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Gradient descent

The directional derivative of f (x) at xg in direction v is

Dy [f] (x0) = M

de e=0
Let x (¢) = xo + ev. Then f (xg + ev) = f (x (¢)) and the chain rule yields
@' ¥ o
DV [f] (XO) - J¢ B Ix x=x =V Ix x=xo =Vveg (XO)

where g denotes the gradient of f.
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Gradient descent

The directional derivative of f (x) at xg in direction v is

_df (xo +&v)
Dylf (o) = ==—|
Let x (¢) = xo + ev. Then f (xg + ev) = f (x (¢)) and the chain rule yields
T
Duffl (o) = 2| LI rF g
=0 X=Xq X=X

where g denotes the gradient of f.

Theorem (steepest ascent direction)

The maximum of Dy [f] (Xo) s.t. ||v|| = 1 is achieved when v is parallel to g (xo).
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Gradient descent

The directional derivative of f (x) at xg in direction v is

_df (xo +&v)
Dylf (o) = ==—|
Let x (¢) = xo + ev. Then f (xg + ev) = f (x (¢)) and the chain rule yields
T
Duffl (o) = 2| LI rF g
e=0 X=Xq X=Xp

where g denotes the gradient of f.

Theorem (steepest ascent direction)

The maximum of Dy [f] (xo) s.t. |v|| = 1 is achieved when v is parallel to g (Xg).

Algorithm (gradient descent)

Set X1 = Xk — B8 (X ) where P, is the step size. The optimal step size is

Br = arg rrl;iknf (xk — Brg (xx))

Emo Todorov (UW) AMATH/CSE 579, Spring 2010



Line search

Most optimization methods involve an inner loop which seeks to minimize
(or sufficiently reduce) the objective function constrained to a line: f (x + ev),
where v is such that a reduction in f is always possible for sufficiently small €,
unless f is already at a local minimum. In gradient descent v = —g (x); other
choices are possible (see below) as long as v' g (x) < 0.
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Line search

Most optimization methods involve an inner loop which seeks to minimize
(or sufficiently reduce) the objective function constrained to a line: f (x + ev),
where v is such that a reduction in f is always possible for sufficiently small €,
unless f is already at a local minimum. In gradient descent v = —g (x); other
choices are possible (see below) as long as v' g (x) < 0.

This is called linesearch, and can be done in different ways:

@ Backtracking: try some ¢, if f (x + ev) > f (x) reduce ¢ and try again.
@ Bisection: attempt to minimize f (x + ev) w.r.t. € using a bisection method.

@ Polysearch: attempt to minimize f (x + ev) by fitting quadratic or cubic
polynomials in ¢, finding the minimum analytically, and iterating.

Exact minimization w.r.t. € is often a waste of time because for ¢ # 0 the current search
direction may no longer be a descent direction.

Sufficient reduction in f is defined relative to the local model (linear or quadratic).
This is known as the Armijo-Goldstein condition; the Wolfe condition (which also
involves the gradient) is more complicated.
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If x. ;1 is a (local) minimum of f in the search direction vy = —g (x), then

Dy, [f] (X¢+1) = 0 = v] g (x41), and so if we use vy 1 = —g (X 1) as the next
search direciton, we have vy 1 orthogonal to vi. Thus gradient descent with
exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration,
which causes chattering when the function has a long oblique valey.
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If x. ;1 is a (local) minimum of f in the search direction vy = —g (x), then

Dy, [f] (X¢+1) = 0 = v] g (x41), and so if we use vy 1 = —g (X 1) as the next
search direciton, we have vy 1 orthogonal to vi. Thus gradient descent with
exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration,
which causes chattering when the function has a long oblique valey.

N

Xk

Key to developing more efficient methods is to anticipate how the gradient
will rotate as we move along the current search direction.
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Newton’s method
If all you have is a hammer, then everything looks like a nail. I

If all you can optimize is a quadratic, then every function looks like a quadratic.
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Newton’s method
If all you have is a hammer, then everything looks like a nail. I

If all you can optimize is a quadratic, then every function looks like a quadratic. \

Taylor-expand f (x) around the current solution x; up to 2nd order:

1
f O +e) =f (x) + &g (x) + 3¢ H (x) e +o ()
where g (x¢) and H (xi) are the gradient and Hessian of f at x;:

a of &f
8 (%) = ox oxoxT

>

H (xt)

X=Xy X=Xk

Assuming H is (symmetric) positive definite, the next solution is

1
Xk+1 = Xk + argmin {eTg—l— 2£THg} =X — H—lg
&
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Stabilizing Newton’s method

For convex functions the Hessian H is always s.p.d, so the above method
converges (usually quickly) to the global minimum. In reality however most
functions we want to optimize are non-convex, which causes two problems:
@ H may be singular, which means that x; 1 = x, — H ~lg will take us all
the way to infinity.
@ H may have negative eigenvalues, which measn that (even if x; 4 is

finite) we end up finding saddle points — minimum in some directions,
maximum in other directions.
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Stabilizing Newton’s method

For convex functions the Hessian H is always s.p.d, so the above method
converges (usually quickly) to the global minimum. In reality however most
functions we want to optimize are non-convex, which causes two problems:

@ H may be singular, which means that x; 1 = x, — H ~lg will take us all
the way to infinity.

@ H may have negative eigenvalues, which measn that (even if x; 4 is
finite) we end up finding saddle points — minimum in some directions,
maximum in other directions.

These problems can be avoided in two general ways:

Q@ Trust region: minimize e’ g+ e He s.t. ||| < r, where r is adapted over
iterations. The minimization is usually done approximately.

@ Convexification/linearsearch: replace H with H 4 AI, and/or use
backtracking linesearch starting at the Newton point. When A is large,
Xy — (H+ AI )71 g~ X — A~ lg, which is gradient descent with step A",
The Levenberg-Marquardt method adapts A over iterations.
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Relation to linear solvers

The quadratic function

1
f (k€)= () + €T (xe) + 3¢ H (i) e
is minimized when the gradient w.r.t € vanishes, i.e. when
He = —g

When H is s.p.d, one can use the conjugate-gradient method for solving linear
equations to do numerical optimization.

The set of vectors {v;},_;...,, are conjugate if they satisfy v;rij =0fori#j.
These are good search directions because they yield exact minimization of an
n-dimensional quadratic in # iterations (using exact linesearch). Such a set
can be constructed using Lanczos iteration:

Sk1 Vi1 = (H — o) vi — spvi_q

where sy, 1 is such that ||v || = 1, and ay = v Hvy. Note that access to H is
not required; all we need to be able to compute is Hv.
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Non-linear least squares

Many optimization problems are in the form

1 2
fO) =5 lr ]
where r (x) is a vector of "residuals". Define the Jacobian of the residuals:

) = 20

Then the gradient and Hessian of f are

g(x) = J(0'r(x)

HE) = J00T 00+ 2
We can omit the last term and obtain the Gauss-Netwon approximation:

H(x)~](x)](x)

Then Newton’s method (with stabilization) becomes

X 1 (x)

1
Xjp1 = X — (]kT]k + )\kl) Ty
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