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Abstract

We propose a Convolutional Neural Network (CNN)-

based model “RotationNet,” which takes multi-view images

of an object as input and jointly estimates its pose and ob-

ject category. Unlike previous approaches that use known

viewpoint labels for training, our method treats the view-

point labels as latent variables, which are learned in an un-

supervised manner during the training using an unaligned

object dataset. RotationNet is designed to use only a par-

tial set of multi-view images for inference, and this property

makes it useful in practical scenarios where only partial

views are available. Moreover, our pose alignment strat-

egy enables one to obtain view-specific feature representa-

tions shared across classes, which is important to maintain

high accuracy in both object categorization and pose esti-

mation. Effectiveness of RotationNet is demonstrated by its

superior performance to the state-of-the-art methods of 3D

object classification on 10- and 40-class ModelNet datasets.

We also show that RotationNet, even trained without known

poses, achieves the state-of-the-art performance on an ob-

ject pose estimation dataset.

1. Introduction

Object classification accuracy can be enhanced by the

use of multiple different views of a target object [4, 23]. Re-

cent remarkable advances in image recognition and collec-

tion of 3D object models enabled the learning of multi-view

representations of objects in various categories. However,

in real-world scenarios, objects can often only be observed

from limited viewpoints due to occlusions, which makes

it difficult to rely on multi-view representations that are

learned with the whole circumference. The desired prop-

erty for the real-world object classification is that, when a

viewer observes a partial set (≥ 1 images) of the full multi-

view images of an object, it should recognize from which

directions it observed the target object to correctly infer the

RotationNet

Object category and pose

“Chair”

Multi-view images

…
A

B

C

B
A

C

Figure 1. Illustration of the proposed method RotationNet. Ro-

tationNet takes a partial set (≥ 1 images) of the full multi-view

images of an object as input and predicts its object category by

rotation, where the best pose is selected to maximize the object

category likelihood. Here, viewpoints from which the images are

observed are jointly estimated to predict the pose of the object.

category of the object. It has been understood that if the

viewpoint is known the object classification accuracy can

be improved. Likewise, if the object category is known,

that helps infer the viewpoint. As such, object classifica-

tion and viewpoint estimation is a tightly coupled problem,

which can best benefit from their joint estimation.

We propose a new Convolutional Neural Network

(CNN) model that we call RotationNet, which takes multi-

view images of an object as input and predicts its pose and

object category (Fig. 1). RotationNet outputs viewpoint-

specific category likelihoods corresponding to all pre-

defined discrete viewpoints for each image input, and then

selects the object pose that maximizes the integrated object

category likelihood. Whereas, at the training phase, Ro-

tationNet uses a complete set of multi-view images of an

object captured from all the pre-defined viewpoints, for in-

ference it is able to work with only a partial set of all the

multi-view images – a single image at minimum – as input.

In addition, RotationNet does not require the multi-view im-

ages to be provided at once but allows their sequential input
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and updates of the target object’s category likelihood. This

property is suitable for applications that require on-the-fly

classification with a moving camera.

The most representative feature of RotationNet is that

it treats viewpoints where training images are observed as

latent variables during the training (Fig. 2). This enables

unsupervised learning of object poses using an unaligned

object dataset; thus, it eliminates the need of preprocessing

for pose normalization that is often sensitive to noise and

individual differences in shape. Our method automatically

determines the basis axes of objects based on their appear-

ance during the training and achieves not only intra-class

but also inter-class object pose alignment. Inter-class pose

alignment is important to deal with joint learning of object

pose and category, because the importance of object classifi-

cation lies in emphasizing differences in different categories

when their appearances are similar. Without inter-class pose

alignment, it may become an ill-posed problem to obtain a

model to distinguish, e.g., a car and a bus if the side view of

a car is compared with the frontal view of a bus.

Our main contributions are described as follows. We

first show that RotationNet outperforms the current state-

of-the-art classification performance on 3D object bench-

mark datasets consisting of 10- and 40-categories by a large

margin (Table 5). Next, even though it is trained without

the ground-truth poses, RotationNet achieves superior per-

formance to previous works on an object pose estimation

dataset. We also show that our model generalizes well to

a real-world image dataset that was newly created for the

general task of multi-view object classification.Finally, we

train RotationNet with the new dataset named MIRO and

demonstrate the performance of real-world applications us-

ing a moving USB camera or a head-mounted camera (Mi-

crosoft HoloLens) in our supplementary video.

2. Related work

There are two main approaches for the CNN-based 3D

object classification: voxel-based and 2D image-based ap-

proaches. The earliest work on the former approach is 3D

ShapeNets [39], which learns a Convolutional Deep Belief

Network that outputs probability distributions of binary oc-

cupancy voxel values. Latest works on similar approaches

showcased improved performance [21, 20, 38]. Even when

working with 3D objects, 2D image-based approaches are

shown effective for general object recognition tasks. Su et

al. [34] proposed multi-view CNN (MVCNN), which takes

multi-view images of an object captured from surround-

ing virtual cameras as input and outputs the object’s cat-

egory label. Multi-view representations are also used for

3D shape retrieval [1]. Qi et al. [25] gives a comprehen-

sive study on the voxel-based CNNs and multi-view CNNs

for 3D object classification. Other than those above, point-

based approach [11, 24, 15] is recently drawing much atten-

tion; however, the performance on 3D object classification

is yet inferior to those of multi-view approaches. The cur-

rent state-of-the-art result on the ModelNet40 benchmark

dataset is reported by Wang et al. [37], which is also based

on the multi-view approach.

Because MVCNN integrates multi-views in a view-

pooling layer which lies in the middle of the CNN, it re-

quires a complete set of multi-view images recorded from

all the pre-defined viewpoints for object inference. Unlike

MVCNN, our method is able to classify an object using a

partial set of multi-view images that may be sequentially

observed by a moving camera. Elhoseiny et al. [9] explored

CNN architectures for joint object classification and pose

estimation learned with multi-view images. Whereas their

method takes a single image as input for its prediction, we

mainly focus on how to aggregate predictions from multiple

images captured from different viewpoints.

Viewpoint estimation is significant in its role in improv-

ing object classification. Better performance was achieved

on face identification [45], human action classification [7],

and image retrieval [36] by generating unseen views after

observing a single view. These methods “imagine” the ap-

pearance of objects’ unobserved profiles, which is innately

more uncertain than using real observations. Sedaghat et

al. [29] proposed a voxel-based CNN that outputs orienta-

tion labels as well as classification labels and demonstrated

that it improved 3D object classification performance.

All the methods mentioned above assume known poses

in training samples; however, object poses are not always

aligned in existing object databases. Novotny et al. [22]

proposed a viewpoint factorization network that utilizes rel-

ative pose changes within each sequence to align objects in

videos in an unsupervised manner. Our method also aligns

object poses via unsupervised viewpoint estimation, where

viewpoints of images are treated as latent variables during

the training. Here, viewpoint estimation is learned in an un-

supervised manner to best promote the object categorization

task. In such a perspective, our method is related to Zhou et

al. [44], where view synthesis is trained as the “meta”-task

to train multi-view pose networks by utilizing the synthe-

sized views as the supervisory signal.

Although joint learning of object classification and pose

estimation has been widely studied [28, 19, 42, 2, 35], inter-

class pose alignment has drawn little attention. However, it

is beneficial to share view-specific appearance information

across classes to simultaneously solve for object classifica-

tion and pose estimation. Kuznetsova et al. [17] pointed

out this issue and presented a metric learning approach that

shares visual components across categories for simultane-

ous pose estimation and class prediction. Our method also

uses a model with view-specific appearances that are shared

across classes; thus, it is able to maintain high accuracy for

both object classification and pose estimation.
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Figure 2. Illustration of the training process of RotationNet, where the number of views M is 3 and the number of categories N is 2. A

training sample consists of M images of an unaligned object and its category label y. For each input image, our CNN (RotationNet) outputs

M histograms with N + 1 bins whose norm is 1. The last bin of each histogram represents the “incorrect view” class, which serves as a

weight of how likely the histogram does not correspond to each viewpoint variable. According to the histogram values, we decide which

image corresponds to views 1, 2, and 3. There are three candidates for view rotation: (1, 2, 3), (2, 3, 1), and (3, 1, 2). For each candidate,

we calculate the score for the ground-truth category (“car” in this case) by multiplying the histograms and selecting the best choice: (2,

3, 1) in this case. Finally, we update the CNN parameters in a standard back-propagation manner with the estimated viewpoint variables.

Note that it is the same CNN that is being used.

3. Proposed method

The training process of RotationNet is illustrated in

Fig. 2. We assume that multi-view images of each training

object instance are observed from all the pre-defined view-

points. Let M be the number of the pre-defined viewpoints

and N denote the number of target object categories. A

training sample consists of M images of an object {xi}
M
i=1

and its category label y ∈ {1, . . . , N}. We attach a view-

point variable vi ∈ {1, . . . ,M} to each image xi and set

it to j when the image is observed from the j-th viewpoint,

i.e., vi ← j. In our method, only the category label y is

given during the training whereas the viewpoint variables

{vi} are unknown, namely, {vi} are treated as latent vari-

ables that are optimized in the training process.

RotationNet is defined as a differentiable multi-layer

neural network R(·). The final layer of RotationNet is the

concatenation of M softmax layers, each of which out-

puts the category likelihood P (ŷi | xi, vi = j) where j ∈
{1, . . . ,M} for each image xi. Here, ŷi denotes an esti-

mate of the object category label for xi. For the training of

RotationNet, we input the set of images {xi}
M
i=1 simultane-

ously and solve the following optimization problem:

max
R,{vi}M

i=1

M
∏

i=1

P (ŷi = y | xi, vi). (1)

The parameters of R and latent variables {vi}
M
i=1 are opti-

mized to output the highest probability of y for the input of

multi-view images {xi}
M
i=1.

Now, we describe how we design P (ŷi | xi, vi) out-

puts. First of all, the category likelihood P (ŷi = y | xi, vi)
should become close to one when the estimated vi is cor-

rect; in other words, the image xi is truly captured from the

vi-th viewpoint. Otherwise, in the case that the estimated

vi is incorrect, P (ŷi = y | xi, vi) may not necessarily

be high because the image xi is captured from a different

viewpoint. As described above, we decide the viewpoint

variables {vi}
M
i=1 according to the P (ŷi = y | xi, vi) out-

puts as in (1). In order to obtain a stable solution of {vi}
M
i=1

in (1), we introduce an “incorrect view” class and append

it to the target category classes. Here, the “incorrect view”

class plays a similar role to the “background” class for ob-

ject detection tasks, which represents negative samples that

belong to a “non-target” class. Then, RotationNet calculates

P (ŷi | xi, vi) by applying softmax functions to the (N+1)-

dimensional outputs, where
∑N+1

ŷi=1 P (ŷi | xi, vi) = 1.

Note that P (ŷi = N + 1 | xi, vi), which corresponds to

the probability that the image xi belongs to the “incorrect

view” class for the vi-th viewpoint, indicates how likely it

is that the estimated viewpoint variable vi is incorrect.

Based on the above discussion, we substantiate (1) as

follows. Letting Pi =
[

p
(i)
j,k

]

∈ R
M×(N+1)
+ denote a matrix

composed of P (ŷi | xi, vi) for all the M viewpoints and

N + 1 classes, the target value of Pi in the case that vi is

correctly estimated is defined as follows:

p
(i)
j,k =

{

1 (j = vi and k = y) or (j �= vi and k = N + 1)

0 (otherwise).

(2)

In this way, (1) can be rewritten as the following cross-

entropy optimization problem:

max
R,{vi}M

i=1

M
∑

i=1

⎛

⎝log p(i)vi,y
+

∑

j �=vi

log p
(i)
j,N+1

⎞

⎠ . (3)
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If we fix {vi}
M
i=1 here, the above can be written as a sub-

problem of optimizing R as follows:

max
R

M
∑

i=1

⎛

⎝log p(i)vi,y
+

∑

j �=vi

log p
(i)
j,N+1

⎞

⎠ , (4)

where the parameters of R can be iteratively updated via

standard back-propagation of M softmax losses. Since

{vi}
M
i=1 are not constant but latent variables that need to

be optimized during the training of R, we employ alternat-

ing optimization of R and {vi}
M
i=1. More specifically, in

every iteration, our method determines {vi}
M
i=1 according

to Pi obtained via forwarding of (fixed) R, and then update

R according to the estimated {vi}
M
i=1 by fixing them.

The latent viewpoint variables {vi}
M
i=1 are determined

by solving the following problem:

max
{vi}M

i=1

M
∑

i=1

⎛

⎝log p(i)vi,y
+

∑

j �=vi

log p
(i)
j,N+1

⎞

⎠

= max
{vi}M

i=1

M
∑

i=1

⎛

⎝log p(i)vi,y
+

M
∑

j=1

log p
(i)
j,N+1 − log p

(i)
vi,N+1

⎞

⎠

= max
{vi}M

i=1

M
∏

i=1

p
(i)
vi,y

p
(i)
vi,N+1

, (5)

in which the conversion used the fact that
∑M

j=1 log p
(i)
j,N+1

is constant w.r.t. {vi}
M
i=1. Because the number of can-

didates for {vi}
M
i=1 is limited, we calculate the evalua-

tion value of (5) for all the candidates and take the best

choice. The decision of {vi}
M
i=1 in this way emphasizes

view-specific features for object categorization, which con-

tributes to the self-alignment of objects in the dataset.

In the inference phase, RotationNet takes as input M ′

(1 ≤ M ′ ≤ M) images of a test object instance, either si-

multaneously or sequentially, and outputs M ′ probabilities.

Finally, it integrates the M ′ outputs to estimate the category

of the object and the viewpoint variables as follows:

{

ŷ, {v̂i}
M ′

i=1

}

= arg max
y,{vi}M′

i=1

M ′

∏

i=1

p
(i)
vi,y

p
(i)
vi,N+1

. (6)

Similarly to the training phase, we decide {v̂i}
M ′

i=1 accord-

ing to the outputs {Pi}
M ′

i=1. Thus RotationNet is able to

estimate the pose of the object as well as its category label.

Viewpoint setups for training While choices of the

viewpoint variables {vi}
M ′

i=1 can be arbitrary, we consider

two setups in this paper, with and without an upright ori-

entation assumption, similarly to MVCNN [34]. The for-

mer case is often useful with images of real objects captured

case (i) case (ii) case (iii)

Figure 3. Illustration of three viewpoint setups considered in this

work. A target object is placed on the center of each circle.

with one-dimensional turning tables, whereas the latter case

is rather suitable for unaligned 3D models. We also consider

the third case that is also based on the upright orientation

assumption (as the first case) but with multiple elevation

levels. We illustrate the three viewpoint setups in Fig. 3.

Case (i): with upright orientation In the case where we

assume upright orientation, we fix a specific axis as the ro-

tation axis (e.g., the z-axis), which defines the upright ori-

entation, and then place viewpoints at intervals of the angle

θ around the axis, elevated by φ (set to 30◦ in this paper)

from the ground plane. We set θ = 30◦ in default, which

yields 12 views for an object (M = 12). We define that

“view m+1” is obtained by rotating the view position “view

m” by the angle θ about the z-axis. Note that the view ob-

tained by rotating “view M” by the angle θ about the z-axis

corresponds to “view 1.” We assume the sequence of in-

put images is consistent with respect to a certain direction

of rotation in the training phase. For instance, if vi is m

(m < M), then vi+1 is m + 1. Thus the number of candi-

dates for all the viewpoint variables {vi}
M
i=1 is M .

Case (ii): w/o upright orientation In the case where we

do not assume upright orientation, we place virtual cameras

on the M = 20 vertices of a dodecahedron encompassing

the object. This is because a dodecahedron has the largest

number of vertices among regular polyhedra, where view-

points can be completely equally distributed in 3D space.

Unlike case (i), where there is a unique rotation direction,

there are three different patterns of rotation from a certain

view, because three edges are connected to each vertex of a

dodecahedron. Therefore, the number of candidates for all

the viewpoint variables {vi}
M
i=1 is 60 (= 3M )1.

Case (iii): with upright orientation and multiple eleva-

tion levels This case is an extension of case (i). Un-

like case (i) where the elevation angle is fixed, we place

virtual cameras at intervals of φ in [−90◦, 90◦]. There

are M = Ma × Me viewpoints, where Ma = 360◦

θ
and

Me = 180◦

φ
+ 1. As with the case (i), the number of can-

didates for all the viewpoint variables {vi}
M
i=1 is Ma due to

the upright orientation assumption.

1A dodecahedron has 60 orientation-preserving symmetries.
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4. Experiments

In this section, we show the results of the experiments

with 3D model benchmark datasets (Sec. 4.1), a real image

benchmark dataset captured with a one-dimensional turning

table (Sec. 4.2), and our new dataset consisting of multi-

view real images of objects viewed with two rotational de-

grees of freedom (Sec. 4.3). The baseline architecture of

our CNN is based on AlexNet [16], which is smaller than

the VGG-M network architecture that MVCNN [34] used.

To train RotationNet, we fine-tune the weights pre-trained

using the ILSVRC 2012 dataset [27]. We used classical

momentum SGD with a learning rate of 0.0005 and a mo-

mentum of 0.9 for optimization.

As a baseline method, we also fine-tuned the pre-trained

weights of a standard AlexNet CNN that only predicts ob-

ject categories. To aggregate the predictions of multi-view

images, we summed up all the scores obtained through the

CNN. This method can be recognized as a modified version

of MVCNN [34], where the view-pooling layer is placed af-

ter the final softmax layer. We chose average pooling for the

view-pooling layer in this setting of the baseline, because

we observed that the performance was better than that with

max pooling. We also implemented MVCNN [34] based

on the AlexNet architecture with the original view-pooling

layer for a fair comparison.

4.1. Experiment on 3D model datasets

We first describe the experimental results on two

3D model benchmark datasets, ModelNet10 and Model-

Net40 [39]. ModelNet10 consists of 4,899 object instances

in 10 categories, whereas ModelNet40 consists of 12,311

object instances in 40 categories. First, we show the change

of object classification accuracy versus the number of views

used for prediction in cases (i) and (ii) with ModelNet40

and ModelNet10, respectively, in Fig. 4 (a)-(b) and Fig. 4

(d)-(e). For fair comparison, we used the same training

and test split of ModelNet40 as in [39] and [34]. We pre-

pared multi-view images (i) with the upright orientation as-

sumption and (ii) without the upright orientation assump-

tion using the rendering software published in [34]. Here,

we show the average scores of 120 trials with randomly

selected multi-view sets. In Figs. 4 (a) and 4 (d), which

show the results with ModelNet40, we also draw the scores

with the original MVCNN using Support Vector Machine

(SVM) reported in [34]. Interestingly, as we focus on the

object classification task whereas Su et al. [34] focused

more on object retrieval task, we found that the baseline

method with late view-pooling is slightly better in this case

than the original MVCNN with the view-pooling layer in

the middle. The baseline method does especially well with

ModelNet10 in case (i) (Fig. 4 (b)), where it achieves the

best performance among the methods. With ModelNet40

in case (i) (Fig. 4 (a)), RotationNet achieved a comparable

ModelNet40 ModelNet10

Archit. Mean Max Mean Max

AlexNet 93.70 ± 1.07 96.39 94.52 ± 1.01 97.58

VGG-M 94.68 ± 1.16 97.37 94.82 ± 1.17 98.46

ResNet-50 94.77 ± 1.10 96.92 94.80 ± 0.96 97.80

Table 1. Comparison of classification accuracy (%) with Rotation-

Net based on different architectures.

result with MVCNN when we used all the 12 views as in-

put. In case (ii) (Figs. 4 (d) and (e)), where we consider

full 3D rotation, RotationNet demonstrated superior perfor-

mance to other methods. Only with three views, it showed

comparable performance to that of MVCNN with a full set

(80 views) of multi-view images.

Next, we investigate the performance of RotationNet

with three different architectures: AlexNet [16], VGG-

M [6], and ResNet-50 [12]. Table 1 shows the classifica-

tion accuracy on ModelNet40 and ModelNet10. Because

we deal with discrete viewpoints, we altered 11 different

camera system orientations (similarly to [8]) and calculated

the mean and maximum accuracy of those trials. Surpris-

ingly, the performance difference among different archi-

tectures is marginal compared to the difference caused by

different camera system orientations. It indicates that the

placement of viewpoints is the most important factor in

multiview-based 3D object classification.

Finally, we summarize the comparison of classification

accuracy on ModelNet40 and ModelNet10 to existing 3D

object classification methods in Table 52. RotationNet

(with VGG-M architecture) significantly outperformed ex-

isting methods with both the ModelNet40 and ModelNet10

datasets. We reported the maximum accuracy among the

aforementioned 11 rotation trials. Note that the average ac-

curacy of those trials on ModelNet40 was 94.68%, which is

still superior to the current state-of-the-art score 93.8% re-

ported by Wang et al. [37]. Besides, Wang et al. [37] used

additional feature modalities: surface normals and normal-

ized depth values to improve the performance by > 1%.

4.2. Experiment on a real image benchmark dataset

Next, we describe the experimental results on a bench-

mark RGBD dataset published in [18], which consists of

real images of objects on a one-dimensional rotation ta-

ble. This dataset contains 300 object instances in 51 cat-

egories. Although it contains depth images and 3D point

clouds, we used only RGB images in our experiment. We

applied the upright orientation assumption (case (i)) in this

2We do not include the scores of “VRN Ensemble” [5] using ensem-

bling technique because is written in [5] “we suspect that this result is not

general, and do not claim it with our main results.” The reported scores are

95.54% with ModelNet40 and 97.14% with ModelNet10, which are both

outperformed by RotationNet with any architecture (see Table 1).
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(a) ModelNet40, case (i) (b) ModelNet10, case (i) (c) MIRO, case (i)

8080

(d) ModelNet40, case (ii) (e) ModelNet10, case (ii) (f) MIRO, case (ii)

Figure 4. Classification accuracy vs. number of views used for prediction. From left to right are shown the results on ModelNet40,

ModelNet10, and our new dataset MIRO. The results in case (i) are shown in top and those in case (ii) are shown in bottom. See Table 5

for an overall performance comparison to existing methods on ModelNet40 and ModelNet10.

Algorithm class view

MVCNN (softmax) 86.08 -

Baseline 88.73 -

Fine-grained, T=300 81.23 26.94

Fine-grained, T=4K 76.95 31.96

RotationNet 89.31 33.59

Table 2. Accuracy of classification and view-

point estimation (%) in case (i) with RGBD.

Algorithm class view

MVCNN (softmax) 94.17 -

Baseline 95 -

Fine-grained, T=800 92.76 56.72

Fine-grained, T=4K 91.35 58.33

RotationNet 98.33 85.83

Table 3. Accuracy of classification and view-

point estimation (%) in case (i) with MIRO.

Algorithm class view

MVCNN (softmax) 95 -

Baseline 95.83 -

Fine-grained, T=1.1K 94.21 70.63

Fine-grained, T=2.6K 93.54 72.38

RotationNet 99.17 75.67

Table 4. Accuracy of classification and view-

point estimation (%) in case (ii) with MIRO.

experiment, because the bottom faces of objects on the turn-

ing table were not recorded. We picked out 12 images

of each object instance with the closest rotation angles to

{0◦, 30◦, · · · , 330◦}. In the training phase, objects are self-

aligned (in an unsupervised manner) and the viewpoint vari-

ables for images are determined. To predict the pose of a

test object instance, we predict the discrete viewpoint that

each test image is observed, and then refer the most fre-

quent pose value among those attached to the training sam-

ples predicted to be observed from the same viewpoint.

Table 2 summarizes the classification and viewpoint es-

timation accuracies. The baseline method and MVCNN are

not able to estimate viewpoints because they are essentially

viewpoint invariant. As another baseline approach to com-

pare, we learned a CNN with AlexNet architecture that out-

puts 612 (= 51× 12) scores to distinguish both viewpoints

and categories, which we call “Fine-grained.” Here, T de-

notes the number of iterations that the CNN parameters are

updated in the training phase. As shown in Table 2, the

classification accuracy with “Fine-grained” decreases while

its viewpoint estimation accuracy improves as the iteration

grows. We consider this is because the “Fine-grained” clas-

sifiers become more and more sensitive to intra-class ap-

pearance variation through training, which affects the cate-

gorization accuracy. In contrast, RotationNet demonstrated

the best performance in both object classification and view-

point estimation, although the ground-truth poses are not

given to RotationNet during the training.
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Algorithm ModelNet40 ModelNet10

RotationNet 97.37 98.46

Dominant Set Clustering [37] 93.8 -

Kd-Networks [15] 91.8 94.0

MVCNN-MultiRes [25] 91.4 -

ORION [29] - 93.80

VRN [5] 91.33 93.61

FusionNet [13] 90.80 93.11

Pairwise [14] 90.70 92.80

PANORAMA-NN [30] 90.7 91.1

MVCNN [34] 90.10 -

Set-convolution [26] 90 -

FPNN [20] 88.4 -

Multiple Depth Maps [41] 87.8 91.5

LightNet [43] 86.90 93.39

PointNet [24] 86.2 -

Geometry Image [33] 83.9 88.4

3D-GAN [38] 83.30 91.00

ECC [32] 83.2 -

GIFT [1] 83.10 92.35

VoxNet [21] 83 92

Beam Search [40] 81.26 88

DeepPano [31] 77.63 85.45

3DShapeNets [39] 77 83.50

PointNet [11] - 77.6

Table 5. Comparison of classification accuracy (%). RotationNet

achieved the state-of-the-art performance both with ModelNet40

and ModelNet10.

Instance (%) Category (%) Avg. Pose (%)

Lai et al. [19] 78.40 94.30 53.50

Zhang et al. [42] 74.79 93.10 61.57

Bakry et al. [2] 80.10 94.84 76.63

Elhoseiny et al. [9] - 97.14 79.30

Ours - single view 90.44 96.55 78.67

Ours - 12 views 97.45 99.51 81.17

Table 6. Comparison on object instance/category recognition and

pose estimation on RGBD dataset.

Table 6 shows the object instance/category recognition

as well as pose estimation accuracy comparison to existing

methods. RotationNet with a single image input performs

comparable to Elhoseiny et al. [9]. Interestingly, when we

estimate object instance/category and pose using 12 views

altogether, both accuracies are remarkably improved.

4.3. Experiment on a 3D rotated real image dataset

We describe the experimental results on our new dataset

“Multi-view Images of Rotated Objects (MIRO)” in this

section. We used Ortery’s 3D MFP studio3 to capture multi-

3https://www.ortery.com/photography-equipment/3d-modeling/

view images of objects with 3D rotations. The RGBD

benchmark dataset [18] has two issues for training multi-

view based CNNs: insufficient number of object instances

per category (which is a minimum of two for training) and

inconsistent cases to the upright orientation assumption.

There are several cases where the upright orientation as-

sumption is actually invalid; the attitudes of object instances

against the rotation axis are inconsistent in some object cat-

egories. Also, this dataset does not include the bottom faces

of objects on the turning table. Our MIRO dataset includes

10 object instances per object category. It consists of 120
object instances in 12 categories in total. We captured each

object instance with Me = 10 levels of elevation angles

and 16 levels of azimuth angles to obtain 160 images. For

our experiments, we used 16 images (θ = 22.5◦) with 0◦

elevation of an object instance in case (i). We carefully cap-

tured all the object instances in each category to have the

same upright direction in order to evaluate performance in

the case (i). For case (ii), we used 20 images observed from

the 20 vertices of a dodecahedron encompassing an object.

Figures 4 (c) and 4 (f) show the object classification ac-

curacy versus the number of views used for the prediction

in case (i) and case (ii), respectively. In both cases, Ro-

tationNet clearly outperforms both MVCNN and the base-

line method when the number of views is larger than 2. We

also tested the “Fine-grained” method that outputs (192 =
12 × 16) scores in case (i) and (240 = 12 × 20) scores in

case (ii) to distinguish both viewpoints and categories, and

the overall results are summarized in Tables 3 and 4. Similar

to the results with an RGBD dataset described above, there

is a trade-off between object classification and viewpoint

estimation accuracies in the “Fine-grained” approach. Ro-

tationNet achieved the best performance in both object clas-

sification and viewpoint estimation, which demonstrates the

strength of the proposed approach.

Finally, we demonstrate the performance of Rotation-

Net for real-world applications. For training, we used our

MIRO dataset with the viewpoint setup case (iii), where all

the outputs for images with 10 levels of elevation angles are

concatenated, which enables RotationNet to distinguish 160
viewpoints. We added rendered images of a single 3D CAD

model (whose upright orientation is manually assigned) to

each object class, which were trained together with MIRO

dataset. Then we obtained successful alignments between

a CAD model and real images for all the 12 object classes

(Fig. 5). Figure 6 shows exemplar objects recognized us-

ing a USB camera. We estimated relative camera poses

by LSD-SLAM [10] to integrate predictions from multi-

ple views in sequence. The results obtained using multiple

views (shown in the third and sixth rows) are consistently

more accurate than those using a single view (shown in the

second and fifth rows). It is worth noting that not only ob-

ject classification but also pose estimation performance is
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Figure 5. Object instances self-aligned as a result of training RotationNet. Four of the 12 categories are shown due to page limitation. The

last instance in each category is a 3D CAD model.
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Figure 6. Exemplar objects recognized using a USB camera. The second and fifth rows show 3D models in the estimated category and

pose from a single view, whereas the third and sixth rows show those estimated using multiple views. The number in each image indicates

the number of views used for predictions. Failure cases are shown in red boxes. See the video in the supplementary material for more

qualitative results. The video also contains the real-time demonstration with the Microsoft HoloLens device.

improved by using multiple views.

5. Discussion

We proposed RotationNet, which jointly estimates ob-

ject category and viewpoint from each single-view image

and aggregates the object class predictions obtained from a

partial set of multi-view images. In our method, object in-

stances are automatically aligned in an unsupervised man-

ner with both inter-class and intra-class structures based on

their appearance during the training. In the experiment us-

ing 3D object benchmark datasets ModelNet40 and Model-

Net10, RotationNet significantly outperformed the state-of-

the-art methods based on voxels, point clouds, and multi-

view images. RotationNet is also able to achieve compara-

ble performance to MVCNN [34] with 80 different multi-

view images using only a couple of view images, which

is important for real-world applications. Another contribu-

tion is that we developed a publicly available new dataset

named MIRO. Using this dataset and RGBD object bench-

mark dataset [18], we showed that RotationNet even outper-

formed supervised learning based approaches in a pose es-

timation task. We consider that our pose estimation perfor-

mance benefits from view-specific appearance information

shared across classes due to the inter-class self-alignment.

Similar to MVCNN [34] and any other 3D object clas-

sification method that considers discrete variance of rota-

tion, RotationNet has the limitation that each image should

be observed from one of the pre-defined viewpoints. The

discrete pose estimation by RotationNet, however, demon-

strated superior performance to existing methods on the

RGBD object benchmark dataset. It can be further im-

proved by introducing a fine pose alignment post-process

using e.g. iterative closest point (ICP) algorithm. Another

potential avenue to look into is the automatic selection of

the best camera system orientations, since it has an effect

on object classification accuracy.
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