

}

/// <summary>

/// Compute
/// Returns a

the

/// </summary>
/// <returns>A
public static

if (ch.Count == 1)

float aveDelta =

for (int

for (int

value from 0 to 1
float Consonance(Chord ch) {

consonance factor.
value from 0 to 1

with 1 being

with 1 being

return 1;

0;

i=0;i<ch.Count;i++) {
j=0;j<ch.Count; j++)

the most

completely

aveDelta += Math.Abs(ch[i].Rf — ch[j].Rf);

or null to

int

compute.</param>

sampleRate) {

consonant tone.

consonant.</returns>

aveDelta = Math.Abs(aveDelta /((float) (ch.Countxch.Count—ch.Count)));

if (aveDelta > DISONANCE.2) return 1;

return

}

/// <summary>

/// Get

/// </summary>

public static

switch (note) {

case eMusicNote.
return O0;
case eMusicNote.
return 1;
case eMusicNote.
return 2;
case eMusicNote.
return 3;
case eMusicNote.
return 4;
case eMusicNote.
return 5;
case eMusicNote.
return 6;

the Z12 element for a

Cs:

Ds:

Fs:

specific note.

int Z12(eMusicNote note) {

(float) (2.0 fxaveDelta — DISONANCE_1) /(2.0 f*DISONANCE.2 — DISONANCE.1) ;

Harmonics.Add(sampleRate , CreateHarmonic (sampleRate)) ;

90

case eMusicNote.G:
return 7;

case eMusicNote.Gs:
return 8;

case eMusicNote .A:
return 9;

case eMusicNote.As:
return 10;

case eMusicNote.B:
return 11;

}

return —1;

}

/// <summary>
/// Convert a Z12 element to a pitch scale element.

/// </summary>
public static eMusicNote PitchScale(int ps) {

switch(ps) {

case O:

return eMusicNote.C;
case 1:

return eMusicNote.Cs;
case 2:

return eMusicNote .D;
case 3:

return eMusicNote.Ds;
case 4:

return eMusicNote .E;
case 5:

return eMusicNote.F;
case 6:

return eMusicNote.Fs;
case T:

return eMusicNote .G;
case 8:

return eMusicNote.Gs;
case 9:

return eMusicNote . A;
case 10:

return eMusicNote.As;
case 11:
return eMusicNote .B;

}

return eMusicNote.Unknown;

}

/// <summary>
/// Determine a wvalue from 0 to 1 that ts how much a chord changes in
/// 1 is a big change.
/// </summary>
/// <remarks>A wvalue from 0 to 1.</remarks>
public static float ChangeOfChord(Chord c1, Chord c2) {
int m = Math.Max(cl.Count,c2.Count) ;

// Preparation. (This could be done in one loop, but I’'m tired).
// mest both arrays in one array

float [] X = new float [m*2];

for (int i=0;i<cl.Count;i++) X[i] = Z12(cl[i].Note.Note);

for (int 0;i <(cl.Count—m);i++) X[cl.Count + i] = 0;

for (int i=0;i<c2.Count;i++) X[m + i] = Z12(c2[i].Note.Note);

for (int i=0;i<(c2.Count—m);i++) X[m + i] = 0;

// Calculation |z_-t — z_{t+m}]|
float [] Y = new float [m];
for (int t=0;t<m;t+4) Y[t] = Math.Abs(X[t]-X[t+m]) ;

// Compute std.

float exp = ExtraStats.Mean(Y);
float std = ExtraStats.StdDev(Y);
if (exp == 0) return 0;

return 1f — Math.Abs(std—exp) /exp;

}

/// <summary>
/// Compute the magnitude of a chord.

/// </summary>
public static float Magnitude(Chord c1) {

tonal

structure ,

meaning

91

float f = 0;
float N = cl.Count;

for (int i=0;i<cl.Count;i++) {
for (int j=0;j<cl.Count;j++)
f 4= cl1[i].Rf*(cl[i].Harmonic+1);
}

return (1.0f/(NxN))x*f;
}

/// <summary>
/// Compute the harmonic centricity theta-H of a chord.
/// </summary>
public static float HarmonicCentricity (Chord c) {
float t= 0;
float N = c.Count;
for (int i=0;i<c.Count;i++) t += (c[i].Harmonic+1);
return t/N;

}

/// <summary>
/// Compute the fundamental centricity theta.F of a chord.
/// </summary>
public static float FundamentalCentricity (Chord c) {
float t= 0;
float N = c.Count;
for (int i=0;i<c.Count;i++) t 4= c[i].Note.Fundamental;
return t/N;

¥
#endregion
#region Musical Tone Rf Values

public const float CO = 16.35f;
public const float CsO = 17.32f;
public const float DO = 18.35f;
public const float DsO = 19.45f;
public const float E0 = 20.60f;
public const float FO = 21.83f;

public const float FsO = 23.12f;

public const
public const
public const
public const
public const

#endregion

#region Tone

float GO = 24.50f;
float GsO = 25.96f;
float A0 = 27.50f;
float AsO = 29.14f;
float BO = 30.87f;

Generation

/// <summary>
/// Retrive the musical note for the given enumeration at
/// the fundamental.
/// </summary>
public static MusicalNote GetNote(eMusicNote n) {
for (int i=0;i<Notes.Length;i++) {
if (Notes[i].Note == n)
return Notes[i];

}

return MusicalNote . Empty;

}

/// <summary>
/// Get harmonics for all notes
/// </summary>
/// <param name="s">The harmonic wvalue of the mnotes to retrieve.</param>
/// <returns>A list of all notes at the given harmonic</returns>
public static MusicalDetect [] GetHarmonics(int s) {
List <MusicalDetect> 1 = new List<MusicalDetect >();
for (int i=0;i<Notes.Length;i++) 1.Add(Notes[i].Harmonic(s));
return 1.ToArray();

}

/// <summary>

/// Generate a random sound of the given duration in seconds.

/// </summary>

public static RandomSound RandomSound(int dur,int sampleRate, int floorAmp) {
Synthesizer st = new Synthesizer (sampleRate);
List <MusicalDetect> notes = new List<MusicalDetect >();

int i = 0;
float Nyquist = ((float)sampleRate) /2.0f;

while (i < dur) {

int step = 1 + ourRandom.Next(2);
MusicalNote note = Notes|[ourRandom.Next(Notes.Length)];
int harm = ourRandom.Next(12);

float freq = ((float)(note.Fundamental*Math.Pow(2.0f,harm——)));
while(freq > Nyquist)
freq = ((float)(note.Fundamental*Math.Pow(2.0f,——harm)));

float amp = (float) (floorAmp + ourRandom.NextDouble()*10000.0f);

for (int k=0;k<step;k++) {
MusicalDetect md = new MusicalDetect (note ,
freq ,
amp,
(int) ((i+k)*1000.0f));
st .Add(md. Rf,md.Amp,1) ;
notes.Add(md) ;

}

i += step;

return new RandomSound(sampleRate, st.ToArray() ,notes.ToArray());

}

/// <summary>
/// Utility method to generate a bogus chord from Z12 wvales.
/// </summary>
/// <returns>A chord of fundamental tones</returns>
public static Chord MakeChord(int [] values) {
Chord ch = new Chord () ;

for (int i=0;i<values.Length;i++) {
MusicalNote n = Music.GetNote(Music.PitchScale(values[i]));
ch.Add(new MusicalDetect(n,n.Fundamental,10,0));

}
return ch;
}
#endregion

#region Color Mapping

/// <summary>
/// Provides a color mapped from the given frequency value.
/// </summary>
/// <param name="inTiggerH”>The tigger harmonic value</param>
/// <param name="noise”>The noise sample, a wvalue from 0 to 1 with 1 being maz noise</param>
public static Color TiggerStripes(MusicalDetect inTone, float noise) {
Color Na = Color.FromArgb(ourTiggerColorMap [(int)inTone.Note. TiggerHarmonic]) ;

float t = noise;
float Ha = ((((float)inTone.Harmonic)+1f)/12.0f) % 1.00001f;
Color Fa;

Color g = Color.FromArgh(128,128,128);

if (inTone.Rf <= 50)
Fa = Color.Black;

else if(inTone.Rf >= 50 && inTone.Rf <= 700)
Fa = Color.White;

else
Fa = Color. Yellow;

// N(a) \diamond F(a)
//
// H(a)

// However, we use the intensity as the harmonic in HSV
Color left = Fa.Add(Na);

left = ExtraColor .HSVtoRGB(left .GetHue() ,(1f—Ha) ,Ha);

return left .Mul(1.0f—t).AddRGB(g.Mul(t));

}

#endregion

}

#region Additional Structures/Classes

93

/// <summary>
/// A musical note.

/// </summary>
public enum eMusicNote {

CcC =0,
Cs = 1,
= 2,
Ds = 3,
E =4,
F =5,
Fs = 6,
G =17,
Gs = 8,
A=09,
As = 10,
=11,
Unknown = 100,

}

/// <summary>
/// Utilty class that contains a set of PCM and the corresponding mnotes.
/// </summary>
public struct RandomSound {
public Z2[] Samples;
public MusicalDetect [|] Notes;
public int SampleRate;

/// <summary>
/// Create a random sound.

/// </summary>

public RandomSound(int sampleRate, Z2[] samples, MusicalDetect[] det) {
Samples = samples;
Notes = det;
SampleRate = sampleRate;
}
}
#endregion

}

A.0.8 Chord Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

namespace Toolkit.Media.DSP {

/// <summary>

/// Provides a structure that manages a set of notes
/// musical chord.

/// </summary>

public class Chord : List<MusicalDetect> {

public static int OWNS —2;
public static int NONE = —1;

#region Constructor
public Chord() {}
#endregion

#region Utility Methods

/// <summary>

defining some

/// Ask if the given musical detect matches something in

/// Match Criteria :

/77

/// 1 Same note, same harmonic
/// 2 Same time duration.

/// </summary>

/// <returns>

/// Chord .NONE (No Match)

/// Chord.OWNS (Belongs to chord, but no direct match)

/// index (The index of matched note)
/// The matched detection index or —I</returns>
public int BelongsTo(MusicalDetect md) {

// First see if matching note.
for (int i=0;i<Count;i++) {

MusicalDetect tst = this[i];
if (tst.Note.Note == md.Note.Note &&
tst.Harmonic == md. Harmonic)

return i;

}

// Now see if times overlap.
for (int i=0;i<Count;i++) {
MusicalDetect tst = this[i];

if (md. TimeOn >= tst .TimeOn &&
md. TimeOn <= tst.TimeOn+tst.Duration)
return OWNS;

}

return NONE;

}

/// <summary>

/// Returns this chord with all notes raised by
/// the given harmonic.

/// </summary>

public Chord GetHarmonic(int h) {

Chord ch = new Chord () ;
for (int i=0;i<Count;i++) {
MusicalDetect cur = this[i];
MusicalNote mn = Music.GetNote(cur.Note.Note) ;

float newRf = (float) (mn.Fundamental*Math.Pow(2.0f,cur

this chord.

.Harmonic+h)) ;

ch.Add(new MusicalDetect (mn,newRf, cur.Amp, cur.TimeOn)) ;

}
return ch;
}
#endregion

95

#region Properties
#endregion

public override string ToString() {
StringBuilder sb= new StringBuilder ();
sb.Append (”{”);
for (int i=0;i<Count;i++) {
if (i != 0) sb.Append(”,”);
sb.Append(” (” + this[i].TimeOn + ”—” + this[i].Duration + ”7)” + this[i].Note.Note + 7”7 +
this[i].Harmonic);

}
sb.Append (”}”);

return sb.ToString () ;

}

96

A.0.9 Chord Detection Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

namespace Toolkit.Media.DSP {

/// <summary>

/// Provides a chord detection system that keeps track of a chord’s
/// time as new mnotes are added. Although there is
/// provide an array of chords for ezpansion into later

/// </summary>
public class ChordDetector {

#region Private

// The current time step in wunits of myMinDuration.

// incremented on each call to New Notes.
private long myTimeStep = 0;

private List<Chord> myChords = new List<Chord>();
private int myRecent = —1;

#endregion

#region Algorithm

/// <summary>

/// Assumption: Let n be any ezistin gnote and T is
/// is the last known duration of a note. Step Time

/// interval of minimum duration that has passed.
/// 1 If T(n) + D(n) &Ilt Step Time for any note,
/// 2 If all notes ezpired Kill Chord:.

/// </summary>

private void Expiration () {

for (int i=0;i<myChords.Count;i++) {
Chord ¢ = myChords[i];

for (int j=0;j<c.Count;j++) {
MusicalDetect md = c[j];

// Check to see if
long expireTime = md.TimeOn 4 md. Duration;

if (expireTime <= myTimeStep) {
c.RemoveAt(j);
J==

}
}
if (c.Count == 0) {
myChords. RemoveAt (i) ;
i——
¥
}
¥
#endregion

#region Constructors

/// <summary>
/// Create the chord detection .
/// </summary>

/// <param mname="sampleRate”>The sample rate of the
/// <param mname="minimumDuration”>The minimum duration

param>
public ChordDetector () {}

#endregion
#region Utility

/// <summary>
/// Add a nmew mnote to the chord system.

only one chord

the

is

original

structure
supplied we
implementations .

time onset and D

a counter that

remove that note.

life

holds

data </param>
of a chord’s

over

each

in milliseconds

</

97

/// </summary>
public void NewNotes(MusicalDetect [] newNotes) {

// Refresh all new mnotes that already ezist in chords.

for (int i=0;i<newNotes.Length;i++) {

MusicalDetect match = newNotes[i];
newNotes[i] = match;

bool found = false;

// Refresh:

for (int j=0;j<myChords.Count && !found;j++) {
Chord ch = myChords[j];
int foundIdx = ch.BelongsTo (match) ;

// If the note belongs to the chord.
if (foundIdx != Chord.NONE) {

// This note belongs to the chord in time
if (foundIdx == Chord .OWNS) {
ch.Add(match) ;
myRecent = j;
found=true;

// The note is in the chord already.
else {
MusicalDetect md = ch|[foundIdx];
md. Duration += match.Duration;
ch[foundldx] = md;

myRecent = j;
found=true;
¥

}
}

// Residuals :

if (! found) {
Chord ch = new Chord () ;
ch.Add(match) ;
myChords.Add(ch) ;
myRecent = myChords. Count —1;
}

}

Expiration () ;

for (int i=0;i<newNotes.Length;i++) {
if (newNotes[i].TimeOn > myTimeStep) myTimeStep
}

}

/// <summary>
/// Get all currently held chords.

/// </summary>

but

that note isn’t there.

newNotes[i].TimeOn;

public Chord[] GetChords() { return myChords. ToArray(); }

/// <summary>

/// Remove all chords.

/// </summary>

public void Clear () {
myChords. Clear () ;
myRecent = —1;

}
#endregion
#region Properties

/// <summary>

/// Get the most recently seen chord.

/// </summary>

/// <value>null if no chord exzists.</value>
public Chord Latest {

get {
if (myRecent == —1) return null;
return myChords|[myRecent |;
}
}
#endregion

public override string ToString() {
StringBuilder sb = new StringBuilder () ;

98

for (int i=0;i<myChords.Count;i++) sb.Append(myChords[i]. ToString() + ”\r\n”);
return sb.ToString () ;

i

99

A.0.10 Sound Processing Bus Class

using System;
using System .IO;
using System.Threading;
using System. Collections. Generic;
using System.Ling;
using System . Text;

using Core.IO;

using Core. Collections;

using Core.Forms;

using Core. Util;

using Core.Mathematics. Algebra;

using NAudio.Wave;
using Toolkit.Media.DSP;
using System.Diagnostics;

namespace Toolkit.Media.DSP {

/// <summary>
/// Identifies the current state of the sound bus

/// </summary>
public enum eSoundBusPhase {

/// <summary>
/// The bus played the entire stream or
/// something was killed , or an error occured.

/// </summary>
PlayEnded ,

/// <summary>

/// The sound bus has received a PCM stream and is starting play
/// </summary>

PlayStarted ,

/// <summary>
/// The sound bus has received a request to pause play.

/// </summary>
PlayPaused ,

/2
/// <summary>
/// Delegate notified of the current sound bus phase

/// </summary>
/// <param name="phase”’></param>
public delegate void dSoundBusPhase(eSoundBusPhase phase);

/4

/// <summary>

/// Delegate that is notified of clock ticks as the soundbus processes

/// </summary>

/// <param name="tineNs”>The current processing time in Nanoseconds</param>

/// <param name="step”>The definition of this tick step</param>
public delegate void dSoundBusTick(DSPStatistics timeNs, eTickStep

/42
/// <summary>
/// Delegate notified of each read sample.

/// </summary>

public delegate void dSampleNotice(Z2[] inSamp);

/22

/// <summary>

/// Provides a foundation wutilty class that can read input files or

/// from a microphone and play’s to the speaker as well as

/// forwarding raw data to processors for any purpose.

/7

/// Note: This class is threaded.

/// </summary>
/272

100

public class SoundBus {

#region Private Members

private bool myPlayForever = false; // If true then
forever (a microphone source or something)
private ePlayerState myState = Core.Forms.ePlayerState.None;

private DSPStatistics myTimeStats = new DSPStatistics () ;

private Object myMutex = new Object () ;

private SoundBusPluginQueue myPlugins = new SoundBusPluginQueue () ;
private Thread myPlayThread;

private Stream myInputPCMStream;

private PCMInfo mylInfo;

// Used for reading a sample 1 at a time.
private byte[] myWorkspaceBuffer;
// Provider of wave data to sound card

private BufferedWaveProvider myProvider = null;
// Total number of bytes read from input PCM stream.
private double myProcessedBytes = 0;

// Thread use only for stopping.
private bool myThIsPlaying = false;

#endregion
#region Event Methods

private void FirePhaseChange (eSoundBusPhase inPh) {
if (PhaseChanged != null)
PhaseChanged (inPh) ;
}

private void FireProgressChange(String inMsg, int min, int max, int val) {
if (ProgressChanged != null)
ProgressChanged (inMsg , min ,max, val) ;

}

private void FireTick(DSPStatistics timeNs, eTickStep step) {
try {
if (Tick != null) Tick(timeNs, step);

catch (Exception ex) { Log.Error(ex); }

}

private void FireSampleRead (Z2[] samp) {
if (SampleRead != null)
SampleRead (samp) ;

}

#endregion
#region Threads

/2725

/// <summary>

/// This will attempt to buffer a good number of samples for playing.
/// If we are a wave file input (myPlayForever=false) then

/// buffer enough data to the card to match up. Otherwise just grab
/// one sample at a time.

/// </summary>

/// <param name="input”>How many seconds to buffer.</param>

/// <returns>true if something to process</returns>

private bool BufferSeconds(Stream inStream, ref Z2[] outSamples, int sec) {
int neededSamples = (int)(mylnfo.SampleRatexsec);

// Re—shape temp buffer if needed.
if (myWorkspaceBuffer == null || myWorkspaceBuffer.Length < neededSamples)
myWorkspaceBuffer = new byte[(int)(myInfo.SampleSizexmylInfo.SampleRate)];

Array . Clear (outSamples ,0,outSamples. Length) ;
Array . Clear (myWorkspaceBuffer ,0 , myWorkspaceBuffer.Length) ;

int r = 0;

int dr = 0;

int offset = 0;

int bytesToRead = (int)(myInfo.SampleRatexmyInfo.SampleSize);
int total = 0;

we

suck

in PCM

if (myWorkspaceBuffer.Length < bytesToRead) throw new ArgumentException(”Not_enough_buffer._

space_in._’inSpace’”);

if (outSamples.Length < myInfo.SampleRatexsec) throw new ArgumentException(”Not_enough_buffer

; > 19y .
—space-in._’inTo 7);

101

// Read n seconds of data.
for (int i=0ji<sec;i++) {

// Read the amount we need
while(r < bytesToRead) {
dr = inStream .Read(myWorkspaceBuffer ,r, bytesToRead—r);

if (dr == 0) break;
r 4= dr;
}

if(r > 0) {
myProvider. AddSamples (myWorkspaceBuffer ,0,r);

MediaUtils. CreateSamples (ref outSamples ,myWorkspaceBuffer ,0,(int)mylnfo.SampleRate,

offset ,mylInfo);
myTimeStats.AddA (outSamples,0, (int)(r / mylInfo.SampleSize));
myProcessedBytes += r;

}

total += r;
r = 0;
offset += (int)mylInfo.SampleRate;

return total > O0;

/2
/// <summary>
/// The main thread that plays the current audio stream.

/// </summary>

private void PlayCorrectlyThread () {
myState = ePlayerState.Playing;
WaveOut wavePlayer = null;

try {
GameTime gt = new GameTime() ;
myThlIsPlaying = true;
wavePlayer = new WaveOut () ;
((WaveOut) wavePlayer) . DesiredLatency = (int)SoundParameters.LATENCY;
myState = Core.Forms.ePlayerState.Playing;
FirePhaseChange (eSoundBusPhase. PlayStarted) ;
myProvider = new BufferedWaveProvider (mylInfo.ToWaveFormat ());
wavePlayer.Init (myProvider);
wavePlayer.Play () ;

// Add padding to match block alignment.
myTimeStats. Clear () ;
myTimeStats. ResetInterval = (int)mylInfo.SampleRate;

// Initialize all the plugins with the wave information.

for (int k=0;k<myPlugins.Length;k++) myPlugins[k]. Initialize (this, myTimeStats, myInfo);

bool dataAvail = false;

double myTotalBytes = (myPlayForever)?double. MaxValue: myInputPCMStream. Length ;

FireProgressChange (” Processing.Signal_...” ,0,0,0);

DateTime nextStatus = DateTime.UtcNow.Add(new TimeSpan(0,0,3));
int bufferedTimeS = 1;

float targetPaintInterval = (1f/60f)%1000f;

float paintInterval = targetPaintlnterval;

float paintCnt = 0;

// Do 1 second buffer.
Z2[] -1Secondbuffer = new Z2[(int)mylInfo.SampleRate];

while (true) {

if (myState == Core.Forms.ePlayerState.Paused) {
while (myState == Core.Forms.ePlayerState.Paused) Thread. Sleep (50);
}

if (myState == Core.Forms.ePlayerState.Stopped) break;

// We have real—time mic mode and playing from file mode

// This is for playing from a file mode. We need to keep the sound card

if (!myPlayForever) {

if (myProvider. BufferedDuration < new TimeSpan(0,0,0,1,300))

dataAvail = BufferSeconds (myInputPCMStream, ref _1Secondbuffer ,bufferedTimeS);

// No data so stop.
if (!dataAvail && myProvider. BufferedBytes == 0) break;

in

sync.

102

}

else

dataAvail = BufferSeconds (myIlnputPCMStream,ref _1Secondbuffer ,bufferedTimeS);

// Update game time.
gt .UpGame(1000) ;

// Did we read anything new.

if (dataAvail) {
myPlugins . Add(-1Secondbuffer) ;
FireSampleRead (-1Secondbuffer) ;

}

// Wait for real time to catch up.
while (myProvider . BufferedDuration > new TimeSpan(0,0,0,0,300)) {
FireTick (myTimeStats,eTickStep . FPS30_Tick) ;

paintCnt++;
Thread . Sleep ((int) paintInterval);
}

// Status/progress update.
if (DateTime.UtcNow > nextStatus) {
int p = (int) ((myProcessedBytes/myTotalBytes)*100.0d) ;

FireProgressChange (” Processing._Signal_...” ,0,100,p);

paintInterval = paintInterval*(paintCnt/180f);

if (paintInterval > targetPaintInterval)
paintInterval = targetPaintInterval;

else if(paintlnterval == 0) paintlnterval = 1f;

nextStatus = DateTime.UtcNow.Add(new TimeSpan(0,0,3));

}

while (gt .Schedule () > 0) {
FireTick (myTimeStats ,eTickStep . FPS30_-Tick) ;
paintCnt—++;
Thread . Sleep (1) ;

}

gt . Clear () ;

catch(ThreadInterruptedException) {}
catch(ThreadAbortException) {}
catch (IOException ex) {

Log.Status (ex.ToString());

if (ProgressChanged != null) ProgressChanged (”"PCM_Stream._ended_.” + ex.Message,0,0,0);

}
catch(Exception ex) {
Log.Error (ex);

if (ProgressChanged != null) ProgressChanged(” Yipes!_Something_went_wrong._”
,0,0,0) 5
¥
finally {
myState = ePlayerState.Stopped;
try {
if (myInputPCMStream != null) myInputPCMStream. Close () ;
if (wavePlayer != null) wavePlayer.Dispose();

myInputPCMStream = null;
myWorkspaceBuffer = null;
myProcessedBytes = 0;
myProvider = null;
myPlugins. ClearPlugins () ;

catch(Exception) {}
myThlsPlaying = false;

try {
if (PhaseChanged != null) PhaseChanged (eSoundBusPhase.PlayEnded) ;
}

catch(Exception ex) {
Log. Error (ex) ;

}
#endregion

#region Constructors

+ ex.Message

103

/2728
/// <summary>
/// Destructor

/// </summary>

“SoundBus () {
Dispose () ;

/272
/// <summary>

/// Create a sound bus.

/// </summary>

public SoundBus() { }
#endregion
#region Plugin Actions

/272
/// <summary>

/// Add a bus plugin to the sound bus for messaging.

/// </summary>

public void Add(ISoundBusPlugin plugin) {
if (plugin == null) throw new NullReferenceException(”Can’t._add~a-null_plugin”);
if (myState == ePlayerState.Playing) throw new SystemException(”Can’t_add-a_plugin_while_the._
bus_is_playing”);

myPlugins.Add(plugin) ;

i

/2728
/// <summary>

/// Query for the plugin by the specified name.

/// </summary>

/// <param name="name”>The human readable name of this plugin</param>
/// <returns>null if mnot found</returns>

public ISoundBusPlugin FindPlugin(String name) {

lock (myMutex) {
for (int i=0;i<myPlugins.Length;i++) {

if (myPlugins[i].PluginName != null && myPlugins[i].PluginName == name)
return myPlugins[i];
}
}
return null;
}
#endregion

#region Playback

/2728
/// <summary>

/// Begin playing of the given audio file.

/// Supported .wav, .mp3

/// </summary>

public void Play(FilePath inFile) {
PCMStreamSource src = new PCMStreamSource(new FilePath (inFile));
Stream str = src.CreateStream () ;
Play (src.Format,str);

/272

/// <summary>

/// Begin the playing of the given audio stream.

/// </summary>

/// <param name="info”>The PCM content of the given stream</param>

/// <param name="pcmAudioStream”>The stream to read PCM data from</param>

public void Play (PCMInfo info, Stream pcmAudioStream) {

try {
Log.Status (” Starting _Play_Thread._...”);

// Try to determine the stream source
if (pcmAudioStream is MicrophoneStream)

104

myPlayForever = true;
else
myPlayForever = false;

ExtraThread . Kill (ref myPlayThread) ;

myInputPCMStream = pcmAudioStream;
myInfo = info;

myPlayThread = new Thread(PlayCorrectlyThread) ;
myPlayThread . IsBackground=true;

myPlayThread .Name = ”Playback._Thread” ;
myPlayThread. Start () ;

catch(ThreadAbortException) {
Log.Status (”"Play_thread_aborted....”);
ExtraThread. Kill (ref myPlayThread) ;

catch(ThreadInterruptedException) {
Log.Status (”Play_thread_interrupted....”);
ExtraThread . Kill (ref myPlayThread) ;

catch(Exception ex) { Log.Error(ex); }

/2

/// <summary>
/// Pause playback

/// </summary>
/

public void Pause() {

myState = Core.Forms.ePlayerState.Paused;

if (PhaseChanged != null) PhaseChanged(eSoundBusPhase

}
/42725

/// <summary>
/// Stop playback
/// </summary>

public void Stop () {
myState = ePlayerState.Stopped;
while (myThlIsPlaying) Thread. Yield () ;

/272
/// <summary>

/// Resume playback.

?// </summary>

public void Resume() {
myState = Core.Forms.ePlayerState.Playing;

if (PhaseChanged != null) PhaseChanged(eSoundBusPhase.PlayStarted);

¥
#endregion
#region Cleanup

/2
/// <summary>
/// Clear all plugins and ready for another run.

/// </summary>

public void Clear () {

lock (myMutex) {
ExtraThread . Kill (ref myPlayThread) ;
myWorkspaceBuffer = null;

myProcessedBytes = 0;
myProvider = null;
myInputPCMStream = null;
}
}
/22

/// <summary>
/// Dispose the Bus
/// </summary>

public void Dispose () {

try {

105

Stop () ;

catch (Exception ex) {}

¥
#endregion
#region Properties

/272
/// <summary>

/// Request access to the plugins installed in the sound bus.

/// (Never modify this array)

/// </summary>

/272
public ISoundBusPlugin[] Plugins {
get {
return myPlugins. ToArray () ;
}
}
/2728

/// <summary>

/// Get the statistics being gathered on each read item.
/// </summary>

/

public DSPStatistics TimeStats { get { return myTimeStats; } }

/2
/// <summary>
/// Get the stream encoding information.

/// </summary>

/27280
/// <summary>

/// Request the current status of the sound bus.

/// </summary>

/

public ePlayerState Status { get { return myState; }}

/// <summary>

/// Get the sound bus plugin queue that processes data and sends to plugins.
/// </summary>

public SoundBusPluginQueue Queue { get { return myPlugins; }}

#endregion
#region Events

/2
/// <summary>
/// Event notified of the current state.

/// </summary>

public event dSoundBusPhase PhaseChanged;

/2
/// <summary>

/// Event that is mnotified of progress.

/// </summary>

public event dProgressIinfo ProgressChanged;

/272

/// <summary>

/// Event that is mnotified of tick steps along the way during processing
/// of data.

/// </summary>

public event dSoundBusTick Tick;

/25
/// <summary>

/// This event is for non ISoundBusPlugins that wish to be notified
/// whenever a sample is read without all the other functions.

/// </summary>

public event dSampleNotice SampleRead;

#endregion

106

107

A.0.11 Media Utilities Class

using System;
using System .IO;
using System. Collections . Generic;
using System.Ling;
using System . Text;

using Core.IO;

using Core. Util;

using Core.Forms;

using Core.Mathematics. Algebra;
using NAudio.Wave;

namespace Toolkit.Media.DSP {

/2
/// <summary>

/// Various wutilities for dealing with sound/video/images.
/// </summary>

public abstract class MediaUtils {

#region Private Utility

private static List<FilePath> ourCreatedTempFiles = new List<FilePath >();

private static bool ourlIsCleaned = false;
#endregion

#region Calculations

/)
/// <summary>

/// Get the number of bytes in a sample chunk

/// </summary>

/// <param name="bps”>Bits per sample</param>

/// <param name="channels”>Number of channels</param>
/// <param name="blockAlign”>Block alignment</param>
/// <returns>The number of bytes in a sample</returns>

public static int GetSampleSize(int bps, int channels, int blockAlign) {
return new PCMlInfo(bps,channels ,0,blockAlign).SampleSize;

}

#endregion

#region 1/0

/// <summary>
/// Given a buffer of raw PCM data read samples for a specific channel.
/// </summary>
/// <param name="numSamps”>The total number of samples to read</param>

/// <param name="outRec”>Receives by reference the read sample data.</param>

/// <param name="buf”’>The buffer to read from</param>

/// <param name="offset”>The starting offset to read from buf</param>
/// <param name="info”>The stream infor</param>

/// <param name="size”>The number of samples to read</param>

/// <param name="channel”>The channel to read from</param>

/// <returns>An array of the samples read.</returns>

public static void CreateSamples(ref Z2[] outRec, byte[] buf
offset , PCMInfo info) {

, int channel, int numSamps,

int

if (outRec.Length < numSamps) throw new ArgumentException(”Sample_buffer_is_not_large_enough!

»y .
5

for (int i=0;i<numSamps;i++) {
PCMSample s = CreateSample(buf, offset ,info);

switch (channel) {
case O0:
outRec[i].A = s.Ampl;
break;
case 1:
outRec[i].A = s.Amp2;
break;

108

case 2:
outRec[i].A = s.Amp3;
break;

case 3:
outRec[i].A = s.Amp4;
break;

case 4:
outRec[i].A = s.Amp5;
break;

}

offset += info.SampleSize;

V42
/// <summary>
/// Given a complex valued impulse in the time domain create a PCM sample.

/// </summary>
//

public static byte[] CreatePCM(Z s, PCMlInfo info) {
int b = (info.BitsPerSample/8); // Bytes per sample
byte[] a = new byte[info.SampleSizexinfo.Channels];

for (int i=0;i<info.Channels;i++) {

if(b = 1) {
byte bl = (byte) ((int)s.Magnitude);
a[i*xinfo.SampleSize] = bl;
}
else if(b == 2) {
byte [] bytes = BitConverter.GetBytes((int)s.Magnitude);
a[i*info.SampleSize] = bytes[1];
a[i*info.SampleSize + 1] = bytes [0];
}
}
return a;
}
/472

/// <summary>

/// Create a PCM sample from a buffer that contains a PCM encoded sample starting at
/// the given offset.

/// </summary>

/// <param name="buf”’>The buffer to read from</param>

/// <param name="info”>Info about the PCM encoding</param>

/// <returns>The sample read</returns>

public static PCMSample CreateSample(byte[] buf, int offset , PCMInfo info) {
int b = (info.BitsPerSample/8); // Bytes per sample

PCMSample pc = new PCMSample() ;

for (int i=0;i<info.Channels;i++) {
int k = offset + bxij;
int valread = 0;

if(b == 2) {
int val = buf[k+1];
val = val <<8;
val = val | buf[k];

valread = (short)val;

if (valread > Intl16.MaxValue) valread = Intl16.MaxValue;

else if(valread < —Intl16.MaxValue) valread = —Intl16.MaxValue;
else if(b == 1)

valread = (short)buf[k];
if (valread > Intl16.MaxValue) valread = Intl6.MaxValue;
else if(valread < —Intl6.MaxValue) valread = —Int16.MaxValue;

}

// Depending on which channel we ve read save the wvalue off.
switch (i) {
case 0:
pc.Ampl = valread;
break;
case 1:
pc.Amp2 = valread;
break;
case 2:
pc.Amp3 = valread;
break;

109

case 3:

pc.Amp4d
break;
case 4:
pc.Amp5
break;
}
}
return pc;
}
#endregion

valread ;

valread ;

#region Generation Utilities

/2

/// <summary>

/// Fabricate a PCM stream of data that

/// PCM formatted as data chunks

/// </summary>

/// <param name="bps”> Bits

is probably just

per second</param>

/// <param name="sampleRate”>Sample rate</param>
/// <param name="blockAlign”>Block alignment</param>
/// <param mname="channels”> Channels</param>

/// <param name="numSamples’> The number of samples
/// <returns>The raw data array
272

public static byte[] CreateRandomPCM (PCMInfo pi,

int bps = pi.BitsPerSample;
float sampleRate = pi.SampleRate;
int blockAlign = pi.BlockAlign;

int channels =

if ((bps/8)*channels > blockAlign) throw new ArgumentException(”Block_alignment_must_be.
greater _than_or_equal_to_bits_per_sample_and_channels”);

pi.Channels;

of data

chunks</returns>

// Add padding to match block alignment.

int sampleSize

channels =(bps/8) +

blockAlign — channels*(bps/8);

byte [] buf = new byte[sampleSize];
MemoryStream ms

new MemoryStream () ;

for (int i=0;i<numSamples;i++) {
Random r = new Random() ;

for (int j=0;j<buf.Length;j++) {
if (r.Next(100) > 50)

buf[j] = (byte)r.Next(char.MaxValue/2);
else
buf[j] = (byte)—r.Next(char.MaxValue/2);
¥
ms. Write (buf,0,buf.Length);
}
return ms.ToArray () ;
}
2728

/// <summary>

/// Create a sample
/// a) Single Channel

/// b) 16 bits per

stream assuming the

sample

/// ¢) 40.1 Khz Sample Rate

/// </summary>

public static PCMSamplerMemoryStream CreateSingleChannel6BPS (int []

given data

PCMInfo pi = new PCMInfo(16,1,40100,2);

PCMSamplerMemoryStream ss = new PCMSamplerMemoryStream (pi) ;

for (int i=0;i<channell.Length;i++)
ss . Write (new PCMSample(channell [i]));

/2

/// <summary>

/// Create a sample
/// a) Dual Channel

stream assuming the

given data

to generate </param>

int numSamples) {

i85

i85

channell) {

110

/// b) 16 bits per sample
/// ¢) 40.1 Khz Sample Rate
/// </summary>

public static PCMSamplerMemoryStream CreateDualChannel6BPS(int [] channell, int[]
PCMInfo pi = new PCMInfo(16,2,40100,4);
PCMSamplerMemoryStream ss = new PCMSamplerMemoryStream (pi) ;

for (int i=0;i<channell.Length;i+4+)
ss . Write (new PCMSample(channell[i],channel2[i]));

/472
/// <summary>

/// Create a sample stream assuming the given data is

/// a) Single Channel

/// b) 8 bits per sample

/// ¢) 40.1 Khz Sample Rate

/// </summary>

public static PCMSamplerMemoryStream CreateSingleChannel8BPS (int [] channell) {
PCMInfo pi = new PCMlInfo(8,1,40100,1);
PCMSamplerMemoryStream ss = new PCMSamplerMemoryStream (pi) ;

for (int i=0;i<channell.Length;i+4+)
ss . Write (new PCMSample(channell[i]));

return ss;

/2
/// <summary>

/// Create a sample stream assuming the given data is

/// a) Dual Channel

/// b) 8 bits per sample

/// ¢) 40.1 Khz Sample Rate

/// </summary>

channel2) {

public static PCMSamplerMemoryStream CreateDualChanne8BPS(int [] channell ,int[] channel2) {

PCMInfo pi = new PCMInfo(8,2,40100,2);
PCMSamplerMemoryStream ss = new PCMSamplerMemoryStream (pi) ;

for (int i=0;i<channell.Length;i++)
ss . Write (new PCMSample(channell [i],channel2[i]));

return ss;

}
#endregion
#region Stream Creation

/2

/// <summary>

/// Given a stream source data object this creates the stream and

/// returns the stream and populates the format information in the

/// given source object.

/// </summary>

/// <returns>null if unable to find the stream location of a PCM stream</returns>
/// <param name="source”>The source information for the stream desired</param>

public static Stream CreateStream (PCMStreamSource source) {
try {

// Input from a selected file.
switch (source.SourceType) {

#region File Source
case ePCMSourceType. WaveFile:

if (! source.FilePath.Exists) {

StatusControl.Instance.StatusBlue = ”You_must_select_a_file _to_read_from!”;
return null;
}

StatusControl.Instance.StatusBlue = ”Loading_file_...”;

WaveFileReader input = null;

111

Mp3FileReader mpr = new Mp3FileReader(source.FilePath.ToString());
StatusControl.Instance.StatusBlue ”Decoding_file—-..."7;
FilePath myCreatedFile = FilePath.CreateTempPFile () ;
lock (ourCreatedTempFiles) {
ourCreatedTempFiles.Add(myCreatedFile) ;

if (source.FilePath.Extension.ToLower() == "mp3”) {

5

WaveFileWriter. CreateWaveFile (myCreatedFile. ToString () ,mpr) ;
pr. Close () ;

input = new WaveFileReader (myCreatedFile. ToString());
}
else

input = new WaveFileReader (source.FilePath.ToString());

source . Format = new PCMlInfo(input.WaveFormat) ;
return input;
#endregion

#region Micropohone

case ePCMSourceType. Microphone:

MicrophoneStream ms = new MicrophoneStream (source.Microphone) ;
ms. Start () ;
source .Format = ms. Outputlnfo;

return ms;
#endregion
¥
}

catch (Exception ex) {

StatusControl.Instance.StatusRed = ex.Message;
Log.Error (ex);

return null;

}

#endregion

/4720
/// <summary>

/// Should be called on app shutdown to
/// resources.

/// </summary>

/

cleanup media artifacts and system

public static void Shutdown() {
try {

if (!ourIsCleaned) {
ourIsCleaned=true;

lock (ourCreatedTempFiles) {

foreach (FilePath fp in ourCreatedTempFiles) fp.Delete();
}
}

catch (Exception ex) {}

}

112

A.0.12 PCM Info Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

using NAudio.Wave;

namespace Toolkit.Media.DSP {

/2
/// <summary>

/// Stucture that holds Pulse Code Modulated data
/// </summary>

public struct PCMlInfo {
#region Constant
public static readonly PCMInfo Empty = new PCMInfo(—1,—1,—1,—1);
#endregion
#region Members

/// <summary>

/// DBits per sample

/// </summary>

public int BitsPerSample;

/// <summary>
/// Number of channels

/// </summary>
public int Channels;

/// <summary>
/// The sample rate in (Hz)

/// </summary>
public float SampleRate;

/// <summary>

/// The Mazimum size of a sample chunk including each channel.

/// Block alignment states what boundry the bytes should end on when
/// encompassing each bits per sample and each channel being of the bits
/// per sample.

/17

/// <example>

/// Block Alignment (2 bytes)

/17 |

/17 v

/17
/// | Byte 0 | Byte 1 | Byte 2 | Byte 8 |
/17
/// | Time 0 | Time 1 |
/17
/// | Ch 1 | Ch 2 | Ch 1 | Ch 2 |
/17
/17
/// (Where Ch is the channel)
/17

/// </example>

/// </summary>

public int BlockAlign;

#endregion
#region Constructors

e
/// <summary>

/// Make a copy

/// </summary>

public PCMiInfo(PCMInfo other) {
BitsPerSample = other.BitsPerSample;
Channels = other.Channels;

113

SampleRate = other.SampleRate;
BlockAlign = other.BlockAlign;

/2
/// <summary>
/// Create a PCM Info from a wave format

/// </summary>

//

public PCMlInfo(WaveFormat fmt) {
BitsPerSample = fmt.BitsPerSample;
Channels = fmt.Channels;
SampleRate = fmt.SampleRate;
BlockAlign = fmt.BlockAlign;

472

/// <summary>

/// Create a PCMInfo from the wvalues

/// </summary>

/// <param mname="bps”>Bits per sample</param>

/// <param mname="channels”> Channels</param>

/// <param name="sampleRate”>Sample rate (Hz)</param>
/// <param name="blockAlign”>Block alignment</param>

public PCMlInfo(int bps, int channels, float sampleRate, int blockAlign) {
BitsPerSample = bps;

Channels = channels;
SampleRate = sampleRate;
BlockAlign = blockAlign;
¥

#endregion

#region Utility Methods

127/
/// <summary>
/// Caluclate the sample size of a chunk (how many bytes per a single data sample)

/// </summary>
//

public int SampleSize {
get {
return Channelsx(BitsPerSample/8) + BlockAlign — Channels*(BitsPerSample/8);

2/
/// <summary>
/// Convert this to a wave format structure.

/// </summary>

public WaveFormat ToWaveFormat () {
return new PCMWaveFormat(this) ;

¥
#endregion
#region Intermnal Classes

/// <summary>
/// Utility class that alllows us to convert from a PCMlInfo class to a
/// WaveFormat class .
/// </summary>
public class PCMWaveFormat : WaveFormat {
private PCMInfo mylInfo;

public PCMWaveFormat(PCMInfo info) : base((int)info.SampleRate,(int)info.BitsPerSample,info.
Channels) {
base.blockAlign = (short)info.BlockAlign;

}
}
#endregion
#region Proeprties

/472

/// <summary>

/// Ask if this is an empy instance of the PCMinfo structure
/// </summary>
/272

114

public bool IsEmpty {

get {
return BitsPerSample =— —1 &&
Channels == —1 &&
SampleRate == —1 &&
BlockAlign = —1;
}
}

#endregion
#region Object Overloads

public override bool Equals(object obj) {
PCMInfo other = (PCMlInfo)obj;

return BitsPerSample == other.BitsPerSample &&
BlockAlign == other.BlockAlign &&
Channels == other.Channels &&
SampleRate == other.SampleRate;

}

public override int GetHashCode() {
return ToString () .GetHashCode() ;

}

public override string ToString() {
return (SampleRate/1000f) + ”"kHz_Ch:.” 4+ Channels + ”_BPS:."+ BitsPerSample;
¥

#endregion

#region Operator Overloads

public static bool operator==(PCMlInfo a, PCMlInfo b) {
return a.Equals(b);

}

public static bool operator!=(PCMInfo a, PCMlInfo b) {
return !a.Equals(b);

}

#endregion

}

115

A.0.13 Melody Analysis

using System;
using System.Drawing;
using System. Collections . Generic;
using System.Ling;
using System . Text;

using Core.Mathematics;

using Core.Mathematics. Stats;
using Core.Mathematics. Linear;
using Core.Mathematics. Algebra;

using Toolkit.Media.UI;
namespace Toolkit.Media.DSP {

/// <summary>

/// Provides a melody analysis system which computes a visual space
/// from musical input.

/// </summary>

public class MelodyAnalysis {

#region Private Members

private PCMInfo mylInfo;

private Chord myLastCh;

private ChordDetector myChordDetector = new ChordDetector () ;
private RunningStatistics myStats;

private float myMaxNoise = 0;

#region Running Values

// Min/Maz values .

private float myMaxa = —float.MaxValue;
private float myMaxb = —float.MaxValue;
private float myMaxc = —float .MaxValue;

private float myMina = float.MaxValue;
private float myMinb = float.MaxValue;
private float myMinc = float.MaxValue;

private double mySpectacle = 0;

private double myN = 0; // Total number of chords seen.
// Centriciy stuff.
private double myThetaH =
private double myThetaF = 0;

o

#endregion
#endregion
#region Private Members

/// <summary>

/// Update the minimum and mazimum range values.

/// </summary>

private void UpdateMinMax(float vl, float v2, float v3,
float f1,float f2, float f3) {

myMina = Math.Min(myMina,vl);
myMinb = Math.Min(myMinb,v2) ;
myMinc = Math.Min(myMinc,v3) ;

myMaxa = Math.Max(myMaxa, vl) ;
myMaxb = Math . Max (myMaxb, v2) ;
myMaxc = Math.Max(myMaxc,v3) ;

myMina = Math.Min(myMina, f1);
myMinb = Math.Min(myMinb, f2) ;
myMinc = Math.Min(myMinc, f3) ;

myMaxa = Math.Max(myMaxa, f1) ;
myMaxb = Math.Max(myMaxb, f2) ;
myMaxc = Math.Max(myMaxc, f3) ;

}

#endregion

#region Constructors

/// <summary>

/// Create the melody analysis with the time series statistics and the stream information.
/// </summary>

public MelodyAnalysis(RunningStatistics stats, PCMInfo info) {

myInfo = info; myStats = stats;
myMaxNoise = (float) (Math.Pow(2.0f,(float)info.BitsPerSample)/2f);
}

private float myRunCDiff = 0;

/// <summary>

/// A wvalue from [0,1] that describes ”“how much” the
/// system is dramatically changing chords over time.
/// </summary>

/// <param mname="ch”’></param>

/// <param name="ch2”></param>

/// <returns></returns>

private float CDiff(Chord ch, Chord ch2) {

Comparison<MusicalDetect> s = delegate (MusicalDetect a, MusicalDetect b) {
if (a.Note.Fundamental < b.Note.Fundamental)
return —1;

else if(a.Note.Fundamental > b.Note.Fundamental)
return 1;

return 0;

}s
ch.Sort(s);
ch2.Sort(s);

Chord shorter;
Chord longer;
if (ch.Count > ch2.Count) {

longer = ch;
shorter = ch2;
}

else {
longer = ch2;
shorter = ch;
}

float sum = 0;

for(int i=0;i<shorter.Count;i++) sum += (float)Math.Abs((Music.Z12(ch[i].Note.Note)+1f)
Music.Z12(ch2[i]. Note.Note)+1f));
for (int i=shorter.Count;i<longer.Count;i++) sum += Music.Z12(longer[i].Note.Note) + 1f;

myRunCDiff = (float) (((myRunCDiff*myN) + sum/144f) /(myN+1f));
return myRunCDiff;

}

#endregion

/// <summary>
/// Provide a 1 second set of time samples.
/// </summary>
/// <param name="outBG”>Receives the background that should be used</param>
/// <param name="X">The samples to process.</param>
public VisualSpace [] Analyze(Z2[] X) {
MusicalDetect [] md = Music. GuessNotes (X,0,(int)myInfo.SampleRate);
for (int i=0;i<md.Length;i4+4) md[i].TimeOn = (int)myN;

myN-++;
myChordDetector . NewNotes (md) ;

Chord ch = myChordDetector. Latest ;
myChordDetector. Clear () ;

// Calculate base wvalues.

float sigma = (float)(myStats.StdDeviation /(2.0 fxMath.Pow(2f,myInfo.BitsPerSample)));
float thetaF = Music. FundamentalCentricity (ch);

float thetaH = Music. HarmonicCentricity (ch);

float chi = Music.Consonance(ch);

float mu = Music.Magnitude(ch);

float delta = 0;

float ba = 0;

int bg = 0;

int [] color = new int[ch.Count];
for (int i=0;i<ch.Count;i++) {

- (

117

color[i] = Music. TiggerStripes(ch[i],sigma).ToArgb();

if (Math.Abs(ch[i].Amp) > ba) {
ba = Math.Abs(ch[i].Amp);
bg = color[i];

}

if(sigma > 1) sigma = 1f;
if(sigma < 0) sigma = 0f;

delta = 0;

float cdiff = 0;

// Compute spectacle.

if (myLastCh != null)
delta = Music.ChangeOfChord (myLastCh,ch) ;
cdiff = CDiff(ch,myLastCh);
mySpectacle = delta + CDiff(ch,myLastCh);

}

float va = mu;

float vb = mu + delta;

float vc = thetaH; //mu + cdiff*(1—chi)*xmu;
float fa = 0;

float fb = 0;

float fc = 2f — cdiff — (float)mySpectacle;

int elements = 30 + (int)((1—chi)*50) + (int)mySpectacle*50;

UpdateMinMax (va,vb,vec,fa,fb, fc);

float aa = (myMaxa — myMina) ;
float bb = (myMaxb — myMinb) ;

float cc = (myMaxc — myMinc) ;

if (aa == 0) aa = 1;if(bb == 0) bb = 1;if(cc ==
va = (va—myMina) /aa;

vb = (vb—myMinb) /bb;

ve = (vc—myMinc) /cc;

myLastCh = ch;
myThetaF = (myThetaF*(myN—1) + thetaF) /myN;
myThetaH = (myThetaH*(myN—1) + thetaH)/myN;

VisualSpace vs =new VisualSpace (elements,
new float [] {va,vb,vc},
new float[] {fa,fb,fc},
color ,
new int[] {bg},
(float)mySpectacle) ;

return new VisualSpace[] { vs };

}

)

118

A.0.14 Fourier Transform Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;
using System.Threading. Tasks;
using System.Threading;

using Core.Mathematics. Linear;

using Core.Mathematics. Stats;

using Core.Mathematics. Algebra;
using Core.Mathematics. NumberTheory;

namespace Core.Mathematics. Analysis {

/// <summary>
/// Prowvides a class that takes in a set of sampled time domain
/// PCM and converts to frequency domain.

/// </summary>
public class FourierTransform {

/// <summary>
/// Perform the inner summand from equation (4)
/// </summary>
/// <param name="a">The current sub—indez a, of (a + bN1)</param>
/// <param name="offset”>The offset into X to work relative to.</param>
/// <param name="k”>The base frequency we are after (Hz)</param>
/// <param name="N">The total sample size</param>
/// <param name="N1">The first factor NI*N2 = N</param>
/// <param name="N2">The second factor NIxN2 = N</param>
/// <param name="N1">Total N</param>
/// <returns>The complex inner summand</returns>
private static Z f_b(Z2[] X, int offset, float k, float b, float N1, float N2, float N,
eWindowType useWindow) {
Z t = 0;
float w = 0;

for (int a=0;a<N2;a++) {
int idx = (int) (a+bxN2);

// Hanning window if specified.
// (1/2)%(1 — Cos((2 Pixz)/(N — 1))
switch (useWindow) {
case eWindowType.Hanning:
w = (float) (0.5f*(1.0f—Math.Cos ((2.0 f*Math.PIxMath.Floor (at+b*N2)))/N));
break;
default:
w = 1;
break;

}

t += X[offset + idx].AxZ.W(N,axk)*w;
}

return t;

}

/// <summary>

/// Given an array of real amplitude values perform the DFT assuming a sample rate

/// of X.Length and a single sample.

/// </summary>

/// <param mname="inRFs”></param>

/// <param name="X"></param>

public static void DFT(Z2[] X, float[] inRFs, eWindowType useWindow) {
DFT(X,X.Length ,0,inRFs,useWindow) ;

}

/// <summary>

/// Given a complex array of raw input samples assumed to have (sample rate values) this
performs

/// a DFT on the requested Rf walues.

/// </summary>

/// <param name="X">The sample space X[0].A is time domain, X[1].B is Rf </param>

/// <param name="rfs”>The Rfs to eztract.</param>

public static void DFT (Z2][] X, int sampleRate, int offset, float|[] rfs, eWindowType useWindow

) |
119

if ((X.Length % sampleRate) != 0) throw new ArgumentException(”The_given_data_space_is._not.
congruent._with_.the_sample_size.” + sampleRate);

float N = sampleRate;
float _10verN = 1.0f/N;
Z ¢ = 0;

float w;

for (int k=0;k<rfs.Length;k++) {
c = 0;

for (float n=0;n<N;n++) {
switch (useWindow) {
case eWindowType.Hanning:
w = (float) (.5f*(1.0f—Math.Cos((2.0 fxMath.PI%n)/N)));

break;
default :
w = 1;
break;
}
c += X[offset + (int)n].AxwxZ W(N,nxrfs [k]);
}
X[offset + (int)rfs[k]].B = c*x_10verN;

}
}

/// <summary>
/// Perform an FFT on only the given targeted RF wvalues assuming a single sample in
/// X whose samplerate is the size of the given array.
/// </summary>
/// <param name="inRFs”>The frequencies to attack</param>
/// <param mname="X">The structure consisting of 1 to many samples.</param>
/// <param name="useWindow”>If true then a Hanning window is applied to the transform.</param>
public static void RfFFT(Z2[] X, float[] inRFs, eWindowType useWindow) {
RIFFT (X,X.Length ,0,inRFs ,useWindow) ;
}

/// <summary>
/// Perform an FFT on the given array X wusing the Z2.A real wvalues
/// as inputs.
/// </summary>
/// <param mname="inRFs”>The frequencies to extract</param>
/// <param mname="offset”>The offset in the X array to work relative to</param>
/// <param name="samplerate”>The samplerate of the data</param>
/// <param mname="X">The source amplitude array.</param>
public static void RfFFT(Z2[] X, int samplerate, int offset , float[] inRFs, eWindowType
useWindow) {
int f1, f2;
float N1,N2;

int N = samplerate;
float _10verN = (1.0f/N);
Z c = 0;

// Factor and turn the factors to floats
ExtraNumberTheory . Factor (samplerate ,out fl, out f2);
N1 = f1; N2 = f2;

Object sync = new Object () ;
Dictionary<int ,int> vals = new Dictionary<int,int >();

for (int i=0;i<inRFs.Length;i++) {
float k = inRFs[i];

c = 0;
Z t = 0;

// Non—parallelized for testing.

J/for(int b=0;b<N1;b++)

// ¢ += f-b(X,offset ,k,b,N1,N2,N, use Window)+*Z.W(N, bxN2xk) ;

// Parallelize each inner summand.
Parallel .For<Z>(0, (int)(N1-1),
() = o0,
(b,loopState ,local2) => {
local2 4= f_b (X, offset ,k,b,N1,N2,N,useWindow) *Z.W(N, bxN2xk) ;
return local2;

Iy
(outputValue) => {

lock (sync) ¢ += outputValue;

1)

120

X[offset + (int)k].B = c*_10verN;
}

}

/// <summary>
/// Specifies what kind of windowing technique to be wused.
/// </summary>
public enum eWindowType {
Hanning ,
None

}

121

A.0.15 Synthesizer Class

using System;

using
using
using

using

System . Collections . Generic;
System . Ling;
System . Text;

Core.Mathematics. Algebra;

namespace Core.Mathematics. Analysis {

/// <summary>

/// Provides wutilities for generating different discrete waveforms as a series

/// amplitude samples.

/// </summary>
public class Synthesizer : List<Z2> {

#region Private
private int mySampleRate;
#endregion

#region Constructors

/// <summary>
/// Create the synthesizer.

/// </summary>

public Synthesizer (int

#endregion

#region Utility

/// <summary>

/// Add the given frequency at the specified amplitude for
/// </summary>

public void Add(float rf, float amp, int dur) {

Z2[] sig = SynthesizeSignal (mySampleRate ,new float [] {rf},dur,eDurationType.Seconds ,new

float [] {amp});
AddRange(sig);

/// <summary>
/// Add the given frequency to the signal starting at the given time.
/// </summary>

/// <param name="rf">The frequency to add</param>
/// <param name="amp”>The power level </param>
/// <param mname="dur”>The duration of the frequency in seconds </param>
/// <param mname="start”>The starting time offset in seconds</param>
public void Add(float rf, float amp, int dur, int start) {
Add(rf ,amp,dur,eDurationType.Seconds ,start ,eDurationType.Seconds) ;

}

/// <summary>
/// Add the given frequency to the signal starting at the given
/// time.

/// </summary>

/// <param mname="rf”>The frequency to add</param>

/// <param name="amp”>The power level </param>

/// <param name="dur”>The duration of the frequency, wunits
/// <param mname="start”>The starting time (offset) to begin
/// <param name="inDurUnits”>How to interprest the duration

/77

public void Add(float rf, float amp, int dur, eDurationType

eDurationType inStartUnits) {
Z2[] X = SynthesizeSignal (mySampleRate ,new float [] { rf},
1)

sampleRate) { mySampleRate = sampleRate; }

the given duration in seconds.

of

specified by inDurType </param>

adding </param>
value.</param>

inDurUnits, int

dur, inDurUnits,

if(inStartUnits == eDurationType.Seconds) start = startxmySampleRate;

// Add silence wuntil we reach start (if not enough space
while (Count < start+1) Add(mew Z2(Z.Zero ,Z.Zero));

for (int i=0;i<X.Length;i++) {

int offset = i 4+ start;
if (offset == Count) {
Add(X[i]);

allocated yet)

<param name="inStartUnits”>What units are the start value to be considered</param>

start ,

new float []

{ amp

122

}
else {
Z2 zt = this[offset];

zt .A = this[offset]. A + X[i].A;
zt .B = this[offset].B + X[i].B;
this[offset] = zt;

}

}

/// <summary>
/// Add nmoise to the signal from the given starting point (sample item) to
/// for the given duration.
/// </summary>
/// <param name="start”>The starting sample to begin adding noise</param>
/// <param mname="dur”>The duration of time to add nose (in seconds)</param>
/// <param mname="mnoiseFloor”>The mazimum amplitude in the mnoise</param>
/// <param mname="inDurUnits”>The units to interpret the duration value in</param>
/// <param name="inStartUnits”>The units to interpret the start offset in</param>
public void AddNoise(int start , eDurationType inStartUnits, int dur, eDurationType inDurUnits,
float noiseFloor) {
Random r = new Random ((int) (DateTime.UtcNow. Ticks << 32));
if (inStartUnits == eDurationType.Seconds) start = starts*mySampleRate;

if (inDurUnits == eDurationType.Seconds) dur = mySampleRatexdur;

// Add silence wuntil we reach start (if not enough space allocated yet)
while (Count < start+1) Add(new Z2(Z.Zero ,Z.Zero));

for (int i=0;i<dur;i++) {
int offset = i 4+ start;

if (offset == Count) {
Z z = (float)(r.NextDouble()*noiseFloor);
Add (new Z2(z,Z.Zero));

else {
72 zt = this[offset |;
zt .A = (float)(this[offset].A.A + r.NextDouble()*noiseFloor);
this[offset] = zt;

}
#endregion
#region Properties
/// <summary>

/// Request the current total duration (imn seconds) of data.

/// </summary>
public int Duration {

get {
return (int)Math. Ceiling (((double)Count)/mySampleRate) ;
}

}

public int SampleRate { get { return mySampleRate; }}
#endregion
#region Utility Methods

/// <summary>
/// Generate a time series of N samples per second that contains
/// the given array of frequencies embedded across the entire sample at the given wvolume.
/// </summary>
/// <param name="amp”>The amplitudes to apply to each frequency respectively.</param>
/// <param name="rfs”>The frequency list to be embedded in the entire sample</param>
/// <param mname="sampleRate”>The number of samples to provide</param>
/// <param mname="duration”>The duration the signal should last</param>
/// <param name="inTyp”>How to interpret the durtion wvalue’s wunits</param>
public static Z2[] SynthesizeSignal(int sampleRate, float[] rfs, int duration, eDurationType
inTyp, float[] amp) {
int dur = (inTyp == eDurationType.Seconds)?sampleRatexduration:duration;
Z2[] td = new Z2[dur];

double _2PI = (float) (Math.PI*2.0d);
float N = (float)sampleRate;
float s = 0;

123

for (int n=0;n<dur;n++) {
s = 03

// Add each of the frequencies in.

for (int j=0;j<rfs.Length;j++) s += (float) (amp[j]*Math.Cos((-2PIxrfs[j]=*((float)n))/N));

td[n]. A = s;

return td;

}

/// <summary>

/// Generate a time series of N samples per second that contains

/// the given frequency embedded across the entire sample time at the given wolume

/// </summary>

/// <param name="amp”>The amplitude to apply to each frequency</param>

/// <param mname="rf">The frequency to be embedded in the entire sample</param>

/// <param name="sampleRate”>The number of samples to provide</param>

/// <param mname="duration”>The duration of the signal in seconds.</param>

public static Z2[] SynthesizeSignal(int sampleRate, float rf, int duration, float amp) {
return SynthesizeSignal (sampleRate ,new float [] {rf}, duration,eDurationType.Seconds,

float [] {amp});

/// <summary>

/// Generate a time series of N samples per second that contains

/// the given frequencies embedded across the entire sample time at the given wvolume.
/// </summary>

/// <param name="amp”>The amplitude to apply to each frequency</param>

/// <param mname="rfs”>The frequencies to be embedded in the entire sample</param>
/// <param name="sampleRate”>The number of samples to provide</param>

/// <param name="duration”>The duration of the signal in seconds.</param>

public static Z2[] SynthesizeSignal(int sampleRate, float[] rfs ,int duration, float amp) {
float [] amps = new float |[rfs.Length];
for (int i=0;i<rfs.Length;i++) amps[i] = amp;

return SynthesizeSignal (sampleRate ,rfs ,duration ,eDurationType.Seconds ,amps) ;

}

#endregion

}

/// <summary>
/// Utilty enum wused by the synthesize method.
/// </summary>
public enum eDurationType {
/// <summary>
/// The duration should last the given number of seconds.
/// </summary>
Seconds ,
/// <summary>
/// The duration should last the given number of sample values.
/// </summary>
Samples

}

124

A.0.16 Complex Number Class

using System;
using System. Collections . Generic;
using System.Ling;
using System . Text;

namespace Core.Mathematics. Algebra {

/2
/// <summary>

/// Provides the container for a complex number with a real

/// and imaginary portion .

/// </summary>

public struct Z : IField2 {

#region Constants
private const float _2PI = (float)(Math.PIx2d);
#endregion

/22
/// <summary>
/// The "Empty” wvalue for this structure

/// </summary>
/

public static readonly Z Empty = new Z(float.MinValue, float.MinValue) ;

A
/// <summary>
/// The zero element.

/// </summary>
public static readonly Z Zero = new Z(0,0);
#region Constructors

/27220
/// <summary>

/// Create a complex number

/// </summary>

public Z(float a, float b) {
A = a;

/2728

/// <summary>

/// Create a unit length complex number from the exponential form being
/// Z = e {iarg(z)} where |z| = 1.

/// </summary>

/// <param name="argz”>The argument/angle which can be from 0 to N</param>

public Z(float argz) {
A = (float)Math.Cos(argz);
B = (float)Math. Sin(argz);
}

#endregion
#region Fields

/27220
/// <summary>

/// The real portion of the complexr number

/// </summary>

public float Aj;

/272
/// <summary>
/// The imaginary portion of the complex number

/// </summary>
/

public float B;

#endregion
#region IField2 Interface

public float X1 {

get {
return Aj;
}
set {
A = value;
}
}
public float X2 {
get {

#endregion
#region Properties

/2728
/// <summary>

/// Ask if this is the empty structure

/// </summary>

public bool IsEmpty { get { return A == Empty.A && B == Empty.B; }}

/422
/// <summary>
/// Get the magnitude of this complex number.
/// </summary>
public float Magnitude {
get { return (float)Math.Sqrt(A*A + BxB); }

/272
/// <summary>

/// Get the argument of this complex number from 0 — 2PI

/// (This is NOT the principal argument)

/// </summary>

public float Arg {

get {
// 90 where tangent is undefined
if (A== 0 && B > 0) return (float)(Math.PI/2.0f);
// 270 where tangent is wundefined.
if(A == 0 && B < 0) return (float) (3.0f+*Math.PI/2.0f);
return (float) ((Math.Atan2(B,A) + _2PI) % _2PI);
}
}
/422

/// <summary>

/// Get the complex conjugate.
/// </summary>

/

public Z Conjugate {
get { return new Z(A,—-B); }

}
#endregion
#region Utiltities

/225
/// <summary>

/// Assuming this complex mnumber is in ezponential form

/// raise it to the given power

/// </summary>

/// <param name="n">The power to raise the complex number to</param>
/// <returns>The new number</returns>

/272

126

public Z e(float n) {
return e ((float)Math.Pow(Magnitude ,n) ,Args*n) ;

/2728
/// <summary>
/// Create a unit length exzponential form of a compler number with the given argument.

/// </summary>
/// <param name="arg”>The argument</param>
/// <param name="mag”>The magnitude</param>

public static Z e(float mag, float arg) {
return new Z(arg)s*mag;

/2722
/// <summary>
/// Create an W-_n which is e {—i2PI/Nx(arg)}.

/// </summary>

public static Z W(float N, float arg) {
return new Z((float)(—Math.PI*x2.0d/Nx*arg));

}
#endregion
#region Operator Overloads

/22
/// <summary>
/// Divide a complex number by a real
/// </summary>
/2725
public static Z operator/(Z a, double d) {

return new Z((float)(a.A/d) ,(float)(a.B/d));

/2722
/// <summary>

/// Divide two numbers

/// </summary>

public static Z operator/(Z a, Z b) {
// Do a/b.

Z ¢ = b.Conjugate;
double m = (bxb.Conjugate) .A;
return (axc)/m;

/2728
/// <summary>
/// Assignment of a real wvalue.

/// </summary>

public static implicit operator Z(double x) {
return new Z((float)x,(float)0);

/422
/// <summary>

/// Multiply by a constant.

/// </summary>

public static Z operatorx*(Z cl, double c) {
return new Z((float) (cl.Axc) ,(float)(cl.Bxc));

/2722
/// <summary>

/// Multiply by a constant.

/// </summary>

public static Z operatorx*(double c,Z cl) {
return new Z((float)(cl.Axc) ,(float)(cl.Bxc));

/22
/// <summary>
/// Difference between to complex numbers cl — c2.

/// </summary>
//

public static Z operator—(Z cl, Z c2) {

127

return new Z(cl.A—c2.A,cl.B-c2.B);

/2728
/// <summary>
/// The multiplication operation

/// </summary>

public static Z operatorx*(Z cl, Z c2) {
float a = cl.A;
float b = cl1.B;
float ¢ = c2.A;
float d = c2.B;
return new Z(axc—bxd, axd+bxc);

/272
/// <summary>
/// The addition operator.
/// </summary>
/272
public static Z operator+(Z cl, Z c2) {

return new Z(cl.A+c2.A,cl.B+c2.B);

/22
/// <summary>
/// The equality.
/// </summary>
/2725
public static bool operator==(Z cl, Z c2) {

if (ReferenceEquals(cl,c2)) return true;

else if(((Object)cl) == null || ((Object)c2) == null) return false;

return cl.A =— ¢c2.A && c1.B == ¢2.B;

}
/272

/// <summary>
/// Real number equality.

/// </summary>
//

public static bool operator==(Z cl, double v) {
return cl.A =— v && c¢1.B == 0;

/272
/// <summary>
/// Real number equality.
/// </summary>
/2725
public static bool operator!=(Z cl, double v) {

return cl1.B != 0 || cl.A != v;

/22
/// <summary>

/// The in equality.

/// </summary>

//

public static bool operator!=(Z cl, Z c2) {
return !(cl == c2);

}

#endregion

/272
/// <summary>

/// Object override for equality.

/// </summary>

public override bool Equals(object obj) {
return this == ((Z)obj);

}
public override string ToString() {
if (B == 0)
return 77 + A;
else {
if (B < 0)
return ”” + A 4+ ”_—_i” + Math.Abs(B);
else
return "7 + A + 7" _+_i” + B;
}

128

}

public override int GetHashCode() {
return ToString () .GetHashCode ()

}

3

129

A.0.17 Vortex Visual

using System;

using System.Drawing;

using System.Threading;

using System. Collections. Generic;
using System.Ling;

using System . Text;

using Microsoft.Xna.Framework;
using Core.Drawing;

using Core. Util;

using Core.Mathematics;

using Core.Mathematics.Geometry;
using Core.Mathematics. Algebra;
using Toolkit.Media.DSP;

using Toolkit.Xna;

using Toolkit.Media.DSP. Filters ;
using Toolkit.Media.UI;

using Rectangle=System.Drawing.Rectangle;
using Color=System.Drawing. Color;
using Core.Mathematics. Stats;

namespace Apps.PictographReader.Plugins. Visuals {
/// <summary>
/// Provides an animation visual that creates a spinning vortex based upon the
/// input parameters.
/// </summary>
public class VortexVisual IVisualizer {
#region Static Members
private static float _2PI = (float)(Math.PIx2f);

#endregion

#region Private Members

private bool myEnabled true;
private Random ourRandom = new
// Vector that defines
protected List<VortexPlusData>
private Z myDFT = new Z(0,0);
private VisualSpace myLastVS
#endregion

#region Private Utility

/// <summary>

/// Plot an arc
radius

/// </summary>

centered about

private void PlotArc(IGraphicsCanvas g,

float cur, float rad, int
float x2,y2;
// Calulate the current radi

rotation

Random ((int) EpochTime.Now) ;

angles (in radians) about each axzis per each render action.
mySpinnies = new List<VortexPlusData >();

VisualSpace .Empty;

z,y,z with starting , ending and current angles of the given

float x, float y, float z, float start, float end,

color) {
al line and draw it.

x2 = (float) (radxMath.Cos(cur));

y2 = (float)(radxMath.Sin(cur));

float incSz = (float)(end — start)/60f;
float i = start;

float 1X = (float) (rad«Math.Cos(i));
float 1Y = (float) (rad«Math.Sin(i));

for (;i<=cur;i+=incSz) {
x2 = (float) (radxMath.Cos(
y2 = (float) (radxMath. Sin (
g.DrawLine (1X 4+ x,1Y + y,z

1X = x2;
1Y = y2;
}

i));
i));
,x2 + x,y2 + y,z,color);

130

/// <summary>

/// Plot the line and increment it.
/// Returns true when its done.

/// </summary>

private void Plot (IGraphicsCanvas g) {

try {
XnaGraphicsCanvas graphics = (XnaGraphicsCanvas)g;
graphics.Projection = Toolkit.Xna.eXnaCanvasPerspective. Perspective;

if (!Inc()) return;
lock (mySpinnies) {
foreach (VortexPlusData data in mySpinnies) {
float br = (data.mySize — (data.myAngle—data.mySAngle)/data.myEAnglexdata.mySize);

if (br > 0 && data.Spectacle > .4f)
graphics. FillCircle (data.myX, data.myY, data.myZ, br,data.Color) ;

// Plot an arc

int cnt = (int)(1f + data.MaxElementsxdata.Spectacle);
float rinc = data.mySize/((float)cnt);

float r = data.mySize;

float z = data.myZ;

int ¢ = 0;

for (int i=0;i<cnt;i++) {
PlotArc(graphics ,data.myX,data.myY,z,data.mySAngle,data.myEAngle,data.myAngle,r,data
.myColors [c++ % data.myColors.Length]) ;

r —= rinc;
z —= rinc;
}
}
} // End lock
}
catch (Exception ex) { Log.Error(ex); }

}

/// <summary>

/// Increment the animations to the mnezt phase.
/// </summary>

private bool Inc() {

lock (mySpinnies) {
bool draw = false;

for (int i=0;i<mySpinnies.Count;i++) {
if (mySpinnies[i].IsDone) {

mySpinnies.RemoveAt (i) ;
i——

else {
mySpinnies[i] = mySpinnies[i].Inc();
draw=true;
}
¥
return draw;
}
}
#endregion

#region Constructors

/// <summary>

/// Create a vortexr wisual renderer.
/// </summary>

public VortexVisual () {}
#endregion

#region Utility Methods

/// <summary>

/// Reset the wvortexz.
/// </summary>

131

public void Clear () {
mySpinnies. Clear () ;

/// <summary>

/// Add a sample to be processed.

/// </summary>

public void Update(VisualSpace vs) {
if (!myEnabled) return;

if (!myLastVS.IsEmpty) {

lock (

//

mySpinnies) {

Starting angle

float pStart = (float)vs.Values[0]x*_2PI;

//

Ending angle

float pEnd = (float)(pStart + vs.Values[1]*_2PI%100f 4+ vs.Spectacle*x_2PI%x100);

//

Radius

float radius = (vs.Values[0])*1.5f;

// Setup center to be some growth away from focus based upon the pri/sec/third values.

float specRange = .25f;

float y = —2.0f + (vs.Focus[0]*2f — specRange) + specRangexvs.Spectacle + (float)
ourRandom . NextDouble () ;

float x = —2.0f + (vs.Focus[1]*2f — specRange) + specRangexvs.Spectacle + (float)
ourRandom . NextDouble () ;

float z = —2.0f + (vs.Focus[2]x2f) 4 (float)ourRandom.NextDouble() ;

// Velocity

float velocity = (float) ((pEnd—pStart) /(80 — (30.0f*vs.Spectacle)));

VortexPlusData sd = new VortexPlusData (pStart,pEnd,velocity ,x,y,z,radius ,vs.

if (

ForegroundColors ,vs.Spectacle ,vs.MaxElements) ;

mySpinnies.Count < 30)

mySpinnies.Add(sd) ;

}
}

myLastVS = vs;

}

public void PerformDrawing(IGraphicsCanvas canvas) {
if (! myEnabled) return;
Plot (canvas) ;

}

#endregion

#region Properties

/// <summary>
/// Get the type of graphics system this exzpects.
/// </summary>
public eGraphicsSupport GraphicsSupport {
get { return eGraphicsSupport.Xna; }

}

#endregion

}

#region Utility Classes

public struct VortexPlusData {

private
public
public
public
public
public
public
public
public
public
public
public

int myCldx; // Index into color to wuse.
float mySAngle; // Starting angle postion
float myEAngle; // Ending angle position
float myAngle; // Current rotational position
float myRotateVelocity; // Angle increment
float myX; // Tranlsation

float myY; // Tranlsation

float myZ; // Translation

float mySize; // Length of line.

int [] myColors;

float Spectacle;

int MaxElements;

132

i

private bool myFirstPassDone;

/// <summary>
/// Is this done rotating

/// </summary>
public bool IsDone {

get {

if (float .IsNaN(myAngle) || float.IsNaN(myEAngle))
return true;

if (!myFirstPassDone)

return false;
else

return (myAngle <= mySAngle);
}

}

/// <summary>

/// Get the color to wuse on the current leg of the spinny guy.

/// </summary>
public int Color {
get {
return myColors [myCldx];
¥
¥

/// <summary>
/// Rotatate to the nexzt position
/// </summary>
public VortexPlusData Inc() {
if (!myFirstPassDone)
myAngle += myRotateVelocity ;
else
myAngle —= myRotateVelocity ;

myCldx = (myCldx + 1) % myColors. Length;

if (myAngle >= myEAngle && !myFirstPassDone) myFirstPassDone

return this;

}

/// <summary>

/// Create a spinny data object.

/// </summary>

/// <param name="color”>RGB color </param>

/// <param name="cz”>Center X of spinner</param>

/// <param name="cy”>Center Y of spinner</param>

/// <param name="endAngle”>Ending angle in radians</param>
/// <param name="rad”>Radius of spinner</param>

/// <param name="startAngle”> Starting angle of spinner in radians</param>
in radians </param>

/// <param name="wvelocity”> Velicty of the spinners rotation
public VortexPlusData(float startAngle,

float endAngle,

float velocity ,

float cx,

float cy,
float cz,
float rad,

int [] color,
float spectacle ,
int elements) {
mySAngle = startAngle;
myEAngle = endAngle;
myAngle = mySAngle;
myRotateVelocity = velocity;
myX = c¢x;
myY = cy;
myZ = cz;
mySize = rad;
myColors = color;
myCldx = 0;
Spectacle = spectacle;
MaxElements = elements;
myFirstPassDone = false;

}
}

#endregion

133

A.0.18 Visualizer Interface

using System;

using
using
using

using
using
using

using
using
using

System . Collections . Generic;
System . Ling;
System . Text;

Core.Mathematics. Algebra;
Core. Mathematics;
Core.Drawing;

Toolkit . Media.DSP;
Toolkit . Media;
Toolkit . Media.UI;

namespace Apps.PictographReader.Plugins. Visuals {

/// <summary>
Provides an interface connected to some implementation that
animation or wisual drawing based upon a parameter space.

/17
/17
/17
/17

The underlying implementation is thought to have mo "brains”
/// </summary>
public interface IVisualizer : IGraphicsEnabled {

/// <summary>
/// Remove/Cleanup everything for another run.

/// </summary>
void Clear () ;

/// <summary>

/// Construct the visual based upon the paramter

/// </summary>
void Update(VisualSpace inSpace);

}

space .

generates an

and only draws

what

it

is

told .

134

A.0.19 Visualizer Space

using System;

using System. Collections . Generic;
using System.Ling;

using System . Text;

using Core. Util;

namespace Toolkit.Media.UI {

/// <summary>

/// Provides a structure that describes an animation sprite as a set of generic
/// parameters to be interpreted by some graphic renderer.
/// </summary>
public struct VisualSpace {
#region Public Constants
public static readonly VisualSpace Empty = new VisualSpace(—1,null ,null,null,null,—1);

#endregion
#region Properties

/// <summary>
/// A threshold
/// absolutely spectauclar
/// mothing spectial.

/// </summary>

public float Spectacle;

value from 0 to 1 where 1 means

visualization and zero

/// <summary>
/// Mazimum number
/// Designed to

/// </summary>
public int MaxElements;

be
underlying animator.

of elements to created .

limit the

/// <summary>

/// A three space wvalue list to be interpreted by
///

/// The wvalues can be anything but commonly

/// primary,

/// secondary ,

/// tiertiery

/// respectively.

/// </summary>

public float [] Values;

/// <summary>

/// Provides the centroid element that describes

/// anmnimation .
/// </summary>
public float [] Focus;
/// <summary>

/// The primary

/// </summary>
public int[] ForegroundColors;

color RGBA value to be wused.

/// <summary>
/// A list of
/// </summary>
public int [] BackgroundColors;

color walues to be wused

public float Mag;
#endregion

#region Constructors
/// <summary>

/// Create the

/// </summary>
public VisualSpace(int

visualizer space.

inMaxElements ,

float [] inValue,
float [] inFocus,
int [] inColors,

int [] inBGColors,

some focal

in background

means

the wvisualizer.

interpreted as

region of the

renderings .

135

float inSpectacle) {

MaxElements = inMaxElements;
Values = inValue;

Focus = inFocus;
ForegroundColors = inColors;
BackgroundColors = inBGColors;
Spectacle = inSpectacle;

Mag = 0;

}
#endregion

public override string ToString() {
StringBuilder sb = new StringBuilder () ;

sb.Append (ExtraString . ToString (Values));
sb.Append (”,”);

sb.Append (ExtraString. ToString (Focus));
sb.Append (”,”);

sb.Append(Spectacle);
return sb.ToString();

}

#region State Properties

/// <summary>
/// Ask if this wvisual space is an empty space.

/// </summary>
public bool IsEmpty {

get { return MaxElements == —1 && Spectacle == —1 && ForegroundColors == null && Values ==
null && Focus == null; }
¥

#endregion

}

136

A.0.20 Survey Results

using System;

using System .IO;

using System. Collections . Generic;
using System.Ling;

using System . Text;

using Core.Mathematics. Linear;
using Core. Util;

using Core.IO;

namespace ThesisAnalysis {

/// <summary>
/// A class that parses
/// the score of a taken
/// </summary>
public class SurveyResults {

an email
survey .

response

#region Private Members

// Scores for survey (1 per person)
private List<SurveyScore> myScores =
private int myFail = 0;

#endregion

each

#region Private Util

/// <summary>
/// Score computation

/// </summary>
private float

that is an inverse

s(float a) {
/// <summary>
/// Score computation
/// </summary>
private float t(float

that is a direct score.

a) {

return a/5f; }

/// <summary>
/// Compute the

/// </summary>
private float ComputeScore(float []

score given a set of answers.

answers) {

float [] mappings = {0,5,4,0,2,1};
float [] importance = {2,3,8,8,10,10,5};
// Map answers to wvalues.

for (int i=0;i<answers.Length;i++4) answers[i]

return s(answers[0])*importance
s(answers [1]) *importance
t (answers [2]) *importance
t(answers [3]) *importance
t(answers [4]) *importance
t(answers [5]) *importance

B e

t(answers [6]) *ximportance

¥
#endregion
#region Constructors

/// <summary>
/// Create a
/// with eztension
/// </summary>
public SurveyResults (FilePath
foreach (FilePath fp

}

survey results
Ltxt

processor by
assuming each file 1is
inDir)

in inDir.

#endregion
#region Utility

/// <summary>
/// Add the results

/// </summary>
/// <param mname="inMsg”>The email

of one email to the

score.

return (5f—a)/5f; }

loading
an email

and computes

new List<SurveyScore >();

= mappings [(int)answers[i]];

every file in the given

response from the

directory
survey .

GetFiles (7. txt”)) Add(fp.Text);

processor.

message</param>

137

public void Add(String inMsg) {

try {
StringReader sr = new StringReader (inMsg) ;
String line;
List<String> results = new List<String >();
int run = 0;
String user = 77
// Read each line and look for the results (Ignore debug)
while ((line = sr.ReadLine()) != null) {
if(line.Trim() == ””) continue;
else if(line.Contains(”Run:”)) {
run = int.Parse(line.Substring(line.IndexOf(”:”)+1).Trim());
continue;

else if(line.Contains(” TimeStamp:”)) {
user = line.Substring(line.IndexOf(”:”)+1).Trim () ;
continue;

}
// Found results section, read til the log section.
if(line.Contains ("RESULTS”)) {
while ((line = sr.ReadLine()) != null && !line.Contains(”LOG”)) {
if (line.Trim() == ””) continue;
results.Add(line);
}
}
}
SurveyScore ss = new SurveyScore () ;

float bestScore = ComputeScore(new float[] {5,5,1,1,1,1,1});

// Compute the score for each.
for (int i=0;i<results.Count;i++) {
String s = results[i];
String genre = ExtraString.SubString(s,0,s.IndexOf(”:”7)).Trim().ToUpper () ;
s = ExtraString.SubString(s,s.IndexOf(”:”)+1,s.Length);
String [] opts = s.Split(new char[] {’,’},StringSplitOptions.RemoveEmptyEntries) ;

float [] v = new float [opts.Length];
for (int j=0;j<opts.Length;j++) v[j] = int.Parse(opts[j]);
ss .Add(new QuestionScore (run,user ,genre,(float) (((ComputeScore(v)/bestScore)*100f))));

}
myScores.Add(ss) ;

catch(Exception ex) {
Log.Error (ex);
myFail++;

i

/// <summary>

/// Create CSV from the score.

/// </summary>

public String ToRawCSV () {
StringBuilder sb = new StringBuilder () ;
float f = 0;
float fcnt = 0;

sb . Append (” User , .Grade %.\r\n"”) ;
for (int i=0;i<myScores.Count;i++) {
foreach (QuestionScore gqs in myScores[i]) {

sb.Append(gs.Genre.ToUpper() + 7,” + gs.Score + 7\r\n”);
f += qgs.Score;
fent++4;
}
}
sb.Append (”\r\n\r\n\r\n”);
TitleSummer ts = new TitleSummer () ;

sb.Append (” Genre_,_Grade_Ave_%\r\n”) ;
for (int i=0;i<myScores.Count;i++) {
foreach (QuestionScore q in myScores[i])
ts.Add(q.Genre,q.Score) ;

foreach (String key in ts.Titles) sb.Append(key + 7,7 + ts.GetScore(key) + ”\r\n”);
sb.Append (”\r\n\r\n\r\n”);

TopperLower tl = new TopperLower (true,5);
sb.Append (”Top_5_Scores ,.Grade_%\r\n”) ;

138

for (int i=0;i<myScores.Count;i++) tl.Add(myScores[i]) ;
foreach (QuestionScore s in tl) sb.Append(s.Genre + 7,” + s.Score + ”\r\n”);

sb.Append (”\r\n\r\n\r\n”);

tl = new TopperLower (false ,5) ;

sb . Append (” Bottom_5_Scores , .Grade_%\r\n”) ;

for (int i=0;i<myScores.Count;i++) tl.Add(myScores[i]) ;

foreach (QuestionScore s in tl) sb.Append(s.Genre + 7,” 4+ s.Score + ”\r\n”);

Console. WriteLine (” Overall _Grade.” + (f/fcnt));

return sb.ToString () ;

}

/// <summary>
/// Get the scores.
/// </summary>

public SurveyScore[] Scores() {
return myScores. ToArray () ;
}

#endregion

#region Properties

/// <summary>
/// Get the number of failed surveys.

/// </summary>
public int Failed { get { return myFail; }}

/// <summary>

/// Get the total number of surveys taken.

/// </summary>

public int Count { get { return myScores.Count; } }
#endregion

}

#region Internal Classes

/// <summary>

/// Class that manages the score to a full survey.
/// </summary>

public class SurveyScore : List<QuestionScore> {

public SurveyScore() {}

/// <summary>
/// Get the best score.

/// </summary>
public QuestionScore Best {

get {
QuestionScore b = null;

foreach (QuestionScore gs in this) {
if (b == null || gs.Score > b.Score)
b = gs;

}

return b;
}
}

/// <summary>
/// Get the worst score.

/// </summary>
public QuestionScore Worst {

get {
QuestionScore b = null;

foreach (QuestionScore qs in this) {
if (b == null || gs.Score < b.Score)
b = gs;

}

return b;
¥
}

/// <summary>

/// Compute the owverall score
/// </summary>

139

public float Score {
get {
double v = 0;

foreach (QuestionScore gs in this) v 4= gs.Score;

return (float)(v/((float)Count));
}
}
}

/// <summary>

/// Class that manages a score to a single question.

/// </summary>

public class QuestionScore {
public int Run;
public String User;
public float Score;
public String Genre;

public QuestionScore(int run, String user,

Run = run;
User = wuser;
Genre = genre;
Score = score;
}
public override string ToString() {
return Genre + ”:.” + Score;
¥

}

public class TitleSummer {

// Values.

String genre,

float

score)

{

private Dictionary<String, float > myD = new Dictionary<string , float >();

// Conunts.

private Dictionary<String, float > myC = new Dictionary<string , float >();

/// <summary>

/// Put or get without having to worry if
/// </summary>

public void Add(String key, float v) {

if (myD. ContainsKey (key)) {
float f = myD[key];
f 4= v;
myD[key] = f;

float cnt = myClkey];
cnt ++;
myClkey]| = cnt;

else {
myD.Add(key ,v) ;
myC. Add (key ,1) ;
¥

¥

/// <summary>
/// Get all the titles of this summation.
/// </summary>
public String[] Titles {
get { return myD.Keys.ToArray(); }

}

/// <summary>
/// Get the score for the given title.
/// </summary>
public float GetScore(String title) {
float s = myD[title];
return s/myC[title];
}
}

/// <summary>

/// Holds top/bottom N scores.

/// </summary>

public class TopperLower
private bool myTop = true;
private int myCnt = O0;

the

List<QuestionScore> {

item already

exists .

140

public TopperLower(bool doTop, int cnt) {
myTop = doTop;
myCnt = cnt;

i

public void Add(SurveyScore ss) {
foreach (QuestionScore q in ss) {

if (Count < myCnt) {
base .Add(q) ;
continue;

}

// Find and replace low/high score.
for (int i=0;i<Count;i++) {

if (myTop) {
if (this[i]. Score < q.Score) {
this[i] = q;
break;

}

else if(this[i].Score > q.Score) {
this[i] = q;
break;
}

}

#endregion

141

