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Abstract: An ecologically industrial system is such an industrial system in harmony with

its environment, especially the natural environment. The main purpose of this paper is to

show how to establish a mathematical model for such systems by combinatorics, and find

its topological characteristics, which are useful in industrial ecology and the environment

protection.
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§1. Introduction

Usually, the entirely life cycle of a product consists of mining, smelting, production, storage,

transporting, use and then finally go to the waste, · · · , etc.. In this process, a lot of waste gas,

water or solid waste are produced. Such as those shown in Fig.1 for a producing cell following.

produce- products-?materials

wastes

6
Fig.1

In old times, these wastes produced in industry are directly discarded to the nature without

disposal, which brings about an serious problem to human beings, i.e., environment pollution

and harmful to our survival. For minimizing the effects of these waste to our survival, the growth

of industry should be in coordinated with the nature and the 3R rule: reduces its amounts, reuses

it and furthermore, into recycling, i.e., use these waste into produce again after disposal, or let
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them be the materials of other products and then reduce the total amounts of waste to our life

environment. An ecologically industrial system is such a system consisting of industrial cells in

accordance with the 3R rule by setting up one or more waste disposal centers. Such a system

is opened. Certainly, it can be transferred to a closed one by letting the environment as an

additional cell. For example, series produces such as those shown in Fig.2 following.
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Fig.2

Generally, we can assume that there are P1, P2, · · · , Pm products (including by-products)

and W1, W2, · · · , Ws wastes after a produce process. Some of them will be used, and some will

be the materials of another produce process. In view of cyclic economy, such an ecologically

industrial system is nothing else but a Smarandachely multi-system. Furthermore, it is a

combinatorial system defined following.

Definition 1.1([1],[2] and [9]) A rule in a mathematical system (Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the same set Σ, i.e., validated

and invalided, or only invalided but in multiple distinct ways.

A Smarandachely system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2([1],[2] and [9]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm)

be m mathematical systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃)

with

Σ̃ =

m⋃

i=1

Σi, and R̃ =

m⋃

i=1

Ri.

Definition 1.3([1],[2] and [9]) A combinatorial system CG is a union of mathematical systems

(Σ1;R1),(Σ2;R2), · · · , (Σm;Rm) for an integer m, i.e.,

CG = (

m⋃

i=1

Σi;

m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1, Σ2, · · · , Σm},

E(G) = { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.
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The main purpose of this paper is to show how to establish a mathematical model for

such systems by combinatorics, and find its topological characteristics with label equations. In

fact, such a system of equations is non-solvable. As we discussed in references [3]-[8], such a

non-solvable system of equations has significance also for things in our world and its global

behavior can be handed by its G-solutions, where G is a topological graph inherited by this

non-solvable system.

§2. A Generalization of Input-Output Analysis

The 3R rule on an ecologically industrial system implies that such a system is optimal both in

its economical and environmental results.

2.1 An Input-Output Model

The input-output model is a linear model in macro-economic analysis, established by a economist

Leontief as follows, who won the Nobel economic prize in 1973.

Assume these are n departments D1, D2, · · · , Dn in a macro-economic system L satisfy

conditions following:

(1) The total output value of department Di is xi. Among them, there are xij output

values for the department Dj and di for the social demand, such as those shown in Fig.1.

(2) A unit output value of department Dj consumes tij input values coming from depart-

ment Di. Such numbers tij , 1 ≤ i, j ≤ n are called consuming coefficients.

Di

D1>*
-

D2

Dn

xi1

xi2

xin

Social
Demand6
di

Fig.2

Therefore, such an overall balance macro-economic system L satisfies n linear equations

xi =

n∑

j=1

xij + di (1)
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for integers 1 ≤ i ≤ n. Furthermore, substitute tij = xij/xj into equation (10-1), we get that

xi =

n∑

j=1

tijxj + di (2)

for any integer i. Let T = [tij ]n×n, A = In×n − T . Then

Ax = d, (3)

from (2), where x = (x1, x2, · · · , xn)T , d = (d1, d2, · · · , dn)T are the output vector or demand

vectors, respectively.

For example, let L consists of 3 departments D1, D2, D3, where D1=agriculture, D2=

manufacture industry, D3=service with an input-output data in Table 1.

Department D1 D2 D3 Social demand Total value

D1 15 20 30 35 100

D2 30 10 45 115 200

D3 20 60 / 70 150

Table 1

This table can be turned to a consuming coefficient table by tij = xij/xj following.

Department D1 D2 D3

D1 0.15 0.10 0.20

D2 0.30 0.05 0.30

D3 0.20 0.30 0.00

Table 2

Thus

T =




0.15 0.10 0.20

0.30 0.05 0.30

0.20 0.30 0.00


 , A = I3×3 − T =




0.85 −0.10 −0.20

−0.30 0.95 −0.30

−0.20 −0.30 1.00




and the input-output equation system is





0.85x1 − 0.10x2 − 0.20x3 = d1

−0.30x1 + 0.95x2 − 0.30x3 = d2

−0.20x1 − 0.30x2 + x − 3 = d3

Solving this linear system of equations enables one to find the input and output data for

economy management.
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2.2 A Generalized Input-Output Model

Notice that our WORLD is not linear in general, i.e., the assumption tij = xij/xj does not hold

in general. A non-linear input-output model is shown in Fig.3, where x = (x1i, x2i, · · · , xni),

D1, D2, · · · , Dn are n departments, SD=social demand. Usually, the function F (x) is called

the producing function.

Fi(x)
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D2

Dn

6?-
x1i

x2i

xni

D1

D2

Dn

--
-

xi1

xi2

xin

SD6
di

Fig.3

In this case, an overall balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij + di (4)

for integers 1 ≤ i ≤ n, where Fi(x) may be linear or non-linear and determined by a system of

equations such as those of ordinary differential equations

1 ≤ i ≤ n





F

(n)
i + a1F

(n−1)
i + · · · + an−1Fi + an = 0

Fi|t=0 = ϕ0, F
(1)
i

∣∣∣
t=0

= ϕ1, · · · , F
(n−1)
i

∣∣∣
t=0

= ϕn−1

(OESn)

or

1 ≤ i ≤ n






∂Fi

∂t
= H1(t, x1, · · · , xn−1, p1, · · · , pn−1)

Fi|t=t0
= ϕ0(x1, x2, · · · , xn−1)

, (PES1)

which can be solved by classical mathematics. However, the input-output model with its gener-

alized only consider the consuming and producing, neglected the waste and its affection to our

environment. So it can be not immediately applied to ecologically industrial systems. However,

we can generalize such a system for this objective by introducing environment factors, which

are discussed in the next section.
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$3. A Topological Model for Ecologically Industrial Systems

The essence of input-output model is in the output is equal to the input, i.e., a simple case of the

law of conservation of mass: a matter can be changed from one form into another, mixtures

can be separated or made, and pure substances can be decomposed, but the total amount of

mass remains constant. Applying this law, it needs the environment as an additional cell for

ecologically industrial systems and replaces the departments Di, 1 ≤ i ≤ n by input materials

Mi, 1 ≤ i ≤ n or products Pk, 1 ≤ k ≤ m, and SD by Wi, 1 ≤ i ≤ s = wastes, such as those

shown in Fig.4 following.

Fi(x)

M1

M2

Mn

6?-
x1i

x2i

xni

P1

P2

Pm

--
-

xi1

xi2

xin

W1 W2 Ws

? ? ?
Fig.4

In this case, the balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij −
s∑

i=1

Wi (5)

for integers 1 ≤ i ≤ n. We construct a topological graphs following.

Construction 3.1 Let J (t) be an ecologically industrial system consisting of cells C1(t), C2(t),

· · · , Cl(t), R the environment of J . Define a topological graph G[J ] of J following:

V (G[J ]) = {C1(t), C2(t), · · · , Cl(t), R};
E(G[J ]) = {(Ci(t), Cj(t)) if there is an input from Ci(t) to Cj(t), 1 ≤ i, j ≤ l}

⋃
{(Ci(t), R) if there are wastes from Ci(t) to R, 1 ≤ i ≤ l}.

Clearly, G[J ] is an inherited graph for an ecologically industrial system J . By the

3R rule, any producing process Xi1 of an ecologically industrial system is on a directed cycle−→
C = (Xi1 , Xi2 , · · · , Xik

), where Xij
∈ {Ci, 1 ≤ j ≤ l; R}, such as those shown in Fig.5.
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-/ oXi1(t)

Xi2(t) Xik
(t)

Fig.5

Such structure of cycles naturally determined the topological structure of an ecologically indus-

trial system following.

Theorem 3.2 Let J (t) be an ecologically industrial system consisting of producing cells

C1(t), C2(t), · · · , Cl(t) underlying a graph G [J (t)]. Then there is a cycle-decomposition

G [J (t)] =

t⋃

i=1

−→
C ki

for the directed graph G [J (t)] such that each producing process Ci(t), 1 ≤ i ≤ l is on a directed

circuit
−→
C ki

for an integer 1 ≤ i ≤ t. Particularly, G [J (t)] is 2-edge connectness.

Proof By definition, each producing process Ci(t) is on a directed cycle, which enables us

to get a cycle-decomposition

GG [J (t)] =
t⋃

i=1

−→
C ki

. 2
Thus, any ecologically industrial system underlying a topological 2-edge connect graph

with vertices consisting of these producing process. Whence, we can always call G-system for

an ecologically industrial system. Clearly, the global effects of G1-system and G2-system are

different if G1 6≃ G2 by definition. Certainly, we can also characterize these G-systems with

graphs by equations (5) following.

Theorem 3.3 Let consisting of producing cells C1(t), C2(t), · · · , Cl(t) underlying a graph

G [J (t)]. Then

Fv(xuv, u ∈ N−
G[J (t)](v)) =

∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)xvw

with δ(v, w) = 1 if xvw=product, and −1 if xvw=waste, where N−
G[J (t)], N

+
G[J (t)] are the in or

our-neighborhoods of vertex v in G [J (t)].

Notice that the system of equations in Theorem 3.3 is non-solvable in R
∆+1 with ∆ the

maximum valency of vertices in G [J (t)]. However, we can also find its G [J (t)]-solution in
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R
∆+1 (See [4]-[6] for details), which can be also applied for holding the global behavior of such

G-systems. Such a G [J (t)]-solution is not constant for ∀e ∈ E(G [J (t)]). For example, let a

G-system with G=circuit be shown in Fig.4.> - ~6=�} xv1

xv2

xv3

xv4

xv5

xv6

C6

v1 v2

v3

v4v5

v6

Fig.5

Then there are no wastes to environment with equations

Fv(xvi
) = xvi+1 , 1 ≤ i ≤ 6, where i mod6, i.e.,

Fvi
Fvi+1 · · ·Fvi+6 = 1 for any integer 1 ≤ i ≤ 6.

If Fvi
is given, then solutions xvi

, 1 ≤ i ≤ 6 dependent on an initial value, for example,

xv1 |t=0, i.e., one needs the choice criterions for determining the initial values xvi
|t=0. Notice

that an industrial system should harmonizes with its environment. The only criterion for its

choice must be

optimal in economy with minimum affection to the environment, or approximately, maxi-

mum output with minimum input.

According to this criterion, there are 2 types of G-systems approximating to an ecologically

industrial system:

(1) Optimal in economy with all inputs (wastes) Wr1 , Wr2 , · · · , Wrs
licenced to R;

(2) Minimal wastes to the environment, i.e., minimal used materials but supporting the

survival of human beings.

For a G-system, let

c−v =
∑

uıN−

G[J (t)]
(v)

c(xuv) and c+
v =

∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw)

be respectively the producing costs and product income at vertex v ∈ V (G). Then the optimal

function is
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Λ(G) =
∑

v∈V (G)

(
c+
v − c−v

)

=
∑

v∈V (G)




∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw) −
∑

uıN−

G[J (t)]
(v)

c(xuv)


 .

Then, a G-system of Types 1 is a mathematical programming

max
∑

v∈V (G)

Λ(G) but
∑

v∈V (G)

Wri ≤ WU
ri ,

where WU
ri is the permitted value for waste Wri to the nature for integers 1 ≤ i ≤ s. Similarly,

a G-system of Types 2 is a mathematical programming

min
∑

v∈V (G)

Wri but all prodcuts P ≥ PL,

where PL is the minimum needs of product P in an area or a country. Particularly, if WU
ri = 0,

i.e., an ecologically industrial system, such a system can be also characterized by a non-solvable

system of equations

Fv(xuv, u ∈ N−
G[J (t)](v)) =

∑

w∈N+
G[J (t)]

(v)

xvw for ∀v ∈ V (G).
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