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Gradient descent
The directional derivative of f (x) at x0 in direction v is

Dv [f ] (x0) =
df (x0 + εv)

dε

����
ε=0

Let x (ε) = x0 + εv. Then f (x0 + εv) = f (x (ε)) and the chain rule yields

Dv [f ] (x0) =
∂x (ε)T

∂ε

�����
ε=0

∂f (x)
∂x

����
x=x0

= vT
∂f (x)

∂x

����
x=x0

= vTg (x0)

where g denotes the gradient of f .

Theorem (steepest ascent direction)
The maximum of Dv [f ] (x0) s.t. kvk = 1 is achieved when v is parallel to g (x0).

Algorithm (gradient descent)
Set xk+1 = xk � βkg (xk) where βk is the step size. The optimal step size is

β�k = arg min
βk

f (xk � βkg (xk))
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Line search
Most optimization methods involve an inner loop which seeks to minimize
(or sufficiently reduce) the objective function constrained to a line: f (x+ εv),
where v is such that a reduction in f is always possible for sufficiently small ε,
unless f is already at a local minimum. In gradient descent v = �g (x); other
choices are possible (see below) as long as vTg (x) � 0.

This is called linesearch, and can be done in different ways:
1 Backtracking: try some ε, if f (x+ εv) > f (x) reduce ε and try again.
2 Bisection: attempt to minimize f (x+ εv)w.r.t. ε using a bisection method.
3 Polysearch: attempt to minimize f (x+ εv) by fitting quadratic or cubic

polynomials in ε, finding the minimum analytically, and iterating.

Exact minimization w.r.t. ε is often a waste of time because for ε 6= 0 the current search
direction may no longer be a descent direction.

Sufficient reduction in f is defined relative to the local model (linear or quadratic).
This is known as the Armijo-Goldstein condition; the Wolfe condition (which also
involves the gradient) is more complicated.
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Chattering

If xk+1 is a (local) minimum of f in the search direction vk = �g (xk), then
Dvk [f ] (xk+1) = 0 = vTk g (xk+1), and so if we use vk+1 = �g (xk+1) as the next
search direciton, we have vk+1 orthogonal to vk. Thus gradient descent with
exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration,
which causes chattering when the function has a long oblique valey.

xk

Key to developing more efficient methods is to anticipate how the gradient
will rotate as we move along the current search direction.
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Newton’s method

Theorem
If all you have is a hammer, then everything looks like a nail.

Corollary
If all you can optimize is a quadratic, then every function looks like a quadratic.

Taylor-expand f (x) around the current solution xk up to 2nd order:

f (xk + ε) = f (xk) + εTg (xk) +
1
2

εTH (xk) ε+ o
�

ε3
�

where g (xk) and H (xk) are the gradient and Hessian of f at xk:

g (xk) ,
∂f
∂x

����
x=xk

H (xk) ,
∂2f

∂x∂xT

����
x=xk

Assuming H is (symmetric) positive definite, the next solution is

xk+1 = xk + arg min
ε

�
εTg+

1
2

εTHε

�
= xk �H�1g
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Stabilizing Newton’s method

For convex functions the Hessian H is always s.p.d, so the above method
converges (usually quickly) to the global minimum. In reality however most
functions we want to optimize are non-convex, which causes two problems:

1 H may be singular, which means that xk+1 = xk �H�1g will take us all
the way to infinity.

2 H may have negative eigenvalues, which measn that (even if xk+1 is
finite) we end up finding saddle points – minimum in some directions,
maximum in other directions.

These problems can be avoided in two general ways:

1 Trust region: minimize εTg+ 1
2 εTHε s.t. kεk � r, where r is adapted over

iterations. The minimization is usually done approximately.
2 Convexification/linearsearch: replace H with H+ λI, and/or use

backtracking linesearch starting at the Newton point. When λ is large,
xk � (H+ λI)�1 g � xk � λ�1g, which is gradient descent with step λ�1.
The Levenberg-Marquardt method adapts λ over iterations.
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Relation to linear solvers
The quadratic function

f (xk + ε) = f (xk) + εTg (xk) +
1
2

εTH (xk) ε

is minimized when the gradient w.r.t ε vanishes, i.e. when

Hε = �g

When H is s.p.d, one can use the conjugate-gradient method for solving linear
equations to do numerical optimization.

The set of vectors fvkgk=1���n are conjugate if they satisfy vTi Hvj = 0 for i 6= j.
These are good search directions because they yield exact minimization of an
n-dimensional quadratic in n iterations (using exact linesearch). Such a set
can be constructed using Lanczos iteration:

sk+1vk+1 = (H� αkI) vk � skvk�1

where sk+1 is such that kvk+1k = 1, and αk = vTk Hvk. Note that access to H is
not required; all we need to be able to compute is Hv.
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Non-linear least squares
Many optimization problems are in the form

f (x) =
1
2
kr (x)k2

where r (x) is a vector of "residuals". Define the Jacobian of the residuals:

J (x) =
∂r (x)

∂x
Then the gradient and Hessian of f are

g (x) = J (x)T r (x)

H (x) = J (x)T J (x) +
∂J (x)

∂x
� r (x)

We can omit the last term and obtain the Gauss-Netwon approximation:

H (x) � J (x)T J (x)

Then Newton’s method (with stabilization) becomes

xk+1 = xk �
�

JTk Jk + λkI
��1

JTk rk

Emo Todorov (UW) AMATH/CSE 579, Spring 2010 Lecture 9 8 / 8


	Gradient descent
	Line search
	Chattering
	Netwon's method
	Stabilizing Netwon's method
	Relation to linear solvers
	Non-linear least squares

