
Intro
to

Deluge
Workflows

in Zoho Creator

Table of ContentsIntro
to

Deluge
Workflows

What you can do
 with Deluge

Who should read
this book?

The Layers of Creator

Data Types

Operators

Conditionals

Writing Conditions

Quiz

Quiz

Field Data

Putting it All Together

Where does my
 Script Go?

Form Actions

Field Actions

Schedules

Functions

Creating a Function

Review

Logical/
Conditional Operators

Conditional Examples

5

2

What is Deluge?
3
4

Deluge 101
8
12
15

20
22
24
26
27
29
31
35

38
39
40
41
42
44
61

Who
should
read this
book?

2

This ebook is essential reading for anyone looking to build automation into
their Creator applications. If you don't have any programming experience,
this ebook will teach you how to get started automating your workflow.
If you do have programming experience, this guide will help you learn the
fundamentals of Deluge syntax.

People often say that learning to code is like learning a language. While
this is a helpful analogy, and one we'll use while explaining some program-
ming concepts, you shouldn't take it literally. Programming languages have
structure and vocabulary like human languages. However, since program-
ming is all about telling a computer what to do and when, you only need to
learn the commands that will be helpful to your workflow.

Most Creator applications have three main parts: forms for collecting
information, reports for analyzing information, and Deluge scripts for
creating workflows. Deluge is Zoho's scripting language that lets you
automate Creator applications and customize other software like
Zoho CRM.

To understand what we mean by workflows, just think about what's happen-
ing while you're working. You are constantly receiving information, making
judgments about it, and deciding how to act next. This process is your per-
sonal workflow.

Some of the steps in your workflow are probably complicated and require
your complete attention. But usually there are a few steps that are easy to
do; in fact these easy steps may even feel tedious when you do them over
and over. For example, your workflow may involve repetitive calculations,
or sending the same form messages out every day.

By learning to write Deluge scripts you'll be able to add automation to your
Creator applications.Deluge can turn your workflow from an active process
that constantly requires your attention, to a passive process where you only
have to participate in a few key steps.

What
is
Deluge?

32

Zoho Creator consists of two essential layers. The first layer is Creator’s
graphical interface, where you drag and drop fields in the form builder, or
create a report. The second layer is the Deluge scripting layer, which is
used to customize forms and create workflows beyond what the graphical
interface offers.

These two layers allow you to build the forms, reports, and workflow rules
that make up your custom application. The interface layer is laid on top of
the Deluge scripting layer to make a more user-friendly experience.

Without these two layers, you would find custom application development
to be much more time consuming and expensive. Not only would you need
to know a programming langauge like Java, Python, or PHP, but you would
also need to manage, secure, and update a server, database, network,
and more. Zoho Creator's interface and Deluge scripting layers allow you
to build custom applications within hours, rather than weeks or months.

In this ebook you will begin learning the basics of the Deluge
scripting layer.

The
Layers
of
Creator

43

Deluge adds logic to your Creator application, making it much more pow-
erful. Deluge is essential when it comes to automating, integrating, and cus-
tomizing your application. Here are some practical examples of what you
can do in each of these areas:

Automation – Think about the repetitive tasks you do. How much time
could you save if you had an application to do them for you?

 Notifications
 -Email management when stock is running low.
 -Text employees when office visitors arrive to meet with them.
 Schedules
 -Send a thank you email an hour after customers make a
 purchase.
 -Get a weekly email with your schedule.
 -Send quarterly reports.
 Forms
 -Give a discount based on region or the amount ordered.
 -Display only the employees who will be available when
 scheduling shifts.
 -Automatically fill in someone's email after they choose their
 name.
 Formulas
 -Generate quotes and estimates.

What you can do
with Deluge

5

 Approval process
 -Set up a approval(eg: leave/travel request) process in the
 organization.
 -Select one or multiple approvers.
 -Specify the actions to execute when a request is approved or
 rejected.
 Payment
 -Collect invoice amount for the ordered items.
 -Collect registration fee for a event like workshop or a
 certification programme
 -Collect monthly fee for the rented vehicles.

What you can do
with Deluge

6

What you can
do with Deluge

Integration – Your data is in a few applications that aren't compatible. Pull
info in and push updates out using API calls to get all your software
working together.

 Zoho applications
 -Collect info in Zoho Creator and use it to add leads in Zoho
 CRM.
 -Pull data from Zoho Invoice and analyze it with your other
 financial data in Zoho Creator.
 Other cloud solutions
 -Send invoices from sales in Zoho Creator to external programs.
 On premise solutions
 -MS Access, MySQL, SAP, etc.

Customization – Make dynamic forms that change depending on what
information is being added to then. Add buttons to your application's
records that can update information, send out emails, or do whatever else
you need them to do.

 Interactive Forms
 -Show different questions to different people to conduct targeted
 surveys.
 -Display extra instructions when someone checks a box asking
 for help.
 Buttons
 -Email someone by clicking a button next to their record.
 -Quickly change a status by clicking a button.

5 7

There are a few key concepts to understand before you actually hop in and
start writing script in Deluge.

Right now, you may not know what the words variable, boolean, string,
conditionals, or integer mean in a programming context. But don't let that
intimidate you. These terms are a lot more straightforward than you might
assume. Plus, since they're used in many programming languages, the
things you learn here could be relevant if you continue learning about pro-
gramming beyond Deluge scripting. Let's jump into defining these terms so
we can get you writing some Deluge!

Deluge
101

2

87

This ebook is essential reading for anyone looking to build automation into
their Creator applications. If you don't have any programming experience,
this ebook will teach you how to get started automating your workflow.
If you do have programming experience, this guide will help you learn the
fundamentals of Deluge syntax.

People often say that learning to code is like learning a language. While
this is a helpful analogy, and one we'll use while explaining some program-
ming concepts, you shouldn't take it literally. Programming languages have
structure and vocabulary like human languages. However, since program-
ming is all about telling a computer what to do and when, you only need to
learn the commands that will be helpful to your workflow.

Deluge 101

Syntax
When speaking English, we structure our sentences with syntax so people
can understand what we're saying. For example, if we were eating dinner
and asked someone to pass the potatoes, we wouldn't say: "The pass
potatoes please." That would be incorrect syntax.

Programming languages use syntax in a similar way to English. The
 commands that you write in Deluge need to be properly structured for
Creator to understand what you want it to do.

Its important to remember that while computers are extremely good at
following directions, they can only follow directions that are perfectly
written. Whereas most English speakers can make sense of the incorrect
syntax, "The pass potatoes please," computers cannot. Therefore, the most
important part of learning a programming language is the syntax.

Creator makes learning Deluge easier than learning other programming
languages on your own. This ebook will teach you Deluge, but Creator will
also assist you as you write your scripts.

32

8 9

Creator's drag-and-drop script builder provides the syntax for all the
scripts you’ll write.

Heads Up

Zoho Creator consists of two essential layers. The first layer is Creator’s
graphical interface, where you drag and drop fields in the form builder, or
create a report. The second layer is the Deluge scripting layer, which is
used to customize forms and create workflows beyond what the graphical
interface offers.

These two layers allow you to build the forms, reports, and workflow rules
that make up your custom application. The interface layer is laid on top of
the Deluge scripting layer to make a more user-friendly experience.

Without these two layers, you would find custom application development
to be much more time consuming and expensive. Not only would you need
to know a programming langauge like Java, Python, or PHP, but you would
also need to manage, secure, and update a server, database, network,
and more. Zoho Creator's interface and Deluge scripting layers allow you
to build custom applications within hours, rather than weeks or months.

In this ebook you will begin learning the basics of the Deluge
scripting layer.

Put simply, variables are used for data storage. Variables store and
manipulate the data attributed to them. A metaphor can make this clearer.
The glass cup below holds whatever you put into it. Similarly, a variable
stores whatever data you assign to it.

To store data in a variable, or declare a variable, you have to write with a
specific syntax. "Declaring a variable" is the phrase used in most
programming languages for creating a variable and storing something
inside it. Let's see some examples.

Deluge 101

Variables

What’s in
each glass?

Pink
Lemonade

Root
Beer

Whole
Milk

43

109

Now that we know how variables are declared, let's flesh out the
concept a little bit more and get into understanding the types of data
you can store in a variable.

variable name: it's important to
name your variable something that
indicates what its purpose is. In this
case, I've named them according to
the type of juice that is stored in
them. All of our variable names have
underscores because if you add a
space, Creator will get confused and
think you're talking about two
different variables.

; and =: these are part of
Deluge's syntax. The = is
used to tell Deluge that
the data stored in the
variable name is equal to
the value given. The ; is
used like a period at the
end of a sentence. It
signals the end of a
statement.

value: this is what
we've inserted
into each variable.
The data in a
variable is called
its value.

variable_name = "value" ;

juice_glass = "lemonade" ;

soda_glass = "root beer" ;

milk_glass = "whole milk" ;

5

11

Continuing with the drink metaphor used previously, there are certain types
of drinks that fit into the same category. For example, there are multiple
types of soda, but they are all soda; there are multiple flavors of juice, but
they are all juices. You can think of a data type in Deluge like a category of
drink: a juice variable could contain many different drinks, so long as those
drinks are different kinds of juice.

Data
Types

5

11

7

12

Lemonade

Root Beer

Whole Milk

Juice Glass

Soda Glass

Milk Glass

Container/ Contents/

As you know them / As Deluge knows them

Name/Variable Value Variable Name

Glass

Data Types

Deluge has five main data types, and Creator treats each one differently.
Deluge has additional, more advanced data types like lists and maps, but
we'll cover those in other guides. Below are the five main data types.

The first time you declare a variable, you're telling Creator what data it's
storing and what type of data it should always store. A variable's value
can change multiple times, but its data type won't change unless you use
a special function.

If this seems confusing, remember the drinks metaphor that we used. You
could declare a variable as a juice variable, and then change the value of
the variable as many times as you want. The value could change from
orange juice, to cranberry juice, and then to apple juice. However, you
could not change the juice variable to a soda variable. To change a juice
variable to a soda variable would require using a special function.

Now let's go through a few examples, where you can guess which data
type is being displayed.

1.Text

2. Number

3. Decimal

4. Decision

5. Date/Date time

"laptop"

10

2.2

true or false

'05-Mar-2017'

String

Integer (or bigint)

Decimal (or long or float)

Boolean

Date/Date Time

Guess the
Data Type

87

12 13

Data Types

Guess the
Data Type

1 x = "15 Years";

2 x = "15";

3 x = 15;

4 x = 15.0;

5 x = "true";

6 x = true;

Guess the data type of x below. The correct answer is in pink on the right.

 string

 string

 number

 decimal

 string

 boolean

These pink cream pages
will include quizzes and

extended examples.

8 9

13 14

Operators
Guess the
Data Type

Operators are difficult to define without the use of common programming
jargon. Operators are characters that let you manipulate or compare two
values. This is a lot easier to grasp with examples.

There are three main kinds of operators, but for now we'll focus on
arithmetic operators, which are used for writing equations. We'll cover
the other types of operators later in this guide.

Arithmetic Operators
+ - / * %

Examples
5 + 2 = 7
5 - 2 = 3

5 * 2 = 10
5 / 2 = 2.5
5 % 2 = 1

Arithmetic operators should look familiar to you. / is for division and * is for
multiplication. % isn't used as often. % gives you the remainder when you
divide the number on the left by the number on the right. The + operator is
special because it can be used with text as well as with numbers. The +
operator lets you combine a few pieces of text together to create one
longer piece.

109

14 15

When you start using variables in equations, you'll see that a variable's
value can change multiple times in one script. Here's an example.

a = 3;
b = 2;

a = a + b;

In the beginning of this script, the variable a equals 3. After adding
another variable to it, variable a equals 5. Creator reads your scripts one
line at a time. This means that when you change a variable's contents, it will
only affect that variable moving forward. Previous instances of it
won't be altered.

Since variables contain different data at different times, it can be tricky to
find mistakes in a long script. The info and alert commands let you see a
variable's contents. By placing the info command at different places in your
script, you can see what information is stored in a variable at different
points in time. This process is called debugging because it helps you find
mistakes, or bugs, in your scripts.

Operators

16

Let’s look at a couple examples of debugging using the info command.
We’ll declare the value of the variable x, request that Creator return the
value, then declare a new value for x.

x = 10;
info x;
x = 15;

Result: 10

Explanation: Creator evaluates scripts from beginning to end. Since the info
command was used before the value of x changed to 15, it will return the
last value that was stored in x.

x = 10;
x = 15;
info x;

Result: 15

Explanation: Since the info command was placed after the value of x was
changed, Creator will return the most recent value stored in x.

Operators

16 17

Let's use some operators to combine strings. First, we'll declare a
 couple variables.

Now, we'll declare another variable that adds together the two we
just introduced.

Let's see what happens when we add an info command to make Creator
tell us what's stored in our Full_Name variable.

Operators

Operators
& Strings

First_Name = "Bruce" ;

Last_Name = "Wayne" ;

First_Name = "Bruce" ;

Last_Name = "Wayne" ;

Full_Name = First_Name + Last_Name;

First_Name = "Bruce" ;

Last_Name = "Wayne" ;

Full_Name = First_Name + Last_Name;

info Full_Name;

Result: BruceWayne

1817

Creator gave us an accurate output, but it wasn't exactly what we intended:
there's no space between the first and last name.

To format the name correctly, we have to tell Creator to insert a space
between the variables holding the first and last names. Remember, since
we're working with text strings we have to put our space in quotes.

Operators:
Operators & Strings

First_Name = "Bruce" ;

Last_Name = "Wayne" ;

Full_Name = First_Name + " " + Last_Name;

info Full_Name;

Result: Bruce Wayne

18 19

You may have noticed there are multiple ways to solve this formatting
problem. Rather than adding a space between the first and last name
variable, you can add a space to the value of your variables. For example,
you could add a space after Bruce or before Wayne. This would look like
“Bruce ” or “ Wayne”. There’s no ideal way to do this; it’s up to you.

Conditionals give your applications the power to react differently
depending on how people use them. Conditionals, also called control state-
ments, are like sets of instructions. It's easiest to think of them as if, then
statements: if x happens, then do y. They're called conditionals because
they tell Creator to check if a condition has been met before running the
next step in your script.

Here's an example of a conditional written in plain English.

If it's a Sunday, then set my status to "Unavailable."

Here's how the same conditional might look written in Deluge:

 There are three main conditionals:

1. If statements – These tell Creator how to act if a certain condition is met.
Any script that includes conditionals must have at least one if statement.

2. Else if statements – When the condition in an if statement isn't met, you
can tell Creator to check for other conditions using else if statements. This
can be useful when you need to tell your application what to do in several
different scenarios. If you write out what your Deluge script does in English,
an else if would be like the word otherwise: If condition one is met, then do
x. Otherwise, if condition two is met, then do y. When you put multiple else
if statements in a row, Creator will only run the script from the first one
whose conditions are met.

Conditionals

if today == "Sunday" ;
{
 status == "Unavailable" ;
}

14 15

19 20

3. Else statements – Else statements tell Creator how to act if none of the
conditions from your if statements or your else if statements have been met.
Else statements don't include conditions.

When you write conditional statements, the condition you're looking for
always goes inside parentheses. You don't need any semicolons in the part
where you write your condition.The script that runs when the condition is met
goes inside curly braces.

if (condition)
{
 Script that will run if the condition is met.
}

else
{
 Script that will run only if none of the other conditions above are met.
}

else if (condition)
{
 Script that will run only when the if condition isn’t met, but the else if
 condition is met.
}

16

21

Conditionals

Before Creator runs the script in a conditional statement, it will check if the
statement's condition has been met. In programming parlance, we say that
a condition is true (or evaluates to true) if it has been met. If a condition
isn't met, then it is false and the script inside your statement's curly braces
won't run.

To tell Creator what conditions to look for, use relational operators and
logical operators.

Writing
Conditions

16 17

21 22

Relational operators let you compare two values.

Writing Conditions

Relational
Operators

Operator

<

<=

>

>=

==

!=

Meaning

Less Than

Less Than or Equal to

Greater Than

Greater Than or Equal to

Equal to

Not Equal to

Meaning for Date Variables

Before

Before or at the same time

After

After or at the same time

At the same time

Not at the same time

if (quantity > 10)
{
 alert “You may only order up to 10 at a time.”;
}

Suppose we have a retail businesses and we want to limit the amount of
items each customer can buy. Here's how you'd write that as an if/then:

If the quantity is greater than ten, then alert the user that they may only

order up to ten at a time.

Now, here's how we'd write that in Deluge, using a relational operator:

1817

22 23

Quiz
Review this list of relational operators. Which conditions will be true, and

which will be false? The answers are on the next page.

1 a = 1;
 b = 2;
 (b > a)

2 a = 6;
 b = 6;
 (a <= b)

3 a = "name";
 b = "Name";
 (a == b)

4 a = "name";
 b = "Name";
 (a != b)

5 a = "one";
 b = "two";
 (a < b)

6 start_date = '03-Dec-2017';
 end_date = '01-Jan-2018';
 (start_date < end_date)

18 19

23 24

Conditionals give your applications the power to react differently
depending on how people use them. Conditionals, also called control state-
ments, are like sets of instructions. It's easiest to think of them as if, then
statements: if x happens, then do y. They're called conditionals because
they tell Creator to check if a condition has been met before running the
next step in your script.

Here's an example of a conditional written in plain English.

If it's a Sunday, then set my status to "Unavailable."

Here's how the same conditional might look written in Deluge:

 There are three main conditionals:

1. If statements – These tell Creator how to act if a certain condition is met.
Any script that includes conditionals must have at least one if statement.

2. Else if statements – When the condition in an if statement isn't met, you
can tell Creator to check for other conditions using else if statements. This
can be useful when you need to tell your application what to do in several
different scenarios. If you write out what your Deluge script does in English,
an else if would be like the word otherwise: If condition one is met, then do
x. Otherwise, if condition two is met, then do y. When you put multiple else
if statements in a row, Creator will only run the script from the first one
whose conditions are met.

1 True.

2 True.

3 False. Text data, or string variables, are case sensitive. Two strings have
to be written exactly the same way for Creator to consider them equal.

4 True. Since these strings have different casing, Creator doesn't consider
 them equivalent.

5 Trick question! Since these variable values have quotes around them, they
 are string variables. You can't compare if a piece of text is greater or less
 than another piece of text. If you tried doing this, Creator would give you
 an error message.

6 True. The format and the single quote marks indicate that these variables
 are dates, not strings. When you're comparing dates, operators can tell
 you whether the date on the left is before, after, or at the same time as
 the one on the right.

Quiz

Quiz
Answers

19

24 25

Logical/
Conditional
Operators

Logical operators let you combine multiple conditions to make more
sophisticated conditionals.

For example, you can check that multiple conditions have been met before
running a script.

&& both conditions are true

|| at least one condition is true

21

26

Conditional
Examples

if (score >= 80 && score < 90)
{
 grade = “B”;
}

Suppose you're building an app that calculates grades. You need to define
percentages for each letter grade. After defining an A as 90 and above,
you need to define a B.

Here's how you'd write that in plain English:

If the score is greater than or equal to 80 and less than 90, then the letter

grade is a B.

Here's how a conditional statement using logical operators would look in
Deluge:

21 22

26 27

Conditional Examples

Let's assume you use the same logic to define each of the letter grades. Say
you also need to produce a status that says whether or not a student passed
a class. For this you'll need to define what letter grades constitute a passing
grade.

Here's how you'd write that in plain English:

If the grade is an A, or a B, or a C, then set the status to "Passed the class."

Here's how you'd write this conditional statement using logical operators in
Deluge:

if (grade = “A” || grade = “B” || grade = “C”)
{
 status = “Passed the class.”;
}

22 23

27 28

Quiz
Take the following statements, and convert them into Deluge conditionals.

The answers will be on the next page.

1 If the item costs $50 or more, then set the shipping cost to free.

2 If today is Saturday or Sunday, then set my status to unavailable.
Otherwise, set my status to available.

3 If it's before noon, set the message to "Good morning." If it's any time
from twelve to six in the afternoon, set the message to "Good afternoon."
Otherwise, set the message to "Good evening."

23 24

28 29

1

2

3

Quiz

Quiz
Answers

if (item_cost >= 50.00)
{
 shipping_cost = “free”;
}

if (today == Saturday || today == Sunday)
{
 status = “unavailable”;
}
else
{
 status = “available”;
}

if (hour < 12)
{
 message = “Good morning”;
}
else if (hour >= 12 || hour <= 18)
{
 message = “Good afternoon”;
}
else
{
 message = “Good evening”;
}

24 25

29 30

So far, we've been working with data stored in variables. But when you're
writing scripts for your application, you'll probably want to use data that
people are entering in your fields as well. To do this, you need to know a
field's link name.

Each field has two names: the human-friendly one that you give it, and the
computer-friendly link name that Creator gives it. Just like variable
names, Link Names can't contain spaces or begin with numbers.

Field Data

26

31

There are two ways to find field link names.

1 In the Form Builder.

When you click on a field in the Form Builder, its properties will display on
the right of the screen. At the top of the field properties, you'll see the field
name and field link name listed. When you change a field's name, your
script won't look any different. When you change a field's link name, any
scripts that reference that field will be automatically updated with the new
link name.

Field Data

Finding Field
Link Names

26 27

31 32

27 28

32

2 In the Refer Fields Section.

The field link name can be referred in the script editor when you write the
script. You can view each field's link name from the Refer fields section on
the right. It will display the field link names of all the fields in your form. To
refer field link name from another application/form, click the Application
dropdown. It will display all the applications on your account. Select the
required application and the Form dropdown will display all the forms in
the selected application. Choose a form and it will display the field link
names of all the fields in the form.

Field Data

33

Field Data

Accessing Field
Data with Deluge

input.<fieldlinkname>

“Thanks ” + input.First_Name + “, we’ll be contacting you soon.”)

Once you know a field's link name, you can use the syntax below to access
its data in Deluge:

Say you have a contact form on your website where people type their
name. phone number, and message. Your boss would like to personalize
this experience by using the submitter's name while thanking them for sub-
mitting the form.

Here's how you'd write that in plain English:

If someone adds data to the first name field, then use their name in the
thank you message.

 Here's how you'd write this message while accessing field data in Deluge:

28 29

3433

Remember to mind the spacing
in your text strings. We inserted

one after “thanks” above.

Now that we've gone over the foundation of Deluge, let's try writing a script
that puts it all to use. Let's quickly review what we've learned:

•What variables are
•How to declare variables and determine their data type
•How to manipulate data with operators
•How to add logic with conditionals
•How to access data entered in fields

We'll be using all of these tools and techniques to write a script that
discounts the price of pizza orders. Discounts will be based on the price of
the order and from which location the order was submitted.

Let's list the goals for this script as clearly as possible:

•Calculate total price
•Provide discount for specific location
•Provide discount if the total order amount is greater than $100

Putting it All
Together

29 30

34 35

Calculate total price
To get the price total of a pizza order, we'll need to multiply the price of a
particular pizza by the number ordered. We'll start writing our script by
declaring our total price variable.

The line of code above simply defines what a total price is. The new vari-
able Total_Price holds the product of the Price and Quantity parameters.

Provide discount for specific location
To provide a discount for a specific location, we'll need to start by
declaring a variable. Since a discount percentage is always a number,
we'll need to declare the discount variable as an integer, or bigint, data
type, and then set the condition for the discount.

The variable Discount_Price is set to the value 0 by default. Then the
conditional states that if the user's Location is in "San Francisco" then the
variable Discount_Percent is set to a value of 10.

Putting it all Together

Total_Price = Price * Quantity;

Discount_Percent = 0;
if (Location == “San Francisco”)
{
 Discount_Percent = 10;
}

30

35 36

Provide discount if the total order amount is greater than $100
This script will be similar to the one on the previous page. We'll need to
make sure we declare our variable, and then create a conditional.

All Together
Now, let's put all the code we've just looked at together.

The above lines of code establish how to calculate the total price and set
the default discount to 10. You then have the if statement that states that if it
is true that the location is "San Francisco" or it is true that the Total_Price is
greater than 100, then a discount is applied. Dis_Price is declared as
being the Total_Price multiplied by the Discount_Percent (which is either
0 or 10, depending on the results of the if statement), all divided by 100.
The Total_Price variable is then re-declared as being the former total,
minus the newly declared Dis_Price variable.

And there you have it! With that, you can now edit and manipulate your
own custom applications using Deluge.

Putting it all Together

Discount_Percent = 0;
if (Total_Price > 100)
{
 Discount_Percent = 10;
}

Total_Price = Price * Quantity;
Discount_Percent = 0;
if (Location == “San Francisco” || Total_Price > 100)
{
 Discount_Percent = 10;
}
Dis_Price = Total_Price * Discount_Percent / 100;
Total_Price = Total_Price - Dis_Price;

31

37

Now that you've learned the basics of writing Deluge, you'll probably want
to start applying it to your applications. The first thing to decide when you
begin scripting is when your script should run. Depending on how people
use your application, you'll want to run different scripts at different times.

For example, if you had an application to collect patient information at a
doctor's office, you could run a script every time a patient checks a box
saying that they have allergies. Your script could show these patients a
series of follow up questions. You could write a separate script that runs
every time a patient submits the check-in form that sends an SMS message
to the patient's doctor.

To write a Deluge script, click Workflows on the header while you are
editing the application. You'll have to decide whether your script should be
triggered while using the form, on a specific date and time, during
payment process, during approval process, or work as a Function.

Where Does my
Script Go?

31 32

37 38

If the action/script that you have defined should be executed when people
are filling out forms or altering records in a report, then it belongs to Form
workflows. You can run the workflow in any of the following record events.

•Created – This record activity will trigger the actions/scripts when a new
record is submitted.
•Created or Edited – This record activity will trigger the actions/scripts
when a new record is submitted or an existing record is modified.
•Edited – This record activity will trigger the actions/scripts when an ex-
isting record is modified.
•Deleted – This record activity will trigger the actions/scripts when a
record is deleted.

After you've chosen the record event to run the workflow, you must choose
the form activity at which it should run.

•On Load – Write scripts here to alter how your form is set up before the
user even sees it. On Load scripts are often used to hide fields that will only
be relevant to a few users, or to pre-populate information in the fields when
the form loads.
•On Validate – Write scripts here to verify that users have entered the
right information or prevent them from deleting important information. These
scripts will run when a user tries submitting, updating, or deleting a record,
but before any permanent changes are made.
•On Success – Write scripts here to run after a record event is completed.
For example, you could place scripts in this section that alerts people once
a record has been created, updated, or deleted

Form Workflows

32

38 39

33

You can also execute workflows to run after people fill out a particular field
in a form, or while updating a record.

•On User Input – Write scripts here to run after user fills out a field in a
form.

•On Update – Write scripts here to run after user fills out a field while
updating records in a report.

Field Actions

34

39 40

33

If you run an On User Input script on a field users
type in, like a single line or a currency field, then it

won't run until their cursor leaves the box. This
means your script won't run until they click

somewhere outside the field they just typed in.

Zoho Creator lets you schedule when your actions/scripts should run. For
example, if you have a form where users choose an appointment time, you
can schedule a script that sends them a reminder email one hour before
their appointment begins. Another idea for using schedules is to write a
script that erases outdated records once a month.

To run a script on a schedule, click Workflow on the header while you're
editing the application. Click New workflow on the workflow dashboard,
choose on a scheduled date.

•Specify date and time – You can schedule actions/scripts to run on a
specific date and time and set the frequency of the schedule to daily,
weekly, monthly or yearly.

•Choose a date field – You can schedule actions/scripts to run using the
time saved in a date field, the time a record is added to your application, or
the time a record is modified. After you choose which time to base your
schedule on, you may choose how long before or after that time your script
should run.

Schedules

34 35

40 41

If your script should run in several applications, several parts of one
application, or when users click a button in a report, you should write the
script as a function. Functions differ from Form and Field Actions because
they're not constrained to one part of your application. Once you've written
a function, you can apply it to any Form or Field Action by writing just one
line of Deluge. This is called “invoking” or “calling” a function.

Since functions can be created without affecting your forms and fields,
they're useful for adding features to applications that your organization is
already using. Functions make it easier to find bugs in your scripts because
you don't have to switch to the live mode of your application to test them.
Just click execute when you finish writing a function script, and a pop-up
with the results of your script will appear.

When you start creating a function, you have to fill out a pop-up box with
some technical information. Keep in mind, function names can’t include
spaces. Here's a quick overview of what all the stuff in that pop-up
box means.

Functions

37

42

•Function Name – As with variables, you can choose any name but it
helps to name your function something that will remind you of what it does.
When you're done writing the function and you want to use it in your
application, you'll be using this name to call it and run the script inside.

•Namespace – You can leave this field blank. A namespace is like a
folder. You won't need to use it unless you have lots of functions that you
want to organize by category.

•Return type – This is where you choose the data type that your function
will output or return. Click here to jump to the chapter on basic data types
for descriptions of each one.

•Arguments – Argument is just programming jargon for input. Since func-
tions aren't tied to particular parts of your application, getting data from
fields into your function's script requires arguments. Without arguments,
Creator wouldn't know which data your function should work with.

Here's an example of an argument. You need a function that can take any
price entered in a currency field and calculate the sales tax. Before you can
begin making calculations, you'd need to add an argument that passes the
price from the currency field into your function. Otherwise, Creator wouldn't
know which number to use while calculating the sales tax.

In programming, this process is often called “passing an argument”
because you're passing information from a field into a function. Just as each
field in Creator has a Deluge name and a data type, each argument has a
name and a data type that you'll have to fill out when you create a function.

Functions

37 38

42 43

Creating a
Function

As you can see, there are a lot of places where you can run Deluge scripts.
Let's look at an example of how you'd write a script that you could reuse
several times.

The Requirements
Jack has an application for managing his schedule and keeping track of
which hours his employees work. His application has one form where
employees can sign up for appointments with him and another form where
employees can request time off.

Since Jack needs time to reschedule shifts when employees take days off,
he wants a script that will make sure requests are submitted at least two
business days in advance. He wants to use the same script to ensure that
employees schedule appointments in advance so he can clear room in his
schedule to meet with them.

38 39

43 44

Creating the Function
This script works best when it's written as a function since it needs to be used
in more than one place. To create this function, click Settings on the header
tab.

Before you can begin writing a function, you have to fill out a pop-up with
some information about it. A Function Name is like a field link name
because it must be unique and can't contain any spaces. The Namespace
field is only important when you have lots of functions that need organizing.

Click Custom Functions under Extensions.

Creating a Function

39 40

44 45

Creating a Function

The Return Type is the kind of data that you want your function to give you
when it's done running. This function should return Boolean, or bool data,
because there are only two possible outcomes. Boolean variables can only
have two values (true and false), which correspond to only two outcomes. If
the function determines that a date is too soon, it returns the Boolean false. If
the function determines that a date is acceptable, it returns the Boolean true.

A return type is an output, but an argument is an input. Arguments tell
Creator what kind of data to bring into your function. Functions aren't tied to
particular parts of your application, so getting data from a field into a
function requires an argument. Each argument has a name and a data type.

This function works with date data, so it needs an argument with the date
data type.

40 41

45 46

Creating a Function

After clicking Create Function, you'll see a screen which already has some
Deluge script entered in it. The script on the first line outside the parentheses
says what kind of data the function returns and what its name is. The script
inside the parentheses lists all the arguments and their data types. Every
function except for void functions also has a line saying what the function
returns.

42

47

Creating a Function

Try saving your script and clicking Execute. Creator will give you a pop-up
box to enter a date for your argument. Right now, when you click Submit
Creator will say the return value is false every time because your script tells
it to always return false. When we're done, the return value will only be
false if you choose a time that's not acceptable.

42 43

47 48

Creating a Function

The first step to knowing if the date entered is acceptable is knowing the
current date. You can get the current date by using the system variable
zoho.currenttime. System variables are special because they contain
values that you didn't assign them, like the current time.

Write info zoho.currenttime; in your function. Save your script, and then
click Execute. You should see something like this.

43 44

48 49

Creating a Function

In addition to the return value, you should now see a section called “Log
messages” that has the current time in it. Log messages appear when you
use an info statement in your script. They're useful whenever you want to
check the value of a variable to see if your function is working correctly.

Now that we know the current time, we can figure out what time it will be
two business days from now. We'll use one of Deluge's built-in functions.

Each type of data has its own built-in functions that allow you to manipulate
it. For example, string (text) data has a function that lets you find every
instance of a word and replace it with another word. Since we're manipu-
lating information from a Date-Time field, we'll look at the list of Date and
Time functions in the Creator User Guide. The addBusinessDay function
lets you add business days onto a date. The Creator User Guide displays
the syntax for this function as:

When you look at syntax in the Creator User Guide, the parts inside the
carrot symbols need to be replaced with your own variables or values.
Usually, the Creator User Guide will tell you which data types are
compatible with each part of the function. The page about the
addBusinessDay function says that <start_date> is supposed to be a date
variable, so you should write zoho.currenttime (which is a date variable) in
this part of your script.

<days> indicates how many business days you want to add onto your start
date. <days> is supposed to be an integer (or big int) variable. We could
declare a variable and use that here, like this:

<start_date>.addBusinessDay(<days>)

daystoadd = 2;
info zoho.currenttime.addBusinessDay(daystoadd);

44 45

49 50

Creating a Function

However, that's adding an unneccessary step. Using a variable is useful
when you have a value that can change. In our case, we only want this
function to add two business days; the value never changes. So we can just
write 2 where it says <days>.

info zoho.currenttime.addBusinessDay(2);

Try testing out the addBusinessDay function and use info to see the results.
The final step in the function is to compare the date scheduled for an
appointment or time off with the date we've calculated to be two business
days from now. To do this, we'll need to use a couple of conditionals,
or if statements.

Before we write this script in Deluge, let's think about how we'd phrase
these instructions in English. Remember that our function is set up to return
a boolean, a true or false. When the scheduled date is acceptable, our
function should return true, indicating that the application should accept it.
When the scheduled date is too soon, our function should return false,
indicating that the application should not accept it. So if we wrote our
if statements in English, they'd look like this:

If the scheduled date is less than two business days from the present, then

return false.
If the scheduled date is at least two business days from the present, then

return true.

45 46

50 51

Creating a Function

When you click on the word <variable> you'll see a dropdown with all the
possible variables you could write there. You should see the name of your
argument in this dropdown since that's the only variable that's been
declared for this function. Click on the argument to add it into your script.

To start writing your if statements, look in the Condition Deluge Tasks and
drag an If block onto the script builder before the line that says return
false;

46

51 52

Creating a Function

Next, click on <opr>. You'll see a dropdown with all the operators you can
use in your condition. Remember that operators have different meanings for
date variables than they do for other variables. In the context of numbers,
<= means less than or equal to. Since we're dealing with dates, we'll
choose this operator because it also means before or at the same time.

Where it says <expression> you should paste the script you wrote earlier
that adds two business days to the present. Inside the parentheses, you
should see this script:

Since this is a condition and not a statement, you don't need to keep the
semicolon at the end of your expression.

date_to_check <= zoho.currenttime.addBusinessDay(2)

52 53

Creating a Function

Now that you've finished the condition, you need to tell your function what
to do when that condition is met. Your function will execute any script that's
written inside the conditional's braces { } if its condition is met.

Cut return false; and paste it in between the braces.

If you tried saving your function right now, Creator would give you an error
message because you've told it what to return inside a conditional. If the
condition isn't met, then your function won't return any value, which could
cause problems.

To solve this problem, you need to put another return statement inside an
else conditional. By adding a return statement inside an else condition, you
ensure that your function will know which value to return.

53 54

Creating a Function

In the Condition section of the Deluge Tasks, drag on an else block. Write
return true; inside the braces, then save your script. Now your function will
return true only when a date doesn't match your if condition.

To use this function, you have to write a script that tells your application
when it should run and how to use the information that it returns. In our
example, Jack wants this function to run any time someone fills out a form
requesting time off or any time someone fills out a form requesting an
appointment. For the sake of brevity, we'll show you how this function
would be implemented in one of those forms. The steps for implementing it
elsewhere would be almost identical.

54 55

Creating a Function

Below is the form that users see when they try scheduling an appointment.
Notice that the field link name for the appointment date is
Appointment_Date.

We want to give users an error message if they pick an appointment that's
too soon. To do this, we'll need to run our script in the On Validate section
of the Deluge script when a record is Created or Edited. We put the script
there because On Load would be too soon; a user wouldn't have chosen
an appointment time yet. On Success would be too late because their
appointments would already be scheduled in the application.

55 56

Creating a Function

When you want to run a function you've created, look in the Miscellaneous
Deluge Tasks and drag the Call Function block onto the script builder.
(Running a function is often referred to as calling or invoking because
functions are stored offsite and only called up when they're needed.)

When you click on <functionName> you'll see a dropdown with all the
functions you've made in this application. To the right of the function's name,
you'll see the data type that it returns. Choose the function you just wrote.

56 57

Creating a Function

After you choose your function's name, you'll see some text appear inside
the parentheses. This is where you choose which data you want to send to
your function. When we set up our function, we created an argument so
that it could accept the value chosen in a date field.

When you click on this text, you'll see a dropdown with all of the Field
Deluge Names from your form. We'll choose Appointment_Date from the
list of options because that's the name of the field where users are choosing
a time for their appointment.

Now we have the script that calls our function, but we still need a way to
use the information that it returns. If the function returns false, then we need
to give our users an error message and prevent the form from being
submitted. If it returns true, then we don't have to do anything and we can
let our application save the new appointment to our schedule. We can
accomplish this using a conditional.

Drag an if block onto the script builder and replace <variable> with the
script for calling your function. Since this script can return two different
values depending on the circumstances, you can think of it like a variable.
Click <opr> and chose == and then click <expression> and replace it with
the word false.

57 58

Creating a Function

When your function returns false, it will run the script you put inside the
braces. To give users an error message, look in the Debug Deluge Tasks
and drag the alert block onto your script in between the braces. Click on
<expression> and write your message inside quotes to indicate that it's a
string, and shouldn't be treated as a variable. (Without the quotes, Creator
would think each word you're writing is the name of a variable!) You'll
notice that text inside quotes is displayed in red; this helps you differentiate
between variable names and strings.

Next, look in the Miscellaneous Deluge Tasks and drag the cancel submit
block onto your script, below the alert message. This script prevents the form
from saving its data, and forces the user to pick a new date before they can
submit their appointment.

Save your script, and access the live mode of your application. Try
submitting your form with a date that's only one business day away to see
your error message in action.

58 59

Creating a Function

Congratulations, you're done!

We covered a lot of material in this ebook. Let's look at some of the things
you've learned:

•Variables are like containers for data. The information they store can
change over time.

•Data Types are categories of variables. Depending on the data type,
Creator will treat the information inside differently. Also each data type has
its own set of built-in functions.

•Operators let you work with variables. They can do things like add num-
bers or combine bits text together. Relational operators let you compare
variables to see things like which one is bigger, whether or not they're
equivalent, or (in the case of date variables) which date comes first.

•Conditionals are like if-then statements. The part in parentheses checks
for a condition, and the part in braces { } tells Creator what to do when
that condition is met.

•info and alert are what programmers call "debug" statements. Sprinkle
them into your scripts in different places to see how a variable's value is
changing line by line.

59 60

61

We covered a lot of material in this ebook. Let's look at some of the things
you've learned:

•Variables are like containers for data. The information they store can
change over time.

•Data Types are categories of variables. Depending on the data type,
Creator will treat the information inside differently. Also each data type has
its own set of built-in functions.

•Operators let you work with variables. They can do things like add num-
bers or combine bits text together. Relational operators let you compare
variables to see things like which one is bigger, whether or not they're
equivalent, or (in the case of date variables) which date comes first.

•Conditionals are like if-then statements. The part in parentheses checks
for a condition, and the part in braces { } tells Creator what to do when
that condition is met.

•info and alert are what programmers call "debug" statements. Sprinkle
them into your scripts in different places to see how a variable's value is
changing line by line.

Review

61

61

61

•The place where you put your script matters a lot. You can run scripts
when records are created, edited, or deleted. You can run scripts before the
page loads, after someone submits a form but before their record has been
saved, or as soon as a record gets stored in your application. You can also
run scripts when someone fills out or updates a particular field.

•Functions are scripts that you can reuse in several places. They're also
easier to work with because they let you isolate code into smaller chunks
that are easier to see, and they make it easy to debug your scripts.

•Arguments are the information you pass into your functions. Return
types are the data types that your functions spit back out when they're done
processing.

Review

62

With these building blocks at your disposal you'll find you can start
accomplishing most tasks you set your mind to. Once you've got the hang

of the basics in this guide, we strongly encourage you to check out some of
the built in functions in the help guide. With your knowledge of variables

and data types, you should be able to get them working.

Thanks for reading this ebook. If you loved our work or felt like something
was missing, please let us know your thoughts by emailing us at

feedback@zohocreator.com

Contact Creator support:

USA : +1 (888) 900 9646
UK : +44 (20) 35647890

Australia : +61-2-80662898
India : +91-44-67447000

Email us at support@zohocreator.com

63

